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Abstract The capability of a geometrically nonlin-
ear boundary condition, i.e., a strong local nonlinear-
ity, in “redistributing” a broadband input energy
(generated by an impulsive load) among the vibration
modes of a cantilever Euler—Bernoulli beam is inves-
tigated. It is shown that this modal energy redistribu-
tion increases the inherent capacity of the cantilever
for passive energy dissipation. The nonlinear bound-
ary condition is realized by grounding the free end of
the cantilever through an inclined linear spring—
damper pair with initial angle of inclination ¢,
relative to the neutral axis of the beam while at rest.
For ¢, <90, the inclined spring—damper pair is
geometrically nonlinear, whereas in the limiting case
$o =90 the boundary condition becomes linear. To
study the nonlinear modal energy redistribution in the
cantilever, a multi-step system identification method
to identify the unknown parameters of the experimen-
tal fixture is employed; this informs a computational
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reduced-order finite element (FE) model of the fixture.
First, the Multi-input Multi-output Frequency Domain
Identification (MFDID) technique to analyze the
experimental frequency response functions of the
“base” linear cantilever without the boundary condi-
tion is employed and its modal parameters are
identified. Next, the boundary condition for the
limiting angle ¢, = 90 is imposed, so that again a
linear fixture is obtained. Through reconciliation of
computational and experimental measurements, the
(linear) stiffness and damping coefficients of the
boundary are identified, as well. Finally, by varying
the angle of inclination in the range 0° < ¢, <90, the
nonlinear transient responses of the identified FE
model with the nonlinear boundary condition are
computed and projected onto the linearized modal
basis of the system in the limit of zero energy. The
computational FE results favorably compare with
experimental measurements. Following this, the time-
averaged modal energies of the system are computed
and used to estimate the portion of the total energy of
the beam allocated to each mode. Additionally, by
employing these modal energies one may study and
track the nonlinear energy exchanges between subsets
of modes for different angles of initial inclination ¢,
of the nonlinear boundary attachment. The computa-
tional results are validated by experimental measure-
ments, thus highlighting the predictive capacity of the
computational FE model. In the last step, a scalar
measure for modal energy exchange is defined by
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computing the maximum fluctuation in the percentage
of each of the instantaneous modal energies that is the
maximum percentage of energy being exchanged by
the modes. This measure proves to be dependent on
both the initial energy and the initial angle of
inclination ¢,. Again, experimental measurements
favorably compare to computational FE simulations.

Keywords System identification - Cantilever beam -
Geometrically nonlinear boundary condition - Modal
energy exchange - Hardening, softening nonlinearity

1 Introduction

The presence of local strong nonlinearities in struc-
tures can greatly affect their dynamics. Indeed, in a
series of works intentionally induced local nonlinear-
ities have been exploited through implementation of
targeted energy transfer (TET) in diverse systems with
different types of nonlinearity [1-20]. Geometric
nonlinearity is one type that can be achieved conve-
niently by arranging appropriately the configurations
of stiffness—damper attachments. Due to their sim-
plicity in realization and building, geometrically
nonlinear elements have been widely used, especially
in vibration mitigation systems [12, 14, 21-23]. For
instance, Moore et al. [15] showed that two stores
attached through geometrically nonlinear elements to
the wings of an otherwise linear model airplane
drastically affect its global dynamics under broadband
excitation, resulting in more efficient dissipation of
energy. In another application, a quasi-zero-stiffness
passive nonlinear vibration isolator was studied [21];
the proposed vibration isolator could exhibit negative
stiffness depending on the geometric parameters of the
system, thus introducing softening nonlinear charac-
teristics to the system. Also, Sarlis et al. designed and
experimentally tested a geometrically nonlinear vibra-
tion isolation system with the capacity to exhibit
softening stiffness characteristics due to geometric
effects in order to protect structures from seismic loads
[23]. More recently, Liu et al. [12] employed a similar
geometrically nonlinear element as that studied in [22]
to create a nonlinear vibration absorber, ie., a
nonlinear energy sink (NES), for a primary linear
single degree-of-freedom (SDOF) oscillator under
harmonic  excitation. Through analytical and
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computational studies, they proved that by tuning the
geometric parameter of the nonlinearity, unwanted
high amplitude branches of the frequency responses
could be eliminated. Mojahed et al. [24] also showed
that the same geometric nonlinearity as in [12, 22] can
be used very effectively for vibration isolation of
systems under broadband excitation. They showed
that this specific nonlinearity is capable of scattering
energy from low to high frequencies, thereby reducing
the displacements or strains that the main structure
experiences, resulting in a lower likelihood of failure.

In practical problems where geometric effects are
employed to achieve nonlinear behaviors, geometri-
cally nonlinear damping is also, inevitably, present
and sometimes plays a significant role in the dynam-
ics. In fact, perhaps surprisingly it has been shown that
geometrically nonlinear damping effects can induce
modal instabilities in nonlinear multi-degree-of-free-
dom systems [25]. Moreover, it has been analytically
and experimentally shown that in impulsively loaded
SDOF systems geometrically nonlinear damping
effects can slow down the transient dynamics [22].
We note at this point that another important type of
geometrically nonlinear damping arises from large
deformations or curvatures of continuous media such
as beams, plates, and shells, where experimental and
computational studies demonstrated that nonlinear
dissipative effects can significantly influence the
system behavior, especially at or near resonances
[26-28]. Hence, accounting for geometrically induced
nonlinear dissipative effects is important, especially in
engineering systems composed of flexible parts.

In this work, the efficacy of a local nonlinearity in
the form of a geometrically nonlinear boundary
condition to “redistribute” impulsive energy in the
modal space of a linear cantilever Euler—Bernoulli
beam is investigated. Indeed, it is shown that such a
local nonlinear boundary effect allows for intense
nonlinear energy scattering in the frequency domain,
yielding faster energy dissipation by the inherent
damping capacity of the structure itself.

