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Abstract—Communication overhead has been identified as the
primary factor in overall performance degradation for sparse
and irregular problems such as SpMV. Many works have shown
significant communication reductions, but only for matrices with
specific characteristics and by dramatically reworking the com-
putations. This study develops and evaluates a communication
avoiding distributed heterogeneous implementation for strong
scaling of SpMV on the Sierra supercomputer architecture. To
address the far bigger matrices characteristic of real problems,
we utilize a hypergraph partitioning package HYPE to determine
workload distribution and reduce inter-node communication.
Additionally we investigated the performance impact of per-
forming hypergraph partitioning on scale free graphs which
had undergone a vertex delegation pre-processing step. We
achieved up to 97% reduction in average message size per
process at scale when using the HYPE partitioner. Despite this
we show how optimizing SpMV on existing GPU architectures
does provide increased computational performance, yet does not
address the dominant communication overhead factor at scale
despite attempts to avoid communication where possible.

Keywords-Strong Scalability, Hybrid SpMV, Multi GPU, Sierra
Systems, Communication Overhead, HPC, MPI;

I. INTRODUCTION

Dense linear algebra boasts well documented efficient algo-
rithms and performance models for nearly all modern archi-
tectures. In contrast, sparse linear algebra operations remain
a field rife for deeper optimization efforts. The product of a
sparse matrix and a dense vector (SpMV) is a key part of many
codes from disparate areas. For instance, SpMV constitutes the
bulk of the High Performance Conjugate Gradient (HPCG)
[1] code that has become an alternative to LINPACK for
rating supercomputers. It is also used extensively in its general
sparse-matrix sparse-matrix form, in linear solvers such as
HYPRE [2], and finite element method applications such as
PGFem3D [3], [4]. Additionally when matrix operations are
changed from floating multiply and add to other non-numeric
functions, it becomes an essential part of many graph kernels
[5], and is a key function in the GRAPHBLAS spec [6].

In earlier studies [7], [8] we examined strong scaling of
SpMV in a hybrid Message Passing Interface (MPI) + Multi-
threading (OpenMP) environment for a variety of architectures
and moderate problem sizes. These studies showed that when
strong scaling is attempted (fixed matrix size but increasing

Fig. 1: Overall Speedup on Intel Xeon [7] and Intel KNL Clusters
[8]. Each line represents a single benchmark matrix used in both
studies, with speedup evaluation considering both computation and
communication time measurements. 1 MPI rank per socket with the
Intel cluster having 2 MPI ranks per node, and the KNL cluster having
1 MPI rank per node.

processor count), SpMV performance degradation, not im-
provement, can be seen for all matrices, often with relatively
few processes. While strong scaling improves computational
performance, network communication among participating
MPI processes drastically reduced any overall speedup. Fig. 1
illustrates these effects for the Intel Xeon and Intel Xeon Phi
Knights Landing (KNL) systems evaluated earlier.

Based on earlier findings, which show that communication
is the dominant factor in overall performance, our goal for this
paper is to evaluate the strong scaling behavior of iterative
SpMV in which communication is deliberately avoided or
reduced wherever possible. Therefore we developed and tested
a multi-GPU hybrid and heterogeneous SpMV kernel using
MPI, OpenMP, and the NVIDIA cuSPARSE [9] library on the
Sierra supercomputer architecture. To reduce communication
we perform a hypergraph partitioning on all benchmark sparse
matrices since it has been shown to reduce communication by
upwards of 60% compared to traditional graph partitioning
[10]. Additionally in an effort to magnify the benefits of
hypergraph partitioning for matrices which posses scale-free
characteristics we perform an additional pre-partitioning step
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Fig. 2: Distributed Iterative SpMV Communication Pattern

in which vertex delegation marks and removes very high
degree rows (vertices) from the matrix before partitioning.
We compare results from both implementations with a greedy
balanced workload partitioning.

In most studies on SpMV so far, the focus has been on
problems that ”fit” in a shared memory space or which do
not require distributed processing. Yet increasingly there are
problems which are simply ”too big” for single node systems,
requiring multiple nodes just to store matrix and dense vector
data in memory. In this study we focus on analyzing the
scalablity of very large matrices, each containing several
billion non-zeros, incapable of computation on a single node.

Our analysis shows that despite our efforts to reduce
and or avoid communication, when possible, the remaining
communication still caused substantial overall performance
degradation despite observing a computational speedup during
strong scaling.

In organization, Section II provides background. Section III
describes the spectrum of sparse matrices considered. Section
IV overviews the experimental platform, workload balancing
and distribution, and hybrid GPU algorithm. Finally Section
V evaluates the results, and Section VI concludes.

