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Abstract
To a complex projective structure † on a surface, Thurston associates a locally con-
vex pleated surface. We derive bounds on the geometry of both in terms of the norms
k�†k1 and k�†k2 of the quadratic differential �† of † given by the Schwarzian
derivative of the associated locally univalent map. We show that these give a unify-
ing approach that generalizes a number of important, well-known results for convex
cocompact hyperbolic structures on 3-manifolds, including bounds on the Lipschitz
constant for the nearest-point retraction and the length of the bending lamination.
We then use these bounds to begin a study of the Weil–Petersson gradient flow of
renormalized volume on the space CC.N / of convex cocompact hyperbolic structures
on a compact manifold N with incompressible boundary, leading to a proof of the
conjecture that the renormalized volume has infimum given by one half the simplicial
volume of DN, the double of N .

1. Introduction
Throughout the work of Bers, Sullivan, and Thurston, the precise relation between
the conformal boundary of a hyperbolic 3-manifold and its internal geometry has
been a key subtlety. For example, the classical Bers inequality bounds the lengths
of geodesics in the 3-manifold in terms of their lengths in the hyperbolic metric on
the conformal boundary, and a related theorem of Sullivan gives uniform bounds on
the Teichmüller distance between the conformal boundary and the boundary of the
convex core for 3-manifolds with incompressible boundary. There is a long history of
results of this type, obtained by Canary (see [10]), Bishop (see [2]), Epstein, Marden,
and Markovic (see [13]), and Bridgeman and Canary (see [4], [5]), that have made
important advances through delicate arguments.
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This paper provides a unifying perspective to these considerations via the Schwar-
zian derivative, which naturally associates a holomorphic quadratic differential to
each component of the conformal boundary of a hyperbolic 3-manifold. Remarkably,
in addition to shining new light on a number of important results in the literature,
the “Schwarzian” is key to proving a conjectured lower bound on the renormalized
volume of hyperbolic 3-manifolds, a notion whose import we elucidate here.

To begin, the following initial result illustrates these explicit connections.

THEOREM 1.1
Let M be a hyperbolic 3-manifold, @cM its conformal boundary, and C.M/ its
convex core. Let �M be the holomorphic quadratic differential obtained from the
Schwarzian derivative of the map comparing @cM to its Fuchsian uniformization.
Then
1. the retract map @cM ! @C.M/ is

p
1C 2k�Mk1-Lipschitz, and

2. L.�M / � 4�j�.@cM/jk�Mk1, where L.�M / is the length of the bending
lamination �M of @C.M/.

Indeed, Theorem 1.1 follows almost directly from a theorem of G. Anderson,
bounding Thurston’s projective metric in terms of the hyperbolic metric where the
bound depends on the Schwarzian derivative. Taking Anderson’s result together with
the classical Nehari bound on the Schwarzian, we obtain many well-known results,
such as the Lipschitz bounds of Epstein, Marden, and Markovic (see [13]) and Bridge-
man and Canary (see [5]), and the length bounds of Bridgeman and Canary (see [4]),
as immediate corollaries.

Working a bit harder, we obtain bounds on L.�M / in terms of the L2-norm of
the Schwarzian, which we employ to study the powerful notion of renormalized vol-
ume. Motivated by considerations from theoretical physics, the notion of renormalized
volume was first introduced by Graham and Witten (see [14]) in the general setting
of conformally compact Einstein manifolds. In the setting of infinite-volume, con-
vex cocompact hyperbolic 3-manifolds, renormalized volume has been seen to be of
particular interest as a more analytically natural proxy for convex core volume (see,
e.g., [26], [27]). The approach here follows the work of Krasnov and Schlenker (see
[17]) and Schlenker (see [24]). Our L2-bounds give the following tight relationship
between the convex core volume VC .M/ and the renormalized volume VR.M/ ofM .

THEOREM 1.2
There is a function G.t/ � t1=5 such that if M is a convex cocompact hyperbolic
3-manifold with incompressible boundary, then

VC .M/� j�.@M/jG.k�Mk2/� VR.M/� VC .M/;
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and VR.M/D VC .M/ if and only if the convex core ofM has totally geodesic bound-
ary.

The result reveals the close connection of the renormalized volume to the volume
of the convex core, but the renormalized volume carries the advantage that if we fix
a hyperbolizable 3-manifold N , then VR is a smooth function on the space CC.N /
of all convex cocompact hyperbolic 3-manifolds homeomorphic to N . A formula for
the derivative was established by Taktajan and Teo (see [26]) and Zograf and Taktajan
(see [27]), and was re-proved by Krasnov and Schlenker (see [17]) using different
methods more germane to the present considerations (see Theorem 3.9 for a precise
statement). It is natural to conjecture that the infimum VR.N / of VR is the purely
topologically defined simplicial volume of N . By applying the variational formula of
Krasnov and Schlenker and Theorem 1.2 to study the Weil–Petersson gradient flow
of VR, we establish the conjectured lower bound.

COROLLARY 1.3
LetN be a compact hyperbolizable 3-manifold with nonempty incompressible bound-
ary and without torus boundary components. Then VR.N /D

1
2
VS .DN/, where DN

is the double of N and VS .DN/ is the simplicial volume. The infimum is realized if
and only if N is acylindrical or has the homotopy type of a closed surface.

Corollary 1.3 is an analogue of a well-known result of Storm on the convex core
volume (see [25]).

Partial results in this direction were established prior to our work. It follows
immediately from the Krasnov–Schlenker variational formula that all critical points of
VR occur atM 2 CC.N /, where the convex core ofM has totally geodesic boundary.
Note that this can only occur when N is acylindrical, in which case there is a unique
such structure in CC.N /, or N is homotopy equivalent to a surface and there is a
half-dimensional subspace of CC.N / of Fuchsian structures where the renormalized
volume is zero. In the acylindrical setting, Moroianu (see [20]) and Pallete (see [22])
have independently shown that this critical point is a local minimum of VR. When N
is a homotopy equivalent to a closed surface—the “surface group” case—our result
implies that VR.N / D 0. Previously, Krasnov and Schlenker (see [17]) had proved
that the renormalized volume has zero infimum when taken over quasi-Fuchsian man-
ifolds with finitely bent convex core boundary. In the special case of almost-Fuchsian
structures, this was proved by Ciobotaru and Moroianu (see [11]). Finally, when N is
acylindrical, Corollary 1.3 was proved by Pallete [23] using very different methods.
In fact, combining our methods with those of Pallete gives a new and technically sim-
pler proof of the Storm theorem on convex core volume for acylindrical manifolds.
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Note that, prior to the work here, it was not even known that the renormalized volume
was positive.

1.1. Core volume, renormalized volume, and Weil–Petersson distance
In a sequel (see [3]), we study the Weil–Petersson gradient flow further, supplying a
direct proof of renormalized volume lower bounds in terms of Weil–Petersson dis-
tance.

