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Abstract—Applications where streams of data are passed
through large data structures are becoming of increasing im-
portance. For instance network intrusion detection and cyber
security as a whole rely on real time analysis of network traffic.
Unfortunately, when implemented on conventional architectures
such applications become horribly inefficient, especially when
attempts are made to scale up performance via some sort
of parallelism. An earlier paper discussed streaming anomaly
detection within a stream having an unbounded range of keys
on the Lucata migrating thread architecture. In this paper we
introduce Deluge, a new implementation that addresses several
inadequacies of previous designs and seeks to more directly target
the hardware efficiencies inherent to migratory execution within
a PGAS address space. Deluge achieves major improvements in
hardware efficiency, throughput, and scalability over previous
implementations.

Index Terms—Emerging Architectures, Migrating Threads,
Streaming, Agent Based Execution, Scalability

I. INTRODUCTION

Applications where streams of data pass through large data
structures are of increasing importance. Examples include
cyber-security, social networks, interactive messaging, and e-
commerce. Unfortunately, implementations on conventional
architectures such applications become horribly inefficient,
especially when attempts are made to scale up performance via
parallelism. This is true even of our own attempts at producing
high throughput implementations [1], [2].

An earlier study [2] investigated the scalablity of streaming
in an unbounded key space using the Lucata' migrating thread
architecture. In that study we chose to use the Firehose
streaming benchmark [3]-[5], [6] as a framework.

In this paper we introduce Deluge, a new streaming im-
plementation in the nature of Firehose’s variant 2, for use on
the Lucata migrating thread architecture. Deluge makes many
departures from the conventional benchmark implementation
code in an effort to optimize for the transient execution pattern
inherent to migrating threads. In doing so Deluge achieves
57X throughput over previously reported implementations
on Lucata [2], in addition to achieving substantially superior
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scalability and hardware efficiency over a conventional cluster

implementation.

The main contributions of this paper are:

o Deluge: a vastly superior implementation of Firehose variant
2 for use on the Lucata migrating threads architecture.

« Agent based execution pattern which obtains over an order
of magnitude greater hardware efficiency and throughput
over previous designs.

« Performance and scalability projections for a next generation
migrating thread system based on existing results.

Finally, it should be noted that there are a growing number
of other problems where random or irregular accesses cause
major scaling problems for conventional architectures, but
early evidence suggests again that a migrating thread archi-
tecture has significant benefits. This includes two different
machine learning problems: one [7] on very sparse data and
strong scaling, and one on decision forests [8]. Strong scaling
of SpMV (Sparse Matrix-Vector product) on conventional
architectures suffers from inefficiencies [9], but results [7]
indicates that much better scaling may be possible with
migrating threads, versus not only conventional but versus a
variety of hybrid architectures [10]-[12]. More general sparse
linear algebra operators may also benefit [13].

II. BACKGROUND
A. Firehose Streaming Benchmark

Firehose [14] resembles a cyber-security like streaming
function where incoming packets are to be monitored. When
some number of packets with the same address have been
detected, the payload fields are examined for potential anoma-
lies, and if detected, a report issued. The IP address in each
incoming packet is used to probe a very large hash table,
and when a match is found, data from the packet’s payload
is merged into the entry, and a match count incremented.
When 24 packets have been found, the aggregated payload
is analyzed. An “atypical” outcome results in the IP address
being flagged. Three variants are proposed: one with a limited
key range, a second with an expanded key range, and a more
complex third with a nested key extraction.
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Fig. 1. Firehose PHISH Python/C++ Design: Parser converts datums (ASCII
strings) into address, payload, and bias flag triplets. The datum is assigned to
an analyzer process via UDP packets. Analyzers look up the address in their
local hash table update counters and check for anomalies as necessary.

Using an active set key generator [14], variant 2 possesses
a potentially infinite key range (2°4 possible keys) from an
existing computational capability standpoint. Due to resource
constraints, implementations center around limiting memory
footprint by “aging” keys out of a hash table when they are
likely to no longer be present in the current active set.

The Firehose website contains several reference implemen-
tations. However in this study we focus on their PHISH
Python/C++ version which utilizes UDP for multi-process
communication in a distributed or hybrid environment. The
benchmark is run for some predetermined amount of time or
total datum volume and statistical data is output for review.
Runs may be done with multiple parsing processes, multiple
analysis processes, or a combination of the two. This creates
the possibility for the following producer-consumer relation-
ships: one-to-one, one-to-many, and many-to-many. Fig. 1
shows the execution flow for the PHISH/C++ implementations
in which a single datum parser process (producer) assigns
work to multiple analyzer processes (consumers).

