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Abstract— We consider the problem of partitioning a spectrum
band into M channels of equal bandwidth, and then further
assigning these M channels into P licensed channels and M −P
unlicensed channels. Licensed channels can be accessed both
for licensed and opportunistic use following a tiered structure
that has a higher priority for licensed use. Unlicensed channels
can be accessed only for opportunistic use. We address the
following question in this paper. Given a market setup, what
values of M and P maximize the net spectrum utilization of
the spectrum band? While this problem is fundamental, it is
highly relevant practically, e.g., in the context of partitioning the
recently proposed Citizens Broadband Radio Service band. If M
is too high or too low, it may decrease spectrum utilization due to
limited channel capacity or due to wastage of channel capacity,
respectively. If P is too high (low), it will not incentivize the
wireless operators who are primarily interested in unlicensed
channels (licensed channels) to join the market. These tradeoffs
are captured in our optimization problem which manifests itself
as a two-stage Stackelberg game. We design an algorithm to
solve the Stackelberg game and hence find the optimal M and
P . The algorithm design also involves an efficient Monte Carlo
integrator to evaluate the expected value of the involved ran-
dom variables like spectrum utilization and operators’ revenue.
We also benchmark our algorithms using numerical simulations.

Index Terms— Spectrum auction, opportunistic spectrum
access, CBRS band, Stackelberg game, iterated removal of strictly
dominated strategies, Monte Carlo integration, optimization.

I. INTRODUCTION

TO SUPPORT the ever-growing wireless data traffic,
the Federal Communication Commission (FCC) released

the underutilized Citizens Broadband Radio Service (CBRS)
band for shared use in 2015 [2]. CBRS band is a 150 MHz
federal spectrum band from 3.55 GHz to 3.7 GHz. The
150 MHz band is divided into 15 channels of 10 MHz
each. The shared use of the CBRS band follows an order
of priority. Federal users have the highest priority access to
the channels. Out of the 15 channels, 7 are Priority Access
Licenses (PALs). PAL licenses are sold through auctions and
the lease duration of a PAL license may range between 1−10
years [2]–[4]. A PAL license holder can use their channel
only if federal users are not using it. The remaining 8 out
of the 15 channels are reserved only for opportunistic use
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Fig. 1. Pictorial representation of the tiered spectrum model under consid-
eration in this paper.

by General Authorized Access (GAA) users. Opportunistic
channel allocation to GAA users can happen at a time scale
of minutes to weeks. GAA users can use these 8 channels if
federal users are not using the channels. GAA users can also
use the 7 PAL channels provided that neither federal users nor
PAL license holders are using it.

As mentioned in the previous paragraph, the CBRS band is
divided into M = 15 channels out of which there are P = 7
PAL licenses. But does M = 15 and P = 7 maximize the
utilization of the CBRS band? In this paper, we are interested
in the following abstraction of this question. A net bandwidth
is partitioned into M channels of equal bandwidth. These M
channels are further divided into P licensed channels (similar
to PAL channels) and M −P unlicensed channels (similar to
channels reserved for GAA users). In this paper, the process of
dividing the net bandwidth into M channels is called spectrum
partitioning and the process of allocating these M channels as
licensed and unlicensed channels is called spectrum licensing.
Licensed channels are used for both licensed use and oppor-
tunistic use with the former having higher priority. Unlicensed
channels are reserved for opportunistic use only. This spectrum
access model is shown in Figure 1. The wireless operators earn
revenue by serving customer demands. A wireless operator
is incentivized to join the market if the revenue which it
can earn is above a desired threshold. For the given setup,
what value of M and P maximizes spectrum utilization where
spectrum utilization is defined as the net amount of customer
demand served by the entire bandwidth? The application of
this question is not just limited to CBRS but other spectrum
sharing architectures like licensed shared access [5], high
priority channels in TV White Spaces [6] etc. which have
certain resemblance with CBRS.

There are various factors that decide the optimal values of
M and P . Some of these factors are as follows. If the number
of channels, M , increases, the bandwidth, and hence capacity,
of each channel decreases. The capacity of each channel
should be large enough to accommodate a good portion of
the customer demand of a wireless operator but not so large
that most of the capacity of the channel is not utilized for
the majority of the time. This suggests that M should not be
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too small or too large. If the number of licensed channels P
is too high, there is a small number of unlicensed channels.
Therefore, those operators who primarily rely on unlicensed
channels to serve customer demands will not be able to
generate enough revenue and hence will not be incentivized
to join the market. Similarly, if the P is too low, wireless
operators who primarily rely on licensed channels to serve
customer demands will not be incentivized to join the market.
P should be set such that enough operators join the market
to ensure that the customer demands served over the entire
bandwidth is as high as possible. There may be other
qualitative factors governing optimal M and P . Therefore,
in this paper, we design an algorithm to jointly optimize M
and P such that spectrum utilization is maximized.

A. Related Work

Variations of the spectrum partitioning and spectrum licens-
ing problems considered in this paper have been studied
separately, but not jointly, in the spectrum sharing and related
fields. There are a few works that have addressed problems
similar to partitioning a fixed bandwidth into an optimal
number of channels. In [7], the authors derive an analytical
expression for the optimal number of channels such that the
spatial density of transmission is maximized subject to a fixed
link transmission rate and packet error rate. Partitioning of
bandwidth in the presence of guard bands has been considered
in [8] where the authors used Stackelberg game formulation to
analyze how a spectrum holder should partition its bandwidth
in order to maximize its revenue in spectrum auctions.

The second problem studied in this paper deals with spec-
trum licensing. This has been widely studied in the literature
from various perspectives. Some works concentrated on mini-
mizing the amount of bandwidth allocated to backup channels
(unlicensed channels in our case) while providing a certain
level of guarantee to secondary users against channel preemp-
tion [9]. There has also been research on overlay D2D and
cellular devices that studied optimal partitioning of orthogonal
in-band spectrum to maximize the average throughput rates of
cellular and D2D devices [10]. In [11], the authors investigated
whether to allocate an additional spectrum band for licensed
or unlicensed use and concluded that the licensed use is
more favorable for maximizing the social surplus. A similar
result has been shown in [12] which studied the effect of
adding an unlicensed spectrum band in a market consisting of
wireless operators with licensed channels. The authors showed
that if the amount of unlicensed spectrum band is below a
certain limit, the overall social welfare may decrease with the
increase in unlicensed spectrum band. The authors in [13],
[14] studied the CBRS band for a market setup that consists of
Environmental Sensing Capability operators (ESCs) whose job
is to monitor and report spectrum occupancy to the wireless
operators. The authors analyzed how the ratio of the licensed
and unlicensed bands affects the market competition between
the ESC operators, the wireless operators, and the end users of
the CBRS band. There is a line of work that studies spectrum
partitioning for topics similar to licensed and unlicensed use
using Stackelberg games; macro cells and small cells [15],
[16], long-term leasing and short-term rental market [17], and
4G cellular and Super Wifi services [18].

Such a diverse body of work just on spectrum partitioning
and licensing is justified because individual problem setups
have their own salient features and hence require their own

analysis. Our problem setup considers jointly optimizing spec-
trum partitioning and spectrum licensing, which has not been
considered in the existing literature. This problem is novel
because of the combination of the following two reasons. First,
our spectrum access model, like CBRS, is a combination of
(a) Unlicensed spectrum access model. This is because M−P
unlicensed channels are reserved specifically for opportunistic
use. (b) Primary-secondary spectrum access model. This is
because P licensed channels can be used for opportunis-
tic access following the priority hierarchy. Prior works like
[12]–[14], which solved the spectrum licensing problem, did
not simultaneously consider both of the spectrum access
models. Second, we consider a very generalized system model
in terms of the number of operators, their types, and their
heterogeneity. Such a setup leads to a scenario where the
regulator has to decide M and P such that the right set of wire-
less operators are incentivized to join the market. The authors
have addressed the problem of joint spectrum partitioning and
licensing in [1]. But this paper uses a more realistic bidding
model for licensed channels and a generalized opportunistic
spectrum access (OSA) strategy. Finally, the stackelberg game
formulation used in this paper is a generalized version of [1].

B. Contribution and Paper Organization

We now present an overall outline of the paper and, in the
process, discuss its main contributions. In Section II, we
present a system model which can mathematically capture
the effect of the number of channels, M , and the number
of licensed channels, P , on the spectrum utilization. The pro-
posed system model captures spectrum auctions using a simple
stochastic model without going into complex game-theoretic
formulations. Based on our reading of [2]–[4] and other
literature on CBRS band, it is not clear if there is a consensus
in the literature/policy about whether PAL license holders
are also allowed to use channels opportunistically. So it is
possible that PAL license holders may or may not be allowed
to use channels opportunistically. Our model is general enough
to capture both of these cases. Our model can capture both
overlay and interweave OSA strategies [19].

It is possible that a choice of values of M and P that incen-
tivizes one group of wireless operators may not incentivize
another group. Therefore, a M and P which incentivizes all
the wireless operators may not exist. This argument can be
exemplified by referring to [2]–[4] which shows a lot of debate
between the wireless operators concerning the parameters
of the CBRS model. Even if it is possible to satisfy all
the operators, it may not be optimal to do so in terms of
maximizing the spectrum utilization. We capture this idea by
formulating our problem as a two-stage Stackelberg game
in Section III-A which forms the second contribution of the
paper. The Stackelberg game consists of the regulator (leader)
and the wireless operators (followers). In Stage 1, the regulator
sets M and P to maximize spectrum utilization. In Stage 2,
the wireless operators decide whether or not to join the market
based on the M and P set by the regulator in Stage 1.