THEOREM 1.4
Given � > 0, there exists c D c.�;S/ > 0, so that if dWP.X;Y /� �, then we have

VR
�
Q.X;Y /

�
� c � dWP.X;Y /:

Here, Q.X;Y / denotes the Bers simultaneous uniformization of X and Y in
Teich.S/, and dWP.X;Y / is their Weil–Petersson distance. Together with the com-
parison of Theorem 1.2, we obtain direct proofs of the lower bounds on convex core
volume in [7] and [8]. Previously, these results had been obtained by building a com-
binatorial model for the Weil–Petersson metric (the pants graph), and showing that
these combinatorics also give volume estimates for the relevant convex cores. The
model relies on delicate combinatorial arguments involving the complex of curves and
its hierarchical structure developed in [18] and [19], while the renormalized volume
flow produces a natural analytic link between Weil–Petersson distance and volume.

1.2. Outline
We begin with a discussion of locally univalent maps and complex projective struc-
tures. On a projective structure there are two natural metrics: the hyperbolic metric,
which depends only on the underlying conformal structure, and Thurston’s projective
metric. By comparing a projective structure to its Fuchsian uniformization, one also
obtains a holomorphic quadratic differential via the Schwarzian derivative. The main
technical tool of the paper is an unpublished theorem of G. Anderson (Theorem 2.1),
bounding the projective metric in terms of the hyperbolic metric and a function of the
L1-norm of the Schwarzian quadratic differential. Section 2.1 is devoted to a short,
new proof of this theorem. As with the original, the proof is based on a construction
of Epstein which associates a surface in H

3 to a conformal metric on the unit disk �
and a locally univalent map f W �!bC.

In Sections 2.2 and 2.3, we review Thurston’s parameterization of locally univa-
lent maps and of projective structures in terms of measured laminations. In particular,
Thurston parameterizes projective structures on a surface by locally convex pleated
surfaces. There is a natural “retract” map from the projective structure to the pleated
surface that is 1-Lipschitz from the projective metric to the path metric on the pleated
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surface. Using the Schwarzian bound on the projective metric, we obtain a bound on
the Lipschitz constant for the retract map when we take the hyperbolic metric on the
domain (Corollary 2.7). The length of the bending lamination is also controlled by
the Schwarzian, as it is a linear function of the area of the projective metric (Theo-
rem 2.10).

In Section 2.4, we review the classical bounds of Nehari on the L1-norm of
the Schwarzian derivative of univalent maps and use the Nehari bounds to bound the
Schwarzian when the locally univalent map is a covering map for a domain in �. In
Sections 2.5 and 2.6, we combine the Nehari bounds to derive Lipschitz bounds on
retract maps from domains in bC to convex hulls in H

3 (Theorem 2.14) and from the
conformal boundary of a hyperbolic 3-manifold to the boundary of the convex core
(Theorem 2.15). We also obtain bounds on the length of the bending lamination of
the convex core (Theorems 2.16 and 2.17).

All of these bounds are based on the L1-norm of the Schwarzian. In Section 2.7,
we bound the length of the bending lamination in terms of theL2-norm of the Schwar-
zian. This will be used in our study of renormalized volume.

In Section 3, the last part of the paper, we begin our study of the renormalized
volume of a convex cocompact hyperbolic 3-manifold. After reviewing definitions,
we improve on bounds, originally due the Schlenker, comparing the renormalized
volume to the volume of the convex core. In particular, we show that the difference of
the two volumes is bounded by a function of the L2-norm of the Schwarzian of the
projective boundary (Theorem 1.2).

We use these bounds to study the Weil–Petersson gradient flow of �VR. Along
flow lines, the L2-norm of the Schwarzian of the projective boundary will decay
to zero. It will follow that the infimum of renormalized volume will agree with the
infimum of convex core volume (Theorem 3.11).

We highlight one other novelty of our approach: a new definition of the W -
volume. The usual definition ofW -volume involves the integral of the mean curvature
over the boundary of the manifold. We will see that it can be reinterpreted as a func-
tion of the volume of the submanifold, the area of the boundary, and the area of its
associated metric at infinity. This reinterpretation is valid even when the boundary is
not smooth and clarifies the formula for the W -volume of the convex core given in
[24].

The proof of our theorem on the lower bound for renormalized volume is actu-
ally quite short. The reader who is solely interested in this result can skip much of
the paper, as it only depends on the bound on the projective metric (Theorem 2.8),
the bound on the length of the bending lamination in terms of the L2-norm of the
Schwarzian (Section 2.7), and Section 3.
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2. Epstein surfaces and projective structures
Let f W �! bC be a locally univalent map. Thurston defined a natural metric on �
associated to f , the Thurston or projective metric. Here is the definition: let D ��
be an open topological disk and define 	D to be the hyperbolic metric on D. Then D
is round with respect to f if f .D/ is round in bC. We then define

	f .z/D inf
D
	D.z/;

where D ranges over all round disks containing z. By the Schwarz lemma, if 	�
is the hyperbolic metric on �, then 	� � 	D for all disks D contained in � with
equality if and only if D D�. Therefore, 	� � 	f with equality if and only if f is
the restriction of an element of PSL.2;C/. In particular, 	f > 0. Upper bounds for
	f are more subtle. The following theorem of Anderson will be a key tool for what
follows.

THEOREM 2.1 (Anderson, [1, Theorem 4.2])
	f .z/� 	�.z/

p
1C 2kSfk1.

Here Sf is the Schwarzian derivative quadratic differential on � given by

Sf D
��f 00
f 0

�0
�
1

2

�f 00
f 0

�2�
dz2:

Then kSf .z/k D jSf .z/j=	2�.z/ is a function on �. In particular, for any conformal
automorphism 
 of �, we have kS.f ı 
/.z/k D k.Sf /.
z/k. Furthermore, the sup
norm is given by

kSfk1 D sup
z2�

kSf .z/k:

2.1. Epstein surfaces
Using that bC can be naturally identified as the boundary of H3, we describe a con-
struction of Epstein that associates a surface in H

3 to a locally univalent map f W �!bC and a conformal metric 	 on �.
Given a point x 2H3, let 	x be the visual metric on bC centered at x. There are

several ways to define 	x , and we will choose one that fits our needs for later. For
z 2bC, let r be the geodesic ray based at x that limits to z at infinity. Then there will
be a unique totally geodesic copy of H2 �H

3 that contains x and is orthogonal to r .
The hyperbolic plane will limit to a round circle in bC. Let D be the disk bounded
by this circle that contains z and 	D , its hyperbolic metric. We then define 	x.z/D
	D.z/. Note that 	x is invariant under any isometry of H3 that fixes x. In fact, up to
a normalization, this last property also determines 	x .
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Given a conformal metric 	 on a domain in bC containing a point z, we observe
that the set h�;z D ¹x 2 H3j	x.z/D 	.z/º is a horosphere. We will be interested in
the horospheres associated to the pushforward metric f�	. Unfortunately, as f is
only locally univalent, this pushforward is in general not well defined. To get around
this, we define f�	.z/ by restricting f to a neighborhood of z, where f is injective,
pushing the metric forward on this neighborhood, and then evaluating at f .z/.

Let T 1H3 be the unit tangent bundle of H3, and let � W T 1H3!H
3 be the pro-

jection to H
3. If 	 is smooth, Epstein shows that there is a unique smooth immersionfEp� W �! T 1H3 such that fEp�.z/ is an inward pointing normal to the horosphere

hf��;z , and when Ep� D � ıfEp� is an immersion at z, the surface will be tangent to
hf��;z . We emphasize that if 	 is smooth, then while fEp� will always be an immer-
sion, Ep� may not be. For example, if 	x is the visual metric for a point x 2H3, thenfEp�x is a diffeomorphism onto T 1xH

3, but Ep�x will be be the constant map to x.
The maps fEp�, Ep� have some nice properties.

