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Abstract The capability of a geometrically nonlin-

ear boundary condition, i.e., a strong local nonlinear-

ity, in ‘‘redistributing’’ a broadband input energy

(generated by an impulsive load) among the vibration

modes of a cantilever Euler–Bernoulli beam is inves-

tigated. It is shown that this modal energy redistribu-

tion increases the inherent capacity of the cantilever

for passive energy dissipation. The nonlinear bound-

ary condition is realized by grounding the free end of

the cantilever through an inclined linear spring–

damper pair with initial angle of inclination /0

relative to the neutral axis of the beam while at rest.

For /0\90
�
, the inclined spring–damper pair is

geometrically nonlinear, whereas in the limiting case

/0 ¼ 90
�

the boundary condition becomes linear. To

study the nonlinear modal energy redistribution in the

cantilever, a multi-step system identification method

to identify the unknown parameters of the experimen-

tal fixture is employed; this informs a computational

reduced-order finite element (FE) model of the fixture.

First, the Multi-input Multi-output Frequency Domain

Identification (MFDID) technique to analyze the

experimental frequency response functions of the

‘‘base’’ linear cantilever without the boundary condi-

tion is employed and its modal parameters are

identified. Next, the boundary condition for the

limiting angle /0 ¼ 90
�

is imposed, so that again a

linear fixture is obtained. Through reconciliation of

computational and experimental measurements, the

(linear) stiffness and damping coefficients of the

boundary are identified, as well. Finally, by varying

the angle of inclination in the range 0� �/0\90
�
, the

nonlinear transient responses of the identified FE

model with the nonlinear boundary condition are

computed and projected onto the linearized modal

basis of the system in the limit of zero energy. The

computational FE results favorably compare with

experimental measurements. Following this, the time-

averaged modal energies of the system are computed

and used to estimate the portion of the total energy of

the beam allocated to each mode. Additionally, by

employing these modal energies one may study and

track the nonlinear energy exchanges between subsets

of modes for different angles of initial inclination /0

of the nonlinear boundary attachment. The computa-

tional results are validated by experimental measure-

ments, thus highlighting the predictive capacity of the

computational FE model. In the last step, a scalar

measure for modal energy exchange is defined by
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computing the maximum fluctuation in the percentage

of each of the instantaneous modal energies that is the

maximum percentage of energy being exchanged by

the modes. This measure proves to be dependent on

both the initial energy and the initial angle of

inclination /0. Again, experimental measurements

favorably compare to computational FE simulations.

Keywords System identification � Cantilever beam �
Geometrically nonlinear boundary condition � Modal

energy exchange � Hardening, softening nonlinearity

1 Introduction

The presence of local strong nonlinearities in struc-

tures can greatly affect their dynamics. Indeed, in a

series of works intentionally induced local nonlinear-

ities have been exploited through implementation of

targeted energy transfer (TET) in diverse systems with

different types of nonlinearity [1–20]. Geometric

nonlinearity is one type that can be achieved conve-

niently by arranging appropriately the configurations

of stiffness–damper attachments. Due to their sim-

plicity in realization and building, geometrically

nonlinear elements have been widely used, especially

in vibration mitigation systems [12, 14, 21–23]. For

instance, Moore et al. [15] showed that two stores

attached through geometrically nonlinear elements to

the wings of an otherwise linear model airplane

drastically affect its global dynamics under broadband

excitation, resulting in more efficient dissipation of

energy. In another application, a quasi-zero-stiffness

passive nonlinear vibration isolator was studied [21];

the proposed vibration isolator could exhibit negative

stiffness depending on the geometric parameters of the

system, thus introducing softening nonlinear charac-

teristics to the system. Also, Sarlis et al. designed and

experimentally tested a geometrically nonlinear vibra-

tion isolation system with the capacity to exhibit

softening stiffness characteristics due to geometric

effects in order to protect structures from seismic loads

[23]. More recently, Liu et al. [12] employed a similar

geometrically nonlinear element as that studied in [22]

to create a nonlinear vibration absorber, i.e., a

nonlinear energy sink (NES), for a primary linear

single degree-of-freedom (SDOF) oscillator under

harmonic excitation. Through analytical and

computational studies, they proved that by tuning the

geometric parameter of the nonlinearity, unwanted

high amplitude branches of the frequency responses

could be eliminated. Mojahed et al. [24] also showed

that the same geometric nonlinearity as in [12, 22] can

be used very effectively for vibration isolation of

systems under broadband excitation. They showed

that this specific nonlinearity is capable of scattering

energy from low to high frequencies, thereby reducing

the displacements or strains that the main structure

experiences, resulting in a lower likelihood of failure.

In practical problems where geometric effects are

employed to achieve nonlinear behaviors, geometri-

cally nonlinear damping is also, inevitably, present

and sometimes plays a significant role in the dynam-

ics. In fact, perhaps surprisingly it has been shown that

geometrically nonlinear damping effects can induce

modal instabilities in nonlinear multi-degree-of-free-

dom systems [25]. Moreover, it has been analytically

and experimentally shown that in impulsively loaded

SDOF systems geometrically nonlinear damping

effects can slow down the transient dynamics [22].

We note at this point that another important type of

geometrically nonlinear damping arises from large

deformations or curvatures of continuous media such

as beams, plates, and shells, where experimental and

computational studies demonstrated that nonlinear

dissipative effects can significantly influence the

system behavior, especially at or near resonances

[26–28]. Hence, accounting for geometrically induced

nonlinear dissipative effects is important, especially in

engineering systems composed of flexible parts.

In this work, the efficacy of a local nonlinearity in

the form of a geometrically nonlinear boundary

condition to ‘‘redistribute’’ impulsive energy in the

modal space of a linear cantilever Euler–Bernoulli

beam is investigated. Indeed, it is shown that such a

local nonlinear boundary effect allows for intense

nonlinear energy scattering in the frequency domain,

yielding faster energy dissipation by the inherent

damping capacity of the structure itself.

In particular, the nonlinear boundary condition is

realized by grounding the free end of the cantilever

beam through an inclined linear spring–damper pair

with an initial angle of inclination /0 relative to the

neutral axis of the beam while at rest. For /0\90
�

the

inclined spring–damper pair is geometrically nonlin-

ear, whereas in the limiting case of /0 ¼ 90
�

the

123

3444 A. Mojahed et al.



boundary condition becomes linear. The system

configuration is similar to the geometric nonlinearity

studied in [12, 22, 24].

