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On the Optimal Duration of Spectrum Leases 1n
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Abstract—This paper addresses the following question which
is of interest in designing efficient exclusive-use spectrum licenses
sold through spectrum auctions. Given a system model in
which customer demand, revenue, and bids of wireless operators
are characterized by stochastic processes and an operator is
interested in joining the market only if its expected revenue is
above a threshold and the lease duration is below a threshold,
what is the optimal lease duration which maximizes the net
customer demand served by the wireless operators? Increasing
or decreasing lease duration has many competing effects; while
shorter lease duration may increase the efficiency of spectrum
allocation, longer lease duration may increase market competition
by incentivizing more operators to enter the market. We formu-
late this problem as a two-stage Stackelberg game consisting
of the regulator and the wireless operators and design efficient
algorithms to find the Stackelberg equilibrium of the entire
game. These algorithms can also be used to find the Stackelberg
equilibrium under some generalizations of our model. Using these
algorithms, we obtain important numerical results and insights
that characterize how the optimal lease duration varies with
respect to market parameters in order to maximize the spectrum
utilization. A few of our numerical results are non-intuitive
as they suggest that increasing market competition may not
necessarily improve spectrum utilization. To the best of our
knowledge, this paper presents the first mathematical approach
to optimize the lease duration of spectrum licenses.

Index Terms—Spectrum license, spectrum auctions, lease
duration, spectrum utilization, Stackelberg game, Nash
equilibrium.

I. INTRODUCTION

ITH the rapid growth of wireless services and devices,
Wwireless data traffic is increasing. Cisco’s forecast [2]
shows a 6-fold increase in global data traffic from 2017 to
2022. There is only a finite amount of wireless spectrum
that can be used to support the growing wireless data traffic.
There are various reports [3], [4] that show that many licensed
spectrum channels are underutilized, leading to inefficient use
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of the spectrum. It is widely accepted that the legacy policy
of static spectrum allocations is a major cause of inefficient
spectrum utilization [5]. Long-term spectrum leases can also
lead to spectrum hoarding [6]. Long-term spectrum leases
are likely to have higher license fees. Higher license fees
lead to a lower number of wireless operators in the market
and can also lead to collusion among wireless operators [7].
This can reduce market competition and hence may lead
to inefficient spectrum utilization. For the recently proposed
Citizens Broadband Radio Service band [8], the lease duration
of Priority Access Licenses (PAL) is an important topic of
debate. Since potential wireless operators prefer different lease
duration of PALs, it has changed multiple times over the last
few years of debate; 1 year in 2015 [8], 3 years in 2016 [9],
10 years in 2017 [10]. In spite of the importance of lease
duration, there is no formal study to optimize lease duration
(except for our previous work [1]).

In this paper, we present a mathematical model to capture
the effect of lease duration on spectrum utilization when
channels are allocated for exclusive use. Our model can be
summarized as follows. First, the customer demand, the rev-
enue of an operator and its bids are modeled as statistically
correlated stochastic processes. Second, spectrum utilization
is equal to the net customer demand served by the operators
over a long time horizon. Third, the revenue of an operator and
its valuation of channel is solely dependent on the amount of
customer demand it can serve using the channel; the more
the customer demand served by the operator, the higher its
revenue and valuation of the channel. Fourth, an operator will
join the market only if the lease duration is below a threshold
so that it can afford the licensing fees and if the lease duration
is such that its expected revenue is above a threshold so that
it can generate return sufficient return on its investments.

Based on our system model, we formulate an optimization
problem whose objective is to maximize spectrum utilization.
The optimization problem manifests itself as a two-stage
Stackelberg game consisting of the regulator and the wireless
operators. The optimization problem, in essence, has only one
scalar decision variable, the lease duration. Shorter lease dura-
tion increases the frequency of spectrum auctions. Therefore,
there is frequent re-allocation of channels to those operators
who values it the most. This leads to more efficient allocation
of spectrum and hence improves spectrum utilization. On the
other hand, longer lease duration, in general, ensures that
the operators get their desired return on investment. This
incentivizes more operators to join the market and hence
lead to more competition which in turn improves spectrum
utilization. However, if the lease duration is too long, some
of the operators may not join the market because they cannot
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afford license fees [10]. These opposing factors suggest that
the optimization problem should have a non-trivial solution.

There have been several active areas of research related to
spectrum licenses, such as pricing [11], auction design [12],
flexible licensing [13], enforcement [14], etc. But, to the
best of our knowledge, a mathematical treatment of the
impact of lease duration of spectrum licenses has been only
considered in [15]. In [15], the authors took a data-driven
approach and concluded that lease duration has no significant
impact on spectrum market competition. But there are several
works like [S]-[7] that suggest otherwise and also data-driven
approaches cannot be generalized, especially for extrapolation.
Furthermore, higher market competition may not necessarily
imply higher spectrum utilization as we show in section IV.
Other than [15], we found no paper that mathematical studies
the impact of lease duration even in other synergistic areas
such as electricity markets and cloud computing.

However, there are a few works in the spectrum sharing
literature that consider the effect of certain “duration aspects”
on the overall performance of the system. The work in [16]
considers a market of only two service providers with a
common customer base. Time is divided into intervals. At the
beginning of every interval, an auction is conducted which
redistributes the available bandwidth based on the bids of
individual service providers. The ratio of the customer demand
reaching each service provider is governed by evolutionary
game theory. The authors use simulations to conclude that
shorter allocation interval corresponds to better spectrum uti-
lization. In [17], the authors model various factors that a
secondary service provider considers when buying spectrum
resources from primary service providers. The authors design a
utility function for the secondary service provider that suggest
that longer contract duration is better. In [18], the primary
user leases its bandwidth to secondary users for a fraction of
time in exchange for cooperation (relaying). If the fraction of
time is too small, it will not compensate for the overall cost
of transmission (including relaying), and hence the secondary
users may not agree to cooperate. For opportunistic spectrum
use, optimal spectrum sensing time is an area which received
wide attention from the spectrum community [19]. There are
few works in economic journals like [20] that consider the
problem of optimizing contract duration for welfare analysis.
The fundamental idea governing these works is a tradeoff
between opportunity cost and transaction cost. The definitions
of transaction cost and opportunity cost change with the
market setting, like housing property market [21], priority
service market [22], etc.

In Section II-A, we present a system model to study the
effect of lease duration on spectrum utilization. Our model
captures important properties of the effect of lease duration
and market competition on spectrum utilization and an opera-
tor’s expected revenue. We also discuss how some of these
properties are affected by bidding accuracy, the statistical
correlation between an operator’s bid and its revenue. These
properties are discussed in Section II-C. Up to our knowledge,
this is the first system model that enables the mathematical
analysis of optimal lease duration. This constitutes the first
contribution of the paper. The work done in this paper extends
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to other system models as long as it satisfies the properties
discussed in Section II-C. Few of these generalizations are
hypothesized in Section II-C as well.

In Section III-A, we capture the interaction between a
regulator and the operators as a two-stage Stackelberg game
with incomplete information. In the first stage, the regulator
sets the lease duration to optimize spectrum utilization. In the
second stage (subgame), the operators decide whether to enter
the market or not based on the lease duration set by the regu-
lator in the first stage. Our model admits an unique subgame
Nash equilibrium (NE) and hence finding the Stackelberg
Equilibrium of the two-stage Stackelberg game reduces to
solving the optimization problem of the first stage which
has only one scalar decision variable, the lease duration. Yet,
the optimization problem is not trivial because it is reminiscent
of combinatorial optimization. To elaborate, the debate over
lease duration of PALs shows that it may not be possible
to choose a lease duration which interests all the operators.
In fact, a lease duration which interests all the operators, even
if it exists, may not lead to the optimal spectrum utilization.
Hence, in certain sense, we want to find the optimal set
of interested operators which is a combinatorial optimization
problem. The formulation of the Stackelberg game is the sec-
ond contribution of the paper.

In Section III, we design algorithms to solve the optimiza-
tion problem of the first stage for two scenarios: (i) homoge-
neous market with complete information, (ii) heterogeneous
market with incomplete information. Since the optimization
problem has a combinatorial nature, the number of candidate
sets of interested operators may be exponential in the number
of operators in the market. The design of an efficient optimiza-
tion algorithm relies on the result that, with lease duration as
the decision variable, the number of candidate sets of inter-
ested operators is polynomial in the number of operators in the
market. Designing an efficient optimization algorithm for the
first stage game is the third contribution of the paper. The final
contribution is the numerical results presented in Section IV.
We use our optimization algorithm to numerically study the
variation of optimal characteristics, i.e., optimal lease duration
and optimal value of the objective function, as a function of
market parameters. We also study how bidding accuracy and
incomplete information decreases spectrum utilization. Few of
our numerical results are non-intuitive as they suggest that
increasing market competition may not necessarily improve
spectrum utilization.

