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ABSTRACT
E↵ective dimension reduction is a key factor in facilitating large-scale simulation

of high-dimensional dynamical systems. The behavior of low-dimensional surrogate

models often relies on accurate reconstruction of quantities that can be nonlinear

functions of the original parameters. For instance, in low-dimensional combustion

models, source terms representative of complex chemical kinetics must be modeled

accurately in the reduced dimensional space in order to yield accurate predictions.

Features such as sharp gradients or non-uniqueness in a quantity of interest (QoI)

may be introduced through a parameterization and pose di�culties for reconstruc-

tion techniques. Many existing manifold quality assessments do not consider these

features and limit examination to the original parameters and low-dimensional em-

bedding. We have developed a technique for quantitatively assessing manifold qual-

ity through characterizing feature size of QoIs by monitoring the change in variance

over an increasing filter width. Through identification of variance at small scales,

this technique detects undesirable sharp gradients and non-uniqueness of QoIs. Our

technique is not limited to a specific reduction method and can be used to compare

or assess manifold parameterizations in arbitrary dimensions. We demonstrate our

technique on combustion data from both simulation and experiment.
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1. Introduction

Simulation of large-scale high-dimensional dynamical systems, such as combustion,
can become computationally prohibitive due to sizable sets of equations to be solved
with varying resolution requirements. Dimension reduction is a key aspect in mak-
ing simulation of such systems more tractable. Many general methods for producing
meaningful low-dimensional embeddings exist, including, but not limited to, principal
component analysis (PCA) [1], locally linear embedding (LLE) [2], ISOMAP [3], local
tangent space alignment (LTSA) [4], and maximum variance unfolding (MVU) [5]. In
the context of combustion, parameterizations may also be derived based on intuition
of the physics governing the system. Parameterizations common in combustion are
discussed more in the following section.

It is essential that surrogate models built over a low-dimensional representation
of the original manifold yield accurate predictions for quantities of interest (QoIs)
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during a simulation. A particularly important example in combustion simulations is
the modeling of source terms, which influence the path a solution takes over a manifold
due to chemical reaction. Therefore, the QoIs may include variables other than the
original independent variables. Accurate reconstruction of QoIs can become di�cult,
however, if the dimension reduction introduces sharp gradients or non-uniqueness of
values [6].

Many of the existing manifold quality assessments do not take these features into
account and limit their examination to the original independent variables and low-
dimensional embedding. Moreover, many methods do not apply across reduction
techniques. Local continuity meta-criterion [7], trustworthiness and continuity mea-
sures [8], and mean relative rank errors [9] are just a few examples of local approaches
to quality assessment that consider pairwise distances within a neighborhood of points.
While these methods work well for isometric embeddings, they do not accurately assess
parameterizations, such as from LLE and LTSA, that distort the geometric structure
of each local neighborhood [10]. Many global assessments look at variance computed
over a manifold, such as suggested by Tenenbaum et al. [3] or used as criteria in PCA.
However, these global measures can ignore small regions of non-uniqueness that may
impede accurate QoI-modeling for simulation.

Methods such as those proposed by Zhang et al. [10] attempt to apply more gener-
ally across reduction techniques by incorporating both local and global measures that
equally pertain to normalized and isometric parameterizations. More recently, assess-
ments based on angles instead of pairwise distances [11] and local rank correlation with
special treatment for normalization [12] have been proposed. However, improvements
such as these do not address the parameterization of dependent variable QoIs. Fur-
thermore, the optimal parameterization for the independent variables alone is often
not optimal for representing quantities that are nonlinear functions of those variables
such as the chemical source terms in combustion. While visual inspection of a manifold
can provide qualitative assessment for a parameterization, it becomes impractical in
more than three dimensions.

In this paper, we introduce a technique that uses information from all QoIs to
provide a quantitative quality assessment of a manifold. By monitoring the change in
variance for a QoI over an increasing filter width, we can characterize feature sizes
over the manifold, which inform how well a surrogate model should represent that
QoI. Variance at small scales introduced through a parameterization can indicate
undesirable sharp gradients or unacceptable non-uniqueness. This technique provides
a quantitative quality assessment that is not limited to a particular reduction method
and may be used to compare or assess parameterizations in arbitrary dimensions.

In the following sections, we provide an overview of typical parameterizations for
combustion (§2), introduce details on our manifold quality assessment technique (§3),
and present results for assessing the parameterizations of interest on combustion data
from both simulation and experiment (§4).

2. Parameterizations in Combustion

Manifolds in combustion involving Ns species reacting in a single-phase are uniquely
described by a thermochemical state ~� with Ns + 1 variables. This state typically
consists of temperature (T ), pressure (p), and Ns � 1 species mass fractions (Yi).
As combustion can involve hundreds of chemical species participating in thousands
of reactions, the original parameterization of a combustion system can become quite
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large. The resulting equations can then become prohibitively expensive to solve at
large scale as the chemical reactions occur at very small timescales relative to the
surrounding flow fields.