In particular, the nonlinear boundary condition is
realized by grounding the free end of the cantilever
beam through an inclined linear spring—damper pair
with an initial angle of inclination ¢, relative to the
neutral axis of the beam while at rest. For ¢, <90 the
inclined spring—damper pair is geometrically nonlin-
ear, whereas in the limiting case of ¢, =90  the
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boundary condition becomes linear. The system
configuration is similar to the geometric nonlinearity
studied in [12, 22, 24].

In the first section of this work, the experimental
fixture and its associated reduced-order finite element
(FE) model are introduced. Next, a two-step system
identification technique is employed and the FE model
is updated to reproduce the response of the experi-
mental fixture. The system identification technique
aims for accurate estimation of the system parameters
of the cantilever and the inclined spring—damper pair
of the boundary condition and consists of the follow-
ing steps:

(i) Implementation of the Multi-input Multi-out-
put  Frequency Domain Identification
(MFDID) technique [29] to analyze the fre-
quency response functions of the “base” linear
cantilever beam, i.e., the cantilever without the
boundary condition, subject to an impulsive
load. This yields the modal parameters of the
base cantilever, i.e., the natural frequencies
and modal damping ratios.

(i)  The results of the previous step inform the FE
model of the base cantilever. To identify the
linear parameters of the inclined spring—
damper pair comprising the geometrically
nonlinear boundary condition, the linear can-
tilever with the boundary condition at an initial
angle of inclination of ¢, = 90" is considered.
Employing time series reconciliation, i.e.,
matching the computational response of the
FE model with experimental measurements,
the stiffness and damping coefficients of the
boundary condition are identified.

In the second section, the theoretical framework
that enables studying of the nonlinear energy
exchanges among the vibration modes of the beam
induced by the geometrically nonlinear boundary
condition is introduced. Applying this framework to
both the results obtained from computation (by using
the identified FE model) and experiment (by testing
the experimental fixture), the modal energy flows in
the system and the impulsive energy redistribution in
the linear modal space of the cantilever are tracked. To
quantify these energy exchanges by a scalar estimator,
a measure to quantify their maximum values for
different excitation levels and angles of initial

inclination, ¢, is defined. Through this measure, it
is shown that not only does the excitation intensity
play an important role in the amount of energy
exchanged among the modes, but also that the modal
energy exchange can be maximized by varying the
angle ¢, hence increasing the capacity of the system
to dissipate energy faster through its high frequency
modes.

2 Experimental fixture and finite element (FE)
model

Figure la depicts the fully instrumented experimental
fixture consisting of the linear cantilever steel beam
(Young’s modulus 192 GPa, density 7784 kg/m’,
cross-sectional area 8 x 44.6 mmz, length 1.76 m)
with the geometrically nonlinear boundary condition
composed of the inclined spring—damper pair at its left
end. A closeup of the geometrically nonlinear bound-
ary condition is presented in Fig. 1b; this particular
boundary condition was studied in a previous work
[22] and is achieved by grounding the free end of the
cantilever through a % inch diameter steel rod whose
bending stiffness and inherent damping provide the
geometrically nonlinear compliance and dissipation
during the transient motion of the system. In Fig. 1a, b
the initial angle of inclination is ¢, = 0, but this angle
can be varied by adjusting the position of the base of
the steel rod through orthogonal slots. Figure lc
illustrates the corresponding computational model,
which is composed of a linear FE model of the
cantilever beam connected to ground by an inclined
massless parallel pair of a linear spring and a linear
viscous damper. We note that although the constituent
parts of the boundary have linear constitutive laws, the
overall boundary effect is strongly nonlinear due to the
geometry and kinematics during the transient dynam-
ics. The cantilever beam is instrumented by an array of
10 PCB accelerometers (models U356A11 and
Y353B17) all with a nominal sensitivity of 1.02 mV/
(m/s?), distributed evenly along the length of the
beam. The impulsive excitations are applied at the tip
of the cantilever where the nonlinearity is attached, by
a PCB model hammer (model 086D29) with a
compliant rubber tip.

The FE model associated with the experimental
fixture (Fig. 1c) consists of 10 Euler—Bernoulli linear
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Fig. 1 Linear cantilever beam with geometrically nonlinear
boundary condition: a experimental fixture instrumented with
an array of accelerometers and b detail of the nonlinear
boundary condition in the form of an inclined spring—damper

beam elements (N = 10) with the last node of the last
element being grounded by means of an inclined
spring—dashpot parallel pair. Assuming that only
forces are applied to the beam (i.e., there are no
applied moments), the Guyan reduction technique [30]
is applied to the FE model, resulting in the following
reduced-order computational model,

Mii + Cui + Ku + f, = F(t),

u(0) = 0,1(0) = 0, M)

where overdot represents differentiation with respect
to time, w = [uy,u,...,u0)" is the (10 x 1) nodal
displacement vector at positions x; along the cantilever
(cf. Fig. 1c), and M = [m;] and K = [k;] are the
(10 x 10) reduced mass and stiffness matrices of the
FE model of the beam, and C is the corresponding
damping matrix. The non-homogeneous term F(t) is
the (10 x 1) impulsive forcing vector; throughout this
work, it was assumed that a single impulsive excita-
tion is applied to the tip of the cantilever, which means
that all the entries in F(t) are zero, except for the 10th
that equals the applied impulse F(¢). Explicit
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pair with ¢y = 0" (side view shown); ¢ corresponding reduced-
order FE model with boundary attachment with initial angle of
inclination 0 < ¢y < 90" (top view shown)

expressions for the matrices M, and K have been
reported in previous works [22, 31], whereas the
damping matrix, C, is estimated by the system
identification method of the next section.