PROPOSITION 2.2 (Epstein [12, Theorem 2.1 and Equation 3.10])
Let gt W T 1H3! T 1H3 be the geodesic flow. Then gt ıfEp� DfEpet�. Furthermore, if
	 is smooth, then there are functions �0t ; �

1
t W �! .Rn¹�1º/[1 satisfying

�it .z/D
�i0.z/ cosh t C sinh t

�i0.z/ sinh t C cosh t
;

such that if neither �0t .z/, �
1
t .z/ are infinite, then Ept is an immersion at z and �0t .z/,

�1t .z/ are the principal curvatures. In particular, if t � log
q
j1C �i0.z/j=j1� �

i
0.z/j

for i D 0; 1, then Epet� is an immersion and locally convex at z.

The map Ep� W�!H3 is the (parameterized) Epstein surface of 	 associated to
the locally univalent map f . We will be particularly interested in the Epstein surface
Ep�� associated to the hyperbolic metric 	� in �. The importance of the Schwarzian
derivative in studying the Epstein surface for the hyperbolic metric is evident in the
following theorem.

THEOREM 2.3 (Epstein [12])
The principal curvatures of the Epstein surface Ep�� at the image of z 2 � are
�kSf .z/k
kSf .z/k˙1 .

Theorem 2.1 will follow from the following proposition.

PROPOSITION 2.4
If 	 is a smooth conformal metric and Ep� is locally convex, then 	f � 	.
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Proof
Define a map F W � � Œ0;1�! H

3 by F.z; t/ D Epet�.z/ if t 2 Œ0;1/ and F.z;
1/ D f .z/. By Proposition 2.2, F restricted to � � Œ0;1/ will be an immersion
to H

3 and will extend continuously on � � Œ0;1� to a map to H
3 [bC. Since F is

an immersion, F pulls back a hyperbolic structure on � � Œ0;1/ that is foliated by
the Epstein surfaces. By convexity, a hyperbolic plane tangent to any Epstein surface
in � � Œ0;1/ will be embedded and extend to a round disk on �D� � ¹1º with
respect to f . For a point z 2 �, let D be the round disk bounded by the boundary
of the hyperbolic plane tangent to the Epstein surface at .z; 0/. By definition, 	f �
	D . On the other hand, 	D D 	 from the definition of the Epstein surface (and our
normalization of the visual metric), and therefore 	f .z/� 	.z/ for all z 2�.

Proof of Theorem 2.1
By Theorem 2.3, the principal curvatures of Ep�� at Ep��.z/ are �kSf .z/k

kSf .z/k˙1 . By the

curvature equations in Proposition 2.2, if t > log.
p
1C 2kSf .z/k/, then the principal

curvatures of Epet�� at Epet��.z/ are positive. So if t > log.
p
1C 2kSf k1/, then

Epet�� is locally convex. The theorem then follows from Proposition 2.4.

If Sf has small norm on a large neighborhood of z 2�, then we can get stronger
bounds on the Thurston metric.

COROLLARY 2.5
If kSf .z/k �K for all z 2B.z0; r/, then

	f .z0/� 	�.z0/
p
1C 2K coth.r=2/:

Proof
Let B D B.z0; r/. By the Schwarz lemma jSf .z/j

�B .z/2
� jSf .z/j
��.z/2

, and therefore by Theo-
rem 2.1,

	f jB .z0/� 	B.z0/
p
1C 2K;

where 	f jB is the projective metric for f restricted to B . By the definition of the
Thurston metric, 	f .z0/� 	f jB .z0/, and an explicit calculation shows that 	B.z0/D
	�.z0/ coth.r=2/. This gives the desired inequality.

2.2. The Thurston parameterization
Let P.�/ be locally univalent maps f W �!bC with the equivalence f � g if f D
� ıg for some � 2 PSL.2;C/. Thurston described a natural parameterization of P.�/
by ML.H2/, the space of measure geodesic laminations on H

2. We briefly review this
construction.
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A round disk D � bC shares a boundary with a hyperbolic plane H
2
D � H

3. Let
rD W D ! H

3 be the nearest point projection to H
2
D , and let QrD W D ! T 1H3 be

the normal vector to H
2
D at rD.z/ pointing towards D. We can use these maps to

define a version of the Epstein map for 	f . In particular, define fEp�f W �! T 1H3

by fEp�f .z/ D Qrf .D/.f .z//, where D is the unique round disk with respect to f

such that 	D.z/D 	f .z/, and let Ep�f .z/D � ı
fEp�f .z/D rf .D/.f .z//. (For the

existence of this disk, see [15, Theorem 1.2.7].) We also define fEpet�f D gt ı
fEp�f

and Epet�f D � ı
fEpet�f .

The image of Ep�f is a locally convex pleated plane. More precisely, let ML.H2/

be measured geodesic laminations on H
2, and let ML0.H

2/�ML.H2/ be the sub-
space of laminations with finite support. That is, � 2ML0.H

2/ if it is the union of a
finite collection of disjoint geodesics `i with positive weights 
i . Then � determines a
continuous map p� W H2!H

3, unique up to postcomposition with isometries of H3,
that is, an isometry on the complement of the support of � and is “bent” with angle 
i
at `i . By continuity, we can extend this construction to a general � 2ML.H2/. An
exposition of the following theorem of Thurston can be found in [15].

THEOREM 2.6
Given f 2 P.�/, there exist maps cf W �! H

2 and pf W H2! H
3 and a lamina-

tion �f such that pf is a locally convex pleated surface pleated along �f , Ep�f D
pf ı cf , and the map f 7! �f is a homeomorphism from P.�/!ML.H2/. Fur-
thermore, the maps cf W .�;	f /!H

2 and Ep�f W .�;	f /!H
3 are 1-Lipschitz.

Combined with Theorem 2.1, we have an immediate corollary.

COROLLARY 2.7
Given f 2 P.�/, the Epstein map Ep�f W .�;	�/!H

3 is
p
1C 2kSfk1-Lipschitz.

2.3. Projective structures
A projective structure † on a surface S is an atlas of charts to bC with transition maps
the restriction of Möbius transformations. We let P.S/ be the space of projective
structures on S . One way to construct a projective structure on S is to take an f 2
P.�/ such that there exists a Fuchsian group � with S D�=� and a representation
� W � ! PSL.2;C/ with f ı 
 D �.
/ ı f for all 
 2 � . In fact, every projective
structure on S arises in this way.

This description of projective structures allow us to associate a number of objects
to a given projective structure. First, we observe that a projective structure determines
a complex structure X on S , and we let P.X/� P.S/ be projective structures on S
with underlying complex structureX . Given† 2 P.X/, the Schwarzian derivative Sf
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of f will descend to a holomorphic quadratic differential �† on X . The lamination
�f will be �-equivariant and descend to measured lamination �† on S . The hyper-
bolic metric 	� and the projective metric 	f on � will also descend to conformal
metrics 	X and 	† on X .

In the equivariant setting, Corollary 2.7 becomes the following theorem.