Physics-based reduction methods were first used to parameterize combustion man-
ifolds by using a reduced set of meaningful coordinates that capture the underlying
combustion processes of interest. Example quantities used in physics-based parameter-
ization include the mixture fraction Z, which provides a measure of the stoichiometry
or mixture of fuel and oxidizer; the scalar dissipation rate �, which provides a mea-
sure of the strain on a flame or strength of di↵usion; and a progress variable defined
by a single or multiple species to track the extent of reaction, to name a few. These
lead to common models such as the steady (and unsteady) laminar flamelets [13],
flamelet-generated manifolds [14], and flame prolongation of intrinsic low-dimensional
manifolds [15]. Many more low-dimensional models for combustion exist that employ
simplifying assumptions of the physics which are not demonstrated in this work. A
more complete list of manifolds in combustion, physically-derived or otherwise, can
be found elsewhere [6]. These models are not always appropriate depending on the
physics present; but as the combustion physics becomes more complex, it can become
less clear which coordinates should be used to represent the system in the fewest di-
mensions with the most accuracy. This is especially true given the number of reduction
methods that exist for combustion.

Data-based reduction methods have become increasingly popular for deriving low-
dimensional representations of combustion data as they remove some of the physi-
cal intuition needed for physics-based models. Some examples of data-based methods
that have been used to represent combustion systems of varying complexity in a low-
dimensional space include ISOMAP [16], proper orthogonal decomposition [17, 18],
and many variants of PCA such as global [19–25], local [26–28], and nonlinear [29, 30].

Given multiple approaches to parameterizing a combustion manifold, it can be di�-
cult to assess and compare the quality of all possible parameterizations due to some of
the reasons mentioned in §1 as well as the di↵erence in derivation for physics-based and
data-based parameters. As an example, we will consider data composed of solutions to
the steady flamelet equations [13] for steadily increasing � until the flame starts to ex-
tinguish at which point we incorporate the solution over time to the unsteady flamelet
equations until the flame fully extinguishes. The system we consider involves fuel with
composition (mole %) 45% CO, 5% H2, and 50% N2 in air at 300K and atmospheric
pressure. Figure 1a shows the manifold parameterized by (Z, �) as in steady laminar
flamelet modeling. This parameterization is not adequate for describing the data as
the transient extinction event that happens once � becomes su�ciently large contains
variation in QoIs that is represented with the single large �. This can be seen by
the vertical plane in Figure 1a between the brown dotted and solid lines highlighting
the extinction event at ln (�) = 6.24, which is no longer uniquely represented in the
two-dimensional (Z, ln(�)) plane.

If we instead use a progress variable approach as an improvement for the non-
uniqueness seen with (Z, �) parameters, we achieve the manifold shown in Figure 1b.
For this manifold, the progress variable is defined with the species CO2 as

⇣CO2
=

YCO2
�min(YCO2

)

max(YCO2
)�min(YCO2

)
. (1)

When we use ⇣CO2
instead of � to parameterize the manifold, the states occurring

over the transient extinction event are spread out and uniquely represented on a two-
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(a) (Z,�) (b) (Z, ⇣CO2 )

(c) Pareto PCA (d) Range PCA

Figure 1. Parameterizations of simulated steady and unsteady flamelet data for CO/H2 in air colored by
YCO. The brown dashed line indicates the steady solution at the smallest � of 10�3, the brown solid line
displays the steady extinction limit (separation of steady and unsteady states), and the brown dotted line
shows the fully extinguished state.

dimensional plane.
Figures 1c and 1d demonstrate two-dimensional parameterizations using PCA, scal-

ing the data by the square-root of the standard deviation (Pareto [31]) and the di↵er-
ence in maximum and minimum values (Range) respectively. It has been shown the
resulting structure of the principal components (PCs) defined through PCA is sensi-
tive to how the data is scaled [32]. We use ~⌘ to represent the PC parameterization of
~�, which can then be truncated to an arbitrary dimensionality smaller than ~�. The
PCs are ordered according to how much of the global variance is explained which can
guide dimension reduction choices based on the amount of variance to retain over the
manifold. However, this is a global criteria, as mentioned in §1, and does not always
respect local features. In Figure 1c, we see the Pareto PCA manifold preserves unique-
ness of values in two-dimensions; however, based on variance analysis alone, the model
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suggests that only one-dimension is needed to retain 99% of the original variance over
the manifold. If we truncate the manifold to just one-dimension, we will introduce non-
uniqueness in our parameterization. Therefore, the global analysis PCA provides falls
short in this instance for determining an adequate dimension for parameterization.
In general, the global PCA criteria for choosing a dimensionality of highly nonlinear
manifolds, which is based on a linear projection, may not be adequate.

Figure 1c also shows the Pareto PCA reduction performing at least as well as the
physics-based (Z, ⇣CO2

) reduction. However, this will not always be true for all PCA
scalings. Range PCA, shown in Figure 1d, has introduced non-uniqueness in the regions
occurring before and after the steady extinction limit through projecting the original
manifold into two-dimensional PC space. This would suggest three or more dimensions
are needed to adequately represent the manifold with Range scaling compared to
Pareto; and this analysis might change depending on the QoI in question as well, which
we want to take into account when assessing quality of manifold parameterizations.

We note that if the transient extinction data were not included in Figure 1a, then the
QoI data would be unique over the (Z,�) manifold. In many of the parameterization
methods for combustion, surrogate models for QoIs are built using data generated
uniquely over the chosen parameters. For those cases, it may not make sense to check
for non-uniqueness on the generated manifolds. However, it can still be useful to have
a method for comparing feature sizes of parameterizations such as these and assessing
their applicability to complex scenarios of interest using representative experimental
or simulated data.