Moreover, the (10 x 1) vector f,; in (1) incorpo-
rates the nonlinear forces applied to the cantilever by
the geometrically nonlinear boundary condition whose
elements, except the 10th, are zero. The 10th element,
denoted by fj, is expressed as [22]

(10 + Lo sin p)*
(o cos do)*+(u10 + L sin ¢y )
+ kq(u1o + losin ¢y)

li10

fo(u10; b)) = da [

lo

\/(lo cos ) >+ (u10 + o sin ¢ )
(2

1-—

)

)

where [y is the natural length of the inclined spring—
damper pair, d, and k, are its (linear) damping and
stiffness coefficients, and ¢, is the initial angle of
inclination which is treated as an important geometric
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system parameter. Similar to the damping matrix C,
the coefficients k, and d, are estimated through system
identification. It should be noted that the relation (2)
includes both nonlinear stiffness and damping terms,
and, depending on ¢, and the oscillation amplitude,
has been shown [22, 24] to possess complex nonlinear
features such as, softening, hardening, and bi-stability.

2.1 System identification

The unknown parameters of the model (1) are
estimated by a multi-step system identification study.
In the first step, the nonlinear attachment is removed
from the cantilever (obtaining the “base” linear
cantilever), and then, the damping matrix C is
identified by applying the Multi-input Multi-output
Frequency Domain Identification (MFDID) method
[29] to the frequency response functions of the beam.
In the second step, the boundary attachment at the
special angle of initial inclination ¢, = 90" is consid-
ered, in which case the system is again linear. Then, by
applying time series reconciliation of the responses
obtained by the FE model and the experimentally
measured ones, the stiffness and damping parameters
of the boundary attachment are identified. This process
provides an estimation of all the unknown system
parameters in the model (1).

2.1.1 Step 1: System identification of the modal
damping of the base cantilever beam

Decoupling the boundary attachment from the can-
tilever the following linear “base” cantilever is
obtained:

Mii + Cu + Ku = F(t),

u(0) = 0,1(0) = 0. G)

The MFDID method performs system identification
in the frequency domain by analyzing frequency
response (or transfer) functions. The MFDID tech-
nique was applied to the averaged direct receptance
frequency response function (FRF) having as input the
impulsive excitation applied to the tip of the base
cantilever and as output the corresponding displace-
ment at the same point; averaging was performed
based on 16 different measured direct receptance
FRFs in order to eliminate the effects of noise at low
amplitudes. After identifying all the system

parameters of the base cantilever, the modal param-
eters predicted by the FE model were compared to the
ones obtained by the experimental modal analysis.

Table 1 shows the comparison between the exper-
imentally identified three lower natural frequencies of
the base cantilever and those obtained by the FE
model; in the same Table, the experimentally identi-
fied modal damping ratios for the same modes are also
listed.

Figure 2 illustrates the comparison between the
computationally reconstructed direct receptance FRF
of the base cantilever and the experimentally mea-
sured one which highlights the predictive capacity of
the FE model. It should be noted that the experimental
FRF depicted in Fig. 2 was one of the 16 such
measured FRFs that were used to compute the
averaged direct receptance FRF used in the MFDID
method (note the effects of noise at lower frequen-
cies). Satisfactory agreement between computation
and experiment is observed. This completes the first
stage of the system identification process, after which
the system parameters of the boundary attachment will
be identified.

2.1.2 Step 2: System identification of the linear
parameters of the boundary attachment

To identify the parameters associated with the bound-
ary attachment, the spring—damper boundary attach-
ment was configured to the special initial inclination
angle ¢, =90 yielding a linear system—cf. Fig-
ure 3. The system is then excited by an impulsive
excitation at the beam tip using a modal hammer, and
the beam response was recorded at the same point; this
process was repeated for seven different excitations of
varying intensities (cf. Table 2). For each forcing case,
the temporal dependence of the applied impulses was
experimentally measured; these measured impulses
were then fed to the computational FE model during
the reconciliation exercise described next.

In the last step of the identification procedure, the
parameters of the (linear) spring—damper pair of the
inclined boundary are estimated by performing direct
time series reconciliation of the response of the FE
model (with varying the two unknown parameters, k,
and d,;) and the experimentally measured response of
the tip of the beam, subject to each of the seven applied
impulsive excitations. To assess the success of the
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Table 1 Modal properties of the leading modes of the base cantilever

Mode No. Modal Experiment natural FE model natural Natural frequency
damping ratio frequency (Hz) frequency (Hz) relative error (%)
0.00226 1.90 1.91 0.5
0.00253 12.03 12.09 0.5

3 0.00151 34.08 34.12 0.1

Fig. 2 Comparison (a) (b)

between computational
response reconstruction and
experimental measurement
for the base cantilever:

a impulsive force applied at
the cantilever tip; b transient
tip response, ¢ and d wavelet
transform spectra of the tip
responses of the FE model
and experimental fixture,
respectively; and

e computational and
experimental direct
receptance FRFs (red lines
denote experimental
measurements and black
lines computational
reconstructions). (Color
figure online)

time series reconciliation the objective function,
S =1 — R?, where R? is the coefficient of determina-
tion was considered. The average values for k, and d,,
computed from the corresponding values obtained
from the beam tip response reconciliation for each
excitation case are listed in Table 2.
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A typical example of the reconciliation process is
presented in Fig. 4, where the computationally recon-
structed cantilever tip response (for the identified
system parameters k, and d,) is compared to the
experimentally measured one. This particular result

corresponds to one of the seven applied impulsive
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Fig. 3 Linear system configuration for initial angle of inclination ¢, = 90" of the boundary attachment for the second stage of the

system identification (top view shown)

Table 2 Identified linear

¢ ‘ Test No. Max. force (N) k, (N/m) d, (Ns/m) R?
stiffness and damping
coefficients of the boundary 1 363.25 11,567.5 31.10 0.83
attachment 2 376.82 11,592.0 30.90 0.85
3 405.40 11,935.7 28.25 0.84
4 431.89 11,846.0 27.55 0.84
The bold values correspond 5 446.74 11,720.0 29.75 0.76
(o the averaged values of 6 481.21 11,770.0 27.59 0.77
stiffness and damping we 7 543.09 12,040.0 26.68 0.73
used in the computational Average values 11,781.6 28.83

model

excitation cases (cf. Table 2), and, in addition to time
series comparison—cf. Figure 4a—a comparison of
the corresponding wavelet transform spectra is also
shown—cf. Figure 4c and d. Similar results were
obtained for the other cases of impulsive excitations.
These results confirm the accuracy of the nonlinear
system identification process and validate the identi-
fied system parameters of the experimental system. A
synopsis of the system identification is given in
Table 3 and enables the study and experimental
validation of the fully identified nonlinear model
presented in (1).