II. PROBLEM FORMULATION

We present our system model in Section II-A and also
introduce the revenue function and the objective function,
which capture the revenue of an operator and spectrum uti-
lization, respectively. The expressions of the revenue and the
objective function are derived in Section II-B. The prop-
erties of the objective and the revenue function are dis-
cussed in Section II-C which reveal their practical relevance.
We also discuss few generalizations of our system model
in Section II-C. Table I lists frequently used notations while
other notations are standard. An expanded table of notations
is included in the supplementary material.
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TABLE I
A TABLE OF FREQUENTLY USED NOTATIONS

Notation | Description
VAS Set of positive integers.
[z] Ceiling Function.
T Lease duration.
N Number of operators.
M Number of channels.
zp (1) Revenue of the k™™ operator in t** time slot.
Y (¢, T) Net revenue of the k™™ operator in ct® epoch if lease
kA5 duration is 7.
Bid of the k*" operator in c¢*® epoch if lease duration is T".
True and estimated mean respectively of the revenue process
of the k! operator.
~ True and estimated standard deviation respectively of the
Ok > Ok revenue process of the k" operator.
~ True and estimated autocorrelation coefficient respectively of
Gk > Ak the revenue process of the k' operator.
~ True and estimated bid correlation coefficient respectively of
Pk Pk | the kth operator.
~ True and estimated minimum expected revenue (MER) re-
Ak s Ak quirement respectively of the k*" operator.
-~ True and estimated maximum lease duration respectively
Ak Ak | above which the kP operator cannot afford a channel.
Tuples representing the true and estimated parameters of the
kth operator resp. We have, £, = (i, Ok, Ak, Py My Ak )
and § = ﬁkvak:akyﬁk:/\k:AkS
S Set of interested operators.
s Number of interested operators. We have s = |S].
S Set of interested operators according to the regulator.
Largest set of interested operators who may join the market
according to the k' operator.
SL Largest set of interested operators according to the regulator.
Rt (S, T)| Revenue function of the k'™ operator.
Ry (S,T)| Revenue function of the Kkt operator as perceived by itself.
~ Revenue function of the k*" operator as perceived by the
Ri(8.T) regulator.
Objective function as a function of set of interested operators
S and lease duration 7'
Objective function as perceived by the regulator as a function
of set of interested operators S and lease duration 7'
Objective function as a function of lease duration 7.
Objective function as perceived by the regulator as a function
of lease duration 7'
Revenue function of an operator for a market that is homo-
geneous in fig, ok, ar and pg.
Objective function as a function of number of interested
operators s and lease duration 7'. It only applies for a market
that is homogeneous in py, ok, ar and pg.

Yk (C7 T)

JI—

&k s &k

U(S,T)

U(S,T)
U (T)
U (T)

R (s,T)

U (s, T)

A. System Model

We consider a time slotted model where ¢t € Z™ is a time
slot. Let T' € Z* denote the lease duration. The word epoch
denotes a lease duration. Hence, the time slots corresponding
to the ¢'" epoch are t € [(c—1)T + 1, cT'] where ¢ € Z*.
There are N operators indexed £k = 1,2,...,N. Let § C
{1,2,..., N} be the set of operators who are interested in
entering the market. In our model, the number of interested
operators, s = |S|, is the measure of market competition [15].
There are M channels indexed m = 1,2,..., M which are
to be allocated to the operators in set S, at the beginning of
every epoch, for exclusive use. Similar to prior works like [23],
[24], these channels are assumed to be identical. Our model
assumes spectrum cap of one, i.e. an operator is allocated at
most one channel in every epoch.

Let zj (t) denonte the revenue of the k'" operator at
time slot ¢ if it is allocated a channel. The revenue of an
operator is 0 if it is not allocated a channel. We model
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the revenue xj (¢) as a first order Gaussian Autoregressive
(AR) process. Modeling time-series with AR models is a
common practice in academic literature [25], [26]. Federal
Communication Commission report [9] expresses the need for
“periodic, market-based reassignment of channels in response
to changes in local conditions and operator needs.” A first
order AR process is a simple stochastic process capturing auto-
correlation among time series data. We can model fast (slow)
“changes in local conditions and operator needs” by setting a
lower (higher) autocorrelation among x, (t). Mathematically,

xp(t+1) =arxy (t) +ep(t); VE>1 (1)

where aj, € [0,1) is the autocorrelation coefficient, ey, (¢) is
an iid Gaussian random process with mean uj, and standard
deviation o}, ie. e (t) ~ N (ui,0f) , Vt, and 2 (1) is a
gaussian random variable with mean p;, and standard deviation
ok, i.e. g (1) ~ N (ug, or) where

€ 15
Hg O

= 0y = —V/——
1 —ag V1—ai

It can be shown that zy, (¢) is a stationary Gaussian random
process [27] with mean p; and standard deviation oy, i.e.
xp (t) ~ N (pk, o), Vt. It should be noted that zy (¢),
as given by (1), can become negative for some ¢. This
however is not practical because revenue is always positive.
We can reduce the probability of xj (¢) becoming negative
by setting a low coefficient of variation Z—: Mathemati-
cally, P [z () < 0] = %(1+erf<—\/%’—’;k)). So if 2= <
0.5, Pz (t) <0] < 0.02. This model is similar to other
approaches for modeling non-negative quantities by Gaussian

processes for ease of analysis, e.g. [28], [29].
cT

Proposition 1: Let Yy, (¢,T) = >
t=(c—1)T+1
revenue of the k' operator in ¢ epoch if it is allocated
a channel and the lease duration is T. Then, Yy, (¢,T) is a
gaussian random variable with mean, [, (T'), and standard
deviation deviation, oy, (T), where

pur (T) = piT 3)

R VT = ax (2= 2a] +a\T)

o, (T) = 0= an) Ok 4)

Mathematically, Y, (¢, T) ~ N (1 (T), 537 (T)) ; Ve.
Proof: Please refer to Appendix B of supplementary
material for the proof. [ ]
Channels are allocated through auctions in every
epoch. There are M channels to be allocated and the
spectrum cap is one. In a given epoch, the regulator allocates
the channels to the wireless operators with the M highest
bids in that epoch. Let Y}, (c,T) denote the bid of the k'"
operator in ¢! epoch if the lease duration is 7. Our model
assumes truthful spectrum auctions. Therefore, the bid of an
operator is equal to its valuation of a channel. An operator’s
valuation of a channel is equal to its revenue in an epoch if it
is allocated the channel. Our model does not account for the
strategic value of a spectrum as discussed in [30] which arises
because “markets are not fully competitive, and there is value

Pk 2

xy, (t) be the net
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in controlling access to that market.” To this end we have,
Yi (¢,T) =Y (¢, T). But this is true only if during bidding,
an operator exactly knows the true net revenue it will earn in
that epoch. In reality, the bid Y} (c,T') is only has an estimate
of the true revenue Y (¢, T). In our model, Y (¢,T) and
Y% (¢, T) assumes the following joint probability distribution,

- () 13, 85
)

where pi € [0,1) is the correlation coefficient between bid
Y (¢, T) and true revenue Yy (¢, T). A higher pj implies a
higher accuracy of bidding estimate. Also note that in (5), the
bid Y} (¢, T') has the same marginal distribution as Y} (¢, T),

Vi (e, T) ~ N (i (T), 53 (T)) 5 Ve (6)

In our model, an operator generates revenue solely by
serving customer demand. Let dj (t) denote the customer
demand served by the k'" operator at time slot ¢ if it is
allocated a channel. An operator’s revenue in time slot ¢
is i (t) = pi (t) di (t). In a competitive market, the price
pr (t) charged by an operator to serve a unit of customer
demand cannot vary significantly with operators. Otherwise,
the operator may suffer a significant loss of its market share.
Hence, our model assumes that py (¢) = p(t) , Vk. Similar
results are shown in [31]. In fact, the famous Bertrand and
Cournot competition models [32], [33] suggest that with two
or more operators, the market reaches perfect competition and
all operators sell at the same price. So we have, zy (1) =
p (t) dg (t). This implies that, in our model, an operator who
is generating more revenue is also utilizing the spectrum better
as it is serving more customer demand. The results presented
in this paper may not hold if py, (¢) varies significantly among
operators, e.g. when operators have strategic valuation of
spectrum because such markets are not competitive.