The data generated for the demonstration shown here allows us to easily assess
manifold quality for various two-dimensional parameterizations through visual inspec-
tion. However, it is impractical to visually assess each kind of parameterization for
each QoI, and this qualitative analysis is limited to three dimensions while more may
be needed in representing more complex data. We note that methods for quantita-
tive comparisons of parameterizations in combustion using a ground truth from direct
numerical simulation exist [33, 34], but in general we do not want to rely on the ne-
cessity for a “truth” when comparing reduction methods. This motivates the need for
a quantitative assessment that allows us to compare reduction methods for all QoIs
e�ciently. We introduce our proposed solution for manifold quality assessment in the
following section and later apply the technique in comparing the parameterizations dis-
cussed here on both computational and experimental combustion datasets in varying
dimensions.

3. Manifold Quality Assessment

The motivation for the technique proposed here comes from needing to assess various
projections of high-dimensional data onto a set of parameters for building surrogate
models of QoIs. A manifold maintaining uniqueness and moderate gradients in QoI
values should produce more accurate models. We therefore aim to characterize fea-
ture size with the focus on identifying smaller scales that present more di�culties for
accurate regression. In the following subsections, we present the formulation of the
technique (§3.1) and demonstrate how scales of variation are detected (§3.2) and can
be related to non-uniqueness in QoIs (§3.3).
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3.1. Formulation

In order to determine feature sizes for QoIs over a manifold, we analyze a normalized
variance computed over varying filter widths or bandwidths. Through this measure,
we can detect scales of variation below a bandwidth and monitor how the variation
changes as the bandwidth is increased. This is similar to how Gaussian filtering is used
to reduce noise below a filter width in signals or images, but with our focus on the
scales being filtered. To ensure that a bandwidth has the same e↵ect in each dimension
of the manifold, which may exist over varying magnitudes, the independent variable
observations are centered and scaled between zero and one as follows

x̂i =
xi �min(x)

max(x)�min(x)
(2)

where xi, being a vector of independent variable coordinates, represents a point on
the original manifold and x̂i then corresponds to the normalized manifold. This is
equivalent to applying an anisotropic filter/kernel on the original manifold.

For a given QoI, y, we then compute a filtered variance along the manifold using a
specified bandwidth, �, and normalize by the global variance. This defines a normalized
variance as

N (�) =

Pn
i=1(yi �K(x̂i;�))2Pn

i=1(yi � ȳ)2
(3)

where n is the number of observations, ȳ is the arithmetic average over the whole
manifold, and K is the weighted average quantity calculated using Nadaraya-Watson
kernel regression [35]:

K(�;�) =

Pn
j=1Wj(�;�)yjPn
j=1Wj(�;�)

(4)

for a Gaussian kernel Wj , defined for each point x̂j on the normalized manifold, which
can be evaluated given a bandwidth � as

Wj(�;�) = exp

✓
�||x̂j � �||22

�2

◆
. (5)

We use a Gaussian kernel for its desirable properties such as easily extending to ar-
bitrary dimensions, o↵ering infinite rather than compact support, and applying to
point-cloud as well as structured data.

The normalized variance, N (�), represents variance in a QoI at scales below a
bandwidth, �. For a manifold with unique observations, N will approach zero as
the bandwidth approaches zero and will approach one as the bandwidth increases to
encompass the manifold. More specifically,

lim
�!0

N (�) =

(
0 if all x̂i are distinctPn

i=1(yi�ȳ0
i )

2

Pn
i=1(yi�ȳ)2 if 9x̂i = x̂j for i 6= j

(6)

where ȳ0i is the arithmetic average of all observations of a QoI y occurring at the same
location as x̂i. Therefore, if all independent coordinates are distinct, then ȳ0i = yi and
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lim�!0N (�) reduces to zero, as shown in (6). At the other extreme,

lim
�!1

N (�) = 1 (7)

since K will approach the global arithmetic average ȳ with � large enough. The nor-
malized variance will smoothly and monotonically increase between these bounds since
the Gaussian kernel is strictly positive and has infinite support. Larger values of � at
which this rise occurs indicate larger scales of variation in the QoI which should better
facilitate regression over the manifold.

3.2. Detecting Scales of Variation

We will now demonstrate how the technique proposed above can detect scales of vari-
ation in data through an example problem. We start by considering three signals
8x 2 [0, 1] as

w1(x) = sin(2⇡x) (8)

w2(x) = w1(x) + sin(4⇡x) (9)

w4(x) = w2(x) + sin(100⇡x) + sin(1000⇡x) (10)

so that w1 is composed with one frequency, w2 contains two superimposed frequencies
(one of which matches w1), and w4 is made of four superimposed frequencies with two
matching those of w2. These signals are shown in Figure 2 evaluated at 5000 uniformly
spaced points in the domain.

0.0 0.2 0.4 0.6 0.8 1.0
x

4

3

2

1

0

1

2

3

4

w
(x
)

w1

w2

w4

Figure 2. Signals given by (8)-(10) evaluated at 5000 uniformly spaced points in the domain.