3 Transient response of the cantilever beam
with nonlinear boundary condition

Considering the geometrically nonlinear boundary
condition (2), it should be noticed that for ¢, = 90"
the restoring force, f,, degenerates to the following
linear expression

o = datiro + kauio, (4)

which contributes only linearly to the dynamics of the
system. This, however, is not the case for an initial
angle of inclination in the range 0 < ¢, <90°, where
strongly nonlinear stiffness and damping effects are
induced at the end boundary of the cantilever beam. In
this section, the identified computational model for
initial inclination angles less than 90° is validated, and
certain aspects of the geometrically nonlinear

@ Springer
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Fig. 4 Example of (a) (b) L

computational and 600 152 10 ;
experimental response FE model
reconciliation for the system 500 Experiment
with ¢y = 90°

corresponding to one of the 400

impulsive excitations of

Table 2: a impulsive force

applied to the tip of the 300
beam; b response of the

beam tip—insert shows the 200
detail of early-time response

(red line denotes 100
experimental measurement,

and black line 0

Force (N)
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of the beam tip responses Time (s) x107% Time (s)
reconstructed by the FE
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experimental fixture, 50 ' ' 50 ' '
respectively. (Color
figure online)
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dynamics of this system are highlighted. For demon-
stration purposes, three systems corresponding to
different values of ¢, are considered in this section.
The case with ¢, = 0°, which, as discussed below,
yields a strongly nonlinear system is considered first.
Indeed, this represents a special case for the dynamics
since the nonlinear stiffness restoring force (2) exerted
by the boundary is non-linearizable, i.e., it does not
possess any linear component; this means that the
linearized natural frequencies of the cantilever beam
with the nonlinear boundary will be identical to those
of the base cantilever beam (i.e., the beam with no
nonlinear attachment at its end). Figure 5 depicts the
displacement of the beam tip measured from the
experiment and predicted by the FE model, in both the
time and wavelet transform domains. For the specific
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impulsive excitation considered (cf. Figure 5a), there
is close agreement between the experimental and
computational results, both in the initial high energy
cycle and at later times (that is, after 2 s)—cf.
Figure 5b. Moreover, the wavelet transform spectra
of the two responses show great similarity, except for
the ~ 10 Hz harmonic that appears in the experi-
mental response but not in the computational one; this
is the reason for the phase difference between the two
responses in the interval 0.5 and 2 s—cf. Figure 5b.
Moreover, due to the odd-symmetry with respect to the
beam tip displacement of the restoring boundary force
(2), the stiffness nonlinearity in this case is strictly
hardening [22, 24]. This is evident in Fig. 5c and d
where the frequency of the first mode—the shaded
area in the 3-5 Hz range—decreases with time (or
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Table 3 Summary of the identified parameters of system (1)

Parameter Value
Beam Length (m) 1.76
Young’s Modulus (GPa) 192
Density (kg/m?) 7784.0
Width (m) 0.0080
Height (m) 0.0446
Number of finite elements 10
Modal damping ratio—1st mode 0.0023
Modal damping ratio—2nd mode 0.0025
Modal damping ratio—3rd mode 0.0015
Added mass at the tip of the beam (kg) 0.21
kqy (N/m) 11,780.0
d, (Ns/m) 28.83
Iy (m) 0.05

equivalently, with energy). The dashed lines in Fig. 5c
indicate the natural frequencies of the base cantilever,
confirming that, indeed, the special initial inclination
angle of ¢, =0 does not introduce any linearized
stiffness corrections in the dynamics of the system.
Furthermore, comparing the nonlinear transient
responses of Fig. 5 to those of the linear system with
¢y = 90’, it is deduced that an overall softening of the
transient dynamics (in the sense that it possesses lower
linearized natural frequencies), as well as a reduced
dissipative capacity (as the transient oscillations,
undergoes slower decay—see also [22]).
Qualitatively different transient dynamics is real-
ized when the initial angle of inclination is increased
to ¢, =8, with the corresponding results being
presented in Fig. 6. Note that, similar to the case with
¢o = 0, the time series comparison between the two
responses (cf. Fig. 6b) is in rather good agreement, as

Fig. 5 Comparison of the (a) (b)
experimental and 250 0.04
computational beam tip FE model
responses for ¢, = 0': 200 Experiment
a Impulsive force at the tip 0.02
of the beam, b time series 150 el
(red line denotes —~ :
experimental measurement & 2
and black line FE 8 100 o 0
. ) —
reconstruction), and ¢, = o
d corresponding 50 E
experimental and -0.02
computational wavelet 0
transform spectra,
respectively; red dashed -50 -0.04
lines in (c) indicate the 0 0.002 0.004. 0.006 0.008 0.01 0 1 ' 2 3 4
leading natural frequencies Time (s) Time (s)
of the base cantilever—cf. (c) FE model (d) Experiment
Table 1. (Color 50 50
figure online)
40 40
5 [ WSNN————— =z
T30 Z 30
> >
g g
g g
& 20 & 20
3 3
= =
wf T 10
0 h 0 !
0 1 2 3 4 0 1 2 3 4
Time (s) Time (s)
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Fig. 6 Comparison of the experimental and computational
beam tip responses for ¢, = 8": a impulsive force at the tip of
the beam, b time series (red line denotes experimental