In Section III-B, we design an algorithm to solve the
Stackelberg game and hence the optimal M and P which
maximize spectrum utilization. We approach this in steps. Few
properties associated with the expected revenue of an operator
are discussed first. We show that when these properties hold,
we can design a polynomial-time algorithm to solve Stage
2 of the Stackelberg game. We finally solve Stage 1 of the
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Stackelberg game using a grid search approach to find the
optimal M and P which maximizes spectrum utilization. To
the best of our knowledge, joint optimization of partitioning
and tiered licensing have not been considered in the existing
related literature. Designing an algorithm for joint optimiza-
tion of M and P is the fourth contribution of the paper.

The solve the Stackelberg game, we have to calculate the
expected revenue of an operator and expected spectrum utiliza-
tion. The complex nature of the problem does not allow simple
analytical formulas of these expected values. Even if such
analytical formulas are possible, adapting them to changes in
system model can be time consuming. Therefore, we develop
a Monte Carlo integrator to evaluate these expected values
in Section IV. Our choice of using a Monte Carlo integrator
over deterministic numerical integration techniques is because
our setup involves evaluation of high-dimensional integrals.
Unlike deterministic numerical integration techniques, the
computation time of Monte Carlo integration does not scale
with dimension. One of the main bottlenecks of Monte Carlo
integration is random sampling. While designing our Monte
Carlo integrator, we reduced random sampling as much as
possible to make it more time efficient. Designing an efficient
Monte Carlo integrator which can easily adapt to few changes
in the system model is the third contribution of the paper.

Finally, we use the algorithms designed in Sections III-B
and IV to obtain important numerical results in Section V
which show the importance of joint optimization of M and
P , and how the how optimal values of M and P vary with
market parameters. This is the final contribution of the paper.

II. SYSTEM MODEL

In this section, we discuss individual components of our
system model in Sections II-A to II-C. The list of important
notations is included in Table I. Consider two sets A and
B. A

⋃
B implies the union A and B while A\B is as set

which consists of all those elements in A which are not in B.
A singleton set consisting of element a is denoted by {a}.

A. Channel Model
A net bandwidth of W hz is divided into M channels of

equal bandwidth W
M . Out of the M channels, P channels are

licensed channels while the remaining M − P channels are
unlicensed channels. In our model, time is divided into slots
where t ∈ Z+ denotes the tth time slot. Licensed channels
are allocated for prioritized licensed use and opportunistic use
while unlicensed channels are allocated only for opportunistic
use. Allocation of licensed channels for licensed use happens
through auctions. These auctions occur every T ≥ 1 time slots
where T is the lease duration. An entire lease duration is called
an “epoch”. Epoch γ is from time slot (γ − 1)T + 1 to γT .
Allocation of licensed channels and unlicensed channels for
opportunistic use occur every time slot.

Those operators who are allocated licensed channels for
licensed use are called Tier-1 operators while those who are
not are called Tier-2 operators. In our model, an operator can
be allocated at most one licensed channel for licensed use
in an epoch, i.e. spectrum cap is one. Similar assumption
has been made in prior works like [20]. Spectrum cap of
one ensures fairness by allocating the licensed channels to
as many operators as possible. A Tier-1 operator can also
use opportunistic channels to serve its customer demand
in case the bandwidth of the allocated licensed channel is

TABLE I

A TABLE OF IMPORTANT NOTATIONS

not sufficient. Tier-2 operators use channels opportunistically.
Tier-1 operators may also use channels opportunistically. Let
φ ∈ {0, 1}. If φ = 1, then Tier-1 operators can use channels
opportunistically; otherwise they cannot.

The capacity of a channel/bandwidth is the maximum
units of customer demand that can be served using that
channel/bandwidth in a time slot. Let D be the capacity
of the entire bandwidth of W hz when used for licensed
access. As the entire bandwidth is partitioned into M channels,
each licensed channel has a capacity of D

M when used for
licensed use while the unlicensed channels have a capacity
of αU D

M where αU ∈ [0, 1] is the interference parameter
associated with unlicensed channels for opportunistic use.
Licensed channels can also be used for opportunistic use
following the priority hierarchy shown in Figure 1. Let the
customer demand of a Tier-1 operator be d units. It will use its
licensed channel to serve its customer demand. The remaining
capacity of the licensed channel which can be utilized for
opportunistic use is given by the function C (d,αL) where
αL ∈ [0, 1] is the interference parameter associated with
licensed channels for opportunistic use. The expression for
C (d,αL) depends on the OSA strategy: overlay or interweave
[19]. For overlay spectrum access, C (d,αL) = αL

(
D
M − d

)+
,

where (x)+ = max (0, x). For interweave spectrum access,
C (d,αL) is equal to 0 if d > 0 and equal to αLD

M if
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d = 0. Parameters αL and αU capture the lower efficiency
of opportunistic use as compared to licensed use [2]. In
general, we expect αL ≤ αU . This may happen because the
transmission power cap for opportunistic use may be lower for
licensed channels compared to unlicensed channels in order to
protect Tier-1 operators from harmful interference.

B. Operators, Their Demand and Revenue Model
The market consists of the candidate licensed operators

denoted by SC
L and the candidate unlicensed operators

denoted by SC
U where SC

L and SC
U are disjoint sets. A candidate

licensed operator is a Tier-1 operator in those epochs in which
it is allocated a licensed channel in the auction and a Tier-2
operator in those epochs in which it is not allocated a licensed
channel. A candidate unlicensed operator is always a Tier-2
operator. A candidate operator has to invest in infrastructure
development if it wants to join the market.

All the candidate operators have to invest in infrastructure
development to join the market. In order to generate return on
infrastructure cost and the cost of leasing a channel, the kth

candidate operator wants to earn a minimum expected revenue
(MER), λk, in an epoch. Mathematically, λk = CI

k +CL
k +Λk

where, CI
k is the infrastructure cost of the kth operator, CL

k
is an estimate of the cost of leasing a channel according
to the kth operator,1 and Λk is the minimum profit the
kth operator wants to make in an epoch. The kth candidate
licensed/unlicensed operator is interested in joining the market
if the value of M and P set by the regulator is such that the
expected revenue of the operator in an epoch is greater than
λk. The set of interested licensed operators and interested
unlicensed operators are denoted by SL and SU respectively.
We have SL ⊆ SC

L and SU ⊆ SC
U . The set of operators,(

SC
L − SL

)⋃ (
SC

U − SU

)
, does not join the market. A can-

didate licensed/unlicensed operator gets to decide whether to
join or not join the market only once. An operator gets to
participate in auctions for licensed channels or to use channels
opportunistically only if it decides join the market.

In our model, every operator has a separate pool of cus-
tomers each with its own stochastic demands, i.e. we do
not model price competition between operators to attract a
common pool of customers. Consider the tth time slot of
epoch γ. The customer demand, or simply demand, of the
kth operator in the tth time slot is xk (t). In our model,
xk (t) = max (0 , θk (t)) where θk (t) are iid Gaussian random
variable2 with mean µθ

k and standard deviation σθ
k, i.e. θk (t) ∼

N
(
µθ

k,
(
σθ

k

)2)
, ∀t. The kth operator may be able to serve

only a fraction of the customer demand. Let x̃k,1 (t) and
x̃k,2 (t) denote the amount of customer demand served by the
kth operator if it is a Tier-1 and a Tier-2 operator respectively
in epoch γ. We have x̃k,1 (t) ≤ xk (t) and x̃k,2 (t) ≤ xk (t).
x̃k,1 (t) and x̃k,2 (t) can be expressed as follows

x̃k,1 (t) = x̃k,lc (t) + x̃k,op (t) (1)
x̃k,2 (t) = x̃k,op (t) (2)

1The cost of leasing a channel for a given operator depends on its own bid,
the bid of other operators, and also the auction mechanism. As discussed in the
next section, in our model, the bid of an operator is a random variable. Hence,
cost of leasing a channel for the kth operator is also a random variable. CL

k
is only a point estimate of this random variable according to the kth operator.
The estimation strategy of CL

k may vary among operators.
2All the iid random variables used throughout the paper are identical with

respect to time slot, t, or epoch, γ, and not with respect to operator index k.

where x̃k,lc (t) = min
(
xk (t) , D

M

)
. The term x̃k,lc (t) in (1) is

the amount of customer demand served a Tier-1 operator using
the channel allocated to it for licensed use. The term x̃k,op (t)
in (1) and (2) is the demand served by an operator by using
channels opportunistically. It will be shown in Section II-C
that x̃k,op (t) is a iid random variable. Also, if φ = 0, then
a Tier-1 operator cannot use channels opportunistically and
hence x̃k,op (t) ≡ 0 in (1). In (1) and (2), x̃k,1 (t) and x̃k,2 (t)
can be expressed as a time invariant function of iid random
variables xk (t) and x̃k,op (t). Therefore, x̃k,1 (t) and x̃k,2 (t)
are iid random variables as well. Let µ̃x

k,a and σ̃x
k,a denote the

mean and standard deviation of x̃k,a (t) respectively. We have,

µ̃x
k,lc =

∫ D
M

0
ϑfθ

k (ϑ) dϑ+
D

M

∫ ∞

D
M

fθ
k (ϑ) dϑ (3)

(
σ̃x

k,lc

)2 =
∫ D

M

0
ϑ2fθ

k (ϑ) dϑ

+
(

D

M

)2 ∫ ∞

D
M

fθ
k (ϑ) dϑ−

(
µ̃x

k,lc

)2
(4)

where fθ
k (ϑ) is the probability density function of θk (t).