We now want to determine if the normalized variance technique can pick up the
multiple frequencies, or scales over which the signal is varying, present in the signals of
Figure 2. Through steadily increasing bandwidths the normalized variance monitors
the increase in the variance until the global scale is reached. The result is shown
in Figure 3, where we see the expected behavior of an increase of the normalized
variance from zero at small bandwidths to one at a bandwidth corresponding to the
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global variance. The normalized variance curves in this figure, therefore, represent the
cumulative fractional variance explained by scales less than �. The curve corresponding
to w1, which only has one frequency, has a single, smooth rise which starts to occur
at a larger scale (� ⇡ 0.2) than the others due to the smaller frequency. On the other
hand, the curve for w4 has four separate humps in the normalized variance, where
the two corresponding to the highest frequencies are more distinct than the two for
the lower frequencies. This is due to the larger frequencies being further apart than
the smaller frequencies which end up contributing to variance over similar scales. We
can see this blending in scales of variation occurring for the w2 signal as well. The
scales associated with the highest frequencies in w4 (showing up for � between 10�4

and 10�2), visually corresponding to the “noise” in the signal of Figure 2, will be
more di�cult to accurately model than the smaller frequencies. Having the scales of
variation span orders of magnitude as seen in w4 can also make accurate modeling
di�cult.

10 4 10 3 10 2 10 1 100 101
0.0

0.2

0.4

0.6

0.8

1.0

(
)

w1
w2
w4

Figure 3. Normalized variance computed using (3) for w1, w2, and w4 of (8)-(10).

We also note that the fastest changes in N of Figure 3 are occurring at � near the
intrinsic frequencies of the signals. For example, the scale pointed out earlier for w1

around � ⇡ 0.2 is close to 1/(2⇡). In order to better highlight these points, we look
at the derivative of N over the logarithmically scaled bandwidths, corresponding to
the display of N in Figure 3, which relays how fast the variance is changing as the
bandwidth changes. More specifically, we compute D̂(�) from

D(�) =
dN (�)

d log10(�)
+ lim

�!0
N (�) (11)

and

D̂(�) =
D(�)

max(D(�))
. (12)

In (11), we add lim�!0N (�) to the derivative in order to account for any overlapping
points that may cause N to level o↵ at a nonzero value for small bandwidths. We also
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normalize to better compare highlighted scales among the signals, or in general among
manifold parameterizations. In practice, we approximate the derivative in the first
term of (11) with central finite di↵erencing and the second term with N (� = 10�16).
This results in smooth curves for su�ciently sampled bandwidths.

The results for computing D̂(�) using (12) for w1, w2, and w4 are presented in
Figure 4. This separates scales of variation even more clearly through local maxima
observed in D̂(�). Even for the similar frequencies of w2, separate peaks can now
be observed, and the amount of blending that occurs over certain scales of varia-
tion is conveyed through the blending of peaks in the derivative. We can also see
how the rate of change in N starts to pick up around the intrinsic frequencies at
� ⇡ 1/(1000⇡), 1/(100⇡), 1/(4⇡), and 1/(2⇡), and peaks around the same order of
magnitude. This demonstrates how our normalized variance can detect intrinsic scales
of variation in a manifold.

10 4 10 3 10 2 10 1 100 101
0.0

0.2

0.4

0.6

0.8

1.0

(
)

w1
w2
w4

Figure 4. D̂(�) computed using (12) for Figure 3.

Analysis of the behavior of D̂(�) suggests an approximation of a Fourier transform.
For a single scale of variation, as found in w1, we get a single peak which behaves like
a smoothed delta function from a Fourier transform. For multiple scales of variation,
multiple peaks then materialize. However, unlike a Fourier transform, our technique
easily extends to point-cloud data and arbitrary dimensions. We now want to apply
the analysis in the context of dimension reduction and determine whether scales of
variation are characteristic features of a manifold or artifacts of the reduction. The
following section will demonstrate this extended analysis for detecting scales of non-
uniqueness in QoIs.

3.3. Quantitative QoI-Dependent Quality Assessments

In this section we will demonstrate how our technique is QoI-dependent and can dis-
tinguish between characteristic features and non-uniqueness or overlapping states on
a manifold. We first create a two-dimensional helical manifold defined by independent
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variables u and v as

u(t) = (1� t) cos(48⇡t)

v(t) = (1� t) sin(48⇡t)

�
8t 2 [0, 1] (13)

then define a dependent variable f for a specified parameter m as

f(u, v;m) = sin(2⇡(u2 +mv)). (14)

By changing the parameter m, we can create multiple dependent variables or QoIs
that have various degrees of contribution from v. The top row of Figure 5 shows
the resulting manifold, created using 5000 uniformly spaced samples of t, colored
by three separate QoIs for m = 0, 0.1, and 1. The manifold is two-dimensional and
cannot be projected onto either u or v while maintaining uniqueness in the independent
coordinates. However, we are interested in the variation of QoIs over the manifold, so
non-uniqueness is QoI-dependent. This is demonstrated in the bottom row of Figure
5 which presents the scatter in QoIs for a particular value of m when the manifold is
projected onto u. In the case form = 0, f has no dependence on v and can be projected
onto u while maintaining uniqueness. As we start to increase the value of m, moving
to the right in Figure 5, more and more non-uniqueness in f shows up due to the
projection into one-dimension. Therefore, while a one-dimensional parameterization
for f(u, v; 0) on u is acceptable, it is not for m = 0.1, 1.