are the corresponding wavelet transforms spectra (cf.
Fig. 6¢, d). However, unlike the previous case where
the response was purely hardening, in this case the
restoring boundary force (2) is no longer odd-
symmetric with respect to the beam tip displacement;
as a result, the stiffness nonlinearity of the system
cannot be characterized as being purely hardening.
This result is reflected in the wavelet transform
spectra, especially in the computational result
depicted in Fig. 6d, where one can observe that the
frequency of the lower mode of the beam initially
decreases from 0 to 2 s—representing the stiffness
hardening phase of the dynamics, before it starts
increasing—representing the stiffness softening
phase. This result, which is in agreement with an
earlier work [22], indicates that for ¢, =8 the
dynamics is initially hardening in the highly energetic
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measurement and black line FE reconstruction), and c,
d corresponding experimental and computational wavelet
transform spectra, respectively

regime of the response and then softening in the later
response regime at lower energy levels.

The stiffness softening phase of the transient
dynamics becomes more pronounced as the initial
angle of inclination, ¢, of the boundary attachment
increases. This is demonstrated by the results depicted
in Fig. 7 corresponding to ¢, = 16". Similar to the
previous two cases, the computational and experi-
mental responses are in good agreement, which
validates further the FE model. Moreover, the wavelet
transform spectra of Fig. 7c, d show very prominent
softening stiffness nonlinearities in the transient
dynamics; this is evident by the monotonic increase
in the frequency of the lower mode with time, or,
equivalently with decreasing energy. In addition, the
early-time transient response is more broadband,
indicating the enhancement of the nonlinear effects
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Fig. 7 Comparison of the (a) (b)
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in this highly energetic regime of the dynamics. The
broadband feature of the nonlinear transient response
indicates the generation of harmonics in the response,
which is to be expected in this system due to strong
geometric nonlinearities. As discussed below, nonlin-
ear harmonic generation may yield intense energy
transfers between modes, in contrast to the linear base
cantilever beam where modal interactions are not
possible (as in any linear time invariant system). Next
the nonlinear modal energy exchanges are studied in
more detail.

As mentioned previously, a common feature in all
three cases discussed earlier is the generation of
harmonics due to the geometric nonlinearity of the
boundary. These harmonics can lead to intense energy
exchanges between their associated fundamental har-
monic and other modes of the structure through
resonance captures and internal resonances
[3, 15, 20, 24]. To study such nonlinear energy

exchanges, we need to introduce a modal

transformation for the system dynamics based on the
vibration modes of the linearized Hamiltonian system
(i.e., the system with no damping or external forcing
terms). The basis for the modal transformation is
obtained by solving an eigenvalue problem resulting
from (1) and (2) by setting C = 0, F(#) = 0andd, =0
and taking the limit [|u|| — 0, where ||.|| denotes the
L2 norm operator. This way, in the low energy limit
one is able to define the base formed by the linearized
modes of the cantilever beam—boundary attachment
system in the limit of small response amplitudes when
the geometrically nonlinear effects are nearly negli-
gible. The derived linearized eigenvalue problem is
then written as

[—wf(qﬁo)M + K(¢o)] @i () = 0, (5)

where w;(¢,) and ¢;(¢,) are the i-th linear natural
frequency and mass-orthonormalized mode shape of
the system in the low energy limit, respectively, and
M = [m;] and K(¢y) = [ky(d,)] are the reduced
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(10 x 10) mass and linearized stiffness matrices,
respectively, where

_ [ kij iLj=12,...,9
bi(d0) = {k(l())(lo) +hgsin® ¢y i=j=10.
(6)

and the elements m;; and k;; are the mass and stiffness

elements of the FE model of the cantilever beam (cf.

discussion in Sect. 2). Moreover, the term k, sin® o

represents the effective linearized stiffness of the

geometrically nonlinear boundary attachment in the

low energy limit, i.e., ul(i)mﬂ O (u10; ¢p) /Our0 =
10—

kq sin® ¢ [22, 24]. We emphasize at this point that
both the linearized stiffness matrix, and linearized
natural frequencies and mode shapes depend on the
initial angle of inclination of the boundary attachment.

The linearized modal matrix ®(¢,) =
[91(00)|@2(P0)| -+~ [@10(chy)] creates a linear modal
basis on which the transient response the system can
be projected as follows

n=0"'(¢)u, (7)

where 1 = [, 112,113, - - -, 111" is the vector of modal
displacements, containing the projected nonlinear
nodal responses of the cantilever beam onto the
linearized modal basis defined by the eigenvalue (5). It
should be noted, however, that the linearized modal
basis derived by (5) has physical meaning only in the
low energy limit of the nonlinear dynamics and
changes when the initial angle of inclination of the
boundary attachment changes.

Once the linearized modal responses (7) are
obtained, the associated averaged modal energies
can be computed using the methods employed by
[3, 15, 32] relying on the envelope of the time series of
the kinetic energy of the system

E() = Gt Q

where E;, i=1,2,...,0, is the averaged energy
associated with the i-th linearized mode. Moreover,
the operator ., denotes averaging with respect to time
and is computation is accomplished by fitting a cubic
spline to the local maxima of the corresponding kinetic
energy [32]. Using relations (8), the i-th instantaneous
effective modal damping ratio (EMDR) can be defined
by [32]:

@ Springer
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The instantaneous EMDRs (9) provide a valuable
quantitative measure regarding the individual mode
participation in the nonlinear modal interactions
during the transient dynamics, especially when com-
pared with the (nominal) inherent modal damping
values listed in Table 1. Indeed, an instantaneous
EMDR greater (smaller) than the nominal damping
modal ratio indicates that that specific mode transfers
energy to (receives energy from) other modes
[3, 15, 32]; hence, these measures provide physical
insight on the transient nonlinear energy exchanges
between the beam modes, induced by the nonlinear
boundary attachment. In the next section, we will
apply the developed framework to experimental
measurements and compare them with computational
predictions.