In general, an analytical expression for µ̃x
k,op and σ̃x

k,op is
not possible because of the complex nature of opportunistic
spectrum allocation algorithm. We have designed a Monte
Carlo integrator which can compute µ̃x

k,op in Section IV.
Throughout the rest of the paper we will use the subscript

k, i, where i ∈ {1, 2}, to denote variables associated with
kth operator when its is a Tier-i operator. Also, we will use
the subscript k, a, where a ∈ {lc, op}, to denote variables
associated with kth operator when access type is licensed
(a = lc) or opportunistic (a = op). Let Xk,a (γ) denote the
net demand served by the kth operator in epoch γ when
access type is a. Mathematically,

Xk,a (γ) =
γT∑

t=(γ−1)T+1

x̃k,a (t) ; a ∈ {lc, op} (5)

Since x̃k,a (t) is iid random variable and the lease duration
T is quite large in practice, Xk,a (γ) can be approximated
as a Gaussian random variable using Central Limit Theorem
[21, Chapter 8]. The mean, µX

k,a, and standard deviation, σX
k,a,

of Xk,a (γ) are given by

µX
k,a = µ̃x

k,aT ; σX
k,a = σ̃x

k,a

√
T (6)

To this end we have, Xk,a (γ) ∼ N
(

µX
k,a,

(
σX

k,a

)2
)

, ∀γ.

Remark 1: Gaussian Nature of Xk,a (γ). Xk,a (γ) is always
a positive quantity because net demand served is always
positive. But, we approximated Xk,a (γ) as a Gaussian random
variable and hence the approximated Xk,a (γ) can be negative.
However, the probability of Xk,a (γ) being negative is

P [Xk,a (γ) < 0] =
1
2

(
1 + erf

(
−

µ̃x
k,a

√
T

√
2σ̃x

k,a

))

where erf (·) is the error function. For all practical setups, T is
large enough that P [Xk,a (γ) < 0] is very small. The use of
Gaussian model for non-negative random variables has been
used in prior works like [22].

An operator generates revenue by serving customer demand.
Let Rk,a (γ) denote the revenue earned by the kth operator in
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epoch γ when the access type is a. We model Rk,a (γ) as a
random variable that follows the stochastic model

[
Xk,a (γ)
Rk,a (γ)

]
∼ N




[
µX

k,a

µR
k,a

]
,





(
σX

k,a

)2
ρkσX

k,aσ
R
k,a

ρkσX
k,aσ

R
k,a

(
σR

k,a

)2







 (7)

for all γ where µR
k,a = hk

(
µX

k,a

)
. According to (7), the net

demand served and the net revenue earned in epoch γ are
jointly Gaussian. The mean of Rk,a (γ) is µR

k,a = hk

(
µX

k,a

)

where hk

(
µX

k,a

)
is a monotonic increasing function of the

mean demand served by the kth operator in an epoch, µX
k,a.

The standard deviation of Rk,a (γ) is σR
k,a which can be used

to capture the effect of exogenous stochastic processes like
market dynamics on Rk,a (γ). The relative change between
Rk,a (γ) and Xk,a (γ) is captured with correlation coefficent
ρk ∈ [0, 1). It captures how much a deviation of Xk,a (γ)
around its mean µX

k,a will affect the deviation of Rk,a (γ)
around its mean hk

(
µX

k,a

)
. A monotonic increasing function,

hk (·), and a positive correlation coefficient, ρk, are intuitive
because from a statistical standpoint it implies that an operator
who serves more customer demand generates higher revenue.

Let Rk,i (γ) denote the revenue earned by the kth operator
if it is a Tier-i operator in epoch γ. Tier-1 serves customer
demand using both licensed and opportunistic access while
Tier-2 operator serves its customer demand using opportunistic
access only. Hence,

Rk,1 (γ) = Rk,lc (γ) + Rk,op (γ) (8)
Rk,2 (γ) = Rk,op (γ) (9)

Notice that since Rk,lc (γ) and Rk,op (γ) are Gaussian,
Rk,1 (γ) and Rk,2 (γ) are Gaussian as well.

C. Spectrum Allocation Model
Licensed channels are allocated to the set of interested

licensed operators, SL, through spectrum auctions. The auction
for epoch γ happens at time slot (γ − 1)T + 1. The set
of interested licensed operators bids for licensed channels.
Let Vk (γ) be the bid of the kth operator in epoch γ. Our
model assumes truthful spectrum auctions. For such auctions,
the operators always bid their true valuations of a licensed
channel. The true value of a licensed channel to the kth

operator is Rk,lc (γ), the revenue it can generate using the
licensed channel in an epoch. But the kth operator does not
know the revenue it will earn in epoch γ when it is bidding
for a licensed channel at the beginning of epoch γ. It only
has an estimate of Rk,lc (γ). We capture the relation between
Rk,lc (γ) and Vk (γ) using the stochastic model

[
Vk (γ)

Rk,lc (γ)

]
∼ N




[
µR

k,lc

µR
k,lc

]
,





(
σR

k,lc

)2
ωk

(
σR

k,lc

)2

ωk

(
σR

k,lc

)2 (
σR

k,lc

)2









(10)

for all γ where ωk ∈ [0, 1) is the correlation coefficient
between Vk (γ) and Rk,lc (γ). Bid correlation coefficient ωk

captures how good the estimate is; higher ωk implies a better
estimate. Using a stochastic model like (10) to capture the
relation between Vk (γ) and Rk,lc (γ) leads to a generalized
system model because we can abstract away from the exact

Fig. 2. Pictorial representation of the set of candiate licensed operators SC
L ,

candiate unlicensed operators SC
U , interested licensed operators SL, interested

unlicensed operators SU , the set of interested licensed operators who are
allocated (not allocated) licensed channels in an epoch T1 (γ) (T 1 (γ)) and
the set of Tier-2 operators in an epoch T2 (γ). Note that T1 (γ), T 1 (γ) and
T2 (γ) are not the same for epochs 1 and 2.

Algorithm 1: Waterfilling Algorithm for Opportunistic
Channel Allocation

Input: DO (t), {xk (t)}k∈S
Output: {x̃k,op (t)}k∈S

1 Sort the list {xk (t)}k∈S in ascending order of xk (t). Let
κ (j) denote the operator index corresponding to the jth

position of the sorted list.
2 Set unused opportunistic channel capacity C = DO (t)

and the remaining number of interested operators to
allocate channel capacity NS = |S|.

3 for j ← 1 to |S| do
4 Set x̃κ(j),op (t) = min

(
xκ(j) (t) , C

NS

)
.

5 Set C = C − x̃κ(j),op (t) and NS = NS − 1.

bid estimation strategy of the operators which may rely on the
auction mechanism and other market externalities.

Given that there are P licensed channels and the spectrum
cap is one, the interested licensed operators with the P highest
bids Vk (γ) are allocated one licensed channel each in epoch
γ. Let T1 (γ) ⊆ SL denote the set of interested licensed
operators who are allocated licensed channels in epoch γ.
Similarly, T 1 (γ) = SL\T1 (γ) is the set of interested licensed
operators who are not allocated licensed channels in epoch γ.
The operators in T1 (γ) serve their customer demand as Tier-
1 operators in epoch γ. On the other hand, operators in T 1 (γ)
serve their customer demand as Tier-2 operators in epoch γ. It
is to be noted that T1 (γ) and T 1 (γ) are random sets as they
get decided by the bids Vk (γ) which are random variables.
The set of Tier-2 operators in epoch γ is T2 (γ) = T1 (γ)

⋃
SU ,

i.e., interested unlicensed operators and interested licensed
operators who are not allocated a licensed channel in epoch
γ. Unlike the sets SL and SU which are decided once, sets
T1 (γ), T 1 (γ), and T2 (γ) are decided at the beginning of
every epoch. A pictorial representation of all the important
sets discussed till now is shown in Figure 2. Figure 2 also
shows T1 (γ), T 1 (γ), and T2 (γ) varies with epoch γ.

Opportunistic spectrum allocation happens in every time
slot to all the Tier-2 operators. Tier-1 operators may or may
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not participate in opportunistic spectrum access depending on
whether φ is one or zero. In order to capture both these
cases under a single mathematical abstraction, we modify
the demand of Tier-1 and Tier-2 operators. Let xk (t) be the
modified demand of the kth operator which needs to be served
using OSA. For time slot t of epoch γ,

xk (t) =





φ ·
(

xk (t)− D

M

)+

; k ∈ T1 (γ)

xk (t) ; k ∈ T2 (γ)
(11)

According to (11), for a Tier-2 operator, its entire demand
xk (t) needs to be served using OSA. For Tier-1 operators,
the excess demand which could not be satisfied with licensed
use is

(
xk (t)− D

M

)+
. If φ = 1, this excess demand has to

be served using OSA. If φ = 0, then xk (t) = 0 for Tier-
1 operators implying that they don’t participate in OSA.

Opportunistic channel capacity in time slot t of epoch γ is

DO (t) = αU

(
M − P̃

)
D
M +

∑
k∈T1(γ)

C (xk (t) ,αL) (12)

where P̃ = min (|SL| , P ). In (12), the first term is the net
channel capacity of unlicensed channels and the second term
is the net remaining channel capacity of the licensed channels.
The variable P̃ is used to capture edge cases where the number
of licensed channels is more than the number of interested
licensed operators. In such cases, the remaining P − |SL|
channels which are not allocated to licensed operators are
used as unlicensed channels. The expression for C (xk (t) ,αL)
depends on the OSA strategy (overlay or interweave) and has
been discussed in Section II-A. As our model is inspired
by the CBRS band, we have to ensure that opportunistic
spectrum allocation is fair [23]. One approach to ensure fair
allocation and to avoid wastage of channel capacity is to
use a max-min fair algorithm, like the famous Waterfilling
algorithm. A detailed exposition of max-min fairness can be
found in [24], [25]. In this section, we present the Waterfilling
algorithm, explain its working with an example, and qual-
itatively justify how it ensures fairness and avoids wastage
of channel capacity. Waterfilling algorithm will be used for
opportunistic channel allocation throughout this paper.