Results for applying our quality assessment technique to each QoI over the one-
dimensional manifold defined by u and original two-dimensional manifold are shown
in Figure 6. Figure 6a displays the normalized variance and Figure 6b presents the
corresponding D̂(�) computed using (12). For the QoI with m = 0, we see a single rise
in the normalized variance of Figure 6a and the corresponding single peak in Figure
6b for both the 1D and 2D manifolds. This identifies a single feature size for f(u, v; 0),
which corresponds to maintaining uniqueness in the projection onto u. This feature
size is around � ⇡ 0.1, which can be rescaled to 0.2 on the original manifold (which
varies from -1 to 1), highlighting the dominant length scale of variation in f(u, v; 0).

As m is increased to 0.1, overlapping states are introduced in the one-dimensional
projection onto u. We can see two scales of variation being detected in Figure 6 around
order 10�4 and 10�1, with more emphasis given to the larger scale. In comparison,
only one scale of variation is found for m = 0.1 over the two-dimensional manifold.
Therefore, a smaller scale of variation is being introduced through the projection of
f(u, v; 0.1) onto u; and we know this additional scale of variation can be attributed
to the non-uniqueness being injected through nonzero m. As we increase m to 1, the
degree of non-uniqueness increases further and more emphasis is given to the smaller
scale associated with overlap on the 1D manifold.

We also note that the normalized variance for these 1D projections of nonzero m
approaches zero for small bandwidth despite there being non-uniqueness demonstrated
in the scatter plots of Figure 5. We know from (6) that for non-unique observations,
the normalized variance should approach a nonzero value as the bandwidth decreases
toward zero; however, this may be di�cult to capture with discrete data points as used
in this example. Therefore, the location of the peaks around � ⇡ 10�4 in Figure 6b are
a byproduct of spacing in t rather than a characteristic feature size. If the resolution
in t is changed (while maintaining enough resolution to capture the characteristic
feature size around � ⇡ 10�1), the location of the second peak introduced by the one-
dimensional projection will change while the peak at the larger � will remain constant.
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Figure 5. QoIs from (14) over the manifold defined in (13) evaluated at 5000 uniformly spaced values of t.
The top row shows the QoIs over the two-dimensional manifold and the bottom row shows the QoIs projected
onto u alone.

This is an attribute we can use to distinguish between variation from characteristic
features and variation from non-uniqueness.

Since, in some cases, it may be di�cult to increase the resolution of datasets, we
will explore the sensitivity of peak locations in D̂ to data spacing through random
subsampling of the original data. The peak locations should be more sensitive to
the data samples for peaks corresponding to overlap than for peaks corresponding
to characteristic features. Figure 7 demonstrates this sensitivity for f(u, v; 0.1) and
f(u, v; 1) projected onto u. Each curve in Figure 7 is an average of five realizations of
D̂ for a randomly selected sample based on a percentage of the original dataset. We
can see as less of the original data is used to compute D̂, the peaks corresponding to
overlap shift further to the right (due to larger spacing between points) while the peak
for the characteristic feature remains constant. The peaks around � ⇡ 10�4 in Figures
7a and 7b experience an 18% and 15% shift to the right, respectively, in log10(�) from
the full dataset to a randomly selected 25% of the dataset.
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(a) Normalized variance
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(b) D̂(�) computed using (12)

Figure 6. Quality assessment for f(u, v;m) in (14) over the original two-dimensional manifold and one-
dimensional manifold projected onto u.
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(a) 1D f(u, v; 0.1)
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(b) 1D f(u, v; 1)

Figure 7. Curves for D̂ averaged over five realizations of a randomly selected sample based on a percentage
(specified in the legend) of the original one-dimensional dataset. The 100% label corresponds to the full one-
dimensional datasets shown in Figure 6b.

In order to ensure this method of subsampling can be used to distinguish between
small scales of non-uniqueness and small features, we apply this technique to the w4

QoI from (10) in §3.2. The w4 signal in Figure 4 also showed variation at small scales
for a one-dimensional manifold, but the values over the single independent variable
were uniquely represented. Figure 8 shows the resulting peaks in D̂ for subsampling
the w4 dataset. We can see most of the peak locations remaining the same, while the
peak with the smallest � experiences a slight shift as the percentage of data used is
decreased. This small shift is due to under-resolving the variation occurring at the
largest frequency, but is much less sensitive to data spacing than in the presence of
overlap. This is seen with the peak only shifting by ⇡ 1% in log10(�) compared to
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the 15-18% shift seen in Figures 7a and 7b due to non-uniqueness. We can therefore
use this method of estimating sensitivity of scales of variation to data spacing through
subsampling in order to distinguish between non-uniqueness and characteristic features
of a manifold.
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100%
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50%
25%

Figure 8. D̂ averaged over five realizations of a randomly selected sample based on a percentage (specified
in the legend) of the original w4 dataset from Figure 2.