In the first section of this work, the experimental

fixture and its associated reduced-order finite element

(FE) model are introduced. Next, a two-step system

identification technique is employed and the FE model

is updated to reproduce the response of the experi-

mental fixture. The system identification technique

aims for accurate estimation of the system parameters

of the cantilever and the inclined spring–damper pair

of the boundary condition and consists of the follow-

ing steps:

(i) Implementation of the Multi-input Multi-out-

put Frequency Domain Identification

(MFDID) technique [29] to analyze the fre-

quency response functions of the ‘‘base’’ linear

cantilever beam, i.e., the cantilever without the

boundary condition, subject to an impulsive

load. This yields the modal parameters of the

base cantilever, i.e., the natural frequencies

and modal damping ratios.

(ii) The results of the previous step inform the FE

model of the base cantilever. To identify the

linear parameters of the inclined spring–

damper pair comprising the geometrically

nonlinear boundary condition, the linear can-

tilever with the boundary condition at an initial

angle of inclination of /0 ¼ 90
�

is considered.

Employing time series reconciliation, i.e.,

matching the computational response of the

FE model with experimental measurements,

the stiffness and damping coefficients of the

boundary condition are identified.

In the second section, the theoretical framework

that enables studying of the nonlinear energy

exchanges among the vibration modes of the beam

induced by the geometrically nonlinear boundary

condition is introduced. Applying this framework to

both the results obtained from computation (by using

the identified FE model) and experiment (by testing

the experimental fixture), the modal energy flows in

the system and the impulsive energy redistribution in

the linear modal space of the cantilever are tracked. To

quantify these energy exchanges by a scalar estimator,

a measure to quantify their maximum values for

different excitation levels and angles of initial

inclination, /0, is defined. Through this measure, it

is shown that not only does the excitation intensity

play an important role in the amount of energy

exchanged among the modes, but also that the modal

energy exchange can be maximized by varying the

angle /0, hence increasing the capacity of the system

to dissipate energy faster through its high frequency

modes.

2 Experimental fixture and finite element (FE)

model

Figure 1a depicts the fully instrumented experimental

fixture consisting of the linear cantilever steel beam

(Young’s modulus 192 GPa, density 7784 kg/m3,

cross-sectional area 8 9 44.6 mm2, length 1.76 m)

with the geometrically nonlinear boundary condition

composed of the inclined spring–damper pair at its left

end. A closeup of the geometrically nonlinear bound-

ary condition is presented in Fig. 1b; this particular

boundary condition was studied in a previous work

[22] and is achieved by grounding the free end of the

cantilever through a � inch diameter steel rod whose

bending stiffness and inherent damping provide the

geometrically nonlinear compliance and dissipation

during the transient motion of the system. In Fig. 1a, b

the initial angle of inclination is/0 ¼ 0
�
, but this angle

can be varied by adjusting the position of the base of

the steel rod through orthogonal slots. Figure 1c

illustrates the corresponding computational model,

which is composed of a linear FE model of the

cantilever beam connected to ground by an inclined

massless parallel pair of a linear spring and a linear

viscous damper. We note that although the constituent

parts of the boundary have linear constitutive laws, the

overall boundary effect is strongly nonlinear due to the

geometry and kinematics during the transient dynam-

ics. The cantilever beam is instrumented by an array of

10 PCB accelerometers (models U356A11 and

Y353B17) all with a nominal sensitivity of 1.02 mV/

(m/s2), distributed evenly along the length of the

beam. The impulsive excitations are applied at the tip

of the cantilever where the nonlinearity is attached, by

a PCB model hammer (model 086D29) with a

compliant rubber tip.

The FE model associated with the experimental

fixture (Fig. 1c) consists of 10 Euler–Bernoulli linear
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beam elements (N ¼ 10) with the last node of the last

element being grounded by means of an inclined

spring–dashpot parallel pair. Assuming that only

forces are applied to the beam (i.e., there are no

applied moments), the Guyan reduction technique [30]

is applied to the FE model, resulting in the following

reduced-order computational model,

M€uþ C _uþKuþ fnl ¼ F tð Þ;
u 0ð Þ ¼ 0; _u 0ð Þ ¼ 0;

ð1Þ

where overdot represents differentiation with respect

to time, u ¼ u1; u2; . . .; u10½ �T is the 10 � 1ð Þ nodal

displacement vector at positions xi along the cantilever

(cf. Fig. 1c), and M ¼ mij

� �
and K ¼ kij

� �
are the

10 � 10ð Þ reduced mass and stiffness matrices of the

FE model of the beam, and C is the corresponding

damping matrix. The non-homogeneous term F tð Þ is

the 10 � 1ð Þ impulsive forcing vector; throughout this

work, it was assumed that a single impulsive excita-

tion is applied to the tip of the cantilever, which means

that all the entries in F tð Þ are zero, except for the 10th

that equals the applied impulse F tð Þ. Explicit

expressions for the matrices M, and K have been

reported in previous works [22, 31], whereas the

damping matrix, C, is estimated by the system

identification method of the next section.

Moreover, the 10 � 1ð Þ vector fnl in (1) incorpo-

rates the nonlinear forces applied to the cantilever by

the geometrically nonlinear boundary condition whose

elements, except the 10th, are zero. The 10th element,

denoted by fb, is expressed as [22]

fb u10;/0ð Þ ¼ da
u10 þ l0 sin/0ð Þ2

l0 cos/0ð Þ2þ u10 þ l0 sin/0ð Þ2

" #

_u10

þ ka u10 þ l0 sin/0ð Þ

1 � l0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0 cos/0ð Þ2þ u10 þ l0 sin/0ð Þ2

q

2

64

3

75;

ð2Þ

where l0 is the natural length of the inclined spring–

damper pair, da and ka are its (linear) damping and

stiffness coefficients, and /0 is the initial angle of

inclination which is treated as an important geometric

(a) (b)

(c)

Geometrically nonlinear 
boundary condition Steel rod

Hinges

Accelerometer
Accelerometer
array

Adjusting 
slots

Fig. 1 Linear cantilever beam with geometrically nonlinear

boundary condition: a experimental fixture instrumented with

an array of accelerometers and b detail of the nonlinear

boundary condition in the form of an inclined spring–damper

pair with /0 ¼ 0
�

(side view shown); c corresponding reduced-

order FE model with boundary attachment with initial angle of

inclination 0�/0 � 90
�

(top view shown)
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system parameter. Similar to the damping matrix C,

the coefficients ka and da are estimated through system

identification. It should be noted that the relation (2)

includes both nonlinear stiffness and damping terms,

and, depending on /0 and the oscillation amplitude,

has been shown [22, 24] to possess complex nonlinear

features such as, softening, hardening, and bi-stability.