Analysis of an arbitrary datum occurs only within the
analyzer process to which it was assigned. The PHISH C++
code uses std::unordered_map for the hash table functionality
of storing and looking up keys, while a Least Recently Used
(LRU) eviction mechanism using doubly linked lists tracks
keys based on occurrence for removal or reuse. The total hash
table coverage amongst all analyzer processes is subdivided
into segments equivalent to global_size/analyzer_count,
where global_size is some multiple of the generator’s active
set size, and analyzer_count is the number of analyzers.

It is worth noting that performance can be dependent on
workload distribution which is directly determined by the
active set generator, system size, and key hashing function
used for datum assignment.

B. Migrating Thread Architecture

A migrating thread architecture [15] is one where the
underlying hardware, not software, moves the state of a
thread as required during execution. Fig. 2 diagrams such an
architecture as implemented by Lucata Solutions [16]. The

nodelet 0 nodelet 7
A L
\ r \
Narrow Channel DRAM Narrow Channel DRAM

Memory Side
Processor

Gossamer
Core

Memory
Queue

Memory Side
Processor

Migration
Queue

Memory
Queue

Migration

Run
Queue

Queue

Queue

I Run

Nodelet Queue
Manager

Nodelet Queue
Manager

[ Migration Engine ]

Fig. 2. A single node in the Emu Chick system. There are 8 nodelets within
a single node. Nodes are connected over a Serial RapidIO interconnect (not
shown here).

basic unit, a nodelet, is a memory module, its controller and
some number of multi-threaded cores. All nodelet memory
resides in a common address space. A network connects all
nodelets. A thread runs in a multi-threaded “GC core” until
it makes a memory reference that is not contained in that
nodelet’s memory. The hardware then puts the thread to sleep,
packages it, and moves it over the network to the correct
nodelet, where it is unpacked and restarted. A thread can
spawn independent child threads. Also, the memory controller
contains hardware to implement atomic operations as close
to memory as possible. Finally, very lightweight threads can
be spawned to perform remote memory operations without
moving the parent.

The current prototype used in this study, a Lucata Chick,
is housed at Georgia Tech’s CRNCH center®. It has up to
64 nodelets, each with 8GB of memory and one 175MHz
multi-threaded core. These nodelets are packaged 8 to a node
board which supports a RapidlO-based network that connects
8 such boards in a single chassis. A dual core POWER
microprocessor on each node board runs Linux, manages a
local SSD, and launches migrating threads into the system.
The nodelet logic on each board is implemented in an FPGA.
Table I compares its characteristics to that of the conventional
system used as a baseline.

In comparison, the core clock rate of the baseline is 15.2X
that of the CRNCH Chick. A more complete comparison is
probably even higher than this in favor of the baseline as the
nodelet cores are single issue and the baseline cores are multi-
issue. Also, on a per core basis, the baseline has about 4.4X
a pro-rated memory bandwidth of a core in the Chick, but,
because of the memory channel design used in the nodelets,
the ability of a Chick core to handle different independent
memory accesses is actually 1.8X higher. Finally, the average
network injection bandwidth per core is higher for the Chick
than the baseline?.

Zhttps://crnch.gatech.edu/rogues-Lucata
31t should be noted that the baseline system has much higher bandwidth
between its on-node 48 cores, and thus this ratio has a lot of caveats
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System [ Baseline [ CRNCH [ CRNCH ] Ratio: [ Ratio: |
Type HPE DL385 Genl0 Chick Pathfinder-S Baseline/Chick | Pathfinder/Chick
Socket AMD 7451 Arria FPGA | Stratix FPGA
Cores/Socket 24 8 24 3 3
Core Clock (GHz) 2.3 0.175 0.220 15.2 1.3
Compute Cycles per Socket (G/s) 63.8 1.4 5.3 45.6 3.8
Mem. B/W per Socket (GB/s) 170.62 12.8 34.1 13.3 2.7
TABLE T
COMPARISON TO BASELINE IMPLEMENTATION.
The programming tool chain is based on Cilk: C with a P— —

prefix to function calls to spawn new threads, a sync to wait
for a set of children to complete, and a parallel forall to have
a set of independent threads cooperate on a loop. Supported
intrinsics include a rich set of remote atomic operations.