This example demonstrates how our technique provides a quantitative assessment
of parameterizations for QoIs through feature size. The � locations for peaks in D̂
provide a measure of scales at which each QoI is varying fastest (in a normalized
space), which can be related to feature sizes. Parameterizations that give rise to larger
feature sizes are preferred as those features should be easier to accurately model.
Scales of variation due to non-uniqueness in QoIs over a manifold are also detected,
and can be distinguished from characteristic features through their high sensitivity
to data spacing. Capturing percent changes in peak locations due to subsampling
a dataset provides an estimate of this sensitivity. Finally, this example showed how
both manifold coordinates and QoIs are incorporated in defining non-uniqueness and
determining the validity of parameterizations.

4. Application to Combustion

We will now use the quantitative manifold quality assessment technique outlined in §3
to compare parameterizations of combustion data for applicable QoIs. The technique
will be demonstrated on both simulated (§4.1) and experimental (§4.2) datasets.

4.1. Simulated Data

We will start with comparing the four two-dimensional parameterizations for describ-
ing the simulated steady and unsteady CO/H2 flamelet data displayed in Figure 1.
This provides an opportunity to validate our quality assessment technique with the
visual assessment performed in §2 before moving to a more complicated dataset. Our
representative QoIs for analysis will include temperature, select species (YCO, YH2

,
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YCO2
, and YOH), and applicable source terms. For single phase systems, such as we are

dealing with, equations for the mixture fraction do not contain a source term. There-
fore, for the (Z,�) parameterization, since � is typically computed from Z rather than
transported in laminar cases, no source terms will be considered in the manifold assess-
ment. For the (Z, ⇣CO2

) representation, a source term, SCO2
, for the transport of YCO2

will be considered. When using PCA parameterizations, the same transformation for
~� to ~⌘ applies to the source terms of ~�. Therefore, both the Pareto and Range PCA
parameterizations will include source terms S⌘i for each ⌘i in the assessment.

Figure 9 shows the computed D̂ for all the QoIs on each two-dimensional manifold
from Figure 1. We see that the curves in Figure 9a for the (Z,�) parameterization
never actually reach zero for all QoIs. This arises from lim�!0N (�) not reaching zero
due to variation in the QoIs during the extinction event being projected onto the
same set of grid points in Z for a single value of �. Therefore, (Z,�) is an inadequate
parameterization for the combined steady and unsteady flamelet data.
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Figure 9. D̂(�) for relevant QoIs on the manifolds of Figure 1.
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In Figures 9b - 9d, we can see that out of all the QoIs, source terms and the radical
species YOH show the smallest scales of variation, and in many cases show more than
one. In general, source terms tend to be di�cult to parameterize well as they are
nonlinear functions of the original coordinates in high-dimensional space and radical
species can be di�cult to model as they tend to evolve over smaller time and length
scales during the course of combustion than major species. We also note that Pareto
PCA and the progress variable parameterization show the QoIs with larger, more
unique feature sizes than Range PCA. This is due to the Range PCA manifold folding
over itself in two-dimensions which leads to the smaller scales of variation and large
range over which variation is observed for a given QoI. Despite the two-dimensional
Range PCA manifold introducing overlapping states, its curve in Figure 9d reaches
zero at small � because the observations do not lie directly on top of each other as
they do on the (Z,�) manifold. Therefore, the overlap that can be seen in Figure 1d
has to be detected through further analysis.

Since our technique applies to arbitrary dimensions, we can also compare the scales
of variation found in Figure 9 for two-dimensional projections of the simulated flamelet
data with the scales of variation over the original 12-dimensional space in Figure 10.
This figure shows that all QoIs exhibit one dominant feature size in the original 12-
dimensional space and that this feature size is larger than on the two-dimensional man-
ifold projections. Therefore, the projection into two dimensions is leading to sharper
gradients in QoIs compared to the original full-dimensional space and in some cases is
introducing new scales of variation, such as for YOH. While sharpening gradients is un-
desirable, it is still possible to build accurate models for those smaller features unlike
when non-uniqueness is introduced by the projection. We therefore need to determine
whether these new scales are features that need to be accurately modeled or represent
variation from non-uniqueness in which case the parameterization is inadequate for
modeling the QoIs.
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Figure 10. D̂(�) for all QoIs in the original 12-dimensional space for the simulated flamelet data.

We will use sensitivity of D̂ peak locations (�peak) to data subsampling as outlined
in §3.3 in order to di↵erentiate between non-uniqueness and characteristic features
on the two-dimensional manifold projections. Figure 11 displays the e↵ect of random
subsampling on D̂ for YOH over the (Z, ⇣CO2

) and Pareto PCA 2D manifolds. We find
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that subsampling down to 25% of the two-dimensional datasets does not significantly
impact the location of the peaks for either parameterization. There is only an ⇡
1% shift in log10(�peak) for both manifolds. This suggests that the secondary peak
introduced in the two-dimensional projections is simply an additional gradient that
can be modeled rather than non-uniqueness created by a fold in the manifold. We can
confirm this visually in Figures 1b and 1c as well.
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Figure 11. Curves for D̂ of YOH averaged over five realizations of a randomly selected sample based on a
percentage of the two-dimensional dataset.