II. BACKGROUND

A. Iterative SpMV Overview

Performing iterative SpMV in a distributed environment
adds additional complexities such as communication overhead
which much be factored into overall performance. Commu-
nication requirements are tied to the workload partitioning of
rows as well as the non-zero structure of the sparse matrix. Fig.
2 demonstrates the communication associated with distributed
SpMV, given a sparse matrix A is multiplied by the dense
vector x with its row results being placed into the result
vector b. In many applications such as HPCG, SpMV is called
iteratively on the same A, with each result vector reused in
some way for the x in the next iteration. Thus we assume
in our study that the computed b must be placed back in
essentially the same order across the cluster as the original
x.

Fig. 2b shows a possible partitioning of A among two MPI
processes. Entire rows are assigned to their respective process
Pi along with the elements in x corresponding to the column
id col[i] of each non-zero in the rows. A has been distributed

along with possibly overlapping subsets of the dense vector
x. Computation of rows proceeds locally on each process and
row results are placed into their respective result vectors. As
mentioned previously, the dense vector is updated with the
row results after every iteration to reflect iterative applications.
However x has been distributed with potentially multiple
copies of each element existing on different processes. In Fig.
2c we can see the communication pattern for the given sparse
matrix and its partitioning. P0 must send its b[0] and b[1] to
P1 due to P1 containing a row that requires x[0] and x[1].
Similarly, P1 sends b[3] and b[4] to P0. Note that the row result
for b[2] is never sent because the corresponding element x[2]
is only used by P1. Lastly each process updates its x vector
from its b vector which contains row results from the latest
SpMV iteration.

B. SpMV on GPUs

Given the memory bandwidth constraint on SpMV, min-
imizing references is critical. Various storage schemes exist
for maintaining a compressed version (does not contain zero
entries) of the sparse matrix in memory. Compressed Sparse
Row (CSR) format is a commonly used storage format in
which the non zeros within a given matrix are kept in three
one-dimensional vectors: row, column, and value. Many-core
architectures such as GPUs provide memory access channels
capable of higher sustained bandwidth and therefore can
potentially aid in the performance of sparse memory bound
problems such as SpMV. Several studies have analyzed SpMV
on GPUs, with the majority exploring the impact of novel
matrix compression techniques. Such methods capitalize on
the architectural nuances these platforms provide [11], [12].
Even so most of these methods focus on single node or
architecture specific implementation, do not attempt strong
scaling, and or use matrices which are relatively small in size
and number of non-zeros. CSR has been the basis for many
of them [13], [14], [15], [16], [17].

Many other studies attempt to obtain improved performance
by leveraging alternative storage formats (such as COO, CSR,
DIA, ELL, HYB, BCSR, etc.) [18], [19], [20], [21], [16].
For instance ELLPACK (ELL) and Hybrid (HYB), developed
for use with GPUs, have exhibited greatly improved single
processor performance over CSR.

In addition to storage formats, libraries designed to perform
linear algrebraic operations, such as NVIDIA CUDA basic
linear algebra subprograms (CUBLAS) and NVIDIA CUDA
sparse matrix library (cuSPARSE), are used extensively in
machine learning, computational fluid dynamics, and compu-
tational sciences [9]. While single-GPU codes are common
place, multi-GPU implementations of SpMV appear to be rare,
with distributed multi-GPU codes even more so. Single GPU
implementations of sparse linear algebra have demonstrated
increased efficiency and performance [22], [23]. However
modern supercomputing systems feature multiple many-core
CPUs along with multiple GPUs. We believe that a strong
scaling evaluation of SpMV must therefore include exploration
into multiple GPUs per node, as well as multiple nodes.



For multi-node implementations, the distribution of both
matrix data and result vectors, especially as process counts
grow, directly affects the volume and size of inter-process
communication. While more exotic in-memory matrix storage
formats may provide some performance increase for SpMV
computation, they do not alter the overall communication
requirement. In this study we focus on the impact of commu-
nication on overall performance, therefore we chose to imple-
ment SpMV using the CSR format due to its implementation
simplicity.

C. Sierra Supercomputer Architecture

Sierra at Lawrence Livermore National Laboratory is one
of the latest in a series of leading-edge Advanced Simulation
and Computing (ASC) Program supercomputers. Built by
IBM in partnership with NVIDIA Corporation and Mellanox
Technologies, Sierra is a heterogeneous supercomputer that
uses IBM Power9 CPUs along with NVIDIA Tesla V100
(Volta) Tensor Core GPUs. Sierra’s heterogeneous architecture
utilizes the enormous parallelism delivered by its GPUs to
accelerate scientific computing applications while providing
greatly enhanced energy efficiency over previous systems.
Sierra is the first production system of its kind produced for the
NNSA and is currently one of the most promising architectures
for future, exascale computing solutions [24].

