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Abstract

To a complex projective structure 3 on a surface, Thurston associates a locally con-
vex pleated surface. We derive bounds on the geometry of both in terms of the norms
los oo and ||ps |2 of the quadratic differential ¢x of X given by the Schwarzian
derivative of the associated locally univalent map. We show that these give a unify-
ing approach that generalizes a number of important, well-known results for convex
cocompact hyperbolic structures on 3-manifolds, including bounds on the Lipschitz
constant for the nearest-point retraction and the length of the bending lamination.
We then use these bounds to begin a study of the Weil-Petersson gradient flow of
renormalized volume on the space CC(N) of convex cocompact hyperbolic structures
on a compact manifold N with incompressible boundary, leading to a proof of the
conjecture that the renormalized volume has infimum given by one half the simplicial
volume of DN, the double of N.

1. Introduction

Throughout the work of Bers, Sullivan, and Thurston, the precise relation between
the conformal boundary of a hyperbolic 3-manifold and its internal geometry has
been a key subtlety. For example, the classical Bers inequality bounds the lengths
of geodesics in the 3-manifold in terms of their lengths in the hyperbolic metric on
the conformal boundary, and a related theorem of Sullivan gives uniform bounds on
the Teichmiiller distance between the conformal boundary and the boundary of the
convex core for 3-manifolds with incompressible boundary. There is a long history of
results of this type, obtained by Canary (see [10]), Bishop (see [2]), Epstein, Marden,
and Markovic (see [13]), and Bridgeman and Canary (see [4], [5]), that have made
important advances through delicate arguments.
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This paper provides a unifying perspective to these considerations via the Schwar-
zian derivative, which naturally associates a holomorphic quadratic differential to
each component of the conformal boundary of a hyperbolic 3-manifold. Remarkably,
in addition to shining new light on a number of important results in the literature,
the “Schwarzian” is key to proving a conjectured lower bound on the renormalized
volume of hyperbolic 3-manifolds, a notion whose import we elucidate here.

To begin, the following initial result illustrates these explicit connections.

THEOREM 1.1

Let M be a hyperbolic 3-manifold, 0. M its conformal boundary, and C(M) its

convex core. Let ¢pr be the holomorphic quadratic differential obtained from the

Schwarzian derivative of the map comparing o.M to its Fuchsian uniformization.

Then

1. the retract map 0. M — 0C(M) is /1 + 2||¢u ||co-Lipschitz, and

2. L(Ap) < 4| x(0cM)|||dn |loo, Where L(Apr) is the length of the bending
lamination Apy of 0C(M).

Indeed, Theorem 1.1 follows almost directly from a theorem of G. Anderson,
bounding Thurston’s projective metric in terms of the hyperbolic metric where the
bound depends on the Schwarzian derivative. Taking Anderson’s result together with
the classical Nehari bound on the Schwarzian, we obtain many well-known results,
such as the Lipschitz bounds of Epstein, Marden, and Markovic (see [13]) and Bridge-
man and Canary (see [5]), and the length bounds of Bridgeman and Canary (see [4]),
as immediate corollaries.

Working a bit harder, we obtain bounds on L(A,s) in terms of the L?-norm of
the Schwarzian, which we employ to study the powerful notion of renormalized vol-
ume. Motivated by considerations from theoretical physics, the notion of renormalized
volume was first introduced by Graham and Witten (see [14]) in the general setting
of conformally compact Einstein manifolds. In the setting of infinite-volume, con-
vex cocompact hyperbolic 3-manifolds, renormalized volume has been seen to be of
particular interest as a more analytically natural proxy for convex core volume (see,
e.g., [26], [27]). The approach here follows the work of Krasnov and Schlenker (see
[17]) and Schlenker (see [24]). Our L2-bounds give the following tight relationship
between the convex core volume V¢ (M) and the renormalized volume Vg (M) of M.

THEOREM 1.2
There is a function G(t) ~ tY5 such that if M is a convex cocompact hyperbolic
3-manifold with incompressible boundary, then

Ve (M) = [x(OM)|G(ll¢mll2) < VR(M) < Ve (M),
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and VR(M) = V¢ (M) if and only if the convex core of M has totally geodesic bound-
ary.