In contrast, we find that the additional peaks in D̂ introduced through the Range
PCA 2D projection show high sensitivity to data subsampling. Figure 12 displays this
sensitivity of D̂ to random sampling for QoIs on the Range PCA 2D manifold that had
secondary peaks introduced compared to the original high-dimensional space in Figure
10. The two largest peaks in each subfigure of Figure 12, actually show similar behavior
seen in Figure 11 with low sensitivity to data spacing. However, the di↵erence between
the Range PCA 2D manifold and the Pareto PCA 2D and (Z, ⇣CO2

) manifolds is that
more peaks have been introduced at even smaller scales when using Range PCA.
These additional peaks show high sensitivity to subsampling, with ⇡ 17% shifts in
log10(�peak) or in some cases, like Figure 12c, a combination of two smaller peaks into
one. This high sensitivity to data spacing indicates non-uniqueness in the projection,
which we can visually confirm in Figure 1d. Since the source terms on the Range PCA
2D manifold experience the most variation right around the fold in the manifold, it also
makes sense that they would show the most sensitivity to data sampling. Therefore,
our manifold assessment technique is able to correctly determine the Range PCA 2D
parameterization as inadequate for describing the simulated flamelet data.

We can now further analyze the two acceptable two-dimensional parameterizations
of Pareto PCA and (Z, ⇣CO2

) by comparing the peak locations for all QoIs. Figure
13 shows the peak locations on a logarithmic scale for each QoI on the manifolds.
We note that two bars exist for YOH due to the existence of two peaks as shown in
Figure 11. This essentially provides a comparison of feature sizes on the normalized
two-dimensional manifold projections. We can see that there isn’t much of a di↵er-
ence in these QoI feature sizes for the Pareto PCA and (Z, ⇣CO2

) manifolds. Further
comparison, if desired, can consider other case-specific factors. For example, having
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Figure 12. Curves for D̂ on the Range PCA 2D manifold for various QoIs averaged over five realizations of
a randomly selected sample based on a percentage of the two-dimensional dataset.

fewer source terms to model might be considered favorable in some cases. Our mani-
fold quality assessment has shown that both of the two-dimensional Pareto PCA and
(Z, ⇣CO2

) parameterizations are acceptable and result in similar QoI feature sizes.
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Figure 13. Feature sizes associated with the (Z, ⇣CO2 ) and Pareto PCA parameterizations from Figure 1
using the proposed quantitative manifold assessment. The bar represents the locations in � where peaks in D̂
occur for each QoI. From bottom to top in each parameterization set, the bars correspond to T , YH2 , YOH,
YCO, and YCO2 followed by relevant source terms. Note that two bars exist for YOH corresponding to the two
peaks present in D̂ shown in Figure 11.

With our manifold quality assessment technique, we were able to determine that
out of the four parameterizations of simulated flamelet data shown in Figure 1, only
the Pareto PCA and (Z, ⇣CO2

) parameterizations were acceptable. We first computed
D̂ from the normalized variance and determined that non-uniqueness existed on the
(Z,�) manifold due to a nonzero value in N (and therefore D̂ as well) at small band-
widths. We then compared the D̂ curves for QoIs in the original 12-dimensional space
with the two-dimensional projections and found that additional peaks were intro-
duced through projection, indicating new scales of variation. Through subsampling
the datasets, we assessed sensitivity of these new peak locations to data spacing and
found that Range PCA, with a high sensitivity, also resulted in non-unique QoI repre-
sentation. In comparison, Pareto PCA and (Z, ⇣CO2

) did not show such sensitivity and
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were deemed acceptable parameterizations, with little di↵erence in the remaining QoI
peak locations (feature sizes). Visual inspection of Figure 1 supports this quantitative
analysis.

4.2. Experimental Data

Next, we will demonstrate how our method can assess point-cloud datasets by an-
alyzing parameterizations for an experimental combustion dataset. We consider the
Sandia flame D dataset [36] which contains approximately 57,000 observations each
for temperature and select species over six di↵erent heights in a CH4/air piloted jet
flame. Figure 14 shows the two-dimensional Pareto PCA and (Z, ⇣CO2

) representation
for the Sandia flame D data colored by the main fuel species YCH4

. We can see that
the data is less structured than the simulated flamelet data from Figure 1 and it is less
clear if these parameterizations are adequate in two-dimensions. We will therefore be
comparing parameterizations for Pareto PCA and Range PCA in two to four dimen-
sions along with the two-dimensional (Z, ⇣CO2

) representation. Our analysis of QoIs
will include experimental measurements of T , YO2

, YH2O, YCH4
, YCO2

, and YOH. The
Sandia flame D dataset does not contain observations of source terms and presents
di�culties in extracting enough information to compute source terms since data for
some species involved in the reactions of methane combustion are missing; therefore,
source terms will be excluded from the QoIs in this analysis. We note that while the
principal components are linear functions of all QoIs in this scenario, the QoIs become
nonlinear functions of the principal components once a low-dimensional parameter-
ization is chosen [20, 21]. After the dimension reduction, an inversion of the linear
operator defined by PCA to obtain the original variables is only approximate. There-
fore, while the QoIs considered for the experimental dataset may not exhibit the same
degree of nonlinearity as source terms might, they can still be used in a meaningful
demonstration of our quality assessment tool.

(a) Pareto PCA (b) (Z, ⇣CO2 )

Figure 14. Two-dimensional parameterizations for the experimental Sandia flame D data colored by YCH4 .