Our experiments were run on the Lassen supercomputer
which though smaller in size is architecturally identical to
Sierra, and available to the research community. Its intercon-
nect is a Mellanox Infiniband EDR connected via a tapered
fat tree switch network with dual links per node. Lassen
comprises 684 compute nodes, each with dual-socket 22 core
Power9s and 4 Nvidia V100s (Volta). Each Volta is connected
via NVIDIA NVLink system interface, providing a peak bi-
directional bandwidth of up to 100GB/s. Furthermore each
GPU contains 5,120 CUDA cores along with 16GB high band-
width memory version 2 (HBM2) memory at up to 900GB/s
memory bandwidth [25]. While Power9 CPU performance is
something that may play a role in some overall application
performance, for this study it only handles messaging and
GPU management.

III. BENCHMARK MATRICES

The matrices used for our earlier studies, pictured in Fig. 1,
were largely from the SuiteSparse Matrix Collection1 [26].
Our focus in this study is on much larger matrices where
strong scaling would be of most value, in addition to being
required due to resource limitations. Table I lists characteristics
of the matrices we chose. All but the synthetic matrix are real
data sets with varying size, number of non-zeros per row, and
non-zero structure. The PGFem3d multiscale finite element
solver [3], [4] in particular is relevant to the class of solvers
in use in an on-going large multi-scale simulation project. The
synthetic matrix was generated to conform to the dimension
and nnz values shown in Table I. Each row’s non-zeros were

1Currently hosted at https://sparse.tamu.edu/

TABLE I: Benchmark Matrix Suite
Matrix Rows NNZ NNZ% NNZrow

com-Friendster 65,608,366 3,612,134,270 8.39E-7 55.1
PGFem3D stiff 35,859,280 2,877,137,749 6.71E-6 84.5
synth rand 40,000,000 4,000,000,000 2.5E-6 100
MOLIERE 2016 30,239,687 6,669,254,694 7.29E-6 220.5

assigned to columns randomly generating a random structure
and column-wise degree distribution.

Fig 3 illustrates the vertex degree distribution for each
benchmark matrix. The synthetic matrix is not shown due to
its absolute uniformity with each row having exactly 100 non-
zeros. Meanwhile the social network com-Friendster matrix
exhibits a power law distribution indicating it is scale-free.
This characteristic is common among real world graphs,
especially those of social networks [27], and often prove
troublesome for graph analytics due to their extremely large
vertex degree disparity [28]. We discuss our attempts to
mitigate the affects of high degree vertices in Section IV-C.

IV. EXPERIMENTAL SETUP

A. Distributed Multi-GPUs SpMV

To perform this study we developed a multi-GPU, multi-
node hybrid implementation using the cuSPARSE library [9].
cuSPARSE provides CUDA sparse basic linear algebra sub-
program kernels which provides improved performance over
CPU-only alternatives.

Our heterogeneous code disperses computation across mul-
tiple GPUs, effectively performing several disjoint sub prob-
lems simultaneously within each node. To achieve this we
assign a single MPI rank to each cluster node, and use
OpenMP threads to perform CUDA calls on their correspond-
ing GPU. Each OpenMP thread was bound to a single Power9
core according to its thread id such that it would reside on
the socket associated with its corresponding GPU’s system
interconnect. This assisted performance by eliminating the
need for CPU-to-GPU memory allocation and copies to incur
cross socket communication overhead.

A local CSR representation is generated on every node,
using the non-zeros assigned to it as a result of matrix parti-
tioning. The local CSR is then partitioned further depending on
the number of GPUs selected, in Lassen’s case one partition
for each of the 4 Volta V100s present on every node. The
cuSPARSE library is not designed explicitly for use within
a multi-GPU setting. Instead our implementation creates 4
disjoint sub problems, each with their own GPU, memory
buffers, and kernel context on every rank. OpenMP threads
then call the cuSPARSE kernel on their respective GPU. Once
all local GPU computation has completed we collect and
reorder GPU results on each host (node) to form the single
result vector for each node (MPI rank). Row results are then
distributed throughout the system and used to update the dense
vector ahead of the next SpMV iteration.