The result reveals the close connection of the renormalized volume to the volume
of the convex core, but the renormalized volume carries the advantage that if we fix
a hyperbolizable 3-manifold N, then Vg is a smooth function on the space CC(N)
of all convex cocompact hyperbolic 3-manifolds homeomorphic to N. A formula for
the derivative was established by Taktajan and Teo (see [26]) and Zograf and Taktajan
(see [27]), and was re-proved by Krasnov and Schlenker (see [17]) using different
methods more germane to the present considerations (see Theorem 3.9 for a precise
statement). It is natural to conjecture that the infimum Vg(N) of Vg is the purely
topologically defined simplicial volume of N . By applying the variational formula of
Krasnov and Schlenker and Theorem 1.2 to study the Weil-Petersson gradient flow
of Vg, we establish the conjectured lower bound.

COROLLARY 1.3

Let N be a compact hyperbolizable 3-manifold with nonempty incompressible bound-
ary and without torus boundary components. Then Vr(N) = %VS (DN), where DN
is the double of N and Vs(DN) is the simplicial volume. The infimum is realized if
and only if N is acylindrical or has the homotopy type of a closed surface.

Corollary 1.3 is an analogue of a well-known result of Storm on the convex core
volume (see [25]).

Partial results in this direction were established prior to our work. It follows
immediately from the Krasnov—Schlenker variational formula that all critical points of
Vg occur at M € CC(N), where the convex core of M has totally geodesic boundary.
Note that this can only occur when N is acylindrical, in which case there is a unique
such structure in CC(N), or N is homotopy equivalent to a surface and there is a
half-dimensional subspace of CC(N) of Fuchsian structures where the renormalized
volume is zero. In the acylindrical setting, Moroianu (see [20]) and Pallete (see [22])
have independently shown that this critical point is a local minimum of Vz. When N
is a homotopy equivalent to a closed surface—the “surface group” case—our result
implies that Vgr(N) = 0. Previously, Krasnov and Schlenker (see [17]) had proved
that the renormalized volume has zero infimum when taken over quasi-Fuchsian man-
ifolds with finitely bent convex core boundary. In the special case of almost-Fuchsian
structures, this was proved by Ciobotaru and Moroianu (see [11]). Finally, when N is
acylindrical, Corollary 1.3 was proved by Pallete [23] using very different methods.
In fact, combining our methods with those of Pallete gives a new and technically sim-
pler proof of the Storm theorem on convex core volume for acylindrical manifolds.
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Note that, prior to the work here, it was not even known that the renormalized volume
was positive.

1.1. Core volume, renormalized volume, and Weil—Petersson distance

In a sequel (see [3]), we study the Weil-Petersson gradient flow further, supplying a
direct proof of renormalized volume lower bounds in terms of Weil-Petersson dis-
tance.

THEOREM 1.4
Given € > 0, there exists ¢ = c(€,S) > 0, so that if dwp(X,Y) > €, then we have

VR(Q(X,Y)) = ¢ dwe(X,Y).

Here, Q(X,Y) denotes the Bers simultaneous uniformization of X and Y in
Teich(S), and dwp(X,Y) is their Weil-Petersson distance. Together with the com-
parison of Theorem 1.2, we obtain direct proofs of the lower bounds on convex core
volume in [7] and [8]. Previously, these results had been obtained by building a com-
binatorial model for the Weil-Petersson metric (the pants graph), and showing that
these combinatorics also give volume estimates for the relevant convex cores. The
model relies on delicate combinatorial arguments involving the complex of curves and
its hierarchical structure developed in [18] and [19], while the renormalized volume
flow produces a natural analytic link between Weil-Petersson distance and volume.

1.2. Outline

We begin with a discussion of locally univalent maps and complex projective struc-
tures. On a projective structure there are two natural metrics: the hyperbolic metric,
which depends only on the underlying conformal structure, and Thurston’s projective
metric. By comparing a projective structure to its Fuchsian uniformization, one also
obtains a holomorphic quadratic differential via the Schwarzian derivative. The main
technical tool of the paper is an unpublished theorem of G. Anderson (Theorem 2.1),
bounding the projective metric in terms of the hyperbolic metric and a function of the
L°°-norm of the Schwarzian quadratic differential. Section 2.1 is devoted to a short,
new proof of this theorem. As with the original, the proof is based on a construction
of Epstein which associates a surface in H> to a conformal metric on the unit disk A
and a locally univalent map f: A — C.