2.1 System identification

The unknown parameters of the model (1) are

estimated by a multi-step system identification study.

In the first step, the nonlinear attachment is removed

from the cantilever (obtaining the ‘‘base’’ linear

cantilever), and then, the damping matrix C is

identified by applying the Multi-input Multi-output

Frequency Domain Identification (MFDID) method

[29] to the frequency response functions of the beam.

In the second step, the boundary attachment at the

special angle of initial inclination /0 ¼ 90
�

is consid-

ered, in which case the system is again linear. Then, by

applying time series reconciliation of the responses

obtained by the FE model and the experimentally

measured ones, the stiffness and damping parameters

of the boundary attachment are identified. This process

provides an estimation of all the unknown system

parameters in the model (1).

2.1.1 Step 1: System identification of the modal

damping of the base cantilever beam

Decoupling the boundary attachment from the can-

tilever the following linear ‘‘base’’ cantilever is

obtained:

M€uþ C _uþKu ¼ F tð Þ;
u 0ð Þ ¼ 0; _u 0ð Þ ¼ 0:

ð3Þ

The MFDID method performs system identification

in the frequency domain by analyzing frequency

response (or transfer) functions. The MFDID tech-

nique was applied to the averaged direct receptance

frequency response function (FRF) having as input the

impulsive excitation applied to the tip of the base

cantilever and as output the corresponding displace-

ment at the same point; averaging was performed

based on 16 different measured direct receptance

FRFs in order to eliminate the effects of noise at low

amplitudes. After identifying all the system

parameters of the base cantilever, the modal param-

eters predicted by the FE model were compared to the

ones obtained by the experimental modal analysis.

Table 1 shows the comparison between the exper-

imentally identified three lower natural frequencies of

the base cantilever and those obtained by the FE

model; in the same Table, the experimentally identi-

fied modal damping ratios for the same modes are also

listed.

Figure 2 illustrates the comparison between the

computationally reconstructed direct receptance FRF

of the base cantilever and the experimentally mea-

sured one which highlights the predictive capacity of

the FE model. It should be noted that the experimental

FRF depicted in Fig. 2 was one of the 16 such

measured FRFs that were used to compute the

averaged direct receptance FRF used in the MFDID

method (note the effects of noise at lower frequen-

cies). Satisfactory agreement between computation

and experiment is observed. This completes the first

stage of the system identification process, after which

the system parameters of the boundary attachment will

be identified.

2.1.2 Step 2: System identification of the linear

parameters of the boundary attachment

To identify the parameters associated with the bound-

ary attachment, the spring–damper boundary attach-

ment was configured to the special initial inclination

angle /0 ¼ 90
�

yielding a linear system—cf. Fig-

ure 3. The system is then excited by an impulsive

excitation at the beam tip using a modal hammer, and

the beam response was recorded at the same point; this

process was repeated for seven different excitations of

varying intensities (cf. Table 2). For each forcing case,

the temporal dependence of the applied impulses was

experimentally measured; these measured impulses

were then fed to the computational FE model during

the reconciliation exercise described next.

In the last step of the identification procedure, the

parameters of the (linear) spring–damper pair of the

inclined boundary are estimated by performing direct

time series reconciliation of the response of the FE

model (with varying the two unknown parameters, ka
and da) and the experimentally measured response of

the tip of the beam, subject to each of the seven applied

impulsive excitations. To assess the success of the
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time series reconciliation the objective function,

S ¼ 1 � R2, where R2 is the coefficient of determina-

tion was considered. The average values for ka and da
computed from the corresponding values obtained

from the beam tip response reconciliation for each

excitation case are listed in Table 2.

A typical example of the reconciliation process is

presented in Fig. 4, where the computationally recon-

structed cantilever tip response (for the identified

system parameters ka and da) is compared to the

experimentally measured one. This particular result

corresponds to one of the seven applied impulsive

Table 1 Modal properties of the leading modes of the base cantilever

Mode No. Modal

damping ratio

Experiment natural

frequency (Hz)

FE model natural

frequency (Hz)

Natural frequency

relative error (%)

1 0.00226 1.90 1.91 0.5

2 0.00253 12.03 12.09 0.5

3 0.00151 34.08 34.12 0.1

(a) (b)

(c) (d)

(e)

Fig. 2 Comparison

between computational

response reconstruction and

experimental measurement

for the base cantilever:

a impulsive force applied at

the cantilever tip; b transient

tip response, c and d wavelet

transform spectra of the tip

responses of the FE model

and experimental fixture,

respectively; and

e computational and

experimental direct

receptance FRFs (red lines

denote experimental

measurements and black

lines computational

reconstructions). (Color

figure online)
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excitation cases (cf. Table 2), and, in addition to time

series comparison—cf. Figure 4a—a comparison of

the corresponding wavelet transform spectra is also

shown—cf. Figure 4c and d. Similar results were

obtained for the other cases of impulsive excitations.

These results confirm the accuracy of the nonlinear

system identification process and validate the identi-

fied system parameters of the experimental system. A

synopsis of the system identification is given in

Table 3 and enables the study and experimental

validation of the fully identified nonlinear model

presented in (1).