Algorithm 1 is the pseudocode of Waterfilling algorithm. Let
S denote the set of interested operators, i.e. S = SL

⋃
SC . The

union of Tier-1 and Tier-2 operators, T1 (γ)
⋃
T2 (γ), is equal

to S. The inputs to Algorithm 1 are the opportunistic channel
capacity, DO (t), and the modified demands of all the inter-
ested operators, {xk (t)}k∈S . The output of Algorithm 1 is the
opportunistic channel capacity allocated to all the interested
operators, {x̃k,op (t)}k∈S . x̃k,op (t) is also equal to the demand
served by the operators using OSA. We use the following
example to explain Algorithm 1: the set of interested operators
is S = {1, 2, 3, 5, 7}, their corresponding modified demand is
{5, 9, 3, 7, 2}, and the opportunistic channel capacity DO (t) =
17. The example is shown in Figure 3.

Waterfilling algorithm allocates channel capacity to the set
of interested operators in ascending order of their modified
demand (lines 1 and 3). The sorted list of modified demand
is {2, 3, 5, 7, 9} and the operator index κ (j) corresponding
to position j = 1, 2, 3, 4, 5 of the sorted list is 7, 3, 1,
5, 2 respectively. In line 2, unused opportunistic channel
capacity C = 17 and the remaining number of interested
operators who need to be allocated channel capacity NS = 5.
Inside the for loop, the algorithm reserves an equal portion of
unused opportunistic channel capacity C for the remaining

Fig. 3. Pictorial representation of the example for Waterfilling algorithm.

NS interested operators. This is done in line 4 where a
maximum channel capacity of C

NS
is reserved for the κ (j)th

operator. This step ensures fairness of Waterfilling algorithm.
The channel capacity allocated to the κ (j)th operator is
the minimum of its modified demand (the required channel
capacity) and the maximum reserved channel capacity of C

NS
.

Accordingly, C and NS are updated in line 5. In our example,
for j = 1, x̃7,op (t) = min

(
2, 17

5

)
= 2 and hence the updated

C = 17 − 2 = 15 and NS = 4. For j = 2, x̃3,op (t) =
min

(
3, 15

4

)
= 3 and hence the updated C = 15 − 3 = 12

and NS = 3. For j = 3, x̃1,op (t) = min
(
5, 12

3

)
= 4

and hence the updated C = 12 − 4 = 8 and NS = 2.
Similarly, x̃5,op (t) = x̃2,op (t) = 4. Waterfilling algorithm
prevents wastage of channel capacity by allocating no more
than the required channel capacity in line 4. This ensures that
the unused opportunistic channel capacity C is as high as
possible for the operators with higher customer demand.

We end this section by proving that the output x̃k,op (t) of
Algorithm 1 are iid random variables. By referring to (12)
and (11), we can conclude that DO (t) and xk (t), which form
the input to Algorithm 1, are the outputs of time-invariant
functions of iid random variables xk (t) and Vk (γ) (Vk (γ)
decides the random set T1 (γ) in (12)). This implies that
DO (t) and xk (t) are iid random variables as well. Also note
that except the inputs DO (t) and xk (t), Algorithm 1 is not
dependent on time t. Therefore, Algorithm 1 can be expressed
as a time-invariant function of iid random variables DO (t)
and xk (t). This directly implies that the output x̃k,op (t) of
Algorithm 1 are iid random variables.

Remark 2 (Generality of the OSA Model): We want to
highlight that our OSA model is very general for three reasons.
First, any opportunistic channel allocation algorithm can be
used as long as x̃k,op (t) are iid random variables. Second,
the parameter φ helps us capture cases where Tier-1 operators
can/cannot participate in OSA. Third, our model can capture
both overlay and interweave OSA strategy.

III. OPTIMIZATION PROBLEM

We start this section by formulating the optimization
problem for joint spectrum partitioning and licensing as a
two-stage Stackelberg Game in Section III-A. In the process
of formulating the Stackelberg Game, we introduce two
functions. The first is the revenue function of an operator
which captures the expected revenue of an operator in
an epoch. The second is the objective function which is
proportional to spectrum utilization of all the interested
operators in the market. We then develop efficient algorithms
to solve the two stages of the Stackelberg Game in Section III-
B and hence find the optimal M and P which maximizes
spectrum utilization. In this section, we assume complete
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information games but the overall approach can be easily
extended to incomplete information games as discussed in
Appendix A of the supplementary material.

A. Stackelberg Game Formulation
In this section, we formulate the optimal spectrum par-

titioning problem as a two-stage Stackelberg game. In our
formulation of the Stackelberg game, the regulator is the
leader and the wireless operators are the followers. The
kth operator can be completely characterized by seven
parameters which can be represented as a tuple ξk =(
µθ

k, σθ
k, hk (·) , σR

k,a, ρk, ωk, λk

)
. In sections III-A and III-

B, we assume complete information games, i.e. an operator
and the regulator knows ξk of all the operators. The player
in stage-1 of the Stackelberg game is the regulator whose
decision variables are M and P . The payoff of the regulator
is the expected spectrum utilization over a period of Γ ≥ 1
epochs which is given by

Q = E




Γ∑

γ=1

γT∑

t=(γ−1)T+1

(Qlc (γ, t) + Qop (γ, t))





=
Γ∑

γ=1

γT∑

t=(γ−1)T+1

E [Qlc (γ, t)+Qop (γ, t)] where,

(13)
Qlc (γ, t) =

∑
k∈T1(γ)

x̃k,lc (t) (14)

Qop (γ, t) =
∑

k∈S
x̃k,op (t) (15)

In (13), Qlc (γ, t) and Qop (γ, t) are the net spectrum
utilization in time slot t of epoch γ by using licensed
and opportunistic spectrum access respectively. The regu-
lator wants to maximize Q. We now prove that the term
E [Qlc (γ, t) + Qop (γ, t)] of (13) is not a function of γ and
t. Based on (14) and (15), x̃k,lc (t), x̃k,op (t), and T1 (γ) are
the only random variables in the expressions of Qlc (γ, t) and
Qop (γ, t). As discussed in previous sections, x̃k,lc (t) and
x̃k,op (t) are iid random variables. T1 (γ) is a function of bids
Vk (γ) of the operators. Since, Vk (γ) is an iid random variable,
so is T1 (γ). This discussion implies that Qlc (γ, t)+Qop (γ, t)
itself is an iid random variable and hence its expectation is
independent of γ and t. In fact, it is a function of M , P , SL

and SU . Let,

U (M, P,SL,SU ) = E [Qlc (γ, t) + Qop (γ, t)] (16)

Substituting (16) in (13) we get, Q = ΓTU (M, P,SL,SU ).
This shows that maximizing Q is the same as maximizing
U (M, P,SL,SU ). Therefore, we will use U (M, P,SL,SU )
as the payoff function of the regulator in the rest of the paper.
U (M, P,SL,SU ) is also called the objective function as it is
a direct measure of spectrum utilization which we are trying
to maximize in this paper.

The players in stage-2 of the Stackelberg game are the
candidate licensed operators, SC

L , and candidate unlicensed
operators, SC

U . These candidate operators decide whether to
enter the market or not in a non-cooperative manner, i.e.
our Stackelberg game model does not consider collusion
between operators. The decision variables of the Stage-2 game
are the set of interested licensed operators, SL, and the set
of interested unlicensed operators, SU . The kth operator is

interested in joining the market only if the expected revenue
in an epoch is greater than λk. The expected revenue in an
epoch of an interested licensed or unlicensed operator is given
by the revenue function. The formula for revenue function
if different for interested licensed operators and interested
unlicensed operators. The revenue function of an interested
licensed operator, i.e. k ∈ SL, is

Rk (M, P,SL,SU )

= E [Rk,1 (γ) | Eγ
k ] P [Eγ

k ] + E
[
Rk,2 (γ) | Eγ

k

]
P
[
Eγ

k

]
(17)

= E [Rk,lc (γ) | Eγ
k ] P [Eγ

k ]

+E [Rk,op (γ) | Eγ
k ] P [Eγ

k ] + E
[
Rk,op (γ) | Eγ

k

]
P
[
Eγ

k

]

(18)
= E [Rk,lc (γ) | Eγ

k ] P [Eγ
k ] + hk

(
µX

k,op

)
(19)

where P [Z] denotes the probability of event Z , Eγ
k (Eγ

k ) is the
event that k ∈ T1 (γ) (k ∈ T2 (γ)). In (17), E [Rk,i (γ) | Eγ

k ]
is the expected revenue of the kth operator if it is a Tier-i
operator in epoch γ. Finally, (17) is obtained using the law
of total expectation. Equation 18 is obtained by substituting
Rk,1 (γ) = Rk,lc (γ)+Rk,op (γ) (refer to (8)). Equation 19 is
obtained by noticing that the sum of the second and the third
term of (18) is equal to E [Rk,op (γ)] which in turn is equal to
hk

(
µX

k,op

)
according to (7). Similar to the objective function,

the revenue function of an interested licensed operator is also
not a function of epoch γ. This is because the statistical
properties of the involved random variables Rk,1 (γ) and
Rk,2 (γ) are independent of γ.

If the kth operator is an interested unlicensed operator, i.e.
k ∈ SU , it is always a Tier-2 operator. Hence, its expected
revenue in an epoch is

Rk (M, P,SL,SU ) = E [Rk,2 (γ)] = hk

(
µX

k,op

)
(20)

where E [Rk,2 (γ)] = hk

(
µX

k,op

)
because Rk,2 (γ) =

Rk,op (γ) (refer to (9)) and E [Rk,op (γ)] = hk

(
µX

k,op

)
.