An operator has to invest in infrastructure development to
enter the market and further invest to lease a channel. Since
the cost of leasing a channel generally increases with lease
duration, some operators cannot afford to lease a channel if
the lease duration is too high [10]. This is captured in our
model using Ay, the maximum lease duration above which
the k" operator cannot afford a channel. In order to get return
on infrastructure development cost and the cost of leasing a
channel, the k' operator wants to make a minimum expected
revenue (MER) ), in an epoch. The k" operator is interested
in entering the market iff the lease duration is less than Ay
and its expected revenue in an epoch is greater than \.

If £ € S, then Ry (S,T) is the revenue function of the
k" operator and it denotes its expected revenue in an epoch
if the set of interested operators is S and the lease duration
is T. In our model, the objective function is U (S,T) which
is proportional to the spectrum utilization when the set of
interested operators is S and the lease duration is 7". We derive
expressions for Ry (S,T) and U (S,T) in the next section.

B. Analytical Expressions of Revenue and Objective Function

We start by introducing few notions and notations which are
required for the derivation of revenue and objective function.
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Let w;* denote the index of the operator who is allocated
the m** channel in ¢** epoch. Without any loss of generality
let us assume that w™ is decided by the following rule: m®"
channel is allocated to the operator having the m*" highest
value of Yj (¢,T) in the ¢ epoch. The number of channels
being allocated is M = min (M, s). The revenue function
Ry (S,T) can be expressed as

Mz

R (S, T) = EYy (e, T) |wl* = k] Pw]* = k]
m=1
M
+0-P () wl#k (7
m=1

M
=Y ENV(1T)|w =k P =k @®)

m=1
In (7), P [w™ = k] is the probability that the k** operator is
allocated the m" channel in the ¢*" epoch in which case its net

M
expected revenue is F [Yj (¢, T) |w!* = k]. P [ N wi* # k]
m=1

is the probability that the k" operator is not allocated a
channel in the ¢! epoch in which case its revenue is 0.
In (7), w™ is dependent on the random variable Y, (¢, T).
This shows that Yy, (¢,T) and Y}, (¢, T) are the only random
variables in (7). Hence, the expectation in (7) is over Y} (¢, T)
and Yy (¢, T). Based on Proposition 1 and (6), statistical
properties of Yy (¢,T) and Yy (¢, T) are not dependent on
epoch c. Therefore, the expectation in (7) and hence the
revenue function does not depend on c. This means that we
can simply substitute ¢ = 1 to get (8). Please note that
Ry (S,T) as given by (8) is a function of py, oy, ax and
pi. because the statistical properties of Yy, (¢, T') and Yy (¢, T)
if governed by (5) which in turn depends on iy, oy, ax and pg.
Equation 8 is enough for the remaining discussion in the paper.
However, we have derived a more explicit equation to calculate
Ry (S,T) in Appendix C of the supplementary material. This
equation involves numerical integration.

In this paper, we consider a scenario where the regulator
wants to maximize the expected spectrum utilization. As dis-
cussed in Section II-A, in our model, an operator who gen-
erates more revenue also utilizes the spectrum better. There-
fore, maximizing expected spectrum utilization is equivalent
to maximizing the net expected revenue V' in optimization
horizon 7 > T. Assume that 7 is a multiple of T, i.e
T = CT where C € Z*. We have,

c M
V= Z; E Zl Y (¢, T) 9)

M
Z YU)L"’ (C, T)

m=1

In 9), F denotes the net expected rev-

enue in the ¢ epoch over all the M=min (M, s) allocated
channels. Similar to (7), the expectation in (9) is over ran-
dom variables Y} (c,T) and Yj (¢,T) and hence the term

M
E | 37 Yym (¢, T)| is not dependent on epoch c. In other

m=1
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words, the net expected revenue is equal in all epochs. Hence,
(9) can be simplified to

M
V=CE|Y Yur(L,T)

m=1

M
_Ty Y (1,T)| (10)
T o

m=
Maximizing V in (10) is equivalent to maximizing

E[ > Yy (1,T)
i . This holds even if 7 is not a multiple of T
provided 7 > T'. Finally, the regulator wants to maximize

E Z Yw{” (17T)
Us,T) = (an
M
> L EN(LT)wi* =k Pw"=k]
~ m=1keS
n T
(12)
1
= =) Ri(ST) (13)

kes

Equation 12 is obtained by first applying linearity of expec-
tation and then applying law of iterated expectation over all
possible wi* in (11). To obtain (13), we change the order
of summation and then observe that Ry (S,T) is equal to

M

ST EY,(1,T)|wy” = k] Pw* = k] (refer to (8)).

m=1

“We end this section by defining two new notations. Let

R (s,T) and U (s,T) denote the revenue and the objective
function respectively if the market is homogeneous in p, o,
ar and pg, i.e. uy = W, o = o, ax = a and pp = p, Vk.
In such a market, the revenue and the objective function only
depend on the number of interested operators. Also, the rev-
enue function is the same for all the operators. The formula for
R (s,T) is derived in Appendix D of supplementary material.
The objective function U (s,7T') is obtained by substituting
Rk (S, T) =R (s,T), Vk in (13) which yields,

U (s,T) = =R (s,T) (14)

C. Properties of the Revenue and the Objective Function

In this section, we discuss few properties of the revenue
and the objective function that are crucial for formulating and
solving the Stackelberg game in Section III-A and III. We also
discuss a few generalizations of the system model proposed
in Section II-A under which these properties of the revenue
and the objective function should remain valid. Ry, (S,T') and
U (8,T) have the following properties.

Property 1: Ry, (S,T) is unimodal in T with a maximum.

Property 2: Ry, (S,T) is monotonic decreasing in S, i.e.
Ri(S,T) >R (SU{a},T) where a ¢ S.

Property 3: U (S,T) is monotonic increasing in T or it is
unimodal in T with a minimum.

Consider an operator indexed a, where a ¢ S, whose bid
correlation coefficient is pg.

Property 4: As po — 1, U (SU{a},T) > U(S,T). As p,
decreases, U (S|J{a},T) decreases.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 29, NO. 3, JUNE 2021

Ry ({1,2},7) R(Z,T)‘ U({1,2},T) U ({1,2}.,T)
= Ri({1,2,3},T 3, =
%S 7{({ }.7) L&l R(3,T) oS
g8 T 2 o =
g2 ~_ |53 / R .
2% ~EiE s 5% -
= = & S
S
Lease Duration (T) Lease Duration (T Lease Duration (T) Lease Duration (T)
(a) (b) (c)
U ({1,2}.7) -
7 — - ™ —
e < c
- e NS
i i
o8 =9
S NOT O£
POSSIBLE
Lease Duration (T) Lease Duration (7)) Lease Duration (T)

(e) () (9)

Fig. 1. (a) A typical trend of Ry (S,T) with respect to 7" and S in a
heterogeneous market. (b) A typical trend of R (s, T’) with respect to T" and
s in a homogeneous market. (c, d, and e) A typical trend of U (S,T) with
respect to 7' in a homogeneous market (c) and in a heterogeneous market
with high pj (c), mid-range py (d) and low pg (e). (f) A trend of U (S, T)
which is not possible in any market scenario. (g) A typical trend of U (S, T)
with respect to S. The black and the blue curves corresponds to objective
function, U ({1,2,3},T), if bid correlation coefficient of operator 3 is p4
and p’3’ respectively where pg > pl3.