3 Transient response of the cantilever beam

with nonlinear boundary condition

Considering the geometrically nonlinear boundary

condition (2), it should be noticed that for /0 ¼ 90
�

the restoring force, fb, degenerates to the following

linear expression

fb ¼ da _u10 þ kau10; ð4Þ

which contributes only linearly to the dynamics of the

system. This, however, is not the case for an initial

angle of inclination in the range 0�/0\90
�
, where

strongly nonlinear stiffness and damping effects are

induced at the end boundary of the cantilever beam. In

this section, the identified computational model for

initial inclination angles less than 90
�

is validated, and

certain aspects of the geometrically nonlinear

Boundary attachment

Fig. 3 Linear system configuration for initial angle of inclination /0 ¼ 90
�

of the boundary attachment for the second stage of the

system identification (top view shown)

Table 2 Identified linear

stiffness and damping

coefficients of the boundary

attachment

The bold values correspond

to the averaged values of

stiffness and damping we

used in the computational

model

Test No. Max. force (N) ka N/mð Þ da Ns/mð Þ R2

1 363.25 11,567.5 31.10 0.83

2 376.82 11,592.0 30.90 0.85

3 405.40 11,935.7 28.25 0.84

4 431.89 11,846.0 27.55 0.84

5 446.74 11,720.0 29.75 0.76

6 481.21 11,770.0 27.59 0.77

7 543.09 12,040.0 26.68 0.73

Average values 11,781.6 28.83
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dynamics of this system are highlighted. For demon-

stration purposes, three systems corresponding to

different values of /0 are considered in this section.

The case with /0 ¼ 0
�
, which, as discussed below,

yields a strongly nonlinear system is considered first.

Indeed, this represents a special case for the dynamics

since the nonlinear stiffness restoring force (2) exerted

by the boundary is non-linearizable, i.e., it does not

possess any linear component; this means that the

linearized natural frequencies of the cantilever beam

with the nonlinear boundary will be identical to those

of the base cantilever beam (i.e., the beam with no

nonlinear attachment at its end). Figure 5 depicts the

displacement of the beam tip measured from the

experiment and predicted by the FE model, in both the

time and wavelet transform domains. For the specific

impulsive excitation considered (cf. Figure 5a), there

is close agreement between the experimental and

computational results, both in the initial high energy

cycle and at later times (that is, after 2 s)—cf.

Figure 5b. Moreover, the wavelet transform spectra

of the two responses show great similarity, except for

the * 10 Hz harmonic that appears in the experi-

mental response but not in the computational one; this

is the reason for the phase difference between the two

responses in the interval 0.5 and 2 s—cf. Figure 5b.

Moreover, due to the odd-symmetry with respect to the

beam tip displacement of the restoring boundary force

(2), the stiffness nonlinearity in this case is strictly

hardening [22, 24]. This is evident in Fig. 5c and d

where the frequency of the first mode—the shaded

area in the 3–5 Hz range—decreases with time (or

Fig. 4 Example of

computational and

experimental response

reconciliation for the system

with /0 ¼ 90
�

corresponding to one of the

impulsive excitations of

Table 2: a impulsive force

applied to the tip of the

beam; b response of the

beam tip—insert shows the

detail of early-time response

(red line denotes

experimental measurement,

and black line

computational FE

reconstruction); and c,

d wavelet transform spectra

of the beam tip responses

reconstructed by the FE

model and measured in the

experimental fixture,

respectively. (Color

figure online)
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equivalently, with energy). The dashed lines in Fig. 5c

indicate the natural frequencies of the base cantilever,

confirming that, indeed, the special initial inclination

angle of /0 ¼ 0
�

does not introduce any linearized

stiffness corrections in the dynamics of the system.

Furthermore, comparing the nonlinear transient

responses of Fig. 5 to those of the linear system with

/0 ¼ 90
�
, it is deduced that an overall softening of the

transient dynamics (in the sense that it possesses lower

linearized natural frequencies), as well as a reduced

dissipative capacity (as the transient oscillations,

undergoes slower decay—see also [22]).

Qualitatively different transient dynamics is real-

ized when the initial angle of inclination is increased

to /0 ¼ 8
�
, with the corresponding results being

presented in Fig. 6. Note that, similar to the case with

/0 ¼ 0
�
, the time series comparison between the two

responses (cf. Fig. 6b) is in rather good agreement, as

Table 3 Summary of the identified parameters of system (1)

Parameter Value

Beam Length (m) 1.76

Young’s Modulus (GPa) 192

Density (kg/m2) 7784.0

Width (m) 0.0080

Height (m) 0.0446

Number of finite elements 10

Modal damping ratio—1st mode 0.0023

Modal damping ratio—2nd mode 0.0025

Modal damping ratio—3rd mode 0.0015

Added mass at the tip of the beam (kg) 0.21

ka (N/m) 11,780.0

da (Ns/m) 28.83

l0 (m) 0.05

Fig. 5 Comparison of the

experimental and

computational beam tip

responses for /0 ¼ 0
�
:

a Impulsive force at the tip

of the beam, b time series

(red line denotes

experimental measurement

and black line FE

reconstruction), and c,

d corresponding

experimental and

computational wavelet

transform spectra,

respectively; red dashed

lines in (c) indicate the

leading natural frequencies

of the base cantilever—cf.

Table 1. (Color

figure online)
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are the corresponding wavelet transforms spectra (cf.

Fig. 6c, d). However, unlike the previous case where

the response was purely hardening, in this case the

restoring boundary force (2) is no longer odd-

symmetric with respect to the beam tip displacement;

as a result, the stiffness nonlinearity of the system

cannot be characterized as being purely hardening.

This result is reflected in the wavelet transform

spectra, especially in the computational result

depicted in Fig. 6d, where one can observe that the

frequency of the lower mode of the beam initially

decreases from 0 to 2 s—representing the stiffness

hardening phase of the dynamics, before it starts

increasing—representing the stiffness softening

phase. This result, which is in agreement with an

earlier work [22], indicates that for /0 ¼ 8
�
the

dynamics is initially hardening in the highly energetic

regime of the response and then softening in the later

response regime at lower energy levels.