In Sections 2.2 and 2.3, we review Thurston’s parameterization of locally univa-
lent maps and of projective structures in terms of measured laminations. In particular,
Thurston parameterizes projective structures on a surface by locally convex pleated
surfaces. There is a natural “retract” map from the projective structure to the pleated
surface that is 1-Lipschitz from the projective metric to the path metric on the pleated
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surface. Using the Schwarzian bound on the projective metric, we obtain a bound on
the Lipschitz constant for the retract map when we take the hyperbolic metric on the
domain (Corollary 2.7). The length of the bending lamination is also controlled by
the Schwarzian, as it is a linear function of the area of the projective metric (Theo-
rem 2.10).

In Section 2.4, we review the classical bounds of Nehari on the L®-norm of
the Schwarzian derivative of univalent maps and use the Nehari bounds to bound the
Schwarzian when the locally univalent map is a covering map for a domain in €2. In
Sections 2.5 and 2.6, we combine the Nehari bounds to derive Lipschitz bounds on
retract maps from domains in C to convex hulls in H3 (Theorem 2.14) and from the
conformal boundary of a hyperbolic 3-manifold to the boundary of the convex core
(Theorem 2.15). We also obtain bounds on the length of the bending lamination of
the convex core (Theorems 2.16 and 2.17).

All of these bounds are based on the L°°-norm of the Schwarzian. In Section 2.7,
we bound the length of the bending lamination in terms of the L2?-norm of the Schwar-
zian. This will be used in our study of renormalized volume.

In Section 3, the last part of the paper, we begin our study of the renormalized
volume of a convex cocompact hyperbolic 3-manifold. After reviewing definitions,
we improve on bounds, originally due the Schlenker, comparing the renormalized
volume to the volume of the convex core. In particular, we show that the difference of
the two volumes is bounded by a function of the L?-norm of the Schwarzian of the
projective boundary (Theorem 1.2).

We use these bounds to study the Weil-Petersson gradient flow of —Vg. Along
flow lines, the L2-norm of the Schwarzian of the projective boundary will decay
to zero. It will follow that the infimum of renormalized volume will agree with the
infimum of convex core volume (Theorem 3.11).

We highlight one other novelty of our approach: a new definition of the W-
volume. The usual definition of W -volume involves the integral of the mean curvature
over the boundary of the manifold. We will see that it can be reinterpreted as a func-
tion of the volume of the submanifold, the area of the boundary, and the area of its
associated metric at infinity. This reinterpretation is valid even when the boundary is
not smooth and clarifies the formula for the W -volume of the convex core given in
[24].

The proof of our theorem on the lower bound for renormalized volume is actu-
ally quite short. The reader who is solely interested in this result can skip much of
the paper, as it only depends on the bound on the projective metric (Theorem 2.8),
the bound on the length of the bending lamination in terms of the L2-norm of the
Schwarzian (Section 2.7), and Section 3.
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2. Epstein surfaces and projective structures

Let f: A —> Chbea locally univalent map. Thurston defined a natural metric on A
associated to f', the Thurston or projective metric. Here is the definition: let D C A
be an open topological disk and define pp to be the hyperbolic metric on D. Then D
is round with respect to f if f(D) is round in C. We then define

ps(z) =infop(2),

where D ranges over all round disks containing z. By the Schwarz lemma, if pa
is the hyperbolic metric on A, then pa < pp for all disks D contained in A with
equality if and only if D = A. Therefore, pa < ps with equality if and only if f is
the restriction of an element of PSL(2,C). In particular, p s > 0. Upper bounds for
p s are more subtle. The following theorem of Anderson will be a key tool for what
follows.

THEOREM 2.1 (Anderson, [1, Theorem 4.2])

pr(2) = pa(2) V14 2[5 lco-

Here Sf is the Schwarzian derivative quadratic differential on A given by

B f// 7 1 .](‘// 2 ’
7 =((7) ~2(5) )
Then ||Sf(2)|| = |Sf(2)|/pA (2) is a function on A. In particular, for any conformal

automorphism y of A, we have ||S(f o y)(2)|| = [(Sf)(yz)||. Furthermore, the sup
norm is given by

15/ lloo = sup ISF (1.