A second generation system, Pathfinder-S, is currently being
installed in the CRNCH Center, and should be available in the
near future. This system has 3X the cores per node board and
2.7X the memory bandwidth. Also, unlike the Chick, a thread
running on any core can access any of the 8 memory channels
without a migration. This improves load balancing. Only
accessing memory on some other board causes a migration.

III. STREAMING ON LUCATA MIGRATING THREADS

A. Previous Implementation
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Fig. 3. Previous Lucata Chick Implementation [2]: Each Nodelet shared
hardware resources between a producer and consumer thread pool. Producers
performed ASCII string conversion and assignment. Consumers performed
hash table lookup, update, and anomaly detection.
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assigned datums by performing a look of the address field in Fig. 4. Deluge on Migrating Threads: Producer nodelets spawn a local

their local hash table. Consumers also check for anomalies and
update statistics counters where appropriate. As was shown
in [2] decent throughput scalability was achieved using this
method, however exact performance was highly dependant
on total datum volume, hash table size, and the number of
nodelets/threads in use.

B. Deluge: Actor Based Execution

Deluge utilizes the actor execution model via the use of
migrating threads in order to perform analysis of the generated
datums. Unlike our previous attempts, here there is no distinc-
tion between “producer” and “consumer” threads throughout
the system, but rather each thread is an “actor” which both
generates a new datum to evaluate and performs the analysis
of that datum itself.

In Fig. 4 we see that the system itself is split into pro-
ducer and consumer nodelets. Actor threads are spawned on

collection of “actor” threads. Actors generate datums and then migrate to
a consumer nodelet to perform analysis based on the datum’s contents. When
analysis of the current datum is complete actors migrate back to nodelet they
were spawned on. Consumers have no resident execution.

a producer nodelet and begin generating datums using the
active set generator as done in the official Firehose benchmark
specification. An actor will hash the address in the datum it
generates to determine the nodelet which governs the hash
table portion the address should be checked against.

At this point the Actor migrates to the appropriate consumer
nodelet and proceeds with analysis of the datum. Being a
shared memory environment, all Actors currently executing on
a consumer nodelet share the local hash table, and therefore
must acquire a lock on the given hash table slot they wish
to perform insertions, updates, or deletions on. At this point,
analysis occurs in the same manner as in the prior imple-



mentation, and a least recently used (LRU) list maintains the
order of key occurrence in order to select a good candidate
for eviction in the event the hash table has become full.

Once the actor completes evaluation of its current datum,
the actor thread migrates back to the producer nodelet it
was spawned on and generates a new datum. This process
continues until the desired datum volume is reached. The
number of actors spawned on a producer nodelet can be in the
thousands. With such a large actor thread pool to draw from
producers are able to maintain high utilization even though
many of their resident actors are have migrated or are in the
process of “flooding” consumer(s) at any one time.

By using the actor based execution model in this way, only
producer nodelets function as the permanent home for actor
threads. Consumer nodelets have no resident execution.
Because of this a consumer nodelet’s hardware resources are
dedicated to the analysis of datums only, and do not have to
be shared with the parsing of ASCII strings as was necessary
in previous versions.

IV. EXPERIMENTAL SETUP
A. Conventional Baseline Implementation

To form a baseline for our comparisons we developed an
implementation of Firehose variant 2 for use on a conventional
cluster (multiple nodes of the type in the second column of
Table I). Our baseline code functions in the same manner as
described in Sec. II-A in which datum parsing and datum anal-
ysis is carried out by separate specialized processes running on
different distributed cores and or nodes.Each process resides
on its own physical node so that any arbitrary process has
complete control of the resources present on its host node.

The key difference between our implementation and the
benchmark spec is that our producer processes generate da-
tums using the active set generator, then send them via UDP
packet to the appropriate analysis process. This was done to
match the Lucata Deluge code since the FPGA based design
does not currently allow for efficient network access in the
same way as an ASIC based system and therefore provides a
more accurate comparison between systems.

Additionally, though possible, we did not design this as
a hybrid implementation: meaning that each process, be it a
parser or analyzer has only one execution thread. This makes
comparison to Lucata chick hardware much simpler as the
relationship between cores and nodelets is notionally 1-to-1.