B. Workload Partitioning with Hypergraphs

Determining an optimal workload distribution is a com-
mon and significant issue. With respect to SpMV various
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Fig. 3: Benchmark Matrix Row Degree Distribution

partitioning schemes have been developed in an effort to
obtain improved workload uniformity, reduce computation
time, decrease cache misses, and even optimize for new multi-
core and many-core architectures. Various forms of the well
known 1D and 2D matrix partitioning methods were evaluated
in previous studies [7], [8]. These methods perform matrix
partitioning based on structural characteristics of the input
matrix such as symmetry, or being clustered along the main
diagonal. We implemented a more generalized approach which
is independent of specific matrix characteristics and requires
no apriori knowledge about the input matrix.

Many applications utilize hypergraphs to represent the in-
terconnection of vertex properties within a given data set. Hy-
pergraphs contain hyperedges which, unlike traditional graph
edges that connect only two vertices, can join any number
of vertices. All vertices belonging to the vertex set of a
hyperedge share some property as defined by the data set and
application in question. Additionally, a vertex may exist in
multiple hyperedges, that is it has properties in common with
more than one set of vertices. Formally hypergraph partitioning
is the process of finding a partitioning of a hypergraph such
that some cost function, such as net cut, or fanout (k-1) is
minimized. It is used in many fields such as VLSI design
[29], and database storage shard reduction [30].

Any sparse matrix can be treated as a hypergraph by
considering an arbitrary row[i] as a hyperedge h[i], and the
column id of the non-zeros within that row[i] as vertices
belonging to h[i]. Partitioning of a hypergraph representation
of sparse matrices for use in SpMV have been shown to reduce
communication by up to 60%, as it more accurately depicts the
communication pattern required by row result updates [10].

Fig. 4 shows a sample sparse matrix A and its transpose AT .
If a hypergraph is generated using A then its rows are treated
as hyperedges, with the column ids of the rows’ non-zero
values treated as the vertices in each hyperedge’s vertex set.
Therefore the unifying property of each hyperedge’s vertices
is that they all belong to the same row of A. Conversely
if the transpose of a sparse matrix is used to generate a
hypergraph than the columns become hyperedges and row
ids of the non-zeros within each column are the vertices
within them. The visual representation of the hypergraph
in Fig. 4 illustrates the higher-dimensional and overlapping

Fig. 4: Hypergraph Partitioning of a Sparse Matrix

behavior inherent to hyperedges. Our implementation performs
partitioning on hypergraphs generated using the transpose of
each benchmark matrix. This was important because we chose
to use CSR storage format for local matrix data, which can
obtain improved cache performance when all non-zeros of a
row are contiguous in memory.

With respect to SpMV, entire row results are computed
and the elements requiring that result in subsequent iterations
would be co-located with the row itself when possible. This
behavior enables hypergraph partitioning to effectively elim-
inate the need for communication of row results where such
co-location were possible, or allow for reducing the number
of partitions to which a result must be distributed.

Hypergraph partitioning is a difficult problem, with bal-
anced k−way hypergraph partitioning being NP-hard. As a re-
sult we used the HYPE hypergraph partitioner [31] which uses
neighborhood expansion for efficiently determining optimal
vertex assignment. HYPE performs a k-way partitioning by
analyzing the vertices within each hyperedge and generating a
minimal core set of vertices with which to calculate similarity.
Additionally HYPE seeks to minimize the K-1 metric, the
number of times that neighboring vertices are assigned to
different partitions, for the given graph.

Fig. 5 shows the HYPE partitioning quality for the bench-



Fig. 5: Hypergraph Partitioning Quality. For all tests, MPI process
count equals cluster node count.

mark matrices at all MPI Processes counts evaluated (lower is
better). As the number of partitions increases, K-1 increases
for all matrices. This was expected due to the increasing
likelihood that a hyperedge will have its vertices placed on
separate partitions in order for HYPE to maintain a balanced
partitioning. However Fig. 5 also shows that the number of hy-
peredge cut (spread across more than one partition) increases
much slower, appearing to level off after approximately 16
processes for all matrices.

In our tests HYPE produced partitions with a hyperedge
cut 20%-40% lower than the total row count of each matrix.
This indicates that before the message volume resulting from
fanout by the remaining vertices, we have potentially reduced
communication by 40% or more.

C. Vertex Delegation

Since we are treating the sparse matrices as graphs for
the purposes of partitioning, we looked at some additional
graph optimization techniques. Graphs containing high degree
vertices (hubs), such as scale-free graphs which follow a
power law degree distribution, can pose significant storage and
communication requirements when performing operations on
the graph. Current graph partitioners fail to efficiently partition
graphs with very high degree vertices without generating
considerable workload imbalance due to the exceedingly large
edge list associated with very high degree vertices. To alleviate
this imbalance a technique, known as vertex delegation [28],
spreads vertices with a degree above some threshold across
multiple partitions and was shown to be particularly useful
for the traversal of scale-free graphs.