THEOREM 2.8
Given a projective structure † 2 P.X/, we have

	†.z/� 	X .z/
p
1C 2k�†k1:

If k�†.z/k �K for all z 2B.z0; r/, then

	†.z0/� 	X .z0/
p
1C 2K coth.r=2/:

If the measured lamination �† has support of a finite collection of closed geode-
sics 
1; : : : ; 
n with weights 
1; : : : ; 
n, then the length of �† is L.�†/D

P

i`.
i /,

where `.
i / is the hyperbolic length of 
i . This length extends continuously to general
measure laminations on S .

We have the following useful relationship between the area of the projective met-
ric and the length of the bending lamination.

LEMMA 2.9
Given a projective structure † 2 P.S/ with bending lamination �† 2ML.S/, we
have area.	†/DL.�†/C 2�j�.S/j.

Proof
Both the area of the projective metric and the length of the bending lamination vary
continuously in P.S/. The set of projective structures whose bending laminations is
supported on finitely many geodesics is dense in P.S/ and the formula area.	†/D
L.�†/ C 2�j�.S/j holds on such laminations by direct computation. The lemma
follows.

This immediately leads to bounds on the length.

THEOREM 2.10
If �† is the bending lamination for a projective structure †, then

L.�†/� 4�j�.†/jk�†k1:
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Proof
Squaring the inequality from Theorem 2.8, we get a bound on the area of the projec-
tive metric in terms of the area of the hyperbolic metric:

area.	†/� .1C 2k�†k1/area.	X /:

Subtracting area.	X /D 2�j�.†/j from both sides and applying Lemma 2.9, we have

L.�†/� 4�j�.†/jk�†k1;

as claimed.

2.4. Schwarzian bounds
We recall the classical Nehari bound on the Schwarzian derivative. (The upper bound
was proved independently by Kraus.)

THEOREM 2.11 (Nehari [21, Theorem I])
We have the following:
� If f W �!bC is univalent, then kSfk1 �

3
2

.
� If kSfk1 �

1
2

, then f is univalent.

In particular, if ��bC is a simply connected hyperbolic domain, then the above
theorem bounds the Schwarzian derivative of the uniformizing map f W �!�. If �
is hyperbolic but not necessarily simply connected, we can still bound the Schwarzian
for f (which in this case will be a covering map), but our bounds depend on the
injectivity radius of the hyperbolic metric of �. Let inj�.z/ be the supremum of the
radii of embedded disks in � centered at z, and let

ı� D inf
z2�

inj�.z/:

The following result bounding the Schwarzian in terms of inj� and ı� is due to Kra
and Maskit.

COROLLARY 2.12 (Kra and Maksit, [16, Lemma 5.1])
Let � be a hyperbolic domain in the plane that is not simply connected, and let
f W �! � be the uniformizing covering map. Then kSf .z/k � 3

2
coth2.inj�.z/=2/

and 1
2

coth2.ı�=2/� kSfk1.

Proof
For each z 2 �, the restriction of f to the disk B D B.z; inj�.z// is univalent. By
applying Theorem 2.11, we have that
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jSf .z/j

	2B.z/
�
3

2
;

where 	B is the hyperbolic metric on B . We also have 	�.z/ D tanh.inj�.z/=2/�
	B.z/. The upper bound follows.

Given any ı0 > ı�, there exists a disk B DB.z; ı/ such that f jB is not injective.
Therefore, by Theorem 2.11, there exists a z0 2B such that

jSf .z0/j

	2B.z
0/
�
1

2
:

A calculation shows that

	B.z
0/

	�.z0/
�
	B.z/

	�.z/
D coth.ı0=2/;

so kSf .z0/k � 1
2

coth2.ı0=2/. As this holds for all ı0 > ı�, the lower bounds follows.

We will only use the upper bound in what follows.

2.5. Lipschitz maps and hyperbolic domes
Let��bC be a hyperbolic domain, and letƒDbCn�. Then the convex hull,H.ƒ/�
H
3, is the smallest closed convex subset of H3 whose closure inbC isƒ. The boundary

of H.ƒ/ is the dome of �, which we denote as dome.�/. With its intrinsic path
metric, dome.�/ is a hyperbolic surface. The nearest point retraction of H3 to H.ƒ/
extends to a continuous map r W �! dome.�/. We are interested in comparing the
hyperbolic metric on � with the intrinsic path metric on dome.�/.

We would like to relate the retract r to an Epstein map. Let f W �!� be the
uniformizing map. Then f is a covering map, and for any conformal metric 	 on
� that is invariant with respect to the covering, the Epstein map for 	 will descend
to a map with domain � which (in abuse of notation) we will continue to denote
Ep� W �!H

3. We then have the following.

PROPOSITION 2.13
If f W �!� is the uniformizing map, then r ı f D Ep�f .

Proof
Given z 2�, there is a unique horosphere h based at z that intersectsH.ƒ/ at exactly
one point with this point being the projection r.z/.

The hyperbolic plane tangent to h at r.z/ is a support plane for H.ƒ/ and its
boundary bounds a round disk Dz � � which contains z. If 	Dz .z/D 	f .z/, then
Ep�f .z/D r ı f from the construction of the Epstein map for the projective metric.
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By the definition of the projective metric, 	Dz .z/ � 	f .z/, so we just need to
show that 	Dz .z/� 	f .z/.

If 	Dz .z/ > 	f .z/, then there exists a round disk D �� with 	Dz .z/ > 	D.z/.
Let h0 be the horosphere of points whose visual metrics agree with 	D at z. Since
	Dz .z/ > 	D.z/, the horosphere h0 bounds a horoball whose interior contains h. The
open hyperbolic half-space bounded by D will contain the interior of this horoball
and hence h. Since h intersects H.ƒ/, this open half-space will intersect H.ƒ/, a
contradiction.

Combining this proposition with Theorem 2.11 and Corollaries 2.7 and 2.12, we
have the following.

THEOREM 2.14
If f W � ! � � bC is a conformal homeomorphism, then the retract r W � !
dome.�/ is a

p
1C 2kSfk1-Lipschitz map from the hyperbolic metric on � to the

path metric on dome.�/. In particular, if� is simply connected, then r is 2-Lipschitz,
and if� is not simply connected with ı� > 0, then r is

p
1C 3 coth2.ı�=2/-Lipschitz.

When � is simply connected, Epstein, Marden, and Markovic proved that the
retract map was 2-Lipschitz (see [13, Theorem 3.1]). When � is not simply con-
nected, Bridgeman and Canary showed that r was .AC B

ı�
/-Lipschitz for universal

constants A;B > 0 (see [5, Corollary 1.8]). Our bounds are better both when ı� is
small and large. The simplicity of the proof here indicates one strength of our meth-
ods.