The stiffness softening phase of the transient

dynamics becomes more pronounced as the initial

angle of inclination, /0, of the boundary attachment

increases. This is demonstrated by the results depicted

in Fig. 7 corresponding to /0 ¼ 16
�
. Similar to the

previous two cases, the computational and experi-

mental responses are in good agreement, which

validates further the FE model. Moreover, the wavelet

transform spectra of Fig. 7c, d show very prominent

softening stiffness nonlinearities in the transient

dynamics; this is evident by the monotonic increase

in the frequency of the lower mode with time, or,

equivalently with decreasing energy. In addition, the

early-time transient response is more broadband,

indicating the enhancement of the nonlinear effects

(a) (b)

(c) (d)

Softening regimeStiffening regime

Fig. 6 Comparison of the experimental and computational

beam tip responses for /0 ¼ 8
�
: a impulsive force at the tip of

the beam, b time series (red line denotes experimental

measurement and black line FE reconstruction), and c,

d corresponding experimental and computational wavelet

transform spectra, respectively
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in this highly energetic regime of the dynamics. The

broadband feature of the nonlinear transient response

indicates the generation of harmonics in the response,

which is to be expected in this system due to strong

geometric nonlinearities. As discussed below, nonlin-

ear harmonic generation may yield intense energy

transfers between modes, in contrast to the linear base

cantilever beam where modal interactions are not

possible (as in any linear time invariant system). Next

the nonlinear modal energy exchanges are studied in

more detail.

As mentioned previously, a common feature in all

three cases discussed earlier is the generation of

harmonics due to the geometric nonlinearity of the

boundary. These harmonics can lead to intense energy

exchanges between their associated fundamental har-

monic and other modes of the structure through

resonance captures and internal resonances

[3, 15, 20, 24]. To study such nonlinear energy

exchanges, we need to introduce a modal

transformation for the system dynamics based on the

vibration modes of the linearized Hamiltonian system

(i.e., the system with no damping or external forcing

terms). The basis for the modal transformation is

obtained by solving an eigenvalue problem resulting

from (1) and (2) by setting C ¼ 0, F tð Þ ¼ 0 and da ¼ 0

and taking the limit jjujj ! 0, where jj:jj denotes the

L2 norm operator. This way, in the low energy limit

one is able to define the base formed by the linearized

modes of the cantilever beam—boundary attachment

system in the limit of small response amplitudes when

the geometrically nonlinear effects are nearly negli-

gible. The derived linearized eigenvalue problem is

then written as

�x2
i /0ð ÞMþ �K /0ð Þ

� �
ui /0ð Þ ¼ 0; ð5Þ

where xi /0ð Þ and ui /0ð Þ are the i-th linear natural

frequency and mass-orthonormalized mode shape of

the system in the low energy limit, respectively, and

M ¼ mij

� �
and �K /0ð Þ ¼ �kij /0ð Þ

� �
are the reduced

Fig. 7 Comparison of the

experimental and

computational beam tip

responses for /0 ¼ 16
�

a Impulsive force at the tip

of the beam, b Time series

(red line denotes

experimental measurement

and black line FE

reconstruction), and c,

d corresponding

experimental and

computational wavelet

transform spectra,

respectively
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10 � 10ð Þ mass and linearized stiffness matrices,

respectively, where

�kij /0ð Þ ¼ ki;j i; j ¼ 1; 2; . . .; 9

k 10ð Þ 10ð Þ þ ka sin2 /0 i ¼ j ¼ 10:

�
:

ð6Þ

and the elements mij and kij are the mass and stiffness

elements of the FE model of the cantilever beam (cf.

discussion in Sect. 2). Moreover, the term ka sin2 /0

represents the effective linearized stiffness of the

geometrically nonlinear boundary attachment in the

low energy limit, i.e., lim
u10!0

ofb u10;/0ð Þ=ou10 ¼

ka sin2 /0 [22, 24]. We emphasize at this point that

both the linearized stiffness matrix, and linearized

natural frequencies and mode shapes depend on the

initial angle of inclination of the boundary attachment.

The linearized modal matrix U /0ð Þ ¼
½u1 /0ð Þ u2 /0ð Þj j � � � ju10 /0ð Þ� creates a linear modal

basis on which the transient response the system can

be projected as follows

g ¼ U�1 /0ð Þu; ð7Þ

where g ¼ g1; g2; g3; . . .; g10½ �T is the vector of modal

displacements, containing the projected nonlinear

nodal responses of the cantilever beam onto the

linearized modal basis defined by the eigenvalue (5). It

should be noted, however, that the linearized modal

basis derived by (5) has physical meaning only in the

low energy limit of the nonlinear dynamics and

changes when the initial angle of inclination of the

boundary attachment changes.

Once the linearized modal responses (7) are

obtained, the associated averaged modal energies

can be computed using the methods employed by

[3, 15, 32] relying on the envelope of the time series of

the kinetic energy of the system

�Ei tð Þ ¼ h1
2
_g2
i it; ð8Þ

where �Ei, i ¼ 1; 2; . . .; 0, is the averaged energy

associated with the i-th linearized mode. Moreover,

the operator :t denotes averaging with respect to time

and is computation is accomplished by fitting a cubic

spline to the local maxima of the corresponding kinetic

energy [32]. Using relations (8), the i-th instantaneous

effective modal damping ratio (EMDR) can be defined

by [32]:

�ni tð Þ ¼ �
_�Ei

2xi
�Ei

ð9Þ

The instantaneous EMDRs (9) provide a valuable

quantitative measure regarding the individual mode

participation in the nonlinear modal interactions

during the transient dynamics, especially when com-

pared with the (nominal) inherent modal damping

values listed in Table 1. Indeed, an instantaneous

EMDR greater (smaller) than the nominal damping

modal ratio indicates that that specific mode transfers

energy to (receives energy from) other modes

[3, 15, 32]; hence, these measures provide physical

insight on the transient nonlinear energy exchanges

between the beam modes, induced by the nonlinear

boundary attachment. In the next section, we will

apply the developed framework to experimental

measurements and compare them with computational

predictions.

4 Transient nonlinear modal interactions

In this section, we study the energy exchanges that

occur among the first three nonlinear modes of the

cantilever beam by employing relations (8) and (9).

Since these modal energy exchanges depend solely on

the geometric nonlinearity, the two most relevant

parameters that can affect the intensity of the modal

interactions are (i) the input energy, i.e., the intensity

of the applied impulsive excitation, and (ii) the initial

angle of inclination of the boundary attachment, /0.