2.1. Epstein surfaces

Using that C can be naturally identified as the boundary of H?3, we describe a con-
struction of Epstein that associates a surface in H? to a locally univalent map f: A —
C and a conformal metric ponA.

Given a point x € H?, let p, be the visual metric on C centered at x. There are
several ways to define px, and we will choose one that fits our needs for later. For
z €C, let r be the geodesic ray based at x that limits to z at infinity. Then there will
be a unique totally geodesic copy of H? C H? that contains x and is orthogonal to r.
The hyperbolic plane will limit to a round circle in C. Let D be the disk bounded
by this circle that contains z and pp, its hyperbolic metric. We then define p,(z) =
op(z). Note that py is invariant under any isometry of H?> that fixes x. In fact, up to
a normalization, this last property also determines py.
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Given a conformal metric p on a domain in C containing a point z, we observe
that the set b, = {x € H3|px(z) = p(2)} is a horosphere. We will be interested in
the horospheres associated to the pushforward metric fip. Unfortunately, as f is
only locally univalent, this pushforward is in general not well defined. To get around
this, we define fip(z) by restricting f to a neighborhood of z, where f is injective,
pushing the metric forward on this neighborhood, and then evaluating at f(z).

Let T'H3 be the unit tangent bundle of H?3, and let 7 : T'H? — H? be the pro-
jection to H3. If p is smooth, Epstein shows that there is a unique smooth immersion
Ep,: A — T'H? such that Ep Ep) (z) is an inward pointing normal to the horosphere

b fup.z> and when Ep, =7 o Ep , 1s an immersion at z, the surface will be tangent to
b £.p,z- We emphasize that if p is smooth, then while Epp will always be an immer-
sion, Ep, may not be. For example, if py is the visual metric for a point x € H3, then

Ep isa dlffeomorphlsm onto 7,/ H?, but Ep . Will be be the constant map to x.

Px
The maps Ep 0+ Ep, have some nice properties.

PROPOSITION 2.2 (Epstein [12, Theorem 2.1 and Equation 3.10])
Let g;: TVH3 — TYH?3 be the geodesicﬂow Then g oEp, = Ep,:,. Furthermore, if
p is smooth, then there are functions k2, «}: A — (R\{—1}) U oo satisfying

K(i) (z) cosht + sinht
kb (z) sinhz + cosht’

Ki(z) =

such that if neither k2 (z), k} (z) are infinite, then Ep, is an immersion at z and k2 (z),

k} (z) are the principal curvatures. In particular, if t > log \/|1 + kb (2))/11 = kb (2)]
Jori =0,1, then Ep,:, is an immersion and locally convex at z.

The map Ep,: A — H? is the (parameterized) Epstein surface of p associated to
the locally univalent map f. We will be particularly interested in the Epstein surface
Ep,, associated to the hyperbolic metric pa in A. The importance of the Schwarzian
derivative in studying the Epstein surface for the hyperbolic metric is evident in the
following theorem.

THEOREM 2.3 (Epstein [12])

The principal curvatures of the Epstein surface Ep,, at the image of z € A are

—||Sf(2) |l
ISF)N£1"

Theorem 2.1 will follow from the following proposition.

PROPOSITION 2.4
If p is a smooth conformal metric and Ep,, is locally convex, then py < p.
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Proof

Define a map F: A x [0,00] — H? by F(z,1) = Ep,,(z) if ¢ € [0,00) and F(z,
o0) = f(z). By Proposition 2.2, F restricted to A x [0,00) will be an immersion
to H> and will extend continuously on A x [0, o0] to a map to H> U C. Since F is
an immersion, F pulls back a hyperbolic structure on A x [0, co) that is foliated by
the Epstein surfaces. By convexity, a hyperbolic plane tangent to any Epstein surface
in A x [0,00) will be embedded and extend to a round disk on A = A x {oo} with
respect to f. For a point z € A, let D be the round disk bounded by the boundary
of the hyperbolic plane tangent to the Epstein surface at (z,0). By definition, p s <
pp- On the other hand, pp = p from the definition of the Epstein surface (and our
normalization of the visual metric), and therefore p s (z) < p(z) forall z € A. O

Proof of Theorem 2.1

By Theorem 2.3, the principal curvatures of Ep,, at Ep,, (z) are ”;f”g% By the

curvature equations in Proposition 2.2, if t > log(+/1 + 2||Sf(2)]), then the principal

curvatures of Ep,s,, at Ep,:,, (z) are positive. So if 7 > log(y/1 + 2[|Sf [ x), then
Epe:,, 18 locally convex. The theorem then follows from Proposition 2.4. O

If Sf has small norm on a large neighborhood of z € A, then we can get stronger
bounds on the Thurston metric.