2.6. Hyperbolic 3-manifolds
The above result in turn can also be interpreted in terms of hyperbolic 3-manifolds.
Let � be a discrete, torsion-free subgroup of PSL.2;C/. Let � be a component the
domain of discontinuity of � , and let �� � � be the subgroup that stabilizes�. Then
the projective structure † D �=�� is a component of the conformal boundary of
the hyperbolic 3-manifold M D H

3=� , and X D dome.�/=�� is the component
of the boundary of the convex core, C.M/, of M that faces †. The nearest point
retraction M ! C.M/ extends continuously to a map r W †! X . Note that † is
incompressible in M if and only if � is simply connected. If † is compressible in
M , then compressible curves in† lift to homotopically nontrivial closed curves in�.
In particular, the length of the shortest compressible geodesic in † will be twice the
injectivity radius of �. In this setting, Theorem 2.14 becomes the following.
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THEOREM 2.15
Let M be a complete hyperbolic 3-manifold, † the complex projective structure on a
component of the conformal boundary of M , and X the component of the boundary
of the convex core ofM facing†. Then the retraction r W †!X is a

p
1C 2kSfk1-

Lipschitz map from the hyperbolic metric on † to the path metric on X . In particular,
if X is incompressible in M , then r is 2-Lipschitz, and if the length of every com-
pressible curve on X has length � ı > 0, then r is

p
1C 3 coth2.ı=4/-Lipschitz.

We can also apply the Schwarzian bounds to obtain bounds on the length of the
bending lamination. In particular, Theorem 2.10 becomes the following.

THEOREM 2.16
Let † be a component of the projective boundary of a hyperbolic 3-manifold M with
bending lamination �†. Then L.�†/� 4�j�.†/jk�†k1. In particular, we have the
following:
� If † is incompressible, then L.�†/� 6�j�.†/j.
� If† is compressible and the length of the shortest compressible curve is ı > 0,

then L.�†/� 6�j�.†/j coth2.ı=4/.

The bound in the incompressible case was first obtained by Bridgeman and Ca-
nary in [6]. In the compressible case, the bound in [4] is .A

ı
C B/j�.†/j, which is

stronger than the bound here. With more work, our methods can obtain similar bounds
as in [4]. The proof is technical and this result will not be used in the rest of the paper.

THEOREM 2.17
If † is a compressible component of the boundary of a hyperbolic 3-manifold with
bending lamination �† and the length shortest compressible curve is ı > 0, then
L.�†/� .

A
ı
CB/j�.†/j for universal constants A;B > 0.

Proof
The central idea is that that the ratio between the projective metric and the hyperbolic
metric can only be large in the (compressible) thin part of the surface.

The complex projective structure † is the quotient of a domain ��bC. Let X be
the conformal structure on † with hyperbolic metric 	X . Then � is a covering space
of X , and the hyperbolic metric 	� is the lift of 	X . Similarly, the Schwarzian �� on
� is the lift of the Schwarzian �† on †, and 	 Q† is the lift of the projective metric
	†. We would like to bound above the ratio 	†.z/=	X .z/. To do this, we will use
Corollary 2.7, which will require us to bound the Schwarzian k�†.z0/k for all z0 in
the disk B.z; 1/. (The choice of radius 1 is essentially arbitrary.) To bound �†, we
will use Corollary 2.12 to bound ��, and then use �� as the lift of �†.
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For z 2�, let

inj1�.z/D inf
z02B.z;1/

inj�.z
0/:

A simple estimate shows that there exists a constant A0 > 0 such that inj1�.z/ �
inj�.z/=A0 (which holds for any complete hyperbolic surface).

Let � > 0 be the two-dimensional Margulis constant, and let C �� be a compo-
nent of �-thin part�<� D ¹z 2� j inj�.z/ < �º. There is also a constant A1 > 0 such
that 3

2
coth2.x=2/ � A1

x2
for x � �. Then by Corollary 2.12, for all z0 2 B.z; 1/ with

z 2 C , we have

k��.z
0/k �

A1

inj1�.z/
2
�

A20A1

inj�.z/2
:

After applying Corollary 2.5, we see that, for z 2 C ,

	2Q†
.z/� 	2�.z/

�
1C

2A20A1

inj�.z/2

�
coth2.1=2/:

We want to bound the area of C in the projective metric. We let ` be the length
of the core geodesic of C in the hyperbolic metric. We give C coordinates S1 �
.�w.`/;w.`//, where S1 � ¹0º is the geodesic and is parameterized by arc length,
and each ¹
º � .�w.`/;w.`// is a geodesic segment orthogonal to the core geodesic.
The area form for the hyperbolic metric is then cosh t d
 dt . The constant w.`/ is
chosen such that inj�.
;˙w.`//D �. Another basic estimate in hyperbolic geometry
gives that there exists A2 > 1 such that

`ejt j=A2 � inj�.
; t/:

Here, it is important that z D .
; t/ 2 C is in the �-thin part.
We now calculate the area of C in the projective metric:

area.	 Q†jC /D
Z w

�w

Z `

0

cosh t	2Q†=	
2
� d
 dt

� coth2.1=2/
�

area.	�jC /C
Z w

�w

Z `

0

2A20A1

inj�.
; t/2
cosh t d
 dt

�
:

Then we use the lower bound on the injectivity radius to bound the remaining integral:Z w

�w

Z `

0

2A20A1

inj�.
; t/2
cosh t d
 dt � 2

Z w

0

Z `

0

2A20A1A
2
2

`2e2t
cosh t d
 dt

D 2

Z w

0

2`A20A1A
2
2

`2e2t
cosh t d
 dt
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� A3

Z w

0

et

`e2t
dt

D
A3

`
.1� e�w/�

2A3

`
:

Since `� ı, this becomes

area.	 Q†jC /� coth2.1=2/
�

area.	�jC /C
A3

ı

�
:

Given a point z 2 †, let Qz 2� be a point in the preimage of z. We then define
QinjX .z/D inj�. Qz/ and observe that this definition is independent of our choice of Qz.

Injectivity radius can only increase in a cover so injX .z/� QinjX .z/. The compressible
�-thin part is the set of points

X<�c D
®
z 2X

ˇ̌
QinjX .z/ < �

¯
:

If C is a component of the compressible �-thin part, then each component of the
preimage of C in � will be contained in a component QC , as well as the �-thin part of
�, and we will have area.	†jC /� area.	 Q†jC /. Furthermore, each C will contain a
simple closed geodesic, so there can be at most 3g� 3D 3

2
j�.†/j components of the

compressible �-thin part, and, therefore,

area.	†jX<�c /� coth2.1=2/
�

area.	X jX<�c /C
3A3

2ı
j�.†/j

�
:

On the other hand, if QinjX .z/ � �, then for z0 2 B.z; 1/, we have as above that
QinjX .z

0/� �=A0. Therefore, by Corollary 2.5,

	2†.z/=	
2
X .z/D 	

2
Q†
. Qz/=	2�. Qz/�

�
1C 3 coth2

� �

2A0

��
coth2.1=2/DA4:

Therefore, we have that

area.	†jX��c /�A4area.	X jX��c /;

where X��c is the compressible �-thick part of X .
By letting A D 3

2
A3 coth2.1=2/ and B D 2�A4 and combining our two area

bounds, we have

L.�†/� area.	†/D area.	†jX<�x /C area.	†jX��c /� j�.†/j
�A
ı
CB

�
:

2.7. L2-Bounds for the bending lamination
Given a quadratic differential � on hyperbolic surface X with metric 	X , the ratio
j�j=	2X is a function on X . We define the L2-norm of � to be the L2-norm of this
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function with respect to the hyperbolic metric. In order to prove our main theorem
about renormalized volume, we will need a bound on L.�†/ in terms of the L2-norm
of the quadratic differential �†. We begin with the following lemma.

LEMMA 2.18
Let � be a holomorphic quadratic differential on a hyperbolic surface X .