B. Testing Migrating Threads

For our weak scaling tests, we increase the number of
consumer nodelets in powers of 2. Additionally we increase
the number of producer nodelets, and the number of actor
threads spawned within each producer, by powers of 2 up to a
total of 1024 accross all producers. The sum of the consumer
and producer nodelet count must be no more than 64.

Generation of datums is done by each actor thread, with
each thread generating from its own key distribution and active
set. Run time measurements are started before the recursive
spawn which generates worker threads in each team on each
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Fig. 5. Observed throughput scalability. Each curve represents the maximum
observed throughput for each consumer core count.

nodelet. A cilk_sync prevents further program execution until
all nodelets have completed, upon which the stop time is
measured and total runtime determined. The time required
by the asynchronous updates to statistic counters is included,
and is consistent with the benchmark specification and our
conventional cluster’s baseline implementation.

V. EVALUATION

Comparing two systems is often done by looking at how per-
formance varies as a function of some resource. For systems
that are close in architecture (such as conventional clusters)
this is typically using the number of cores or nodes in each
system. For a migrating thread (especially a Chick) versus a
conventional system, however, things get a bit more difficult.
For hardware references, we could use “cores,” but also a
case could be made for comparing on the basis of sockets or
nodes. Alternatively, we could use metrics such as number of
compute cycles available (clock times core count), or perhaps
as aggregate memory bandwidth or access rate. As each gives
somewhat different insight we will utilize several here.

A. Throughput Scalability

The Firehose benchmark defines throughput as the maxi-
mum number of datums per millisecond (d/msec) that can be
handled by a system before problems occur. Using consumer
core count is an obvious metric. Since we did not run multiple
threads within any process, core count is equivalent to process
count in the conventional implementation. Conversely with
respect to Deluge on the Lucata Chick, a nodelet contains
a single processing core (that may be handling 100s of
threads at any point in time). Thus consumer nodelet count
is equivalent to core count. Fig. 5 shows the observed max-
imum throughput achieved at each consumer core count up
to 64 (the maximum for this system). Additionally we show
the theoretical perfect scaling for each system, computed
as mazx(single_core_throughput) x consumer_count. Less
than perfect scalability of our previous streaming attempt with
migrating threads is evidenced by a rapidly flattening curve
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as core counts increase. The conventional cluster implemen-
tation doesn’t flatten, but deviates significantly from perfect
as the core count increases. While the conventional system
throughput appears unusually low in relation to previously
reported data, to improve comparison both systems perform
datum generation in the exact same way and therefore incur
added computational requirements thus reducing throughput.

In contrast Deluge achieves near perfect throughput scaling
as we increase the number of consumer cores. In fact Deluge’s
peak throughput was approximately 57X that of our previous
implementation (listed as “Lucata: Prior”) [2]. This sug-
gests that Deluge obtains vastly improved hardware utilization
thanks to a code which better targets the capabilities of the
migrating thread system. Also, Deluge and the conventional
system cross over at 16 cores, with Deluge’s lead growing at
larger systems (and this is with far slower cores).

Perhaps a better resource to use as a basis of comparison
is a measure of computational capability available. We chose
aggregate compute cycles clock_ratexconsumer_count, Fig.
6. Again the excellent scaling of Deluge is apparent, but what
is also apparent is that each cycle of execution in a Chick core
produces at least 7 times as much performance as a single
cycle of the conventional system. This is not counting the fact
that the Lucata is a single-issue per cycle design, and that,
besides being much faster, the conventional cores can issue
multiple instructions per cycle. There is something significant
in the Lucata architecture that makes it far more efficient than
the conventional architecture.

Other measures for reference are possible, including use
of memory bandwidth, where again we would think that the
conventional system holds a significant advantage in aggregate
numbers. A graph like Fig. 6 but using memory bandwidth
as the horizontal axis reaches a similar conclusion, but the
fact that not all cores in the conventional sockets are used
confuses the accounting for how much of a conventional
socket’s bandwidth should be counted.
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Fig. 7. Per core hardware efficiency as a percentage of single core efficiency.

B. Hardware Efficiency

A common metric for benchmarking HPC systems is hard-
ware efficiency. Fig. 6 suggests there is a significant difference.
Here we are considering hardware efficiency as what percent-
age of the observed datums per millisecond is attributable on
average to an individual consumer as core counts increase,
compared to that of the single consumer core case.