Payoff function of an operator who is interested in joining
the market either as a licensed or an unlicensed operator is

πk (M, P,SL,SU ) = Rk (M, P,SL,SU )− λk (21)

where Rk (M, P,SL,SU ) is given by (17) if k ∈ SL and
by (20) if k ∈ SU . If an operator does not join the market, its
payoff is zero. An operator decides to enter the market only
if its payoff πk (M, P,SL,SU ) is strictly greater than zero.

With (21) as the payoff function, Stage-2 game may have
multiple Nash Equilibriums which complicates the analysis.
This can be simplified if we assume that the operators are
pessimistic in nature. By doing so, we can get an unique
solution of the Stage-2 game. Pessimistic models to address
the issue of multiple Nash Equilibriums have been considered
in prior works like [26]–[28]. One simple approach to model
pessimistic decision making strategy is to use the concept of
dominant strategy, i.e. an operator decides to join the market
if and only if joining the market is its optimal strategy irre-
spective of whether other operators decide to join the market.
However, in this paper, we model a pessimistic operators’
decision making strategy using iterated elimination of strictly
dominated strategies (IESDS) [29]. Compared to dominant
strategy, IESDS is a less pessimistic decision making strategy
because more operators will join the market.
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IESDS can be explained as follows. IESDS consists of
iterations. Consider the first iteration which is the original
Stage-2 game. We iterate through all the candidate licensed
and unlicensed operators to check if either joining the market
or not joining the market is a dominant strategy for any of the
operators. The operators whose dominant strategy is to join
(not join) the market will join (not join) the market irrespective
of other operators’ decisions. This reduces the size of the
Stage-2 game as it effectively consists of those operators who
could not decide whether to join (not join) the market in the
first iteration. Such operators are called confused operators
in this paper. These confused operators who did not have a
dominant strategy in the original Stage-2 game may have a
dominant strategy in the reduced Stage-2 game. Therefore,
in the second iteration, we find the dominant strategy of
the confused operators in the reduced Stage-2 game. Such
iterations continue until convergence, which happens when the
reduced Stage-2 game does not have any dominant strategy.
It is possible that there are confused operators even after
convergence. Those operators will not join the market because,
in our model, the operators are pessimistic in nature.

B. Solution of the Stackelberg Game

In this subsection, we use backward induction [30] to
solve the Stackelberg Game formulated in Section III-A. To
apply backward induction, we first solve Stage-2 of the game
followed by Stage-1. The following properties of the revenue
function (as given by (17) and (20)) are crucial in designing an
efficient algorithm to solve Stage-2 of the Stackelberg Game.

Property 1: Rk (M, P,SL,SU ) is monotonic decreasing
in SL, i.e. Rk (M, P,SL,SU ) ≥ Rk (M, P,SL

⋃
{a} ,SU )

where a /∈ SL and a ∈ SC
L .

Property 2: Rk (M, P,SL,SU ) is monotonic decreasing
in SU , i.e. Rk (M, P,SL,SU ) ≥ Rk (M, P,SL,SU

⋃
{a})

where a /∈ SU and a ∈ SC
U .

We have verified these properties numerically using the
Monte Carlo integrator which will be described in Section IV.
These properties can be justified as follows. Property 1 states
that as the set of interested licensed operators, SL, increases,
the revenue function of both the licensed and the unlicensed
operators decreases. The revenue function of a licensed oper-
ator decreases with an increase in SL because the operator
has to compete with more operators in the spectrum auctions
to get a channel. This reduces the operator’s probability of
winning spectrum auctions which in turn decreases its revenue
function as it can effectively serve fewer customer demand.
The revenue function of an unlicensed operator also decreases
with an increase in SL. This happens because with an increase
in SL, there is an increase in the number of operators interested
in opportunistic channel access. This reduces the share of
opportunistic channels for an unlicensed operator. Therefore,
its revenue decreases as it can serve fewer customer demand.
Property 2 states that as the set of interested unlicensed
operators, SU , increases, the revenue function of both the
licensed and the unlicensed operators decreases. This happens
because with an increase in SU , the share of opportunistic
channel decreases for a licensed or an unlicensed operator.
This in turn decreases its revenue function.

The pseudocode to solve Stage-2 of the Stackelberg game
is given in Algorithm 2. The inputs of Algorithm 2 are
clearly described in Table I. Let SL (M, P ) and SU (M, P )
denote the set of interested licensed and unlicensed operators

if the entire bandwidth is divided into M channels out of
which P are licensed channels. SL (M, P ) and SU (M, P )
are the outputs of Algorithm 2. As mentioned in Section III-
A, SL (M, P ) and SU (M, P ) are decided by the operators
based on IESDS. Algorithm 2 uses Properties 1 and 2 to
compute SL (M, P ) and SU (M, P ) in polynomial time when
an operator’s decision making strategy to join/not join the
market is based on IESDS.

Let X̂l and X̃l, where X̂l , X̃l ∈ SC
L , denote the set of

licensed operators who are sure to join the market and the
set of confused licensed operators respectively till the lth

iteration. Note that X̂l and X̃l are disjoint sets and the set
SC

L \
(
X̂l
⋃
X̃l

)
consists of those licensed operators who are

sure not to join the market till the lth iteration. Similarly, Ŷl

and Ỹl, where Ŷl , Ỹl ∈ SC
U , denote the set of unlicensed

operators who decided to join the market and the set of
confused unlicensed operators till the lth iteration respectively.

We will now explain the working of Algorithm 2. Algo-
rithm 2 starts with iteration 0. Initially, none of the operators
are sure whether to join the market or not; all of them are
confused. Hence, in iteration 0, we initialize X̂0 = ∅, X̃0 =
SC

L , Ŷl = ∅ and Ỹ0 = SC
U (line 1). The while loop in lines 3-19

finds X̂l, X̃l, Ŷl and Ỹl for the lth iteration given X̂l−1, X̃l−1,
Ŷl−1 and Ỹl−1 of the (l − 1)th iteration. Since the operators
in sets X̂l−1 and Ŷl−1 will surely join the market, we initialize
X̂l and Ŷl to X̂l−1 and Ŷl−1 respectively at the beginning of
the lth iteration (line 2). The set of confused licensed and
unlicensed operators, X̃l and Ỹl, are initialized to X̃l−1 and
Ỹl−1 respectively at the beginning of the lth iteration (line 2).
In the for loop in lines 6 - 12, we check if an licensed operator
in set X̃l−1 is sure to either join or not join the market. Simi-
larly, in the for loop in lines 13 - 19, we check if an unlicensed
operator in set Ỹl−1 is sure to either join or not join the market.

We will now explain the working of the for loop in lines
6-12. The largest possible set of interested licensed operators
in the l̃th iteration, for l̃ ≥ l is X̂l−1

⋃
X̃l−1. This is because

the operators in set SC
L \
(
X̂l−1

⋃
X̃l−1

)
are sure not to join

the market till the (l − 1)th iteration. Similarly, the largest
possible set of interested unlicensed operators in the l̃th

iteration, for l̃ ≥ l is Ŷl−1
⋃
Ỹl−1. Therefore, according

to Properties 1 and 2, the minimum revenue of the kth

operator, where k ∈ X̃l−1, in the l̃th iteration, for l̃ ≥ l is
Rk

(
M, P, X̂l−1

⋃
X̃l−1, Ŷl−1

⋃
Ỹl−1

)
. So if

Rk

(
M, P, X̂l−1

⋃
X̃l−1, Ŷl−1

⋃
Ỹl−1

)
> λk

then joining the market becomes the dominant strategy of
the kth operator in the lth iteration. Therefore, in line 8,
we remove the kth operator from the set of confused licensed
operators and add it to the set of licensed operators who are
sure to join the market. If the kth operator, where k ∈ X̃l−1,
joins the market, then the smallest possible set of interested
licensed and unlicensed operators in the l̃th iteration, for l̃ ≥ l
are X̂l−1

⋃
{k} and Ŷl−1 respectively. Therefore, according

to Properties 1 and 2, the maximum revenue of the kth

operator, where k ∈ X̃l−1, in the l̃th iteration, for l̃ ≥ l is
Rk

(
M, P, X̂l−1

⋃
{k} , Ŷl−1

)
. So if

Rk

(
M, P, X̂l−1

⋃
{k} , Ŷl−1

)
≤ λk
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then not joining the market becomes the dominant strategy
of the kth operator in the lth iteration. Therefore, in line 11,
we remove the kth operator from the set of confused licensed
operators but we do not add it to the set of licensed operators
who are sure to join the market. The for loop in lines 13-19
work in a similar way to decide if an unlicensed operator in
set Ỹl−1 is sure to either join or not join the market.

The variable converged which is declared in line 2 and
updated in lines 9, 12, 16, 19 decides when the while loop
terminates. This can be explained as follows. Say that a few
of the confused operators in the lth iteration decide to not join
the market, i.e. if statements in lines 10 or 17 are true. In this
case, converged is set to false and hence the while loop con-
tinues. Since few of the operators decide not to join the market
in the lth iteration, then due to Properties 1 and 2, the revenue
function of the remaining confused operators in the (l + 1)th

iteration is more compared to their corresponding values in
the lth iteration. Therefore, it is possible that for some of these
confused operators, joining the market becomes the dominant
strategy in the (l + 1)th iteration. The opposite happens when
a few of the confused operators in the lth iteration decide to
join the market. This discussion captures the fundamental idea
behind IESDS.