Figure 1 is a pictorial representation of these properties.
According to Property 1, the revenue function is unimodal in
T with a maximum. This is shown in Figure 1.a where both
the blue and the green curves first increase with 7" and then
start decreasing after a certain value of lease duration. This can
be qualitatively explained as follows. The increase of revenue
function with T simply happens because an operator can earn
more revenue if it has the channel for a longer duration.
However, the decrease in revenue function with 7' is non-
intuitive. This can be explained as follows. The coefficient of

variation of bids Yj (¢,T) i gig; (refer to (6), (3) and (4)).
i (T)

As T increases, coefficient of variation of ?k, (¢, T), =)
tends to zero and hence Yy, (¢, T) — i (T) = pgT. In our
model, those operators with high bids Y}, (¢, T") are allocated
channels in the ¢'* epoch. Since Y} (¢, T) is approximately
equal to piT for large T, operators with low puj are not
likely to be allocated channels as 7' increases. This leads to
a decrease in their revenue function. This result shows that
not all the operators would prefer a long lease duration. For a
heterogeneous market, we could only verify Property 1 numer-
ically. But for a homogeneous market, we could rigorously
prove that revenue function R (s,7") is monotonic increasing
in T (special case of unimodal function with maximum at
infinity). This is shown in Figure 1.b where both the blue
and the green curves increase as 7' increases. Please refer to
Appendix E of the supplementary material for the proof.
According to Property 2, the revenue function decreases
as the set of interested operators & grows. This is shown
in Figure 1.a and 1.b where the blue curve is below the green
curve. As S grows, an operator competes with more operators
to get a channel. Hence, the probability of an operator being
allocated a channel decreases which in turn decreases its
revenue function. We have verified Property 2 numerically.
According to Property 3, the objective function U (S, T) is
unimodal in 7" with a minimum or it is monotonic increasing
in T'. This happens because of two competing causes. First,
as lease duration increases, the regulator is allocating the
channels to the operators with the best spectrum utilization less
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often. This reduces the efficiency of spectrum allocation and
hence spectrum utilization decreases. Second, due to bidding
inaccuracy an operator may place a lower bid and hence not
allocated a channel even though it has a high net revenue
in an epoch (and hence a higher spectrum utilization). The
chances of such inefficient spectrum allocation increases as
lease duration decreases because spectrum auctions occurs
more frequently and hence more the chances of such erroneous
spectrum allocation. As bidding coefficient p, decreases,
the bidding inaccuracy increases making the second cause
more dominating than the first one. Therefore, the objective
function is monotonic non-increasing (special case of uni-
modal function with minimum at infinity) in 7" if py is high
(Figure 1.c), unimodal in 7" with a minimum if pj, is mid-range
(Figure 1.d) and monotonic non-decreasing in 7" if pj is low
(Figure 1.e). However, the objective function will never be
unimodal in 7" with a maximum (Figure 1.f). For a heteroge-
neous market, we could only verify Property 3 numerically.
But for a homogeneous market, we could rigorously prove
that objective function U (s,T') is monotonic decreasing in T'
(Figure 1.c) for any value of pj. Please refer to Appendix E
of the supplementary material for the proof.

Property 4 discusses the effect of a set of inter-
ested operators on objective function and how it changes
with bid correlation coefficient. According to Property 4,
as po — 1, U(SU{a},T) > U(S,T); but as p, decreases,
U (SU{a},T) decreases as well. According to our model,
market competition increases as the set of interested operators
grows from S to S|J{a}. Qualitatively, property 4 states
that increasing market competition may have two outcomes:
(a) Increase in spectrum utilization if bid correlation is high: as
pa — 1, there is a value of p, above which U (S {a},T) >
U (8, T) implying that the increase in competition due to addi-
tion of operator a lead to an increase in spectrum utilization.
This is shown in Figure 1.g where the blue curve is above the
green curve. (b) Decrease in spectrum utilization if bid correla-
tion is low: as p, decreases, the bid of operator a is not a good
estimate of its true net revenue which in turn is proportional
to operator a’s spectrum utilization. Therefore, with decrease
in p,, there is a higher probability of erroneous spectrum
allocation to operator a when its spectrum utilization is low.
In other words, spectrum allocation becomes less efficient
with decrease in p, which in turn decreases objective function
U (SU{a},T). In some cases, the decrease in spectrum uti-
lization may be large enough that U (SU {a},T) < U (S,T).
This is non-intuitive as it suggests that increasing market
competition may not necessarily improve spectrum utilization.
This is shown in Figure 1.g where the black curve is below
the green curve. For a heterogeneous market, we could only
verify Property 4 numerically. But for a homogeneous market,
we could rigorously prove that objective function U (s,T') is
monotonic increasing in s for any value of pj. Please refer to
Appendix E of the supplementary material for the proof.

We end this section by stressing that the results in the
subsequent sections remain valid as long as Properties 1-3
hold. We believe that these properties are robust and hold
under various generalizations of our system model. Two such
generalizations are as follows. First, we can relax our system
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model such that an operator can be allocated more than one
channel. Second, we can generalize the revenue process given
by (1) to other stochastic processes. An interesting gener-
alization is to consider cross-correlation among operators’
revenue processes. Such generalizations may not guarantee
closed-form expressions of the revenue function, in which
case, it can be estimated using Monte-Carlo simulations.

III. STACKELBERG GAME FORMULATION AND SOLUTION

In this section, we formulate the problem as a Stackelberg
game in Section III-A. We solve Stage-2 of the Stackelberg
game and use the result to formulate Stage-1 of the Stackelberg
game as an optimization problem OP1. We then design
algorithms to solve OP1 for two market settings: (a) homo-
geneous market with complete information in Section III-B
(Proposition 3), and (b) heterogeneous market with incomplete
information in Section III-C (Algorithm 1).

A. Stackelberg Game Formulation

In this section, we formulate the optimization problem from
the regulator’s and the operators’ perspective. The optimization
problem manifests itself in the form of a two-stage Stackelberg
game. In Stage-1, the regulator sets the lease duration to max-
imize spectrum utilization. The payoff of an operator depends
on the lease duration. In Stage-2, the operators decide whether
to join the market or not depending on the decision which
maximizes its payoff. To make decisions the regulator needs
information about the operators and the operators need infor-
mation about other operators in the market. The k' operator
can be completely characterized by six parameters which can
be represented using the tuple {, = (fk, Ok, Gk, Pl Moy Akc)-
Only the k" operator knows the true value of these six para-
meters. To model incomplete information games, we assume
the regulator and other operators in the market only has a
point estimate of the k*" operator’s parameters [34]. Let the
estimate be @ = (ﬁk,ak,ak,ﬁk,ik,ﬁk). Please note that
for simplicity, we have assumed that the entire market has
one common estimate of k! operator’s parameters. This can
be easily generalized where the regulator and the operators
have different estimates of k*" operator’s parameters.

Stackelberg equilibrium of a Stackelberg game can be found
using backward induction [35]. To apply backward induction,
we start with Stage-2 and analyze the operators’ decision
strategy given a lease duration. Then we solve for Stage-1
where the regulator decides the lease duration knowing the
possible response of the operators to the lease duration.
Consider Stage-2 of the game, also referred as the subgame.
The outcome of this process is the function S (7') which char-
acterizes the set of interested operators as a function of lease
duration 7'. An operators decision to enter the market depends
on its revenue function Ry (S,T). Ry (S,T) is the true
revenue function of the k' operator. To compute Ry (S, T),
the k' operator needs to know &; of all the operators in
the market which it does not. Let Ry (S,T) denotes the
revenue function of the k" operator as perceived by the k"
operator due to incomplete information scenario. To compute
Ry (S,T), the k" operator uses its true parameters & and
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estimates Ej, where j # k, of other operator’s parameters. If
T > Ay, then the k*" operator will definitely not enter the
market. If 7" < Ay, then the payoff of the k" operator is

T (X)

if it enters the market where X is the set of operators who
decided to enter the market and k € X. Payoff of the k'"
operator is 0 if it does not enter the market. With (15) as the
payoff function, the subgame can have multiple pure strategy
Nash equilibria. For example, consider a complete information
game which is a subset of incomplete information game with
& = &k ; Vk. There is M = 1 channel and N = 2 operators.
Parameters &, of these operators are uk =, A=A, Ay =
. k = 1,2.1f the lease duration T = 2, then R, ({k:} T) =
uT—)\ k'f12and72k({1 2}, T)<uT—A k=1,2
(due to Property 2). Hence, there are two pure strategy Nash
equilibria; Operator 1 enters the market while Operator 2 does
not and vice-versa.

If the subgame has multiple pure strategy Nash equilibria,
then Stage-1 will have multiple optimal solutions for lease
duration each corresponding to one of the NE of Stage-1.
In other words, for a given set of market parameters, there
can be multiple optimal lease durations. In order to simplify
the analysis, we consider a setting where the subgame has
a unique pure strategy NE. In one such setting, an operator
is interested in maximizing its minimum payoff. The obtained
NE is called Max-Min NE and has been considered in previous
works like [36]. According to Property 2, payoff decreases as
the set X' increases. So the minimum payoff corresponds to
the largest X. The largest X' is composed of those operators
who may join the market. The k" operator will definitely
not join the market if either T > Ay or urT < Ag. The
inequality 7" > Ay is obvious. To appreciate the inequality
urT < A, note that the maximum payoff of the k*" operator
is upT — A which happens when it is alone in the market,
ie. X = {k} and hence Ry ({k},T) = piT. This is due to
Property 2. If p, T < g, then the payoff of the k" operator
is negative if it enters the market, irrespective of the decision
of other operators. Hence, its dominant strategy is not to enter
the market. To conclude, the k" operator may join the market
if and only if 7 < Ay and T > M. But the k' operator
does not know the true value of p;, A; and A; if j # k.
Therefore, the largest set of interested operators who may join
the market, according to the kth operator, for lease duration
T is

= Ri (X, T) — Mg (15)

s,f(T)z{j:jzk,TgAj,uszAj or

jAk T <A T2} (16)

To this end we can conclude that according to the Eth
operator, its minimum payoff is Ry (SE(T),T) — M. This
leads to the following proposition.