4 Transient nonlinear modal interactions

In this section, we study the energy exchanges that
occur among the first three nonlinear modes of the
cantilever beam by employing relations (8) and (9).
Since these modal energy exchanges depend solely on
the geometric nonlinearity, the two most relevant
parameters that can affect the intensity of the modal
interactions are (i) the input energy, i.e., the intensity
of the applied impulsive excitation, and (ii) the initial
angle of inclination of the boundary attachment, ¢,,.
First, a low intensity impulsive excitation with
¢o =0, cf. Fig. 5 is considered. In the following
study, both experimentally measured responses along
the cantilever (obtained through an array of 10
accelerometers—cf. Fig. 1a), as well as computational
responses provided by the FE model; we will “pro-
ject” these measured responses onto the linearized
modal basis of the beam—attachment system obtained
in the limit of small energies will be analyzed (note
that this modal bases depends on the angle of
inclination, so it is expected to change with varying
¢)- This enables computation of the associated
averaged modal energies (8) and the EMDRs (9) for
the three leading cantilever modes. In Figs. 8, 9, and
10, the modal responses with close agreement noted
between the computational predictions and the exper-
imental measurements are presented. Since these
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modes correspond to the geometrically nonlinear
system, they will be referred to as “nonlinear modes”
of the cantilever beam.

Considering the response of the lowest frequency
nonlinear mode in Fig. 8, the dominant presence of the
first nonlinear mode is observed, but also note the
presence of its higher harmonics generated due to the
geometric nonlinearity. Moreover, traces of the sec-
ond nonlinear mode also appear in the wavelet
transforms, which indicate possible interaction of the
first and second nonlinear modes. This will later be
verified by examining the averaged modal energies
and modal damping ratios. Figure 9 depicts the second
nonlinear modal response, and from the corresponding
wavelet transforms not only the presence of the second
nonlinear mode itself can be observed, but also the
very pronounced presence of the first mode and its
harmonics. Because of the presence of the first
nonlinear mode, the second nonlinear mode is
expected to exhibit strong and sustained modal
interactions with the lower frequency first nonlinear
mode. Similar observations can be made for the
response of the third nonlinear mode, cf. Fig. 10. For
this particular mode, not only the first mode and its
harmonics are present, but also there are weak traces
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of the second nonlinear mode. Such modal interactions
(that are clearly observed in the corresponding wavelet
transforms) are solely due to the local geometric
nonlinearity at the boundary of the beam, since in the
corresponding linear system (i.e., without the bound-
ary) no modal interactions are possible.

Based on the experimental measurements and the
computational results, the energy exchanges and
interactions between the first three nonlinear modes
of the cantilever can be determined by computing the
corresponding averaged modal energies normalized
by the instantaneous total energy of the system as
follows

. Ei(t
By = E1 100,
Etot(t) (10)
1 1
Ewt(t) = EUTMU + EUTKU +E,;

where E,; is the instantaneous potential energy of the
nonlinear boundary and is computed as:

| 2
Ey =<k, {(l% + 2lpu;g sin ¢y + “%0)1/240} - (1)

2
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Then, the normalized effective damping ratios, {;,
for the first three nonlinear modes are computed
directly from the EMDRs (9) according to the relation

o &)
" lim &(r)

t—00

(12)

where, unlike the numerator that is computed both
from experimental and computational results, the
limiting value in the denominator is evaluated com-
putationally, i.e., from the FE model (since evaluating
it computationally is not possible due to the availabil-
ity of only finite duration experimentally measured
data).

Figure 11 depicts the normalized modal energies
and effective damping ratios for the leading three
modes, obtained from both the experimental measure-
ments and the computational predictions. It should be
noted that, due to numerical end effects caused by
using either natural or clamped spline fitting in (8), the
first and last 0.5 s of data has been neglected.
Considering first the normalized modal energies in
Fig. 11a and b, it should be noted that they fluctuate
with time, meaning that the associated cantilever
modes either lose (when the plots decrease) or gain
(when the plots increase) energy as they nonlinearly
interact with other modes. Moreover, as the energy of
the first (lower frequency) nonlinear mode decreases,
that of the second mode increases. This indicates that a
portion of the energy that the first nonlinear mode is

transferred to the second nonlinear mode; hence, the
valleys (peaks) of the energy of the first mode are
synchronized with the peaks (valleys) of the second
mode, proving that these nonlinear modes consistently
exchange energy between them in a nonlinear beat
phenomenon. However, it is observed that with
increasing time the transient dynamics of the system
gradually becomes dominated by the first cantilever
nonlinear mode; this is to be expected, since, being the
mode with the lowest frequency, the first mode has
smaller dissipative capacity compared to the higher
frequency modes. Finally, the modal energies com-
puted from the experimental measurements and the
computational model show the same trend and agree
both qualitatively and quantitatively; this demon-
strates once more the predictive capacity of the
computational model.