Say that after the end of the ltho iteration, X̂lo = X̂lo−1,
X̃lo = X̃lo−1, Ŷlo = Ŷlo−1 and Ỹlo = Ỹlo−1. This happens
when if statements in lines 7, 10, 14, 17 are all false. When
this happens, converged is true after the end of the ltho
iteration and hence the while loop terminates. This is because
if X̂lo = X̂lo−1, X̃lo = X̃lo−1, Ŷlo = Ŷlo−1 and Ỹlo = Ỹlo−1,
then the value of the revenue function in lines 7, 10, 14, 17 in
the (lo + 1)th iteration is the same as that in the ltho iteration.
Therefore, the if statements in lines 7, 10, 14, and 17 will
be false in the (lo + 1)th iteration just like the ltho iteration.
This argument suggests that X̂l = X̂lo , X̃l = X̃lo , Ŷl = Ŷlo ,
and Ỹl = Ỹlo for all l ≥ lo and hence convergence in X̂l, X̃l,
Ŷl and Ỹl have been achieved. After convergence is achieved,
there are three kinds of operators. First, the operators in sets
X̂lo and Ŷlo who are sure that they should join the market.
Second, the operators in sets X̂lo\X̃lo and Ŷlo\Ỹlo who are
sure that they should not join the market. Third, the ’confused’
operators in sets X̃lo and Ỹlo . Since our model assumes that the
operators are pessimistic, confused operators will not join the
market. Hence, the set of interested licensed and unlicensed
operators are X̃lo and Ŷlo respectively where lo is the last
iteration of Algorithm 2 (line 20).

Proposition 1: Time complexity of Algorithm 2 is O
(
N2
)

where N =
∣∣SC

L

∣∣+
∣∣SC

U

∣∣.
Proof: The while loop continues until none of the con-

fused operators of an iteration have a dominant strategy. Such
a condition is possible at most N times because there are only
N candidate operators. Hence, the while loop is executed at
most N times. For a given iteration of the while loop, the inner
for loop in lines 6-12 is executed at most

∣∣SC
L

∣∣ times and that
in lines 13-19 is executed at most

∣∣SC
U

∣∣ times. Therefore, the
inner for loops runs at most

∣∣SC
L

∣∣ +
∣∣SC

U

∣∣ = N times. This
shows that the time complexity of Algorithm 2 is O

(
N2
)
.

This completes the proof.
Remark 3 (Efficiency of Algorithm): 2. Algorithm 2 uses

Properties 1 and 2 to decide whether a confused operator will
join the market or not by computing its revenue function for
the largest/smallest set of interested operators. Without these

Algorithm 2: Algorithm to Solve Stage 2 of the Stackel-
berg Game for Joint Spectrum Partitioning

Input: M , P , T , D, αL, αU , SC
L , SC

U and
ξk; ∀k ∈ SC

L

⋃
SC

U
Output: SL (M, P ) and SU (M, P )

1 Set X̂0 = ∅, X̃0 = SC
L , Ŷ0 = ∅ and Ỹ0 = SC

U .
2 Set converged = False and l = 0.
3 while not (converged) do
4 Set converged = True and l = l + 1.
5 Set X̂l = X̂l−1, X̃l = X̃l−1, Ŷl = Ŷl−1 and Ỹl = Ỹl−1.
6 for k in X̃l−1 do
7 if Rk

(
M, P, X̂l−1

⋃
X̃l−1, Ŷl−1

⋃
Ỹl−1

)
> λk

then
8 Set X̂l = X̂l

⋃
{k} and X̃l = X̃l\ {k}.

9 Set converged = False.

10 else if Rk

(
M, P, X̂l−1

⋃
{k} , Ŷl−1

)
≤ λk then

11 Set X̃l = X̃l\ {k}.
12 Set converged = False.
13 for k in Ỹl−1 do
14 if Rk

(
M, P, X̂l−1

⋃
X̃l−1, Ŷl−1

⋃
Ỹl−1

)
> λk

then
15 Set Ŷl = Ŷl

⋃
{k} and Ỹl = Ỹl\ {k}.

16 Set converged = False.

17 else if Rk

(
M, P, X̂l−1, Ŷl−1

⋃
{k}
)
≤ λk then

18 Set Ỹl = Ỹl\ {k}.
19 Set converged = False.
20 Set SL (M, P ) = X̂l and SU (M, P ) = Ŷl

properties, we have to compute the revenue function for an
exponential number of set of interested operators to decide
whether a confused operator will join the market or not.

Remark 4 Comparison With Dominant Strategy): Only the
1st iteration of Algorithm 2 is required to find the dominant
strategies of the operators. It is for this reason that the set of
interested operators, SL (M, P ) and SU (M, P ), will always
be larger if operators’ decision making strategy is based on
IESDS rather than dominant strategy.

The objective function in (16) can be re-written as

Ũ (M, P ) = U (M, P,SL (M, P ) ,SU (M, P )) (22)

where SL (M, P ) and SU (M, P ) are the solutions of the
Stage-2 game. In Stage-1, the regulator chooses M and P
to maximize Ũ (M, P ). Let the optimal solution be M∗ and
P ∗, the optimal value of the objective function be U∗, where
U∗=Ũ (M∗, P ∗), and the optimal set of interested licensed and
unlicensed operators be S∗

L and S∗
U , where S∗

L = SL (M∗, P ∗)
and S∗

U = SU (M∗, P ∗). M∗ and P ∗ are found by performing
a grid search. The grid search is detailed in Algorithm 3. As
shown in lines 2 and 3 of Algorithm 3, the grid search is
performed from M = 1 to a certain Mmax and from P = 0 to
min

(∣∣SC
L

∣∣ , M
)
. Note that since spectrum cap is one, the num-

ber of licensed channels should be lesser than the number of
candidate licensed operators,

∣∣SC
L

∣∣. The time complexity of
Algorithm 3 is O

(
Mmax

∣∣SC
L

∣∣).
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Algorithm 3: Algorithm to Solve Stage 1 of the Stackel-
berg Game for Joint Spectrum Partitioning

Input: T , D, αL, αU , SC
L , SC

U , and ξk; ∀k ∈ SC
L

⋃
SC

U
Output: M∗, P ∗, S∗

L, S∗
U , and U∗

1 Set U∗ = −∞.
2 for M ← 1 to Mmax do
3 for P ← 0 to min

(∣∣SC
L

∣∣ , M
)

do
4 Call Algorithm 2 to get the set of interested

licensed and unlicensed operators, SL (M, P ) and
SU (M, P ) respectively, for current M and P .

5 Set Ũ = U (M, P,SL (M, P ) ,SU (M, P )).
6 if Ũ > U∗ then
7 Set M∗ = M , P ∗ = M , S∗

L = SL (M, P ),
S∗

U = SU (M, P ), and U∗ = Ũ .

IV. MONTE CARLO INTEGRATOR DESIGN

Algorithms 2 and 3 rely on the computation of the objec-
tive function, U (M, P,SL,SU ), and the revenue function,
Rk (M, P,SL,SU ). In this section, we design an efficient
Monte Carlo integrator to compute these two functions. These
functions are the mean of certain random variables. Monte
Carlo integrator estimates the mean of a random variable by
calculating the sample mean of the random variable. Consider
a random variable Z ∼ FZ , where FZ is the probability
distribution of Z . Let the mean and the standard deviation of
Z be µZ and σZ respectively. The following recursive formula
can be used to compute the sample mean of Z ,

ẑr =
(r − 1) ẑr−1 + zr

r
(23)

where r is the number of samples, zr is the rth sample of
Z , and ẑr is the sample mean of Z calculated over the first
r samples. ẑr is an estimate of µZ . Note that ẑr itself is a
random variable with mean µZ and standard deviation σZ√

r
.

According to Chebyshev’s inequality, the probability that ẑr

is within a ∆ bound of µZ is lower bounded as follows

P [|ẑr − µZ | ≤ ∆] ≥ 1− σ2
Z

r∆2
(24)

We want to design a Monte Carlo integrator whose maxi-
mum acceptable percentage error in ẑr is β1 with a minimum
probability of β2. β1 and β2 capture the “goodness” of estimate
ẑr; a lower β1 and a higher β2 imply a better estimate.
To achieve this we substitute ∆ = β1

100µZ in (24) which makes
the RHS of (24) equal to 1− 1002σ2

Z

rβ2
1µ2

Z
. So we have to recursively

calculate ẑr until

1002σ2
Z ≤ rβ2

1µ2
Z (1− β2) (25)

Inequality 25 can be used as one of the stopping criteria
for the Monte Carlo integrator. However, we don’t know µZ

and σ2
Z of (25); in fact we want to calculate µZ . One possible

heuristic would be to use the sample mean and the sample
variance in place of µZ and σ2

Z respectively. Sample mean
can be calculated using (23). Sample variance δzr can be
computed using the following recursive formula [31],

δzr =
(r − 1)

r
δzr−1 + (r − 1)

(
ẑr − ẑr−1

)2
(26)

To summarize, µZ is estimated by recursively calculating
the sample mean using (23) until the sample mean and sample
variance pair, (ẑr, δzr), satisfies the following inequality,

1002δzr ≤ rβ2
1 (ẑr)2 (1− β2) (27)

Now, we discuss all the sample means which we have to
calculate in order to estimate the objective and the revenue
functions. By referring to (14), (15) and (16), we can say
that the objective function is the expected value of the net
demand served by all the interested operators in one time slot
using either licensed or opportunistic access. Let Û r denote
the sample mean over r samples of the net demand served by
all the interested operators in one time slot. Equation 19 shows
that the revenue function of the kth licensed operator consists
of two terms. The first term in (19) is the expected value
of the kth licensed operator’s revenue in an epoch generated
using licensed access. Let R̂r

k,lc denote the sample mean over
r samples of the kth licensed operator’s revenue in an epoch
generated using licensed access. The second term in (19) is
the expected value of the kth licensed operator’s revenue in an
epoch generated using opportunistic access. This value is equal
to hk

(
µX

k,op

)
according to (7). But µX

k,op = µ̃x
k,opT (refer

to (6)) and hence hk

(
µX

k,op

)
= hk

(
µ̃x

k,opT
)

. µ̃x
k,op is the

expected value of the demand served by the kth operator in a
time slot using opportunistic spectrum access. Let Û r

k,op be the

estimate of µ̃x
k,op over r samples. Finally, R̂r

k,lc+hk

(
Û r

k,opT
)

is the estimate of the kth licensed operator’s revenue function
over r samples. According to (20), the estimate of the kth

unlicensed operator’s revenue function over r samples is
hk

(
Û r

k,opT
)

. To this end, we have to calculate the sample

means Û r, Û r
k,op, and R̂r

k,lc to estimate the objective and the
revenue function.