In vertex delegation local copies of a hub vertex are created
on each partition and then only the edges between the hub
vertex and those non-delegated vertices assigned to the parti-
tion are assigned. By doing so the vertex, its edge list, and its
computational workload has been distributed across multiple
partitions, thereby generating a more balanced workload.

Computational workload of a graph depends on the opera-
tion being performed, For this study, computational workload
pertains to the distribution of non-zeros in a highly populated
row across multiple MPI processes. Each delegated row’s

partial sum must be reduced into a single solution which
must then be communicated back to all partitions for the next
SpMV iteration. This may improve communication overhead
for SpMV since in addition to reducing imbalance, vertex
delegation can also reduce communication between partitions
by greatly increasing the number of intra-partition operations,
and decreasing off partition updates [28].

Fig. 6a diagrams a sample graph containing a relatively
high-degree vertex. If we were to perform 1D partitioning on
the given graph, we must decide which partition is assigned
the edges associated with V0. If Partition P2 were assigned
V0 and all of its edges, P2 must update the vertices in P1

and P3 which are adjacent to it. Furthermore the placement
of a hub’s edge list onto a single node may create consider-
able workload imbalance along with increased communication
overhead associated with edge and or vertex updates.

To alleviate load imbalance, vertex delegation generates
local copies of V0 and distributes its edge list on each partition
as seen in Fig. 6b. The computational workload for updates
to the hub vertex has now been distributed, resulting in a
more balanced workload. Computation is performed using
the local state of each hub vertex. After computation, the
local states of each hub are reduced to form a uniform state
across all partitions once again. This can dramatically reduce
storage requirements by eliminating duplication of edges on
all partitions involved, as well as allow for superior workload
balancing of scale-free graphs on distributed systems.

Finally Fig. 6c illustrates how the distributed edge list could
be further refined to create a superior workload balancing. It
is important to note that this improvement comes at a cost of
increased communication.

As shown in Fig. 3 the com-Friendster matrix exhibits a
power law degree distribution, and MOLIERE 2016 appears
to have a quasi power law distribution. Because of these
characteristics we elected to generate an additional partitioning
in which we perform vertex delegation on these matrices
prior to performing hypergraph partitioning with the HYPE
partitioner. Our implementation creates delegates from the top
1% of vertices according to their degree. The vertical dashed
lines seen in Fig. 3a and 3b indicate where this selection
occurs based on the degree distribution, with all vertices to
the right of this line becoming delegates. When performing
vertex delegation on com-Friendster and MOLIERE 2016 we
observed that due to the power law behavior many vertices
(rows) had all corresponding edges removed, therefore discon-
necting them from the graph. The HYPE partitioning software
does not allow for disconnected vertices (empty rows) to exist
in the hypergraph when performing partitioning. Consequently
these free vertices were also removed. The remaining matrix
was then partitioned using the HYPE hypergraph partitioning
software [31].

For our distributed SpMV evaluations when loading the
matrix into memory according to the partition assignment, it
was possible to assign free vertices to any partition arbitrarily
since the hub vertex they are adjacent to was guaranteed to
have a local copy present on every partition. This allowed



Fig. 6: Vertex Delegation of Graphs with High Degree Hubs from [28].

Fig. 7: Hyperedge Cut and K-1 Metric for Hypergraph Partitioning
with Vertex Delegation. HYPE partitioning is denoted by the matrix
name, while -D suffix indicates hypergraph partitioning with vertex
delegation. For all tests, MPI process count equals cluster node count.

us to determine the partition assignment of free vertices as
Pi = Vi mod |P |. The resulting partition quality can be
seen in Fig. 7. We observed that hyperedge cut increases
as the number of partitions k increases for com-Friendster
and MOLIERE 2016. Additionally Fig. 7 also shows the
K − 1 metric increasing for both matrices. This behavior was
expected since the fanout of an arbitrary hyperedge increases,
in general as K increases, as the number of vertices associated
with that hyperedge are more likely to have been assigned to
different partitions.

D. Greedy 1D Partitioning

In this study we compare performance observed using hy-
pergraph partitioning and hypergraph partitioning with vertex
delegation with that of a greedy 1-dimensional partitioning.
This greedy 1D partitioning is similar to the balance workload
distribution method in [7]. The goal of this method is to
create a near uniform non-zero work load distribution across
all partitions in an efficient manner.