Examining then the instantaneous normalized dis-
sipation rates, similar conclusions can be drawn.
Indeed, the fluctuations in the instantaneous normal-
ized modal damping ratios provide a clear picture as to
when the corresponding cantilever modes receive or
shed energy, depending on whether their values
decrease or increase, respectively. Moreover, Fig. 11a
and b implies a qualitative difference between the
computational and experimental normalized damping
ratios for the first mode, in the sense that whereas it
exhibits a decreasing trend in the computational result
(cf. Fig. 11a), this changes to an increasing trend for
the experimental measurement (cf. Fig. 11b). The

Fig. 11 Case of low (a) (b) )

impulse excitation and ¢, = 100 FE model 100 100 Experiment 100
0’ (cf. Fig. 5): Instantaneous

normalized modal energies 90+ 90 90
(10) (black curves—left axes)

and instantaneous 80 80 80
normalized damping ratios 70
(12) (red curves-right axes) 70 0

for the three leading 60 60l 60
cantilever rr.lodes, o T mode] . 7 mode] .

a Computational predictions 550 2 mode| |0 5 w50/ \ [ [ 24 mode|]° 5
and b experimental 3% mode|| | Ve 3 mode

measurements.l
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conjecture is that the increase in the experimental
result is due to the presence of Coulomb friction at the
joint coupling the nonlinear attachment to the beam—
cf. Fig. 1c; such nonlinear dissipative effects are not
taken into account in computational model where all
dissipative elements are assumed to be linear and
viscous. Regarding the normalized damping ratios for
the second and third cantilever modes, these are small
and exhibit small fluctuations.

In attempt to establish a single scalar measure that
quantifies the maximum modal energy exchange for
each nonlinear mode, the difference between each
local maximum and its adjacent minimum for each
normalized instantaneous modal energy is computed
and the maximum value of such difference, AEi, is
recorded. For the considered case of impulsive
excitation and nonlinear boundary, we computed these
maximum energy exchange measures as AET =
~7.13% and AE§ = 5.88% from the computational

results, and AEF = —17.12% and AE% = 10.86%
from the experimental measurements; note that neg-
ative values correspond to decreasing energy, while
positive values correspond to increasing energy.
Hence, both the computational and experimental
results show that there is nonlinear low-to-high
frequency transfer of energy from the first to the
second mode, although the computational model
appears to underestimate the intensity of the energy
exchange.

As a second case, the system with ¢, = 16~ subject
to high intensity impulsive excitation is considered—
cf. Fig. 7. Following the modal projection scheme dis-
cussed previously, i.e., relations (5)—(7), the experi-
mentally measured and computationally predicted
responses of the sensing locations along the cantilever
are projected on to the linearized modal basis obtained
in the low energy-limit. This yields a set of transient
modal responses, as expressed previously. The plots
depicted in Fig. 12 depict the first modal response in
the temporal and frequency domains. It should be
noted that even though the transient dynamics is
strongly nonlinear, not only the computational and
experimental time series show good agreement, but
also their corresponding wavelet transform spectra
agree as well. Up to 0.5 s, both wavelet transforms
show hardening nonlinear behavior (signified by the
fact that the instantaneous frequency of the mode
decreases with increasing time—or decreasing
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energy). After that initial hardening phase, however,
the frequency of the first mode along with its
harmonics increases with time, representing the soft-
ening phase of the nonlinear dynamics. Comparing the
computational and experimental wavelet transform
spectra of Fig. 12 with those of Fig. §, it is noted that,
by increasing the initial angle of inclination from ¢, =
0" to ¢y = 16 , the number and intensity of the higher
harmonics are increased, and these strongly affect the
transient dynamics. In particular, unlike the case of
¢, = 0" where only one harmonic is present in the first
mode response, in the present case there are three
distinct harmonics that appear over extended periods
of time. This highlights the enhanced broadband
nature of the nonlinear response for this increased
initial angle of inclination.

Due to the presence of the higher number of intense
harmonics for this value of ¢,, the possibility of
nonlinear modal interactions increases, SO more
intense modal interactions for this increased initial
angle of inclination of the boundary attachment are
expected to be observed. Figure 13 shows the second
modal response. Figure 13a and b shows the presence
of alow frequency component that is deduced from the
low frequency modulation of the modal response in
the time domain. This is verified by the corresponding
wavelet transform spectra depicted in Fig. 13c and d.
One noticeable difference between the response of this
nonlinear mode and its counterpart for the previous
case of ¢, = 0 is the significant presence of the high
frequency harmonics of the first nonlinear mode in the
response of the second mode for the case. Addition-
ally, a contribution from the third nonlinear mode in
the response of the second mode in the experimental
measurements is observed, unlike in the computa-
tional model (cf. Figure 13c and d). The conjecture is
that this is due to unmodeled dynamics that are excited
by nonlinear effects that are not fully captured by the
FE model and the nonlinear boundary attachment, e.g.,
friction or unmodeled nonlinear stiffness effects.

Figure 14 depicts the response of the third nonlin-
ear mode. Similar to the response of the second mode
presented in Fig. 13, the response of the third mode
contains traces of the first mode and its harmonics;
however, these harmonics are not as intense and
dominant as in the response of the second mode. This
indicates that although the nonlinearity of the bound-
ary attachment affects the response of the third
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nonlinear mode, it is not as significant as for the first
and second modes.

Similar to the previous case, the normalized
instantaneous averaged modal energies and

normalized effective damping ratios for the responses
of the system obtained by the computational model
and the experimental measurements are computed
here. Figure 15 illustrates the normalized modal

@ Springer



3460

A. Mojahed et al.

Fig. 14 Response of the
third nonlinear mode for
high impulse excitation and
¢o = 16" (cf. Fig. 7): a,

¢ Computational prediction,
and b, d experimental
measurement. (Color

figure online)

Fig. 15 Case of high
impulse excitation and ¢, =
16° (cf. Fig. 7):
Instantaneous normalized
modal energies (10) (black
curves-left axes) and
instantaneous normalized
damping ratios (12) (red
curves—right axes) for the
three leading cantilever
modes, a Computational
predictions and

b experimental
measurements
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energies and damping ratios computed for both the
response of the FE model and measured response from
the experiment. Beginning with the normalized aver-
aged modal energies—cf. black curves in Fig. 15a and
b—we observe intense modal energy exchanges,
especially between the first and the second nonlinear
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modes of the cantilever beam. This is inferred by the
high amplitude fluctuations noted in the plots, espe-
cially during the early time, highly energetic regime of
the transient dynamics. Specifically, this is confirmed
by the out-of-phase fluctuations of the first and second
normalized modal damping ratios in both plots; being
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approximately of the same order of magnitude, these
out-of-phase fluctuations prove that a synchronization
is realized, in the sense that, as the first mode loses
energy, the second mode absorbs it and then releases it
back to the first mode in an recurrent fashion.
Computing the scalar energy exchange measure
introduced earlier, for this particular case one can
determine AE; = 15.24% and AE, = —12.85% when
computed from the FE model and AE, = —22.88%
and AE, = 19.21% when computed from the exper-
imental measurements.