We now present a proposition, which helps in generating
random samples efficiently for the Monte Carlo integrator.

Proposition 2: Define

ϕk =
∫ D

M

0
ϑ2fθ

k (ϑ) dϑ+
D

M

∫ ∞

D
M

ϑfθ
k (ϑ) dϑ− µθ

kµ̃x
k,lc

(28)

where fθ
k (ϑ) is the probability density function of θk (t).

Then, θk (t), Rk,lc (γ) and Vk (γ) are jointly Gaussian random
variables with joint probability distribution,

[
θk (t)

Rk,lc (γ)
Vk (γ)

]
∼ N (ψk, Σk) (29)

for all γ and for all t ∈ [(γ − 1)T + 1, γT ] where

ψk =
[
µθ

k µR
k,lc µR

k,lc

]T
(30)

Σk =





(
σθ

k

)2
ρk

σR
k,lc

σX
k,lc

ϕk ωkρk
σR

k,lc

σX
k,lc

ϕk

ρk
σR

k,lc

σX
k,lc

ϕk

(
σR

k,lc

)2
ωk

(
σR

k,lc

)2

ωkρk
σR

k,lc

σX
k,lc

ϕk ωk

(
σR

k,lc

)2 (
σR

k,lc

)2




. (31)

Proof: Please refer to Appendix B of the supplementary
material for the proof.
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Algorithm 4: Monte Carlo Integrator
Input: M , P , T , D, φ, αL, αU , SL, SU , and

ξk; ∀k ∈ SL
⋃
SU

Output: U (M, P,SL,SU ) and
Rk (M, P,SL,SU ) ; ∀k ∈ SL

⋃
SU

1 Set Û0 = 0 , Û0
k,op = 0 ; ∀k ∈ S , and

R̂0
k,lc = 0 ; ∀k ∈ SL.

2 Set stop = False and r = 0.
3 while not (stop) do
4 Set r = r + 1.
5 For all k in SL, sample θr

k, Rr
k,lc and V r

k from
probability distribution (29). Set xr

k = max (0 , θr
k).

6 For all k in SU , sample θr
k from the probability

distribution N
(
µθ

k,
(
σθ

k

)2)
. Set xr

k = max (0 , θr
k).

7 Sort the list {V r
k }k∈SL

in descending order of V r
k . Let

T r
1 be the subset of operators in SL with the P

highest values of V r
k . T r

1 are the Tier-1 operators.
T r

2 = S\T r
1 are the Tier-2 operators.

8 Demand served by Tier-1 operators using licensed
spectrum access are x̃r

k,lc=min
(
xr

k, D
M

)
;∀k∈ T r

1 .
9 Calculate modified demand, xr

k, and opportunistic
channel capacity, Dr

O, using (11) and (12)
respectively.

10 Call Algorithm 1 to get
{

x̃r
k,op

}

k∈S
, the demand

served by operators using opportunistic spectrum
access. The input to Algorithm 1 are Dr

O and
{xr

k}k∈S .

11 Set Û r =
(r−1)Ur−1+

k∈T r
1

xr
k,lc+

k∈S
xr

k,op

r .

12 Set R̂r
k,lc =

(r−1)Rr−1
k,lc +Rr

k,lc

r for all k in T r
1 .

13 Set R̂r
k,lc =

(r−1)Rr−1
k,lc +0

r for all k in SL\T r
1 .

14 Set Û r
k,op =

(r−1)Ur−1
k,op+xr

k,op

r for all k in S.
15 if r = 1 then
16 Set Û1 = 0 , Û1

k,op = 0 ; ∀k ∈ S , and
R̂1

k,lc = 0 ; ∀k ∈ SL.
17 else
18 Set δU r = (r−2)δUr−1

(r−1) + r(Ur−Ur−1)2

δU r
k,op =

(r−2)δUr−1
k,op

(r−1) + r(Ur
k,op−Ur−1

k,op)
2 ; ∀k ∈ S

δRr
k,lc =

(r−2)δRr−1
k,lc

(r−1) + r(Rr
k,lc−Rr−1

k,lc)
2 ; ∀k ∈ SL

19 Set stop =
Stop

(
r, δU r, δU r

k,op, δR
r
k,lc, Û

r, Û r
k,op, R̂

r
k,lc

)
.

20 Set U (M, P,SL,SU ) = Û r

Rk (M, P,SL,SU ) = R̂r
k,lc + hk

(
Û r

k,opT
)

; ∀k ∈ SL

Rk (M, P,SL,SU ) = hk

(
Û r

k,opT
)

; ∀k ∈ SU .

Recall that in (28), µ̃x
k,lc is given by (3). In (30), µR

k,lc =
hk

(
µ̃x

k,lcT
)

(refer to (6) and (7)). In (31), σX
k,lc = σ̃x

k,lc

√
T

where σ̃x
k,lc is given by (4).

The pseudocode for the Monte Carlo integrator is given
in Algorithm 4. The sample means Û r, Û r

k,op, and R̂r
k,lc are

initialized to zero for r = 0 (line 1). Inside the while loop,

Û r, Û r
k,op, and R̂r

k,lc are computed recursively until stopping
criteria. We discuss the stopping criteria later in this section.
In line 5, the rth sample of θk (t), Rk,lc (γ), and Vk (γ)
are generated for all the licensed operators according to the
probability distribution given by (29). We have dropped the γ
and t inside the parenthesis for notational simplicity. Similarly,
in line 6, θk (t) is generated for all the unlicensed opera-
tors. θk (t) follows the probability distribution N

(
µθ

k,
(
σθ

k

)2)

(refer to Section II-B). The rth sample of θk (t), Rk,lc (γ)
and Vk (γ) are denoted by θr

k, Rr
k,lc and V r

k respectively. The
customer demand of the kth operator for the rth sample is
xr

k = max (0, θr
k). Tier-1 and Tier-2 operators for the rth

sample are decided in line 7. Licensed operators with the P
highest bids, V r

k , are the Tier-1 operators for the rth sample.
T r

1 denotes the set of Tier-1 operators for the rth sample. The
remaining operators, S\T r

1 , are the Tier-2 operators for the
rth sample. T r

2 denotes the set of Tier-2 operators for the rth

sample. In lines 8-10, demand served by the operators using
licensed and opportunistic spectrum access are calculated.
Demand served by operators using licensed and opportunistic
spectrum access for the rth sample are denoted using x̃r

k,lc
and x̃r

k,op respectively.
The sample means Û r, Û r

k,op, and R̂r
k,lc are calculated

in lines 11-14 using recursive formulas analogous to (23).
The formula to update Û r is shown in line 11. The term∑
k∈T r

1

x̃r
k,lc +

∑
k∈S

x̃r
k,op is the net demand served by all the

operators in a time slot for the rth sample. The formula to
update R̂r

k,lc is shown in lines 12 and 13. If the kth licensed
operator is a Tier-1 operator for the rth sample, then it earns
a revenue of Rr

k,lc in an epoch using licensed spectrum access
(line 12). But if the kth licensed operator is a Tier-2 operator
for the rth sample, then it earns a revenue of 0 using licensed
spectrum access (line 13). Û r

k,op is updated in line 14. The
operators serve x̃r

k,op customer demand using opportunistic
spectrum access (line 14).

The sample variance corresponding to sample means Û r,
Û r

k,op, and R̂r
k,lc are calculated in lines 15-18. These variances

are initialized to zero for the 1st sample (line 16) and updated
using recursive formulas similar to (26) for r > 1 (line 18).
In line 19, the Stop (·) function decides whether to stop the
Monte Carlo integrator. The stopping criteria is based on (27).
The Stop (·) function returns True if and only if r ≥ rmin

and all the sample mean and sample variance pairs
(
Û r, δU r

)
,

(
Û r

k,op, δU
r
k,op

)
, and

(
R̂r

k,lc, δR
r
k,lc

)
satisfies (27). The condi-

tion r ≥ rmin ensures that the Monte Carlo integrator samples
the mean over at least rmin samples. Finally, the estimated
values of the objective function and the revenue function are
set in line 20 according to what we have discussed before in
this section (refer to the paragraph before Proposition 2).

V. NUMERICAL RESULTS

In this section, we conduct numerical simulations to bench-
mark the algorithms developed in the previous sections.
We also explore how the optimal solution M∗ and P ∗ varies
with interference parameters. Throughout this section, each
time slot has a duration of one week and lease duration
of licensed channels is one year. Hence, T = 52. In all
our simulations we have: (i) hk

(
µX

k,a

)
= akµX

k,a where
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ak > 0. (ii) σR
k,a = ηkhk

(
µX

k,a

)
where ηk > 0 is the

coefficient of variation of Rk,a (γ). (iii) λk = ηk · akµθ
kT

where ηk ∈ [0, 1] and the term akµθ
kT is the mean revenue of

the kth operator in an epoch if it can serve all its customer
demand in every time slot. (iv) The maximum capacity of
the entire bandwidth D is a fraction υ of the sum of µθ

k
of all the candidate operators, i.e. D = υ

∑
k∈SC

µθ
k where

SC = SC
L

⋃
SC

U . Given our choice of hk

(
µX

k,a

)
, σR

k,a, and

λk, the tuple ξk is equivalent to
(
µθ

k, σθ
k, ak, ηk, ρk, ωk, ηk

)

in this section. Parameters of convergence for the Monte Carlo
integrator are: rmin = 10000, β1 = 1 and β2 = 0.99.