To achieve near uniform partitioning, rows are sorted based
on their length (vertices sorted by degree), then assigned to
partitions in descending order. Rows are always assigned to the
partition with the current lowest number of non-zeros assigned
to it. All non-zeros belonging to a row are assigned to the
same partition in order to take advantage of cache behavior

and hopefully improve performance. This also prevents the
need to communicate partial sums for a row throughout the
system, instead only final row results must be distributed when
necessary.

For the remainder of this paper we will refer to this
partitioning method as the greedy method.

E. Result Accumulation

For interprocess communiation we utilize the IBM Spec-
trum MPI [32] library supported on Sierra and Lassen systems.
IBM Spectrum MPI is based on Open MPI 3.0.0 and maintains
similar functionality.

In our iterative distributed SpMV tests, after an MPI rank
has completed its computation it must then update each rank
which requires its row results in so as to allow them to
update their dense vectors prior to the next iteration. For our
implementation the matrix partitioning is known by every rank,
enabling each rank to know precisely which row results to send
to as well as what to receive from other ranks.

To ascertain the impact on communication overhead a
particular communication method might have, we chose to
implement several methods for all matrices and process counts:
MPI Allgather, MPI Allreduce, and Remote Direct Memory
Access (RDMA) via MPI Get. Several studies [33], [34],
[35] have evaluated the performance and behaviour of various
global collectives, such as Allgather and Allreduce, in addition
to implementing optimization methods. These method are still
commonplace and therefore serve as a good baseline imple-
mentation for computation and communication performance.
While the selection of the algorithm used internally within a
collective can be explicitly set by the developer, MPI does
attempt to select the best algorithm based on message size,
process count, etc. In this study we made no effort to optimize
MPI Allreduce and MPI Allgather and allowed MPI to use
default parameters.

RDMA provides one-sided communication which depend-
ing implementation, and can eliminate the need for acknowl-
edgements and or overly complex synchronization events.
RDMA allows each MPI process to place row results into
a shared memory window from which other processes may
directly access only the data which they need to update.
Remote ranks perform the MPI Get operation to access the
remote row results and copy only the data they require,
directly into main memory reducing communication overhead



by eliminating one memory copy [36]. Furthermore, the total
volume of communication required to ensure all processes are
up to date can be reduced since each process transfers only the
row results they need to update elements in their local dense
vector.

In our implementation each process Pi begins by copying
updates from Pi−1. In doing so, each process is actively
performing at most 1 MPI Get at a time, while simultaneously
responding to only one processes get operation. By making
these changes, we observed an order of magnitude reduction
in communication times, thanks to eliminating wait times due
to communication bottle-necking.

V. EVALUATION

A. Distributed Performance

When running experiments, we tracked computation and
communication times separately. Time measurements for
SpMV computation include only the time required to perform
the multi-GPU cuSPARSE CSR based SpMV and do not
include memory copies of matrix data between host and
device, or any result updates via MPI.

Fig. 8 shows the computation and communication times
for all tests. The data shown is the average of 10 SpMV
iterations per process count and partitioning scheme selected.
Computation times decreased for nearly all matrices and par-
titioning types as P →∞. Yet the rate at which it decreased
was dependent on the matrix and partitioning type selected.
Moreover with the exception of com-Friendster, we saw that
computation times were nearly identical regardless of matrix
partitioning method, and that this behavior was seen among
all benchmark matrices. This indicates that our efforts to
eliminate communication were not generating computational
load imbalances across nodes.

In Figures 8a and 8d we can see that the MOLIERE 2016
and Synthetic matrices did not benefit from hypergraph par-
titioning with respect to either communication reduction or
improved computational performance. Interestingly these two
matrices experienced the same behavior for all partitioning
methods. Results for the scale-free Com-Friendster graph in
Fig. 8b not only show over an order of magnitude lower
communication times using hypergraph partitioning with ver-
tex delegation along with the corresponding computation time
experiencing a similar reduction compared to other methods.
Finally Fig. 8c shows that PGFem3D experienced reduced
communication times when using hypergraph partitioning over
that of the greedy method. Furthermore computation times
were nearly identical for both methods.

As seen in Fig. 9, we observed a wide range of speedup
behavior when testing our benchmark matrices using up to
3 workload distribution methods. As MPI process count in-
creases so does the number of Volta v100 GPUs being utilized
for computation, at a ratio of 4 GPUs per MPI process.
Correspondingly the per GPU problem size decreases as P/4
and greatly benefits from the additional parallelism offered by
the greater GPU count.