COROLLARY 2.5
If |Sf(2)|| < K forall z € B(zg,r), then

pr(z0) < pa(zo)v'1+ 2K coth(r/2).

Proof
Let B = B(zg,r). By the Schwarz lemma /l;z 8'2 < ;‘ZE;;L, and therefore by Theo-
rem 2.1,

P71 (20) < pB(zo0)v1+ 2K,

where p 7|, is the projective metric for f restricted to B. By the definition of the
Thurston metric, p s (zo) < p |5 (Z0), and an explicit calculation shows that pp(z9) =
pa(zo) coth(r/2). This gives the desired inequality. O

2.2. The Thurston parameterization

Let P(A) be locally univalent maps f: A — C with the equivalence f ~ g if f =
¢ o g for some ¢ € PSL(2, C). Thurston described a natural parameterization of P (A)
by M (H?), the space of measure geodesic laminations on H?. We briefly review this
construction.
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A round disk D C C shares a boundary with a hyperbolic plane Hﬁ) C H3. Let
rp: D — H? be the nearest point projection to H?, and let 7Fp: D — T'H? be
the normal vector to H%, at rp(z) pointing towards D. We can use these maps to
deﬁfn\e: a version of the Epstein map for p . In particular, define Eﬁ oy A — T'H3
by Ep, . (z) = 7 r(p)( f(z)), where D is the unique round disk with respect to f
such that pp(z) = pr(z), and let Epp (z)=mo Epp/ (z) = rf(D)(f(z)) (For the
existence of this disk, see [15, Theorem 1.2.7].) We also define Epez py =8t ° Ep oy
and Ep,« tpy =T oEpe s

The image of Ep, B is a locally convex pleated plane. More precisely, let M £ (H?)
be measured geodesic laminations on H?, and let M £¢(H?) C M £(H?) be the sub-
space of laminations with finite support. That is, A € M &£ (H?) if it is the union of a
finite collection of disjoint geodesics £; with positive weights ;. Then A determines a
continuous map p; : H? — H3, unique up to postcomposition with isometries of H?,
that is, an isometry on the complement of the support of A and is “bent” with angle 6;
at £;. By continuity, we can extend this construction to a general A € ML (H?). An
exposition of the following theorem of Thurston can be found in [15].

THEOREM 2.6

Given f € P(A), there exist maps ¢ r: A — H? and py: H* — H? and a lamina-
tion Ay such that p is a locally convex pleated surface pleated along Ay, Ep,, ;=
pyrocy, and the map f + Az is a homeomorphism from P(A) — ME(H?). Fur-
thermore, the maps ¢ r: (A, ps) — H? and Epp/_ : (A, pr) — H? are 1-Lipschitz.

Combined with Theorem 2.1, we have an immediate corollary.

COROLLARY 2.7
Given [ € P(A), the Epstein map Ep,,: (A, pa) — H3 is /1 + 2||Sf||co-Lipschitz.

2.3. Projective structures

A projective structure X on a surface S is an atlas of charts to C with transition maps
the restriction of Mobius transformations. We let P(S) be the space of projective
structures on S. One way to construct a projective structure on S is to take an f €
P(A) such that there exists a Fuchsian group I with S = A /T and a representation
o: T — PSL(2,C) with f oy =0(y)o f forall y € I'. In fact, every projective
structure on S arises in this way.

This description of projective structures allow us to associate a number of objects
to a given projective structure. First, we observe that a projective structure determines
a complex structure X on S, and we let P(X) C P(S) be projective structures on S
with underlying complex structure X . Given ¥ € P(X), the Schwarzian derivative Sf
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of f will descend to a holomorphic quadratic differential ¢ on X. The lamination
A ¢ will be I'-equivariant and descend to measured lamination Ay, on S. The hyper-
bolic metric pa and the projective metric pr on A will also descend to conformal
metrics px and px on X.

In the equivariant setting, Corollary 2.7 becomes the following theorem.