First, a low intensity impulsive excitation with

/0 ¼ 0
�
, cf. Fig. 5 is considered. In the following

study, both experimentally measured responses along

the cantilever (obtained through an array of 10

accelerometers—cf. Fig. 1a), as well as computational

responses provided by the FE model; we will ‘‘pro-

ject’’ these measured responses onto the linearized

modal basis of the beam—attachment system obtained

in the limit of small energies will be analyzed (note

that this modal bases depends on the angle of

inclination, so it is expected to change with varying

/0). This enables computation of the associated

averaged modal energies (8) and the EMDRs (9) for

the three leading cantilever modes. In Figs. 8, 9, and

10, the modal responses with close agreement noted

between the computational predictions and the exper-

imental measurements are presented. Since these
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1st mode

2nd mode
Harmonic

(a) (b)

(c) (d)

Fig. 8 Response of the first nonlinear mode for low impulse excitation and /0 ¼ 0
�

(cf. Fig. 5): a, c Computational prediction, and b,

d experimental measurement

1st mode

2nd mode
Harmonics

(a) (b)

(c) (d)

Fig. 9 Response of the second nonlinear mode for low impulse excitation and /0 ¼ 0
�

(cf. Fig. 5): a, c Computational prediction, and

b, d experimental measurement
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modes correspond to the geometrically nonlinear

system, they will be referred to as ‘‘nonlinear modes’’

of the cantilever beam.

Considering the response of the lowest frequency

nonlinear mode in Fig. 8, the dominant presence of the

first nonlinear mode is observed, but also note the

presence of its higher harmonics generated due to the

geometric nonlinearity. Moreover, traces of the sec-

ond nonlinear mode also appear in the wavelet

transforms, which indicate possible interaction of the

first and second nonlinear modes. This will later be

verified by examining the averaged modal energies

and modal damping ratios. Figure 9 depicts the second

nonlinear modal response, and from the corresponding

wavelet transforms not only the presence of the second

nonlinear mode itself can be observed, but also the

very pronounced presence of the first mode and its

harmonics. Because of the presence of the first

nonlinear mode, the second nonlinear mode is

expected to exhibit strong and sustained modal

interactions with the lower frequency first nonlinear

mode. Similar observations can be made for the

response of the third nonlinear mode, cf. Fig. 10. For

this particular mode, not only the first mode and its

harmonics are present, but also there are weak traces

of the second nonlinear mode. Such modal interactions

(that are clearly observed in the corresponding wavelet

transforms) are solely due to the local geometric

nonlinearity at the boundary of the beam, since in the

corresponding linear system (i.e., without the bound-

ary) no modal interactions are possible.

Based on the experimental measurements and the

computational results, the energy exchanges and

interactions between the first three nonlinear modes

of the cantilever can be determined by computing the

corresponding averaged modal energies normalized

by the instantaneous total energy of the system as

follows

Êi tð Þ ¼
�Ei tð Þ

Etot tð Þ
� 100;

Etot tð Þ ¼
1

2
_uTM _uþ 1

2
uTKuþ Enl

ð10Þ

where Enl is the instantaneous potential energy of the

nonlinear boundary and is computed as:

Enl ¼
1

2
ka l20 þ 2l0u10 sin/0 þ u2

10

� �1=2�l0

h i2

: ð11Þ

(a) (b)

(c) (d)

1st mode

2nd mode Harmonics

3rd mode

Fig. 10 Response of the third nonlinear mode for low impulse excitation and/0 ¼ 0
�

(cf. Fig. 5): a, cComputational prediction, and b,

d experimental measurement. (Color figure online)
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Then, the normalized effective damping ratios, fi,
for the first three nonlinear modes are computed

directly from the EMDRs (9) according to the relation

fi ¼
�ni tð Þ

lim
t!1

�ni tð Þ
ð12Þ

where, unlike the numerator that is computed both

from experimental and computational results, the

limiting value in the denominator is evaluated com-

putationally, i.e., from the FE model (since evaluating

it computationally is not possible due to the availabil-

ity of only finite duration experimentally measured

data).

Figure 11 depicts the normalized modal energies

and effective damping ratios for the leading three

modes, obtained from both the experimental measure-

ments and the computational predictions. It should be

noted that, due to numerical end effects caused by

using either natural or clamped spline fitting in (8), the

first and last 0.5 s of data has been neglected.

Considering first the normalized modal energies in

Fig. 11a and b, it should be noted that they fluctuate

with time, meaning that the associated cantilever

modes either lose (when the plots decrease) or gain

(when the plots increase) energy as they nonlinearly

interact with other modes. Moreover, as the energy of

the first (lower frequency) nonlinear mode decreases,

that of the second mode increases. This indicates that a

portion of the energy that the first nonlinear mode is

transferred to the second nonlinear mode; hence, the

valleys (peaks) of the energy of the first mode are

synchronized with the peaks (valleys) of the second

mode, proving that these nonlinear modes consistently

exchange energy between them in a nonlinear beat

phenomenon. However, it is observed that with

increasing time the transient dynamics of the system

gradually becomes dominated by the first cantilever

nonlinear mode; this is to be expected, since, being the

mode with the lowest frequency, the first mode has

smaller dissipative capacity compared to the higher

frequency modes. Finally, the modal energies com-

puted from the experimental measurements and the

computational model show the same trend and agree

both qualitatively and quantitatively; this demon-

strates once more the predictive capacity of the

computational model.

Examining then the instantaneous normalized dis-

sipation rates, similar conclusions can be drawn.

Indeed, the fluctuations in the instantaneous normal-

ized modal damping ratios provide a clear picture as to

when the corresponding cantilever modes receive or

shed energy, depending on whether their values

decrease or increase, respectively. Moreover, Fig. 11a

and b implies a qualitative difference between the

computational and experimental normalized damping

ratios for the first mode, in the sense that whereas it

exhibits a decreasing trend in the computational result

(cf. Fig. 11a), this changes to an increasing trend for

the experimental measurement (cf. Fig. 11b). The

(a) (b)Fig. 11 Case of low

impulse excitation and /0 ¼
0

�
(cf. Fig. 5): Instantaneous

normalized modal energies

(10) (black curves–left axes)

and instantaneous

normalized damping ratios

(12) (red curves–right axes)

for the three leading

cantilever modes,

a Computational predictions

and b experimental

measurements.l
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conjecture is that the increase in the experimental

result is due to the presence of Coulomb friction at the

joint coupling the nonlinear attachment to the beam—

cf. Fig. 1c; such nonlinear dissipative effects are not

taken into account in computational model where all

dissipative elements are assumed to be linear and

viscous. Regarding the normalized damping ratios for

the second and third cantilever modes, these are small

and exhibit small fluctuations.