From our results we observed increased performance thanks
to the increased parallelism provided by larger GPU counts at
scale. In Fig. 9 we can see that nearly all matrices experienced
increased speedup as system size increased regardless of parti-
tioning method used. Com-Friendster saw superlinear speedup
at P = 4 and again at P = 16, after which performance
began to decline. This behavior was seen for both HYPE and
Greedy partitioning of Com-Friendster. Due to the scale-free
nature of the Com-Friendster graph the vast majority of rows
contain only one edge (non-zero) while a few rows contain
millions of edges. The HYPE partitioniner attempts to create
a balanced partitioning with respect to vertex count and not
the number of non-zeros. It is highly likely that non-zero
workload imbalance allows for improved cache performance
when access non-zero data for computation. As system size
increases non-zero workload becomes increasingly balanced
while thread overhead and the lock-step execution penalty
degrades performance.

B. Communication Overhead

This study’s primary focus was to reduce communica-
tion so that improved scalability of hybrid SpMV would be
achieved. During testing the RDMA communication method
experienced the lowest communication times, regardless of
benchmark matrix, partitioning method, or MPI process count,
with RDMA being at least 1 order of magnitude and up
to 2-3 orders of magnitude faster than MPI Allgather and
MPI Allreduce respectively, Figs. 8, 10, and 12 plot only the
lowest communication measurements which used RDMA.

Fig. 10 illustrates the effectiveness of the hypergraph based
partitioning methods approach by showing the average mes-
sage size reduction compared to the greedy approach. The
greedy partitioning method made no effort to reduce commu-
nication but rather to balance workload uniformly across all
processes with complete disregard for precisely which rows
or columns were assigned. Conversely the hypergraph based
methods analyze the structure of the matrix in order to perform
higher quality assignment of rows/vertices. We saw that all
benchmark matrices experienced some level of message size
reduction compared to the greedy method when hypergraph
partitioning was used.

MPI message latency is a function of message size with
larger messages having higher latency. When strong scaling,
in an ideal setting, the message size per process pair decreases
at scale, allowing lower message latency as process counts
increase. Fig. 11 depicts the results of the Ohio State Univer-
sity Mico-Benchmark [37] for MPI Allgather, MPI Alreduce,
and MPI Get latency on the Lassen system. In our mutli-
GPU with hypergraph partitioning study we used the MPI
get RDMA operation from every other process, for a total of
P 2 − P total RDMA operations. MPI Get has lower latency
than the MPI Allgather and MPI Allreduce collectives used
in an earlier multi-GPU study on Lassen, except at P = 2
and P = 4, and even then only at message sizes of less
than 8KB. For all other message sizes MPI Get experienced
superior latency.



(a) MOLIERE 2016 (b) com-Friendster (c) PGFem3D Stiffness (d) Synthetic
Fig. 8: Observed Computation and Communication Times. Computation times have solid lines, and communication dashed lines.

Fig. 9: Computational Speedup. HYPE partitioning is denoted by the
matrix name with no trailing character, the -D designator denotes
hypergraph partitioning with vertex delegation, and -G our greedy
method. For all tests, MPI process count equals cluster node count.

Fig. 10: Average Message Size Reduction (vs Greedy Method).
HYPE partitioning is denoted by the -H suffix, while -D denotes
hypergraph partitioning with vertex delegation. Com-Friendster had
0.0% reduction for 2 MPI processes while the synthetic matrix
achieved 0.0% reduction in communication for all process counts.
For all tests, MPI process count equals cluster node count.

Fig. 11: Lassen MPI Message Latency. Latency benchmark utilized
1 MPI process count per node.

The latency benchmark results on Lassen, Fig. 11 indi-
cate that at a minimum any RDMA message will require
approximately 3 microseconds (µs) to send an 1KB message
and increasing with message size. With respect to distributed
SpMV message size is determined by the number of rows in
the benchmark matrix being evaluated.

As seen in Fig. 8 observed computational times were in
between 1E-3 and 1E-5 seconds. This means that depending
on the input matrix, and MPI process count, its is possible
that even a single message could have a latency longer
then the compute portion of the SpMV iteration. Additional
messaging requirements, either increased message volume or
message size, only exacerbate this further. Because of this
communication must be reduced nearly entirely to prevent it
from driving overall performance.

Fig. 10 shows that for all matrices except for
MOLIERE 2016, when using hypergraph partitioning
with vertex delegation, we see increased communication
reduction as P → ∞. In contrast, the com-Friendster graph
which also used vertex delegation was able to reduce average
message size per process by 57.8% at P = 64. We believe
this discrepancy in vertex delegation’s effectiveness to be
due its non-zero structure. Com-Friendster’s scale-free degree
distribution means that vertex delegation generates larger
numbers of free vertices which can be placed on any partition



Fig. 12: Overall Speedup (Computation and Communication). HYPE
partitioning is denoted by the matrix name with no trailing character,
the -D designator denotes hypergraph partitioning with vertex dele-
gation, and -G our greedy method. For all tests, MPI process count
equals cluster node count.

without incurring a communication penalty for row updates.
We believe that while MOLIERE 2016 may have a quasi-
scale-free degree distribution, its actual structure does not
allow for the generation of large numbers of free vertices in
the same manner as a com-Friendster. In fact, we can see that
MOLIERE 2016 experienced better communication reduction
with hypergraph partitioning and no vertex delegation, at
nearly all process counts.