Then

k�k2 � 2

r
�

3
tanh2

�
injX .z/=2

�
k�.z/k:

Proof
LetB DB.z; r/ be the disk centered at z of radius r D injX .z/. Let k�kX;2 be theL2-
norm of � onX , and let k�kB;2 be theL2-norm of � onB . Then k�kX;2 � k�kB;2 by
the Schwarz lemma. By [9, Lemma 5.1], we have k�kB;2 � 2

p
�=3k�.z/kB , where

k�.z/kB is the norm of � on B . Comparing the complete hyperbolic metric on B to
that on X , we see k�.z/kB D tanh2.r=2/k�.z/kX .

We now combine the above with the prior results to obtain comparisons of the
Thurston metric and Poincaré metric for quadratic differentials with small L2-norm
on the thick part of the surface. For � > 0, we define the � thick-thin decomposition
to be X�� D ¹z 2X j injX .z/� �º and X<� D ¹z 2X j injX .z/ < �º.

LEMMA 2.19
Let † 2 P.X/ be a projective structure such that k�†k2 � �5. Then for z 2X�� ,

	†.z/�
�
1CF.�/

�
	X .z/;

where F.t/' .2C 4
p
3=�/t as t! 0.

Proof
We can assume that � < 1 and then define r > 0 such that � D e�r . Let z 2X�� . For
w 2 B.z; r/ then, a simple calculation shows that injX .w/ � injX .z/e

�r � �2. This
follows from the fact that for C , a hyperbolic annulus with core geodesic of length `
is then

sinh
�
injC .x/

�
D sinh.`=2/ cosh

�
d.x/

�
;

where d.x/ is the distance from x to the geodesic. By comparing two points x, y with
injC .x/ > injC .y/, one obtains

injC .x/

injC .y/
�

sinh.injC .x//

sinh.injC .y//
�

cosh.d.x//

cosh.d.y//
� ed.x/�d.y/:
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Therefore, for w 2B.z; r/ by Lemma 2.18,

k�†.w/k �

r
3

4�

� k�†k2

tanh2.�2=2/

�
�

r
3

4�

� �5

tanh2.�2=2/

�
:

Therefore, by the local bound in Theorem 2.8, we have

	†.z/

	X .z/
�

s
1C

r
3

�

� �5

tanh2.�2=2/

�
coth.r=2/

D

s
1C

r
3

�

� �5

tanh2.�2=2/

��1C �
1� �

�
D 1CF.�/:

Computing the first two terms of the Taylor series shows that, as t! 0,

F.t/'
�
2C 4

r
3

�

�
t:

We now use the above to get prove the L2-bound on the length of the bending
lamination.

THEOREM 2.20
Let † 2 P.X/ be a projective structure with Schwarzian quadratic differential �†
with k�†k1 �K . Then

L.�†/� 2�j�.X/jGK.k�†k2/;

where GK.t/� t1=5 as t! 0.

Proof
We let � D k�k1=52 . As k�†k1 �K , by Theorem 2.8 we have 	†.z/ �

p
1C 2K �

	X .z/ for all z. We decompose X into the thick-thin pieces

area.	†/D
Z
X��

	2†C

Z
X<�

	2† �

Z
X��

�
1CF.�/

�2
	2X C

Z
X<�

.1C 2K/	2X :

Therefore,

area.	†/�
�
1CF.�/

�2
area.	X�� /C .1C 2K/area.	X<� /:

Since area.	X�� /� area.	X /D 2�j�.S/j and for the genus g surface S there are at
most .3g � 3/ �-thin parts each with area bounded by 2�, we have

2�j�.S/j CL.�†/�
�
1CF.�/

�2
2�j�.S/j C .1C 2K/.3g � 3/2�:
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Since j�.S/j D 2g � 2 when we apply Lemma 2.9, we have

L.�†/ � 2�j�.S/j
��
1CF.�/

�2
C
3�

2�
.1CK/� 1

�
D 2�j�.S/j

�
2F.�/CF.�/2C

3�

2�
.1C 2K/

�
:

3. Renormalized volume
We now describe the renormalized volume for a convex cocompact hyperbolic 3-
manifold M . We also review many of its fundamental properties as developed by
Krasnov and Schlenker. While it will take some setup before we state the definition,
we will see that renormalized volume has many nice properties that make its definition
natural.

3.1. The W -volume
Throughout this subsection and the next, we fix a convex cocompact hyperbolic 3-
manifoldM and let @cM be its conformal boundary,† be its projective boundary, �M
be the bending lamination of the convex core, and �M be the Schwarzian derivative
of †. We also let 	M be the hyperbolic metric on @cM and 	† be the projective
metric determined by †.

Let N �M be a smooth, compact convex submanifold of M with C 1;1 bound-
ary. Here, and in what follows, N is convex if every geodesic segment with endpoints
in N is contained in N . Then the W -volume of N is

W.N/D vol.N /�
1

2

Z
@N

H da;

where H is the mean curvature function on @N . That is, H is the average of the
principal curvatures or, equivalently, one half the trace of the shape operator. The C 1;1

condition (the normal vector field is defined everywhere and is Lipschitz) implies that
H is defined almost everywhere and that the integral

2

Z
@N

H da

is the variation of area of @N under the normal flow.
We let Nt be the t -neighborhood of N inM . Then there is a very simple formula

for the W -volume of Nt in terms of N .

PROPOSITION 3.1 (Krasnov and Schlenker [17])
LetM be a convex cocompact hyperbolic 3-manifold, and let N be a convex subman-
ifold with C 1;1 boundary. Then

W.Nt /DW.N/� t��.@cM/:
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(The desired statement follows directly from [17, Lemma 4.2].)
As defined, the W -volume is a function on the space of convex submanifolds

of M with C 1;1 boundary. We would like to reinterpret it as a function on smooth,
conformal metrics on @cM . We need the following lemma.

LEMMA 3.2
Let H be a closed convex submanifold of H3, and let ƒDH \ bC and �D bCnƒ.
Then there exists a conformal metric 	D 	H on � such that Ep� is the nearest point
retraction r W �! @H . If 
 2 PSL.2;C/ with 
.H/DH , then 
�	D 	.

In particular, if N �M is a convex submanifold of a convex cocompact hyper-
bolic manifold M , then there exists a smooth metric 	 D 	N on @cM such that
Ep� D r , where r W @cM ! @N is the nearest point retraction.

Finally, if Nt is the t -neighborhood of N , then 	Nt D e
t	N .

Proof
For each z 2�, there is a unique horosphere hz based at z that intersectsH at exactly
one point and r.z/ is the point of intersection. We then define 	.z/ D �r.z/, where
�r.z/ is the visual metric. Then r satisfies all the properties of the Epstein map for 	,
and since the Epstein map is unique, we have r D Ep�. The construction is clearly
equivariant. Equivariance implies the second paragraph, and the last statement then
follows from Proposition 2.2.

We then have a nice formula for the integral of the mean curvature in terms of the
of the area of 	N and @N .