Proposition 2: The subgame has a unique Max-Min Nash
equilibrium which is given by the set of interested operators

STy ={k: T <M, Ry (SE(T),T) =0} (17)
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Fig. 2. A typical plot of objective function (true) U (T), perceived objective
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T)‘ For this plot,
N =10, M = 2 and the true parameters &, are chosen uniformly at random.

The estimated parameters Sk are chosen uniformly at random such that they
are within £25% of the true parameters.

the perceived number of interested operators 3 (T') =

Equation 17 is the solution (true) of the subgame. With
slight abuse of notation let

U(T)=U(S(T),T) (18)

U (T) is the true objective function because it depends on
the true solution of the subgame, S (T'), and also because
computation of U (S, T) is based only on the true parameters
&;. In Stage-1, the regulator wants to maximize U (T'). Hence,
to calculate U (T), the regulator needs to know &; of all
the operators. But the regulator does not know &; of any
operator; it only knows the estimates 5] Let Ry, (8,T) and

U(S,T) = Z Ry (S,T) denote the revenue function of

the k'" operator and the objective function as perceived by
the regulator respectively. Unlike Rk (8, 7), Ri(S,T) is
calculated only based on estimates fj The largest set of
interested operators as perceived by the regulator, Sk (T'), and
the perceived set of interested operators, S (T), is given by

SE(T) = {k; : TgKk,ﬁszik}
S(T) = {k T < Ay, Ra (§L(T),T) sz} (20)

19)

Note that S (T) € SL (T) because Ry (gL (T),T) <
Ry ({k},T) = fxT (Property 2). With slight abuse of
notation let U (T) = U (S (T) ,T? be the perceived objec-
tive function. In Stage-1, the regulator solves the following
optimization problem

TeZ+

OP1 {max U(r) =0 (§(T) ,T)

The regulator chooses lease duration 7" to maximize the
perceived objective function U (T"). The perceived objective
function and the objective function (true) U (T') may not be
equal as shown in Figure 2. Therefore, a lease duration which
maximizes the perceived objective function may not maximize
the objective function. This leads to sub-optimal spectrum
utilization due to incomplete information games.

The perceived set of interested operators, S (7°), can be
implicitly controlled by choosing a suitable 7. A significant
part of solving OP1 is to find an S (T') that maximizes
U (T). The number of combinations of S (T') can be expo-
nential in N. Therefore, OP1 is reminiscent of combinatorial
optimization which makes it difficult to solve even though
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it is a scalar optimization problem in T. A typical plot
of objective function U (T') and the perceived number of

interested operators 5(7T) = ’g (T)‘ is shown in Figure 2
(black curve). The discontinuous and non-smooth nature of
U (T) is another reason why it is difficult to solve OP1.

Figure 2 also shows that the optimal lease duration is
non-trivial. If the lease duration is too low, MER of many
operators are not satisfied (Property 1) and hence S(7) is
small. Therefore, U (T") is low (high) according to Property 4
if bid correlation if high (Iow). If the lease duration is too high
and bid correlation is high (low), U (T') is low (high) for one
of the two reasons. First, due to Property 3. This is because
the objective function is monotonic decreasing (increasing) in
lease duration if bid correlation is high (low). Second, S (T') is
small either because the operators cannot afford a channel with
long lease duration or because the revenue function decreases
for a higher value of lease duration as suggested by Property 1.
Hence, the optimal lease duration is neither too high nor too
low as shown in Figure 2.

B. Stackelberg Game Solution: Homogeneous Market With
Complete Information

For complete information games, Ek = & ; Vk, and for
homogeneous market, & = £; Vk. Let, £ = (u,0,a,p, A\, A).
Since & = &, the revenue function of the kth operator as
perceived by the k' operator, Ry, (S,T), and as perceived
by the regulator, Ry, (S,T), are equal to the revenue function
(true) Ry (S,T'). Similarly, the perceived objective function,
U (T), is equal to the objective function (true), U (T). Also,
since the market is homogeneous in &, the revenue is same
for all the operators, i.e. Ry (S,T) =R (s,T) ; Vk. The fol-
lowing proposition can be used to calculate the optimal lease
duration, 7™, and the optimal value of the objective function,
U*, for a homogeneous market with complete information.

Proposition 3: Let 0 be the solution to R (N,0) = \ and
[] be the ceiling function. If [0] < A, then T* = [0] and
U* = %R(N, [0]). However, if [0] > A, then U* = 0 and
T* can be set to any value.

Proof: Please refer to Appendix F of supplementary
material for the proof. [ ]
Intuitively, Proposition 3 can be understood as follows. In a
homogeneous market, either all or none of the operators are
interested in joining the market. If none of the operators are
interested in joining the market, then the objective function
is zero which is trivial. Hence, to have U* > 0, T should
be such that all the operators are interested in joining the
market. If all the IV operators join the market, then the revenue
function of an operator is R (N,T*). Also, for operators
to be interested in joining the market, 7" must also satisfy
R(N,T*) > X and T* < A (refer to (20)). As discussed in
Section II-C, the revenue function of a homogeneous market
is monotonic increasing in lease duration. Hence, the solution
to R(N,T*) > XAis T* > [#] where 0 if the solution to
R (N,0) = A The ceiling function [-] is needed because
we consider a time slotted model. To this end we conclude
that, U* > 0 if and only if 7™ satisfies [0] < T* < A.
If [#] > A, then there does not exists a T* that satisfies
[0] <T* < A.Hence, U* = 0 and T* can be set to any value.
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Algorithm 1 Optimization Algorithm to Solve OP1 for a
Heterogeneous Market With Incomplete Information

Input: N, M, &; k=1,...,N
Output: 7%, U*, §*

1 Initialize an empty list Q* whose elements are ordered
pairs (7', k) where T denotes lease duration and % denotes
operator index

2 for k «— 1to N do

3 ‘ Append ([%W ,k;) and (Kk + 1,k) onto QF

4 Sort @ in ascending order of lease duration

5 Set U* =0 and X =0

s for i — 1 to |Q%| do

7| if QFk € XL then set XF = X, — {QF.k}; else

set X =xk, U{QF k}

8 | if QF.T < QF,.T or i = |QF| then

9o | | XF is one of the sets in F~. Set 6 =

911L = Q71L+1-T -1

10 | | Initialize an empty list @) whose elements are ordered

pairs (7,k) where T denotes lease duration and k

denotes operator index

u | | for kin XF do

12 Find v and T'j, the minimum and the maximum

lease duration resp. in the interval [6F, ©F] s.t.

ﬁk, (XZ-L, T) > //\\k VT € ['yk, Fk]

QF.T and

13 if v, and Ty exists then
14 Append (v, k) onto @
15 if T, < ©F then append (T, + 1,k) onto Q

16 Sort Q in ascending order of lease duration
17] | Set Xy =10
18| | for j — 1 to |Q] do

19 if Qj.k € X;_; then set X; = X;_1 —{Q;.k}; else
set Xj = Xj,1 U {ij}

20 if (Q;. T < Qjy1.7 or j =1Q|) then

21 X is one of the sets in F. Set 0; = Q;.T and

0;=QjnT-1

22 if U(X;,0;) > U" then

23 ‘ Set j:'* = 9j, [7* = [7(.)(] , 9]'), g* = Xj

24 if ﬁ(Xj, 9]) > [7* then

% | Set T* =0, U* =U (X;,9,), S* = &,

If [6] < A, then T = [0] maximizes the objective function
because for a homogeneous market, objective function is
monotonic decreasing in lease duration (refer to Section II-

C). For T* = [#], all the operators are interested in joining
the market. Hence, according to (14), U* = %R(N ,[07).

This completes the explanation of Proposition 3.

Finally, to solve OP1 for a homogeneous market with
complete information, we have to compute 6. Since, R (N, )
is monotonic increasing in 6, the equation R (N, 6) = A can
be solved using binary search or Newton-Raphson method.