In attempt to establish a single scalar measure that

quantifies the maximum modal energy exchange for

each nonlinear mode, the difference between each

local maximum and its adjacent minimum for each

normalized instantaneous modal energy is computed

and the maximum value of such difference, DÊi, is

recorded. For the considered case of impulsive

excitation and nonlinear boundary, we computed these

maximum energy exchange measures as DÊc
1 ¼

�7:13% and DÊc
2 ¼ 5:88% from the computational

results, and DÊE
1 ¼ �17:12% and DÊE

2 ¼ 10:86%

from the experimental measurements; note that neg-

ative values correspond to decreasing energy, while

positive values correspond to increasing energy.

Hence, both the computational and experimental

results show that there is nonlinear low-to-high

frequency transfer of energy from the first to the

second mode, although the computational model

appears to underestimate the intensity of the energy

exchange.

As a second case, the system with /0 ¼ 16
�

subject

to high intensity impulsive excitation is considered—

cf. Fig. 7. Following the modal projection scheme dis-

cussed previously, i.e., relations (5)–(7), the experi-

mentally measured and computationally predicted

responses of the sensing locations along the cantilever

are projected on to the linearized modal basis obtained

in the low energy-limit. This yields a set of transient

modal responses, as expressed previously. The plots

depicted in Fig. 12 depict the first modal response in

the temporal and frequency domains. It should be

noted that even though the transient dynamics is

strongly nonlinear, not only the computational and

experimental time series show good agreement, but

also their corresponding wavelet transform spectra

agree as well. Up to 0.5 s, both wavelet transforms

show hardening nonlinear behavior (signified by the

fact that the instantaneous frequency of the mode

decreases with increasing time—or decreasing

energy). After that initial hardening phase, however,

the frequency of the first mode along with its

harmonics increases with time, representing the soft-

ening phase of the nonlinear dynamics. Comparing the

computational and experimental wavelet transform

spectra of Fig. 12 with those of Fig. 8, it is noted that,

by increasing the initial angle of inclination from /0 ¼
0

�
to /0 ¼ 16

�
, the number and intensity of the higher

harmonics are increased, and these strongly affect the

transient dynamics. In particular, unlike the case of

/0 ¼ 0
�

where only one harmonic is present in the first

mode response, in the present case there are three

distinct harmonics that appear over extended periods

of time. This highlights the enhanced broadband

nature of the nonlinear response for this increased

initial angle of inclination.

Due to the presence of the higher number of intense

harmonics for this value of /0, the possibility of

nonlinear modal interactions increases, so more

intense modal interactions for this increased initial

angle of inclination of the boundary attachment are

expected to be observed. Figure 13 shows the second

modal response. Figure 13a and b shows the presence

of a low frequency component that is deduced from the

low frequency modulation of the modal response in

the time domain. This is verified by the corresponding

wavelet transform spectra depicted in Fig. 13c and d.

One noticeable difference between the response of this

nonlinear mode and its counterpart for the previous

case of /0 ¼ 0
�

is the significant presence of the high

frequency harmonics of the first nonlinear mode in the

response of the second mode for the case. Addition-

ally, a contribution from the third nonlinear mode in

the response of the second mode in the experimental

measurements is observed, unlike in the computa-

tional model (cf. Figure 13c and d). The conjecture is

that this is due to unmodeled dynamics that are excited

by nonlinear effects that are not fully captured by the

FE model and the nonlinear boundary attachment, e.g.,

friction or unmodeled nonlinear stiffness effects.

Figure 14 depicts the response of the third nonlin-

ear mode. Similar to the response of the second mode

presented in Fig. 13, the response of the third mode

contains traces of the first mode and its harmonics;

however, these harmonics are not as intense and

dominant as in the response of the second mode. This

indicates that although the nonlinearity of the bound-

ary attachment affects the response of the third
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nonlinear mode, it is not as significant as for the first

and second modes.

Similar to the previous case, the normalized

instantaneous averaged modal energies and

normalized effective damping ratios for the responses

of the system obtained by the computational model

and the experimental measurements are computed

here. Figure 15 illustrates the normalized modal

(a) (b)

(c) (d)

Harmonics

1st mode

Fig. 12 Response of the

first nonlinear mode for high

impulse excitation and /0 ¼
16

�
(cf. Fig. 7): a,

c Computational prediction,

and b, d experimental

measurement

(a) (b)

(c) (d)

3rd mode

2nd mode
1st mode

Fig. 13 Response of the

second nonlinear mode for

high impulse excitation and

/0 ¼ 16
�

(cf. Fig. 7): a,

c Computational prediction,

and b, d experimental

measurement
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energies and damping ratios computed for both the

response of the FE model and measured response from

the experiment. Beginning with the normalized aver-

aged modal energies—cf. black curves in Fig. 15a and

b—we observe intense modal energy exchanges,

especially between the first and the second nonlinear

modes of the cantilever beam. This is inferred by the

high amplitude fluctuations noted in the plots, espe-

cially during the early time, highly energetic regime of

the transient dynamics. Specifically, this is confirmed

by the out-of-phase fluctuations of the first and second

normalized modal damping ratios in both plots; being

(a) (b)

(c) (d)

Fig. 14 Response of the

third nonlinear mode for

high impulse excitation and

/0 ¼ 16
�

(cf. Fig. 7): a,

c Computational prediction,

and b, d experimental

measurement. (Color

figure online)

(a) (b)Fig. 15 Case of high

impulse excitation and /0 ¼
16

�
(cf. Fig. 7):

Instantaneous normalized

modal energies (10) (black

curves–left axes) and

instantaneous normalized

damping ratios (12) (red

curves–right axes) for the

three leading cantilever

modes, a Computational

predictions and

b experimental

measurements
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approximately of the same order of magnitude, these

out-of-phase fluctuations prove that a synchronization

is realized, in the sense that, as the first mode loses

energy, the second mode absorbs it and then releases it

back to the first mode in an recurrent fashion.