LEMMA 3.3
Let N be a smooth convex submanifold of a convex cocompact hyperbolic 3-
manifold M . ThenZ

@N

H daD
1

2
area.	N /� area.@N /� ��.@M/:

Furthermore, if 	N D 	M , thenZ
@N

H daD k�Mk
2
2:

Proof
Let B W T .@N /! T .@N / be the shape operator given by B.v/D�rvn, where n is
the normal vector field to @N . In particular, the eigenvalues of B are the principal
curvatures of @N . Then
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H D
1

2
tr.B/D

1

4

�
det.I CB/� det.I �B/

�
;

where I W T .@N /! T .@N / is the identity operator. An elementary calculation shows
that the pullback via the retraction r W @cM ! @N of the 2-form det.I CB/da is the
area form for the metric 	N on @cM (see [17, Equation 30]). Therefore,

area.	N /D
Z
@N

det.I CB/da:

On the other hand,

det.I CB/C det.I �B/D 4C 2K;

where K D det.B/� 1 is the Gaussian curvature of @N . Therefore,Z
@N

�
det.I CB/C det.I �B/

�
daD 4area.@N /C 4��.@N/:

Rearranging the terms proves the first statement in the lemma.
For 	N D 	M the hyperbolic metric, by Theorem 2.3 the principal curvatures at

r.z/ are �k�M .z/k
k�M .z/k˙1

. Therefore, if da� is the area form for 	M , then

area.@N /D
Z
@N

daD

Z
@cM

1

det.I CB/
da� D

Z
@cM

�
1� k�M .z/k

2
�
da�

D area.	M /� k�Mk22:

Therefore as area.	M /D 2�j�.@M/j, the result follows.

This gives us an alternate way of defining the W -volume by setting

W.N/D vol.N /�
1

4
area.	N /C

1

2
area.@N /C

1

2
��.@N/:

Note that the definition makes sense even if the boundary N is not C 1;1. Also,
regardless of the regularity of N , the t -neighborhood Nt will always have C 1;1

boundary. In particular, the scaling property (Proposition 3.1) still holds for this alter-
native definition of the W -volume, even when the boundary of N is not C 1;1. One
advantage of this definition is that we can use it to see that the W -volume varies
continuously.

PROPOSITION 3.4
TheW -volume is continuous on the space of compact convex submanifolds ofM with
the Hausdorff topology. The map from compact, convex submanifolds to metrics on
@cM is continuous in the L1-topology.
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Proof
Fix a convex submanifoldN , and let Vi be convex submanifolds such that the distance
between N and Vi in the Hausdorff metric is less then 1=i . We can assume that
N � Vi , and if not, we can replace Vi with its 1=i -neighborhood. By Proposition 3.1,
the W -volume of the Vi will converge to W.N/ if and only if the W -volume of the
1=i -neighborhoods also converge to W.N/.

To see that the W -volume converges, we first observe that volume is continuous
in the Hausdorff topology on the space of convex submanifolds. Next we note that
the nearest point retraction of @Vi to @N is 1-Lipschitz, so area.@Vi / � area.@N /.
Since Vi � N1=i , we similarly have that area.@N1=i / � area.@Vi /. We also have
area.@N1=i /! area.@N /, and therefore area.@Vi /! area.@N /.

To compare the metrics 	N and 	Vi , fix a point z 2 @cM and let hz and hiz be the
horospheres based at z that meet N and Vi , respectively, in a single point. Then hiz

will be disjoint from N , but its 1=i -neighborhood will intersect N . This implies that
1 � 	Vi .z/=	N .z/ � e

1=i . It follows that the map from convex submanifolds with
the Hausdorff topology to the space of conformal metrics with the L1-topology is
continuous. Therefore, area.	N / varies continuously in N and this, along with the
previous paragraph, implies that the W -volume varies continuously.

Let M.@cM/ be continuous conformal metrics on @cM with the L1-topology,
and let MC .@cM/ be the subspace of metrics 	 such that there exists a convex sub-
manifold N with 	N D et	 for some t 2 R. We can then define the W -volume as a
function on MC .@cM/ by setting

W.	/DW.N/C t��.@cM/:

Note that MC .@cM/ will not be all continuous metrics. For example, a metric that
locally has the form jdzj

1Cjzj
will not be in MC .@cM/. However, we have the following

proposition.

PROPOSITION 3.5 (Krasnov and Schenker [17, Theorem 5.8])
Let 	 be a smooth metric on @cM . Then for t sufficiently large there exists a convex
submanifold N �M such that et	D 	N . In particular, 	 2MC .@cM/.

We are now finally in position to define the renormalized volume. We let 	M be
the hyperbolic metric on @cM , and define

VR.M/DW.	M /:

We have, by Lemma 3.3, that if N is the submanifold corresponding to 	M , then

VR.M/D vol.N /� k�Mk
2
2:
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THEOREM 3.6 (Schlenker [24, Proposition 3.11, Corollary 3.8])
Let M be convex cocompact. Then we have the following.
� (Maximality): If 	 2 MC .@cM/ with area.	/ D area.	M /, then W.	/ �

VR.M/ with equality if and only if 	D 	M .
� (Monotonicity): If 	0; 	1 2MC .@cM/ have nonpositive curvature on @cM

and 	0 � 	1, then

W.	0/�W.	1/:

3.2. Bounds on renormalized volume
For quasi-Fuchsian manifolds, Schlenker used the W -volume of the convex core to
get upper and lower bounds on the renormalized volume (see [24, Theorem 1.1]). This
is generalized easily to convex cocompact 3-manifolds with incompressible boundary
(see [6, Theorem 1.1]).

Schlenker’s approach was to use the monotonicity property and maximality prop-
erty of W-volume. If N is the convex core of M , then by Proposition 2.13, the metric
at infinity 	N D 	† is the projective metric. As the projective metric is nonposi-
tively curved and is greater than the hyperbolic metric, the monotonicity property of
W -volume (see Theorem 3.6) gives an upper bound on the renormalized volume. By
rescaling the metric so that it has the same area as the hyperbolic metric, the maximal-
ity property (again, see Theorem 3.6) gives a lower bound on renormalized volume.

In order to obtain L2-bounds, we will use the same strategy as Schlenker. We first
need the following theorem. The upper bound is due to Schlenker (see [24]), and the
lower bound is a simple application of the monotonicity and maximality properties of
renormalized volume.

THEOREM 3.7
Let M be a convex cocompact hyperbolic 3-manifold. Then

VC .M/�
1

2
L.�M /� VR.M/� VC .M/�

1

4
L.�M /;

and VC .M/D VR.M/ if and only if the convex core ofM has totally geodesic bound-
ary.

Proof
As noted above, the metric at infinity 	N for the convex core N is the projective
metric 	†. Using our formula for the W -volume in terms of area, we compute that

W.	†/DW.N/D VC .M/�
1

4
area.	†/C

1

2
area.@N /C

1

2
��.@N/:
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By Lemma 2.9, area.	†/D L.�M /C 2�j�.S/j. Since the boundary of the convex
core is a hyperbolic surface, we have area.@N /D 2�j�.S/j. Therefore,

W.	†/D VC .M/�
1

4
L.�M /:

Since 	† � 	M , by the monotonicity property we have W.	†/� VR.M/, so

VC .M/� VC .M/�
1

4
L.�M /� VR.M/;

with VC .M/D VR.M/ if and only if L.�M /D 0. This proves the upper bound.
For the lower bound, let

O	† D

s
area.	†/
area.	M /

	†:

Then area. O	†/ D area.	M /, so by the maximality property (see Theorem 3.6),
W. O	†/ � VR.M/. Similarly, by the scaling property (see Theorem 3.6) and the for-
mula for area.	†/, we have

W. O	†/DW.	†/�
�

2
log
�
1C

L.�M /

area.	M /

�
j�.@M/j:

As log.1C x/� x and area.	M /D 2�j�.@M/j, we have

VR.M/�W. O	†/�W.	†/�
1

4
L.�M /D VC .M/�

1

2
L.�M /:

Thus it follows that

VC .M/�
1

2
L.�M /� VR.M/� VC .M/�

1

4
L.�M /:

We therefore have VC .M/ D VR.M/ if and only if L.�M / D 0. Thus, VC .M/ D

VR.M/ if and only if M has totally geodesic boundary.