Unexpectedly Fig. 10 shows that the PGFem3D stiffness
matrix had the best communication reduction for all matri-
ces, process counts, and partitioning types. PGFem3D with
hypergraph partitioning had a minimum average message size
reduction of 57.83% at P = 2 and a maximum of 97.86% at
P = 64. This means that the average message size between
any two processes during the update phase of SpMV has
almost been eliminated entirely. Again we believe this to
be due to the non-zero structure of the matrix itself. Finite
element matrices often represent physical structures which
contain highly localized elements, meaning a partitioning
method which takes vertex adjacency similarity into account
can partition these matrices with very high effectiveness.

Lastly, for all process counts, the synthetic matrix saw
no change its average message size per process compared
to that of the greedy partitioning method. The random non-
zero distribution within each row means that on average every
process must retrieve a result for every row assigned to all
other processes. Hypergraph partitioning had no effect on this
behavior and therefore did not reduce communication for the
synthetic matrix.

C. Workload Partitioning Impact

It would be reasonable to surmise that reduced communi-
cation along with reduced computation times, would indicate
improved performance for SpMV in a distributed environment.
As we have seen in previous studies, communication is the

dominant factor in overall performance at scale. Fig. 12
indicates the overall speedup for our benchmark matrices
across all partitioning methods we evaluated. As can be seen,
when communication overhead is taken into account when
evaluating performance, nearly all tests performed poorly. This
is even more evident when looking at the the computational
speedup of MOLIERE 2016 in Fig. 9 vs its overall speedup in
Fig. 12. MOLIERE 2016 exhibited substantial computational
speedup across all process counts. Despite this it experienced
the worst overall performance at scale.

In fact the only test results with a speedup of 1 was for the
PGFem3D matrix when partitioned with the HYPE partition-
ing software. Its performance remained stable as we increased
MPI process counts, whereas most other tests saw increasingly
poor overall performance. Driving this degradation is the
disparity in the time required for each portion of the code.
While compute times decrease in general as P →∞ they do
not decrease as fast as communication times are increasing. It
may be possible for additional scaling to allow some matrices
to experience eventual stabilizing of overall performance. This
would likely occur after several orders of magnitude increase
in hardware requirements, therefore making it impractical

VI. CONCLUSION

This study attempted to increase the scalability of SpMV
by implementing a distributed heterogeneous and multi-GPU
implementation of SpMV code which deliberately reduced
inter-process communication. We specifically chose matrices
which would require the use of a distributed system to be
computed over and thus require the addition of communication
overhead as would be seen in real world problems. The
computation portion of overall performance did dramatically
decrease over prior studies, indicating that the partitioning
helped in improving computation time for strong scaling
despite the irregular memory access pattern inherent to SpMV.

Regarding communication, we were also successful in re-
ducing communication volume by up to 97% using our parti-
tioning approaches. However, even with the drastic reduction
in communication thanks to workload partitioning, overall
performance of distributed and or hybrid SpMV continues
to be dominated by communication, not computation. The
imbalance is off by orders of magnitude.

That being said, in the case of the PgFem3D matrix we
did see relatively consistent speedup, though it was only 1X.
This is important as all previous studies observed dramatic
reductions in overall performance which continued to decrease
at scale. Therefore for some data sets it may be possible
to increase system size in an effort to accommodate larger
matrices without experiencing decreased overall performance.

Lastly these results say something relatively profound about
modern high end architectures. With modern computational
nodes such as employed here, there is no network interconnect
currently in existence which can provide message performance
good enough to decrease communication overhead so that it
is comparable with computational performance at scale. Since



strong scaling of irregular problems is key to many applica-
tions, we have gone far overboard towards the computation
side, and need to rethink.

It is apparent now that in the general case the only way
to alleviate the performance degradation associated with the
strong scaling of sparse problems is to dramatically change,
improve, or eliminate communication. New architectures, such
as the EMU migrating thread architecture, are being developed
which move computation to where the data is stored therby
eliminating traditional inter-process messaging and have been
able to provide improved scaling performance of SpMV [38].
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