C. Stackelberg Game Solution: Heterogeneous Market With
Incomplete Information

Algorithm 1 is a pseudocode to solve OP1 for a hetero-
geneous market with incomplete information. Proposition 3
which solves OP1 for a homogeneous market with complete
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information is a special case of Algorithm 1. The main
difficulty about solving OP1 is the change in S(T') with
change in 7. This leads to discontinuities in the objective
function of OP1. Algorithm 1 solves this issue by dividing
the entire positive real axis which represents the lease duration
into intervals such that S (7') does not change within these
intervals. The optimal lease duration within these intervals
will lie in its boundaries because of Property 3. Finally,
the optimal lease duration can be found by comparing the
maximum lease duration within each of these intervals. In the
rest of this section, we will devise an efficient approach to find
these intervals. We will approach this in steps. First, we will
convert OP1 into a combinatorial optimization problem O P2.
By doing so, we formalize the idea discussed in this paragraph.
Second, we will discuss how to divide the entire positive real
axis into intervals such that S* (T") does not change within
these intervals. This is required because S (7') is a function
of SL(T) (refer to (20)). Therefore, to find the intervals
corresponding to S (7'), we have to first find the intervals
corresponding to §L (T'). The process of finding the intervals
corresponding to S” (T) will be exemplified using Example 1,
Example 2 and Figure 3. Finally, we discuss how to find
the intervals corresponding to S (7') which is very similar to
finding the intervals corresponding to ST (T').

Let F be a family of sets containing all possible per-
ceived sets of interested operators. Mathematically, F =
{g : (3T ezZt) [g’(T) :g} } For a given S € F, there

can be several values of T satisfying S(T) = S. Let
T (3) and Ty (3) denote the minimum and the maximum
T respectively satisfying S (T) = S. According to Property 3,
either T, (S) or Ty (S) maximizes OP1 if S(T) = S.
Based on this discussion, OP1 is equivalent to the following
optimization problem

OP?2 {%12;‘ U (S) = max (U (5,7 (5)) .U (S, T (3)) )

_OP2 is a combinatorial optimization problem in S. Let
T* be the optimal solution of OP1. If §* is an optimal

solution of OP2, then T* is either T (g*) or Ty (g*),
whichever maximizes U (5 *, T). In Algorithm 1, we find S*

(and hence T%) by iterating over all S € F to find the one
which maximizes U (S). To do so, we need a constructive
method to find all the sets in F. In the rest of the section,
we discuss the steps involved in finding all the sets in F
and the corresponding line number of Algorithm 1 which
implements that step. One of the outputs of Algorithm 1 is U*,
the optimal value of the perceived objective function. But the
value of the objective function (true) corresponding to optimal
solution of OP1, T™, is given by (18) and is equal to

Ur=U (3 (iﬁ) f)

In order to find all the sets in F, we have to first find all
the sets in FL' = {E (3T ezt [gL (T) = EL} Flisa
family of sets containing all possible largest sets of interested
operators as perceived by the regulator. According to (19),
k e SU(T) if and only if T > P—] and T < Ay + 1.

HE

21
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The ceiling function [-] is needed because we consider a
time slotted model. Consider the ordered pairs ([2—:1 ,k)

and (/A\k + 1, k:) where the first element is lease duration and

the second element is operator index. A list Q¥ contains such
ordered pairs corresponding to all the N operators (line I-
3). The size of QF is ‘QL| = 2N as there are 2 ordered
pairs corresponding to each of the N operators. Let QF be
the 7" element of Q. We use the dot (-) operator to access
the lease duration and the operator index of the elements of
QL. In other words, QF.T and QL .k denote the lease duration
and the operator index respectively corresponding to ordered
pair QF. All the sets in FL can be found using the following
steps:

(A1) Sort Q¥ in ascending order of lease duration (line 4).
Traverse the sorted list Q© from i = 1 to |Q¥] and
repeat steps (A2) to (A4) in every iteration (line 6).
Let X* be the largest set of interested operators as
perceived by the regulator which is obtained in the i*"
iteration. Set XOL = 0 (line 5). Let i be the current
iteration.

If the operator with index QF.k is not in set XL,
add QF k to XL | to get XF. Else if the operator with
index QF .k is in set XL |, remove QF .k from XL | to
get XL, This is implemented in line 7.

If QLT <QF . Tori= ‘QL , then the obtained X*
in step (A2) is one of the sets in FL. SE(T) = Xk
forall T € [QF.T, QF . T —1].

If QT = QF,.T, then the obtained X in step
(A2) is not one of the sets in F. This is because
operators Q.k and QF, .k corresponding to ordered
pairs QF and QiL_H respectively must update X7
simultaneously as both these ordered pairs have the
same lease duration.

(A2)

(A3)

(A4)

The if statement in line 8 implements steps (A3) and (A4).

If QF.T = QF |.T, then the if statement in line 8 is false
and the algorithm simply loops to the next iteration without
considering the obtained X* in line 7 as one of the sets in
FE. The following examples exemplifies the working of steps
(A1) to (A4).
__ Example 1: Consider N = 3 operators with [i = 1; Vk,
Ar’s are [175,100,200] and Ay’s are [300,450,625]. The
sorted list QY for this example is shown in Figure 3.a.
As we traverse Figure 3.a from left to right, S (T) is
0 if T < 99, {2} if T € [100,174], {1,2} if T €
[175,199], {1,2,3} if T € [200,299], {2,3} if T €
[300,449], {3} if T € [450,624] and O if T > 625. Hence,
FE consists of the sets {2}, {1,2}, {1,2,3}, {2,3}, {3},
and ().

Example 2: This example demonstrates the importance of
step (A4) by considering mutiple ordered pairs with same lease
duration. The setting is the same as Example 1 except that
Ai’s are [200,100,200]. The sorted list QF for this example
is shown in Figure 3.b. As we traverse Figure 3.b from left
to right, SE(T) is 0 if T < 99, {2} if T € [100,199],
{1,2,3} if T € [200,299], {2,3} if T € [300,449], {3} if
T € [450,624] and O if T > 625. Hence, F* consists of
the sets {2}, {1,2,3}, {2,3}, {3}, and 0. Unlike Example 1,
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Fig. 3. (a) Figure showing sorted list QL (in blue) and the sets in FZ (in
green) for Example 1. (b) Figure showing sorted list Q% (in blue) and the
sets in FL (in green) for Example 2. (c) A generic pictorial representation
showing the sorted list QL (in blue), the sets in FL (in green) and the interval
of lease duration corresponding to the sets in F% (in red).

{1,2} ¢ FL since ordered pairs (200,1) and (200,3) have
the same lease duration.

Figures 3.a and 3.b show that steps (Al) to (A4) divides
the set of positive integers into contiguous intervals of lease
duration. Each interval has its corresponding X. A gen-
eral setup is shown in Figure 3.c. Let 4y, 22, ..., 2N,
where i1 < iy <--- < 2N, denote all the iterations such
that QF.T < QF,.T (or i = |QL‘ = 2N). Refering
to step (A3), FL consists of the sets Xif, Xig, XQLN
Each of these sets are associated with a corresponding inter-
val of lease duration. As shown in Figure 3 c, SE(T) is
equal to X% in the interval [QL.T, QL. T —1], XL in
the interval [Q T, Qk SRRV ARS 1] etc. These intervals are
non-overlapping and thelr union spans the entire set of positive
integers. We want to design an algorithm to find all the sets
in F. F contains all the sets S(T') as T varies in the set
of positive integers. This problem is equivalent to finding all
the sets S (T") as T varies in each one of these intervals. The
equivalence is due to the fact that the union of these intervals
spans the entire set of positive integers.

Let [#F,©F] be one such interval where QF.T<QF ,.T
0F =QF.T, and ©F =QF . T—1 (line 9). We have
SL(T)=XxF;VT e [9%, OF]. In the interval [0F,OF],
the perceived set of interested operators S (T) C XE.
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Fig. 4. Graph of unimodal function ﬁk (XiL ,T ) depicting an example when
(a) vx and T'y, exist and 'y, < @iL. (b) v% and I'y, exist and I'y, = @ZL. ©) V&
and 'y, do not exist.

If ¥ € XL then T < Ay (efer to (19)).
Hence, for the interval [Hf ,@ﬂ, (20) is equivalent to
S(T) = {k e Xl : Ry (XE,T) > Xk} According to Prop-
erty 1, Ry (&, T) is unimodal in T'. Therefore, the solution
o Ry (Xt 1) > Ax in the interval [QZL,@ﬂ is also an
interval [yg, k). v and Iy are the minimum and the maxi-
mum lease duration satisfying 0L <~ < T < OF such that
Ri (XE,T) > i3 VT € [y, Fk] If T € [0F, G)ﬂ, there are
three possible cases:

B1) v and Ty exist and T} < @f One such example
is shown in Figure 4.a. In this case, the kth opera-
tor is associated with two ordered pairs (vx,k) and
(Tr +1,k) implying that & € S(T) if and only if
T>~,and T < Ty + 1.

v and T exist and T, = ©F: One such example is
shown in Figure 4.b. In this case, the kth operator is
associated with an ordered pair (vx,k) implying that
ke S(T) if and only if T > .

vk and T do not exist: One such example is shown
in Figure 4.c. In this case, the kth operator is not

associated with any ordered pair because k ¢ S () for
all T.