Combining the L2-bound for length in Theorem 2.20 with the above theorem, we
obtain the following.

THEOREM 3.8 (see Theorem 1.2)
There is a function G.t/ � t1=5 such that if M is a convex cocompact hyperbolic
3-manifold with incompressible boundary, then

VC .M/� j�.@M/jG.k�Mk2/� VR.M/� VC .M/;

and VR.M/D VC .M/ if and only if the convex core ofM has totally geodesic bound-
ary.
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Proof
As M has incompressible boundary, then we have the Nehari bound k�Mk � 3

2
. By

Theorem 2.20, we have

L.�M /� 2�j�.@cM/jG 3
2
.k�Mk2/;

where G 3
2
.t/� t1=5 and the result follows with G D � �G 3

2
.

The results here should be compared to earlier work of Bridgeman and Canary.
For manifolds with incompressible boundary, they prove a lower bound where the
function G.t/ in Theorem 1.2 is replaced by a universal constant (see [6, Theo-
rem 1.1]). For manifolds with compressible boundary, they give upper and lower
bounds on the VR.M/ that depend on the length of the shortest compressible curve
in the boundary (see [6, Theorem 1.3]). In particular, one can produce a sequence
of Schottky manifolds (convex cocompact hyperbolic structures on a handlebody) of
fixed genus whose convex core volume is bounded above but the length of the shortest
compressible curve approaches zero. Then the Bridgeman–Canary bounds imply that
the renormalized volume of this sequence limits to �1.

3.3. The gradient flow of VR
Let N be a compact, hyperbolizable 3-manifold with incompressible boundary, and
let CC.N / be the space of convex cocompact hyperbolic structures on N . Then for
each M 2 CC.N /, the map M 7! @cM defines an isomorphism from CC.N / to
Teich.@N /. The renormalized volume is then a function on CC.N / and, via the above
identification, a function on Teich.@N /. By [17, Corollary 8.6], VR is a smooth func-
tion and we let V be the gradient flow of �VR with respect to the Weil–Petersson
metric on Teich.@N /.

Recall that a tangent vector to Teichmüller space is given by a Beltrami differ-
ential and a cotangent vector is a holomorphic quadratic differential. The following
variational formula appears in [26, Theorem 6.2].

THEOREM 3.9
Given M 2 CC.N / and � 2 T@cM Teich.@N /, we have

dVR.�/D Re
Z
@cM

��M :

Using this variational formula, we get an explicit description of the gradient flow.

PROPOSITION 3.10
The flow for V is defined for all time and for each M 2 CC.N /, V.M/D�

N�M
�2
M

.
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Proof
The isomorphism T �X Teich.S/! TX Teich.S/ determined by the Weil–Petersson

metric is given by � 7!
N�

�2
X

. Therefore, the second statement follows by Theorem 3.9.

To see that V is defined for all time, we observe that in the Teichmüller metric,
the norm of V is bounded by 3=2 from the Kraus–Nehari bound (Theorem 2.11).
Since the Teichmüller metric is complete, a bounded vector field has a flow for all
time.

Recall that VR.N / is the infimum of the renormalized volume of M 2 CC.N /.
We define VC .N / to be the same quantity with renormalized volume replaced by con-
vex core volume. While VC .N / is trivially nonnegative, this is not clear for VR.N /.
As noted above, if N is a handlebody, then work of Bridgeman and Canary (see [6])
implies that VR.N /D �1. However, if N has incompressible boundary, we prove
the following.

THEOREM 3.11
Let N be compact hyperbolizable 3-manifold with nonempty incompressible bound-
ary and without torus boundary components. Then VR.N /D VC .N /. If there exists
an M 2 CC.N / with VR.M/D VR.N /, then either N is acylindrical and M is the
unique manifold in CC.N / whose convex core boundary is totally geodesic, or N has
the homotopy of a closed surface and VR.N /DM if and only if M is a Fuchsian
manifold.

Proof
We first observe that, by the upper bound on renormalized volume from Theorem 1.2,
VR.N / � VC .N /. If we have M 2 CC.N / with VR.M/D VR.N /, then M is crit-
ical point of VR and therefore by the variational formula (Theorem 3.9), �M D 0.
This occurs exactly when the convex core of M has totally geodesic boundary which
implies that either N is acylindrical or M is Fuchsian. In the acylindrical case, there
is a unique M 2 CC.N / whose convex core boundary is totally geodesic.

Now choose M 2 CC.N /, let Mt be the flow of V with M DM0, and let �t be
the Schwarzian derivative of the projective boundary Mt . We have

VR.MT /D VR.M/�

Z T

0

k�tk
2
2 dt:

Since VR is bounded below on CC.N /, the integral
R1
0 k�tk

2
2 dt converges. There-

fore, there is a increasing sequence ¹tiº such that ti !1 and k�ti k2! 0 as i!1.
We also have that VR.Mt / is a decreasing function of t that is bounded below, and
hence VR.Mt / is convergent as t !1. Together with Theorem 1.2, these two facts
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imply that

lim
i!1

VR.Mti /D lim
i!1

VC .Mti /:

Since VR.Mti / is a decreasing sequence, we have

VR.M/� lim
i!1

VR.Mti /:

By definition, VC .Mt /� VC .N /, so

lim
i!1

VC .Mti /� VC .N /:

Therefore, VR.M/� VC .N /. Since M is arbitrary, we have VR.N /� VC .N / com-
pleting the proof.

By a theorem of Storm (see [25, Theorem 5.9]), the infimum of the volume of
the convex core is half the simplicial volume of the double of the manifold with the
infimum realized if and onlyN is acylindrical orN has the homotopy type of a closed
surface. As an immediate corollary of our result and Storm’s theorem, we have the
following.

COROLLARY 3.12 (see Corollary 1.3)
LetN be a compact hyperbolizable 3-manifold with nonempty incompressible bound-
ary and without torus boundary components. Then VR.N /D

1
2
VS .DN/, where DN

is the double of N and VS .DN/ is the simplicial volume. The infimum is realized if
and only if N is acylindrical or has the homotopy type of a closed surface.

The manifold DN is hyperbolic if and only if N is acylindrical; then VS .DN/ is
twice the volume of the convex core of the unique M 2 CC.N / with totally geodesic
boundary. As noted in the introduction, Pallete has proved Corollary 1.3 ifN is acylin-
drical. Pallete’s proof does not appeal to Storm’s result, so combining Theorem 3.11
together with Pallete’s work gives a new proof of the Storm theorem in the acylindri-
cal case. In fact, by studying the limit of the Mt as t !1, one could directly prove
Storm’s theorem without appealing to [23]. This will be discussed further in [3].
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