To study the effects of the geometry of the
boundary attachment, i.e., of the initial angle of
inclination ¢, on the intensity of the nonlinear modal
energy exchanges, the computational and experimen-
tal energy measures AE; and AE, for low (~ 130N)
and high (~ 230N) impulsive excitations applied to
the beam tip for ¢y =0",5,8",12°,16 and 20" are
computed. The plots in Fig. 16 depict these energy
measures for both low and high intensity excitations.

Starting with Fig. 16a and b, similar trends in the
variations in AE;, i = 1,2, with ¢, for the computa-
tional and experimental results are observed. Although
the plots in Fig. 16a are not similar to those in
Fig. 16b, both cases indicate that for weak impulsive
excitations the optimum initial angle of inclination of
the nonlinear attachment that maximizes the modal

energy exchanges is approximately ¢, = 8 . Knowing
that, by increasing ¢, in effect the linearity of the
geometrically  nonlinear  boundary  condition
[12, 22, 24] is enhanced (in the sense that the linear
part of the nonlinear stiffness characteristic increases),
it is very interesting to note that the effective
nonlinearity in the system is enhanced only until the
angle approaches the value ¢, = 8 . However, for
strong impulse excitation the optimal value of ¢, at
which the modal energy exchange is maximized
changes as well. The computational plots in Fig. 16¢
show that the optimal value of ¢, in that case is greater
than 20°. The experimental plots in Fig. 16d on the
other hand suggest that the optimal value of the angle
is approximately 12°. The discrepancy that is observed
between the computational model and the experimen-
tal measurement for the case of strong impulse
excitation may be caused by the effects of unmodeled
stiffness and damping nonlinearities that are present in
the transient dynamics of the experimental fixture,
e.g., friction effects or clearance nonlinearities. In a
more general context, however, the importance of the
results of Fig. 16 is that it shows that the extra
tunability to the system dynamics that is realized
through the inclination of the nonlinear attachment
enables the maximization of the nonlinear modal
energy exchanges in the (otherwise linear) cantilever
beam, which results in faster overall energy
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dissipation in the system. This enhanced dissipative
capacity is related to the nonlinear scattering of
impulsive energy in the frequency domain as energy is
continuously exchanged between lower frequency and
higher frequency cantilever modes.

5 Concluding remarks

The modal interactions in a cantilever beam whose
free end was grounded by a geometrically nonlinear
element consisting of an inclined linear spring—
damper pair at an initial angle ¢, relative to the
neutral axis of the beam were investigated. A finite
element (FE) model with a geometrically nonlinear
attachment was constructed to predict the measured
responses of an experimental fixture. The parameters
of the integrated model were estimated through a
multi-step nonlinear system identification technique,
incorporating a Multi-input Multi-output Frequency
Domain Identification (MFDID) technique in the
frequency domain, and time series reconciliation.

Using the identified computational model, a theo-
retical framework was developed to study the modal
responses of the beam by projecting its responses on
the linearized modal basis obtained at the low energy
limit of the transient dynamics. As a first step, the
modal responses of the system for two different
magnitudes of impulsive excitation and different
initial angles of inclination ¢, were computed and
studied. The following observations can be made.

In all cases examined, a prominent presence of the
first nonlinear mode of the beam in the wavelet
transform spectrum of the response of the second
nonlinear mode was observed. To verify this observa-
tion, the time-averaged modal energies and instanta-
neous damping ratios of the nonlinear modes of the
beam were computed, and intense modal energy
exchanges, especially between the first and second
modes, were observed.

After estimating the time-averaged modal energies
of the system, the maximum amount of energy
exchanged between the first and second modes for
varying impulse intensity and angles of inclination ¢,
was computed. In the case of low intensity impulses,
both the experimental and computational results
confirmed that there exists an optimal initial angle of
inclination, ¢, ~ 8", where the nonlinear modal
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energy exchanges reach their maximum values. For
high intensity impulsive excitations, on the other hand,
the computational model predicted an optimal angle
greater than ¢, = 20", while the results obtained from
the experimental measurements indicated that the
maximum modal energy exchange occurred at an
angle of ¢, =~ 12". It was conjectured that unmodeled
dynamics was the reason for this discrepancy, the
effects of which are enhanced as the intensity of the
impulsive excitation increases.

Fluctuations in the maximum modal energy
exchanges between the first and second beam modes
for both low and high intensity impulsive excitations
confirmed that one can induce modal energy exchanges
in the cantilever beam by introducing geometric
nonlinearity at its boundary. The propensity of the
governing nonlinear modes of the system to exchange
energy can be increased significantly with increasing
energy and varying angle of inclination of the bound-
ary attachment, thereby increasing the overall dissipa-
tive capacity of the system through frequency
scattering of energy in the frequency domain.

The studied nonlinear mechanism of energy scat-
tering in the frequency domain, i.e., the modal space of
the primary structure, enhances the dissipative capac-
ity of the cantilever beam, without the need to add any
mass or damping. In fact, the enhanced dissipative
capacity of the beam with the nonlinear boundary
condition is due to better utilization of the inherent
dissipative capacity of the beam itself, through low-to-
high energy transfers and excitation of higher-order
beam modes. This approach can provide an alternative
way for efficient and rapid energy dissipation in
flexible structures, compared to current methods
based, e.g., on the use of dynamic absorbers or
additional damping devices.
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