Computing the scalar energy exchange measure

introduced earlier, for this particular case one can

determine DÊ1 ¼ 15:24% and DÊ2 ¼ �12:85% when

computed from the FE model and DÊ1 ¼ �22:88%

and DÊ2 ¼ 19:21% when computed from the exper-

imental measurements.

To study the effects of the geometry of the

boundary attachment, i.e., of the initial angle of

inclination /0, on the intensity of the nonlinear modal

energy exchanges, the computational and experimen-

tal energy measures DÊ1 and DÊ2 for low (� 130N)

and high (� 230NÞ impulsive excitations applied to

the beam tip for /0 ¼ 0
�
; 5

�
; 8

�
; 12

�
; 16

�
and 20

�
are

computed. The plots in Fig. 16 depict these energy

measures for both low and high intensity excitations.

Starting with Fig. 16a and b, similar trends in the

variations in DÊi, i ¼ 1; 2, with /0 for the computa-

tional and experimental results are observed. Although

the plots in Fig. 16a are not similar to those in

Fig. 16b, both cases indicate that for weak impulsive

excitations the optimum initial angle of inclination of

the nonlinear attachment that maximizes the modal

energy exchanges is approximately /0 ¼ 8
�
. Knowing

that, by increasing /0, in effect the linearity of the

geometrically nonlinear boundary condition

[12, 22, 24] is enhanced (in the sense that the linear

part of the nonlinear stiffness characteristic increases),

it is very interesting to note that the effective

nonlinearity in the system is enhanced only until the

angle approaches the value /0 ¼ 8
�
. However, for

strong impulse excitation the optimal value of /0 at

which the modal energy exchange is maximized

changes as well. The computational plots in Fig. 16c

show that the optimal value of /0 in that case is greater

than 20
�
. The experimental plots in Fig. 16d on the

other hand suggest that the optimal value of the angle

is approximately 12
�
. The discrepancy that is observed

between the computational model and the experimen-

tal measurement for the case of strong impulse

excitation may be caused by the effects of unmodeled

stiffness and damping nonlinearities that are present in

the transient dynamics of the experimental fixture,

e.g., friction effects or clearance nonlinearities. In a

more general context, however, the importance of the

results of Fig. 16 is that it shows that the extra

tunability to the system dynamics that is realized

through the inclination of the nonlinear attachment

enables the maximization of the nonlinear modal

energy exchanges in the (otherwise linear) cantilever

beam, which results in faster overall energy

(a) (b)

(c) (d)

Fig. 16 Maximum modal

energy exchange measures,

DÊi, i ¼ 1; 2, for weak

impulsive excitations as

functions of /0 computed

from, a the FE model, and

b the experimental

measurements;

corresponding energy

measures for strong

impulsive excitations

computed from c the FE

model and, d the

experimental measurements
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dissipation in the system. This enhanced dissipative

capacity is related to the nonlinear scattering of

impulsive energy in the frequency domain as energy is

continuously exchanged between lower frequency and

higher frequency cantilever modes.

5 Concluding remarks

The modal interactions in a cantilever beam whose

free end was grounded by a geometrically nonlinear

element consisting of an inclined linear spring–

damper pair at an initial angle /0 relative to the

neutral axis of the beam were investigated. A finite

element (FE) model with a geometrically nonlinear

attachment was constructed to predict the measured

responses of an experimental fixture. The parameters

of the integrated model were estimated through a

multi-step nonlinear system identification technique,

incorporating a Multi-input Multi-output Frequency

Domain Identification (MFDID) technique in the

frequency domain, and time series reconciliation.

Using the identified computational model, a theo-

retical framework was developed to study the modal

responses of the beam by projecting its responses on

the linearized modal basis obtained at the low energy

limit of the transient dynamics. As a first step, the

modal responses of the system for two different

magnitudes of impulsive excitation and different

initial angles of inclination /0 were computed and

studied. The following observations can be made.

In all cases examined, a prominent presence of the

first nonlinear mode of the beam in the wavelet

transform spectrum of the response of the second

nonlinear mode was observed. To verify this observa-

tion, the time-averaged modal energies and instanta-

neous damping ratios of the nonlinear modes of the

beam were computed, and intense modal energy

exchanges, especially between the first and second

modes, were observed.

After estimating the time-averaged modal energies

of the system, the maximum amount of energy

exchanged between the first and second modes for

varying impulse intensity and angles of inclination /0

was computed. In the case of low intensity impulses,

both the experimental and computational results

confirmed that there exists an optimal initial angle of

inclination, /0 	 8
�
, where the nonlinear modal

energy exchanges reach their maximum values. For

high intensity impulsive excitations, on the other hand,

the computational model predicted an optimal angle

greater than /0 ¼ 20
�
, while the results obtained from

the experimental measurements indicated that the

maximum modal energy exchange occurred at an

angle of /0 	 12
�
. It was conjectured that unmodeled

dynamics was the reason for this discrepancy, the

effects of which are enhanced as the intensity of the

impulsive excitation increases.

Fluctuations in the maximum modal energy

exchanges between the first and second beam modes

for both low and high intensity impulsive excitations

confirmed that one can induce modal energy exchanges

in the cantilever beam by introducing geometric

nonlinearity at its boundary. The propensity of the

governing nonlinear modes of the system to exchange

energy can be increased significantly with increasing

energy and varying angle of inclination of the bound-

ary attachment, thereby increasing the overall dissipa-

tive capacity of the system through frequency

scattering of energy in the frequency domain.

The studied nonlinear mechanism of energy scat-

tering in the frequency domain, i.e., the modal space of

the primary structure, enhances the dissipative capac-

ity of the cantilever beam, without the need to add any

mass or damping. In fact, the enhanced dissipative

capacity of the beam with the nonlinear boundary

condition is due to better utilization of the inherent

dissipative capacity of the beam itself, through low-to-

high energy transfers and excitation of higher-order

beam modes. This approach can provide an alternative

way for efficient and rapid energy dissipation in

flexible structures, compared to current methods

based, e.g., on the use of dynamic absorbers or

additional damping devices.
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