Consider a list () containing the ordered pairs associ-
ated with all the operators in XF. List @ is constructed
in lines 11-15. This involves computation of v and I'j in
line 12 followed by accounting for cases (Bl) to (B3) in
lines 13-15. v and 'y can be computed as follows. First,
we find the maximum of Ry (X1L , T) in the interval [9% , G)ﬂ
time using fibonnaci search [37]. Let O be the maxima of
Ry (XF,T) in the interval [0F,©F]. Second, 7 (T, resp.)
can be found by solving the equation R (X T) = )\k in the
interval [Oi ,@] ([@,Gi } resp.) using binary search. This
strategy to compute v, and I'y, requires O (log, (©F — 6F))
computations of Ry (X%, T) for various values of 7.

To find all the sets S(T) as T varies in the interval
[HL O; } we simply apply steps (Al) to (A4) to list . This
is 1mplemented in lines 16-20. Let Q; be the j* h element of
the sorted list E. If Q;.7" < Q;+1.T, then X} is one of the sets
in F. We have, S (T') = X;; T € [#;,0;] where §; = Q;.T
and ©; = Qj+1.7 — 1. Therefore, the objective function
in the interval [0;,0,] is U (X;,T) which is maximum for
T =0; or T = ©; (Property 3). We can find the optimal
lease duration in the interval [07, ©F] by iterating over all X

(B2)

(B3)
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such that Q;.7" < Q;41.7'. Finally, we can find the optimal
lease duration 7™ by repeating the same procedure for all such
intervals [0, ©OF] that satisfies QF.T < Q¥ _,.T. These steps
are implemented in lines 21-25.

We end this section by discussing the time complexity of
Algorithm 1 and comparing it with a bruteforce approach to
solve OP1. Lines 12 and 22 are the most computationally
demanding steps of Algorithm 1 as it involves numerical
integration to evaluate the revenue function Ry (S,T). All
other computations is absorbed (up to a constant factor) by
the time taken for evaluating the revenue function. Let AL =

max Ay, the maximum lease duration above which none of
1<k<N

the operators can afford a channel.
Proposition 4: Time complexity
o (N2 log, (KL + N3,

Proof: Please refer to Appendix G of supplementary
material for the proof. ]
A bruteforce approach to solve OP1 involves iterating from
T =1 to AL to find the 7" which maximizes U (7'). This
is because for T' > A", S(T) = () and hence U() =o.
To evaluate U (T'), we need O (V) computations of Ry, (S, T')
to find S (T') (refer to (17)) and finally U (T') (refer to (13)).
Therefore, time complexity of the bruteforce approach is

O (NAY)

of Algorithm 1 is

. In practice, AL is much larger compared to N.

Hence, time complexity of bruteforce approach, O ( N AL),
is much larger compared to time complexity of Algorithm 1,
@ <N2 log, (AL) + N3)

IV. NUMERICAL RESULTS

In Sections IV-A to IV-B, we use the optimization algo-
rithms from Section III to numerically explore the effect of

true market parameters & on T, U* = U (S (f*) f*)

and s* ‘S (T*)‘ for complete information games. Recall

that T* is the optimal lease duration corresponding to the
perceived objective function, U™ is the value of the objective
function (true) corresponding to 7 and s* is the number of
interested operators corresponding to T (refer to (21)). For
complete information games, the perceived objective function,
U (T'), is equal to the objective function (true), U (7'). Hence,
T* = T* here T* is the true optimal lease duration corre-
sponding to U (T'). In Appendix H of the supplementary mate-
rial, we have two additional numerical results. The first one
considers a complete information game scenario and studies
certain interesting discontinuities in optimal trends as MER of
operators changes. An interesting by-product of this numerical
result is an observation which suggests that increasing market
competition may not necessarily improve spectrum utilization.
The second one discusses how incomplete information games
leads to sub-optimal solutions.
One of the market parameters in & is the autocorrelation
coefficient ay. Instead of ap, we use time constant 7, where
exp -‘) A higher time constant implies higher
autocorrelation. Throughout this section, number of operators
N =10 and number of channels M = 2.

arp =
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Fig. 5. Plots showing 7™ and U* as a function of mean (a, b, c, and d),
standard deviation (e, f, g, and h), time constant (i, j, k, and 1), MER (m, n, o,
and p), and number of operators (q, r, s, and t). The top two and the bottom
two rows correspond to homogeneous and heterogeneous markets respectively.
For every mean of the market parameters (x-axis) in a heterogeneous market,
we averaged 7 and U™ over 100 instances of market parameters.

A. Optimal Trends

The trends of 7" and U* as a function of number of
operators N and parameters (i, oy, Tk, and py are discussed
in this subsection. Throughout this subsection, Ay = 0o ; Vk.
We consider both homogeneous and heterogeneous market.
The default parameters for homogeneous market are y = 1,

= 0.5, 7 = 100, p = 0.8 and A\ = 100. We vary one
parameter at a time while holding the other parameters at
their default values. We solve for 7" and U* as we vary the
parameters and plot the result in Figure 5.

For heterogeneous markets, we randomly choose the values
for the market parameters from an uniform distribution. The
default uniform distributions are pj ~ U (0.8,1.2), o5 ~
U (0.4,0.6), 7, ~ U (50,150), pr ~ U (0.7,0.9), and Ay ~
U (50,150) ; Vk. Each of these distributions are associated
with a mean and a range, e.g. the mean of iy, is o = %8412 —
1 and the range is (1.2 —0.8) = 0.4. The range of these
distributions remains the same throughout this section; only
the mean is varied. One of these distributions is varied at a
time while holding the other distributions at their default value.
For every distribution, we generate 100 instances of market
parameters sampled from the five distributions. We solve for
T* and U™ for each of the 100 instances and plot the result
as errorbar graphs in Figure 5. The errobar graphs show the
sample mean and standard deviation of 7" and U*.

We will now explain the effect of various parameters on
T* and U*. These explanations will rely on Properties 1 -
4. Also, recall that special cases of Properties 3 and 4 holds
for homogeneous market, i.e. objective function is monotonic
decreasing in 7' (Property 3) and monotonic increasing in s
(Property 4) for a homogeneous market.

Effect of Mean: In a homogeneous market, as p increases,
an operator’s revenue per time slot increases. Therefore, it will
take less time to generate the MER A. Hence, T decreases
as shown in Figure 5.b. With decrease in 7™, U™ increases
according to Property 3. This is shown in Figure 5.a. Similar
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trends hold for heterogeneous market. As the mean of uyg, 1,
increases, the sample mean of U”* increases while the sample
mean of T decreases. This is shown in Figures 5.c. and 5.d.

Effect of Standard Deviation: In a homogeneous market,
T* decreases with increase in o as shown in Figure 5.f. This
can be explained as follows. As o increases, an operator’s
revenue fluctuates more around the mean. These fluctuations
can lead to a revenue which is either greater or lower than the
mean. If an operator is allocated a channel, there is a higher
probability that the revenue is greater than the mean. This is
due to the allocation policy which, in general, ensures that
the operator who is allocated a channel has a high revenue.
This suggests that the revenue function increases with o. Since
the revenue function increases, an operator takes less time
to generate its MER. Hence, T* decreases with increase in
0. As T™ decreases, U* increases due to Property 3. This is
shown in Figure 5.e. For a heterogeneous market, the sample
mean of U™ increases with increase in mean of oy, &. This
is shown in Figure 5.g and its is similar to homogeneous
market. However, unlike a homogeneous market, the sample
mean of 7T remains almost the same with increase in & as
shown in Figure 5.h. This happens due to a cyclic effect which
can be explained as follows. Similar to homogeneous market,
with increase in o, the revenue function increases. But as
the revenue function increases, more operators are interested
in entering the market which in turn decreases the revenue
function (Property 2). These two competing factors negates
the impact of & on the revenue function and hence on 7.