Figure 15 shows the normalized variance and D̂ over bandwidths for QoIs on the
two-dimensional Pareto PCA and (Z, ⇣CO2

) projected manifolds as well as the orig-
inal ten-dimensional space. The original ten-dimensions include temperature and all
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select species contained in the dataset. We can see that the curves for the normalized
variance are still smooth and the analysis applies to our point-cloud dataset even in
ten-dimensions. The radical species YOH is showing the most di↵erence between the
original space and the projection, just as seen with the simulated data. In the original
ten-dimensional space, all QoIs are showing a single feature size, while in the two-
dimensional projections, additional scales of variation are being introduced (mainly
for YOH). Therefore, we need to determine whether or not these new feature sizes can
be attributed to non-uniqueness.
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Figure 15. Normalized variance analysis for sample two-dimensional projections of the experimental Sandia
flame D data along with the original ten-dimensional space.

We can also examine the peaks of D̂ for higher dimensional parameterizations.
Figure 16 displays D̂ for the QoIs on the four-dimensional manifold projections. We
find that Pareto PCA in four dimensions, shown in Figure 16a, still shows additional
scales of variation not present in the original space shown in Figure 15. However, in
four dimensions, Range PCA, shown in Figure 16b, shows a single dominant feature
size for all QoIs just as in the original space. Therefore, the Range PCA 4D projection
is an adequate representation of the QoIs for the experimental dataset. We now need
to determine whether or not the other parameterizations are acceptable.

In order to determine if new scales of variation for QoIs on the low-dimensional
manifold projections are due to non-uniqueness, we again use data subsampling to
analyze sensitivity of these scales to data spacing. Figure 17 shows how peaks in D̂
for YOH (which showed the most noticeable di↵erence compared to the original high-
dimensional space) shift due to di↵erent subsampling percentages. The reported shifts
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Figure 16. D̂(�) for four dimensional PCA parameterizations of the Sandia flame D data.

in peak locations on a logarithmic scale relative to 100% sampling come from averaging
D̂ over five realizations of a randomly selected sample based on a percentage of the
projected manifold dataset. We find that the tallest peak, represented with solid lines,
does not experience a significant shift (3-5% on a logarithmic scale) with subsampling
percentage. In comparison, secondary peaks, represented with dashed lines, show a
11-20% shift in log10(�peak) as samples are decreased to 25% of the projected dataset.
Therefore, all of the manifold parameterizations considered here, excluding Range
PCA 4D, show signs of non-uniqueness and are not acceptable parameterizations of
the Sandia flame D dataset. We note that a dashed line for the Range PCA 4D manifold
is not present in Figure 17 because it does not have a secondary peak for YOH.

We find that the YOH QoI shows scales of variation indicative of non-uniqueness
in the parameterizations, excluding Range PCA in four dimensions. However, the
lower-dimensional parameterizations show promise in representing the other QoIs.
This demonstrates how non-uniqueness is QoI-dependent and how our manifold as-
sessment technique can determine when scales can be attributed to non-uniqueness
injected by a parameterization. Based on the analysis for the given set of QoIs, the
Range PCA projection into four dimensions is the only acceptable projection. Further
analysis on the QoI feature sizes could be done to try di↵erentiating the remaining
manifolds if YOH was not included as a QoI. This also demonstrates how the required
dimensionality of a parameterization can be QoI-dependent and can be determined
by analyzing QoI-uniqueness over manifolds of various dimensionality. We have shown
that our quantitative manifold assessment technique can compare parameterizations
of a specific dimensionality as well as parameterizations across dimensions. It is not
limited to a particular method of parameterization, dimensionality, or data structure.

5. Conclusions

Dimension reduction is commonly used to facilitate large-scale simulation of high-
dimensional dynamical systems such as combustion. Surrogate models must then ac-
curately represent QoIs over the low-dimensional parameterization in order for simula-
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tions to succeed. This suggests manifold quality assessments should take into account
features that may pose di�culties for reconstruction, such as non-uniqueness in QoIs
introduced through a parameterization. Existing methods, however, limit analysis to
the independent variables and low-dimensional representation.

We have proposed a technique that quantitatively assesses manifold quality through
characterizing feature sizes of QoIs using a normalized variance measure over vary-
ing bandwidth/filter width. Locations of peaks in a scaled derivative of the normal-
ized variance over logarithmically scaled bandwidths represent fast increases in QoI-
variation with increasing bandwidth and illustrate feature sizes. These peaks can be
used to determine when parameterizations introduce new scales of variation or feature
sizes compared to the original high-dimensional space through the introduction of new
peaks. Furthermore, quantifying the sensitivity of these peaks to data spacing using
subsampling can help distinguish between non-uniqueness and a characteristic feature
size.

The outlined analysis allows for comparing parameterizations of a given dataset for
representing the QoIs in arbitrary dimensions. Larger feature sizes are more desirable
and detection of non-uniqueness in QoI representation means a projection is unac-
ceptable. The proposed manifold quality assessment technique has been successfully
demonstrated on smooth simulated and noisy experimental datasets from combus-
tion for comparing parameterizations from physics-based and data-based reduction
methods. This technique is not limited to a specific reduction method, dimensional-
ity, or data structure; and it is applicable to scenarios demanding a QoI-dependent
assessment such as modeling requirements in reduction of high-dimensional dynamical
systems.
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