A. Benefit of Joint Optimization of M and P

In the first numerical simulation, we analyze the increase
in spectrum utilization that one can obtain using joint opti-
mization of M and P when compared to optimizing M
while holding P fixed and vice-versa. Our numerical setup is
as follows. There are four candidate licensed operators and
no candidate unlicensed operator. There are 10 parameters
which completely defines a market setting: µθ

k, σθ
k, ak, ηk,

ρk, ωk, ηk, υ, αL, and αU . We generate 1000 such market
settings by randomly selecting these 10 parameters from
uniform distributions each of which is associated with a certain
range. The range of the parameters µθ

k, σθ
k, ak, ηk, ρk,

ωk, and ηk for all the operators are [0.75, 1.0], [0.25, 0.75],
[0.9, 1.1], [0.25, 0.75], [0.5, 0.9], [0.85, 0.95], and [0.25, 1.0]
respectively. The range of υ, αL, and αU are [0.5, 1.0],
[0.75, 1.0], and [0.75, 1.0] respectively. While generating αL

and αU , we ensure that αL ≤ αU .
The optimal value of the objective function corresponding

to Algorithm 3 is U∗. We compare Algorithm 3 with a sub-
optimal algorithm. Let the optimal value of the objective
function corresponding to a sub-optimal algorithm be Û∗.
The percentage increase in the objective function is ∆U∗ =
U∗−U∗

D · 100. The reason for having D in the denominator
is as follows. The objective function given by (16) is the
mean demand served by all the operators in one time slot
which cannot be greater than D, the maximum capacity of
the entire bandwidth. Hence, U∗, Û∗ ≤ D which implies that
U∗ − Û∗ ≤ D. We compute ∆U∗ for sub-optimal algorithms
and plot the cumulative distribution function (CDF) of ∆U∗

in Figure 4. Recall that φ can be 0 or 1, and the OSA strategy
can be either interweave or overlay. So, there are four possible
combinations of OSA. For a given sub-optimal algorithm,
we compute CDFs for all the four combinations.

We consider two sub-optimal algorithms. For the first algo-
rithm, P is fixed and M is optimized. An intuitive choice of
P is the number of candidate licensed operators. In that way,
every candidate licensed operators win a licensed channel in
every epoch. For the second algorithm, M is fixed and P is
optimized. We set M =

⌊
D
ϑ

⌋
where -·. is the floor function

and ϑ = 1
|SC |

∑
k∈SC

µθ
k is the sample mean of the mean of an

operator’s customer demand. This choice of M is to ensure
that the bandwidth ϑ of a licensed channel is neither too high
that most of it is wasted and neither too low that a licensed
operator has to reject most of its customer demand.

In Figure 4, a lower value of CDF for a given ∆U∗

implies that the difference in spectrum utilization between
joint optimization and the sub-optimal algorithm is higher.

Fig. 4. Cumulative distribution function of the percentage increase in
objective function, ∆U∗, for four different types of opportunistic spectrum
access when the sub-optimal algorithm is: (a) optimizing M while holding
P fixed. (b) optimizing P while holding M fixed.

Fig. 5. (a) Plots showing the effect of interference parameter α for a
market containing only candidate licensed operators on the optimal number
of channel, M∗, and the optimal number of licensed channels, P ∗. (b) Plots
showing the effect of interference parameter of licensed channel αL for a
market containing both candidate licensed operators and unlicensed operators
on the ratio of the bandwidth allocated for unlicensed channels, M∗−P∗

M∗ .

By comparing Figures 4.a and 4.b we can say that joint
optimization leads to more improvement in spectrum
utilization when P is fixed rather than when M is fixed.
Based on Figure 4.a, we can say that when P is fixed,
joint optimization leads to more improvement in spectrum
utilization for: (i) overlay strategy than interweave strategy
when φ is fixed. (ii) φ = 0 than φ = 1. Based on Figure 4.b,
we can say that when M is fixed, joint optimization leads
to more improvement in spectrum utilization for interweave
strategy than overlay strategy when φ is fixed. We don’t
observe any such systematic trend for φ when M is fixed.

B. Effect of Interference Parameters

The second numerical simulation is to study the effect of
interference parameters on the optimal solution. We consider
two simulation setups. The first simulation setup is as follows.
For this setup, αL = αU = α. There are 8 candidate
licensed operators and no candidate unlicensed operators.
We consider a homogeneous market setting. The minimum
revenue requirement λk is set to zero for all the operators
which ensure that all the operators join the market. The
remaining parameters of the market are: µθ

k = 1, σθ
k = 0.5,

ak = 1, ηk = 0.5, ρk = 0.8, and ωk = 0.9 for all k’s.
Also, υ = 0.8. We study how M∗ and P ∗ vary with α.
The simulation result is shown in Figure 5.a. Since there
are no candidate unlicensed operators, it is intuitive that
there are no unlicensed channels, i.e. M∗ = P ∗. Figure 5.a
shows that M∗ decreases with an increase in α. This can
be explained as follows. If M is low, the bandwidth, and
hence the capacity of each licensed channel is high. Therefore,
a licensed operator can serve more customer demand using
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Fig. 6. Cumulative distribution function of the percentage increase in
objective function, ∆U∗, when the sub-optimal algorithm is to choose the
value of M and P that maximize the number of interested operators.

the allocated licensed channel thereby increasing spectrum
utilization. But if M is too low, only a few of the 8 licensed
operators are allocated the licensed channels in an epoch. The
remaining operators uses channels opportunistically as Tier-
2 operators. The efficiency of opportunistic access is decided
by α. If α is low, it is better to have fewer Tier-2 operators in
an epoch because opportunistic spectrum access is inefficient.
This can be ensured with a higher M so that there are more
Tier-1 operators in every epoch.

In our second simulation setup, we include candidate unli-
censed operators. The simulation setup is similar to the first
setup but differs in the following ways. First, out of the 8
operators, four are candidate licensed operators and four are
candidate unlicensed operators. Second, the interference para-
meters αL and αU are not the same. We set αU = 0.9 and vary
αL from 0 to 0.9. We study how the ratio of the bandwidth
allocated for unlicensed channels characterized by the ratio
M∗−P∗

M∗ changes with αL. This is shown in Figure 5.b. Unlike
the previous simulation setup, the current simulation setup
has candidate unlicensed operators. Therefore, we expect that
there will be unlicensed channels dedicated for the candidate
unlicensed operators. But the question is: what portion of
the bandwidth should be allocated for unlicensed channels?
If αL is high, most of the bandwidth can be reserved for
licensed channels because even if the Tier-1 operators are not
using the licensed channels, the Tier-2 operators can use the
remaining capacity of the licensed channels efficiently. But as
αL decreases, the opportunistic access of licensed channels
becomes inefficient. Therefore, it is better to reserve a higher
portion of the bandwidth for unlicensed channels.

C. Market Competition vs Spectrum Utilization

For most markets, an increase in competition improves
social welfare. In our setup, we use the number of interested
operators, |SL| + |SU |, as the measure of market competition
and spectrum utilization as the measure of social welfare.
In this numerical simulation, we show that there exist market
setups where an increase in |SL| + |SU | decreases spectrum
utilization. The simulation setup and the definition of ∆U∗ are
similar to the one in section V-A but differs in the following
ways. First, in this setup, we have three candidate licensed
operators and three candidate unlicensed operators. Second,
the sub-optimal algorithm in this setup finds M and P that
maximize |SL|+ |SU | instead of the objective function defined
in (16). If there are multiple values of M and P that maximize
|SL| + |SU |, we choose the ones that maximize the objective
function defined in (16).

The simulation result is shown in Figure 6 where we
plot the CDF of ∆U∗ for 1000 market setups. To establish
our claim that maximizing |SL| + |SU | doesn’t necessarily

maximize spectrum utilization, we want to find market setups
where ∆U∗ is strictly greater than 0. We can see that for
(1− 0.955) · 100% = 4.5% of the market setups, ∆U∗ > 0.
This establishes our claim that there are market setups, how-
ever few, where maximizing |SL| + |SU | doesn’t necessarily
maximize spectrum utilization. However, for these 4.5% of the
market setups, ∆U∗ is upper bounded by 13% implying only
a marginal improvement in spectrum utilization.

VI. CONCLUSION

In this paper, we designed an optimization algorithm to
partition a bandwidth into channels and further decide the
number of licensed channels in order to maximize spectrum
utilization. The access to this bandwidth is governed by a
tiered spectrum access model inspired by the CBRS band.
We first propose a system model which accurately captures
various aspects of the tiered spectrum access model. Based
on this model, we formulate our optimization problem as a
two-staged Stackelberg game and then designed algorithms to
solve the Stackelberg game. Finally, we get numerical results
to benchmark our algorithm and to also study certain optimal
trends of spectrum partitioning and licensing as a function of
interference parameters.

There can be various directions for future research related
to generalization of the Stackelberg Game model. First, is to
capture collusion between operators in Stage-2 of the Stack-
elberg Game. Second, in our current model, every operator is
assumed to be equally pessimistic. It would be interesting to
associate each operator with a degree of pessimism.
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