Effect of Time Constant: Consider the homogeneous market
first. Autocorrelation defines the self-similarity of a random
process. As autocorrelation increases, an operator with higher
revenue at current time slot will have higher revenue at a
later time slot. Therefore, with increase in time constant 7
(and hence autocorrelation), the revenue function increases.
As the revenue function increases, an operator takes less time
to generate its MER. Hence, T* decreases with increase in
7. As T™ decreases, U* increases due to Property 3. This
is shown in Figure 5.1 and 5.j. For a heterogeneous market,
the sample mean of U™ increases with increase in mean of
Tk, 7. This trend is shown in Figure 5.k and its is similar
to a homogeneous market. However, unlike a homogeneous
market, the sample mean of 7™ increases with increase in 7
as shown in Figure 5.1. This is due to the same cyclic effect
mentioned while explaining the effect of standard deviation.
But in this case, the effect of the increase in number of
interested operator is more dominant. As a result, the revenue
function decreases with increase in 7. Since the revenue
function decreases, the sample mean of 7™ increases because
an operator takes more time to generate its MER.

Effect of Bid Correlation Coefficient: Consider the homo-
geneous market first. As bid correlation coefficient increases,
an operator with a high bid is more likely to generate a higher
revenue. Since channels are allocated to operators with high
bids, we can equivalently say that if an operator is allocated
a channel, then its revenue increases with increase in bid
correlation coefficient. Therefore, it will take less time to
generate the MER . Hence, T decreases with increase in
p. With decrease in T, U™ increases according to Property 3.
This is shown in Figure 5.m and Figure 5.n. For a heteroge-
neous market, the sample mean of U* increases with increase
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in mean of py, p. This is shown in Figure 5.0 and its is similar
to a homogeneous market. However, unlike a homogeneous
market, the sample mean of 7™ increases with increase in p
as shown in Figure 5.p. This is due to the same cyclic effect
mentioned while explaining the effect of time constant.
Effect of Number of Operators: Consider the homogeneous
market first. As the number of operators increases, the prob-
ability that a given operator is allocated a channel decreases.
To compensate for this decrease in probability, an operator
has to generate more revenue when it is allocated a channel
in order to satisfy its MER. Hence, T increases as shown
in Figure 5.r. Now we will explain the effect of N on
U*. As N increases, U* increases according to Property 4.
However, with increase in N, T™ increases which leads to
decrease in U™ according to Property 3. Because of these two
competing factors, U™ first increases and then decreases with
increase in N as shown in Figure 5.q. Recall that in our model,
the number of interested operators is a measure of market
competition. Then this numerical study shows that too much
competition may not necessarily improve spectrum utilization.
For heterogeneous market, we sampled px, o, 7%, pr and
A, from their default uniform distributions. As IV increases,
the sample mean of 7" and U™ increases. This is shown
in Figure 5.s and 5.t. These trends are similar to homogeneous
market. Similar to homogeneous market, we expect the sample
mean of U™ to start decreasing if IV is above a threshold. But,
we could not verify the same. This is because as IV increases,
computing the revenue function for a heterogeneous market
becomes computationally expensive which in turn makes
Algorithm 1 computationally expensive. This problem does
not exists for homogeneous market because the expression for
revenue function is simpler for homogeneous market. Please
refer to Propositions 5 and equation 60 of the supplementary
material to appreciate the relative complexity of the revenue
function for a heterogeneous and a homogeneous market.

B. Comparison With an Intuitive Algorithm

In this section, we compare the performance of Algorithm 1
with an intuitive, but sub-optimal, algorithm SUBOP which
maximizes the objective function by setting a lease duration
that satisfies all the N operators in terms of affordability Ay
and MER ). Through this comparison we exemplify that as
the market becomes more heterogeneous, it is not optimal to
satisfy all the operators even if it is possible.

We start by describing SUBOP. Define Sy = {1,2,...,N}.
Since SUBOP has to satisfy all the N operators, the k'
operator is satisfied if the lease duration satisfies T' < Ag
and Ry (Sn,T) > M. The solution to Ry (Sn,T) > Ak
is a range [y, x| (refer to line 12 of Algorithm 1). But
T < Aj and hence the range has to be modified as [%, fk}

where 7, = v, and fk = min (g, Ay). The k" operator is
interested in entering the market iff 7' € |7y, I‘k] The range

of lease duration that satisfies all the N operators is [5, é}

where 6§ = m]?x i and 0= mkin fk If © < 5 then there is
no lease duration that satisfies all the operators and hence the
value of the objective function is Ug = 0 where the subscript
S implies sub-optimal. If © >0, then either T =0 or T = O
maximizes the objective function (Property 3) subjected to
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Fig. 6. Plots comparing the performance of Algorithm 1 and SUBOP as

the market becomes more heterogeneous in Mean pj (a, b), MER A and
maximum affordable lease duration Ay (c, d). In (a, b), for each coefficient
of variation C'V [uy], s* and AUy, have been averaged over 100 instance of
g In (c, d), for each pair of coefficient of variations (CV [A],CV [Ag]),
s* and AUy, have been averaged over 100 instance of Ay and A.

S = Sn. Accordingly, the value of the objective function is
ngmax U SN,g),U<SN,é .

We first compare the performance of Algorithm 1
with SUBOP as the market becomes more heterogeneous
in mean pj. To compare the algorithms, lets define
AU%=% x 100, the percentage increase in U* compared
to U?. The setup is homogeneous in all market parameters
but pu. We have o, = 0.5, 7, = 100, A, = 100, and Ay, =
o0 ; Vk. The mean py is sampled from a truncated Gaussian
distribution with mean 1, coefficient of variation C'V [u] and
the truncation bounds are 0.5 and 1.5. As C'V [uy] increases,
the gaussian distribution spreads out more and hence there is a
wider range of 1, making the market more heterogeneous. As
shown in Figure 6.a, expected optimal number of interested
operators s* decreases with increase in CV [ug]. This is
because as the market becomes more heterogeneous in i,
the revenue function becomes unimodal in nature (Property 1).
This suggests that there may not be a lease duration that
satisfies MER of all the operators. Even if it is possible to
satisfy lease duration of all the operators, such lease durations
may too large which may significantly decrease the objective
function according to Property 3 (assuming bid correlation
coefficients of the operators are high). It is also possible that
some of the operators have low bid correlation coefficient.
If they enter the market, objective function can decrease
(Property 4). Therefore, it may not be optimal to satisfy
those operators whose bid correlation coefficient is low. But
since SUBOP tries to satisfy all the operators, its performance
compared to Algorithm 1 decreases as the market becomes
more heterogeneous in fiy. This is shown in Figure 6.b. where
AUy, increases with C'V [ug].

Similarly, we compare the performance of Algorithm 1
with SUBOP as the market becomes more heterogeneous
in Ay and Ajg. The setup is homogeneous in all market
parameters but A, and Ag. We have pp = 1, o = 0.5
and 7, = 100; Vk. A\ is sampled from a truncated gaussian
distribution with mean 500, coefficient of variation C'V [Aj]
and the truncation bounds are 100 and 900. Ay, is sampled from
a truncated gaussian distribution with mean 5000, coefficient
of variation C'V [Ag] and the truncation bounds are 900 and
9100. As CV [Ag] and C'V [Aj] increases, there is a wider
of Ay and Aj. As shown in Figure 6.c, expected optimal
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number of interested operators s* decreases with increase in
CV [A\;] and C'V [Ay]. This is because as the market becomes
more heterogeneous in Ay and Ay, it is possible that a lease
duration that satisfies MER of one operator is not affordable by
another operator. Hence, there may not exist a lease duration
that satisfies all the operator. Even if it is possible to satisfy
lease duration of all the operators, such lease durations may be
too large because few of the operators have high MER. Setting
such a large lease duration may not be optimal according to
Property 3. But since SUBOP tries to satisfy all the operators,
its performance compared to Algorithm 1 decreases as the
market becomes more heterogeneous in \; and Ay. This is
shown in Figure 6.d.

V. CONCLUSION

The duration of a spectrum lease is a critical parameter
that influences the efficiency of spectrum utilization. The main
contribution of this paper is a mathematical model that is
used to find the lease duration which maximizes spectrum
utilization. This model captures the effects of lease duration
on spectrum utilization for a market where an operators’
revenue is a measure of its spectrum utilization. Based on the
system model, we formulate a Stackelberg game with lease
duration as one of the decision variables. We also design
algorithms to find the Stackelberg equilibrium and hence find
the optimal lease duration. Using these algorithms, we find
several numerical trends that show how lease duration should
change with respect to various market parameters in order to
maximize spectrum utilization.

There are several possible avenues for extending this work,
including: (a) Generalization of our system model to capture
the transaction costs associated with re-allocation of channels.
(b) Including variance in our system model to capture risk
aversion of the operators. (c) Second price auctions to capture
the variable market-dependent price of a spectrum lease.
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