Fig. 7 calculates the efficiency for Deluge, the baseline
conventional cluster, and our previous attempt on migrating
threads. As can be seen our previous attempt obtained the
poorest hardware efficiency, dipping as low as just 5% when
64 consumers were used.

Our baseline implementation using the conventional cluster
fared only marginally better. While the conventional system’s
efficiency fell as low as 28% its general trend was the roughly
the same as our original implementation, decreasing rapidly as
system size increases.

Meanwhile Deluge on the Lucata chick maintained a rel-
atively consistent efficiency percentage with a maximum,
minimum, and average of 99.5%, 96%, and 98% respectively.
This means that as we increase consumer core count each
new core added is providing at least 96% of the throughput
of the single core case. Deluge’s substantially improved, and
near perfect hardware efficiency, is what allows it to obtain
superior scalability over previous attempts and even that of
the conventional cluster.

VI. OTHER IMPLEMENTATIONS

Firehose variant 1 is a much simpler problem. We previously
implemented a migrating thread for that variant [17] and saw
throughputs of 222K d/msec, with good (but not perfect)
scalability.

There are several other reported implementations of Fire-
hose variant 2. The website discusses two other implemen-
tations. One is a shared memory implementation on a single
node where performance on one core was 1900 d/ms, and
only 3400 for 7 cores. These numbers are higher than either
of our implementations, but it must be remembered that the
multi-process overheads of are not present in a shared memory



implementation. However, the efficiency at 7 cores is only
about 25%, so clearly this is not a scalable implementation.

Another very relevant implementation discussed on the
website and in [5] is a cluster implementation on a Cray
CS-300 with data from dual-socket 16 core 2.6GHz nodes
in configurations from 40 up to 300 nodes. Scalability was
decent, but performance on a per core basis was about 62
d/msec, considerably less than any of our implementations.
Efficiencies appear to be even less than the ones for our
conventional implementation here.

A final implementation used NVIDIA Tesla GPUs [6]. The
limited published data indicated a performance of 61K d/ms
for 2 Tesla M40s, and 122K d/msec for 4 M40s. This is higher
than the implementations here, but it is unclear how such a
system would scale to very large numbers of such nodes.

A. Extrapolation to Pathfinder-S

As mentioned earlier, a new migrating thread system is
being installed in the CRNCH center, with characteristics
in Table I. There are more, faster, cores and more memory
bandwidth. The 30% increase in clock rate implies that we
should expect a 30% jump for the Lucata implementations in
both Fig. 5 and 6. The 3X jump in cores, a concurrent almost
3X jump in memory bandwidth, and a doubling in the number
of chassis suggests that we could now see in a revised Fig.
5 a Deluge line that beats the conventional implementation
at 6 cores, and continues to scale up to around 384 cores. If
scaling remains near perfect, this puts the numbers near what
was reported on the Firehose website for a 1000 cores of a
Cray CS-300 cluster, again where each core has a 10X or better
clock. This represents a potentially tremendous improvement
in the state of the art for this problem.

VII. CONCLUSION

In this study we introduced Deluge, a new implementation
of streaming anomaly detection on migrating threads, which
achieved over an order of magnitude improvement to both
hardware efficiency and throughput over prior designs. It
is clear that our previous attempt at unbounded key space
anomaly detection while fruitful from a knowledge gained per-
spective, were lack luster in their performance and scalability.
By tailoring Deluge to more closely reflect the encapsulated
yet freely mobile nature of execution throughout the migrating
thread architecture we were able to achieve near perfect
throughout scaling as well as hardware efficiency at scale.

What makes these results so startling is that the Deluge
implementation is on a hardware base that per core is con-
siderably slower, and has an equally lower equivalent band-
width. Regardless of possessing comparatively lower compute
resources, as system sizes increased the dramatically superior
hardware efficiency achieved by Deluge and migrating threads
lead to a significantly superior system performance after just
a few cores. The ability to support huge numbers of threads
relative to the number of cores makes for excellent and
essentially self-managing load balancing.

As previously stated the Lucata chick exhibited many novel
architectural features and provided a plethora of benchmark
and proof of concept data for such a system. The new
Pathfinder-S may prove to be even more useful for the execu-
tion of irregular applications thanks to its numerous hardware
equipment upgrades/advancements. In the very near term we
will be focusing on characterizing the new system and its uses.
We also look forward to adapting the paradigm used here to
other streaming problems.
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