THEOREM 2.8
Given a projective structure % € P(X), we have

p=(2) < px (2) V14 2[9z oo

If |¢=(2)|| < K forall z € B(zp,r), then

px(zo) < px(z0)v'1 + 2K coth(r/2).

If the measured lamination Ax has support of a finite collection of closed geode-
sics y1, ..., yn With weights 61, ..., 6,, then the length of Ay is L(Ax) =Y 0:£(yi),
where £(y;) is the hyperbolic length of ;. This length extends continuously to general
measure laminations on S.

We have the following useful relationship between the area of the projective met-
ric and the length of the bending lamination.

LEMMA 2.9

Given a projective structure % € P(S) with bending lamination s € ME(S), we
have area(pyx) = L(Ax) + 27| x(S)].

Proof

Both the area of the projective metric and the length of the bending lamination vary
continuously in P(S). The set of projective structures whose bending laminations is
supported on finitely many geodesics is dense in P(S) and the formula area(py) =
L(As) + 27| x(S)| holds on such laminations by direct computation. The lemma
follows. (]

This immediately leads to bounds on the length.

THEOREM 2.10
If As is the bending lamination for a projective structure 3, then

L(Az) < 4x|x(E)lPz oo
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Proof
Squaring the inequality from Theorem 2.8, we get a bound on the area of the projec-
tive metric in terms of the area of the hyperbolic metric:

area(px) < (1 + 2| ¢xloo)area(py).

Subtracting area(py) = 27| y(X)| from both sides and applying Lemma 2.9, we have

L(As) <4x|x(D)|ll¢sloco

as claimed. O
2.4. Schwarzian bounds
We recall the classical Nehari bound on the Schwarzian derivative. (The upper bound

was proved independently by Kraus.)

THEOREM 2.11 (Nehari [21, Theorem I])

We have the following:
¢ If f: A — Cis univalent, then ||Sfl|o < 3.
¢ I8l = %, then f is univalent.

In particular, if 2 C Cisa simply connected hyperbolic domain, then the above
theorem bounds the Schwarzian derivative of the uniformizing map f: A — Q. If Q
is hyperbolic but not necessarily simply connected, we can still bound the Schwarzian
for f (which in this case will be a covering map), but our bounds depend on the
injectivity radius of the hyperbolic metric of 2. Let injg (z) be the supremum of the
radii of embedded disks in 2 centered at z, and let

8q = inf injg(2).
ZeQ

The following result bounding the Schwarzian in terms of injg and ég is due to Kra
and Maskit.

COROLLARY 2.12 (Kra and Maksit, [16, Lemma 5.1])

Let Q be a hyperbolic domain in the plane that is not simply connected, and let
f: A — Q be the uniformizing covering map. Then ||Sf(z)| < %cothz(injg(z)/Z)
and } coth? (8./2) < |15/ .

Proof
For each z € A, the restriction of f to the disk B = B(z,injg(z)) is univalent. By
applying Theorem 2.11, we have that
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1Sf(2)] _ 3

PAB I

where pp is the hyperbolic metric on B. We also have pa(z) = tanh(injg(z)/2) x

pB(2). The upper bound follows.
Given any 8’ > §q, there exists a disk B = B(z, §) such that f'|p is not injective.
Therefore, by Theorem 2.11, there exists a z’ € B such that

SFED 1
) 2
A calculation shows that
pB(z) _ pB(2) _

coth(8'/2),

pa(z’) — PA( )
so IS (z)] = coth2 (6’/2). As this holds for all §’ > §g, the lower bounds follows.
O

We will only use the upper bound in what follows.

2.5. Llpschltz maps and hyperbolic domes

Let Q C Cbea hyperbolic domain, and let A = C\Q Then the convex hull, H(A) C
H3, is the smallest closed convex subset of H® whose closure in Cis A. The boundary
of H(A) is the dome of 2, which we denote as dome(€2). With its intrinsic path
metric, dome(L2) is a hyperbolic surface. The nearest point retraction of H> to H(A)
extends to a continuous map r: 2 — dome(£2). We are interested in comparing the
hyperbolic metric on 2 with the intrinsic path metric on dome(£2).

We would like to relate the retract r to an Epstein map. Let f: A — Q be the
uniformizing map. Then f is a covering map, and for any conformal metric p on
A that is invariant with respect to the covering, the Epstein map for p will descend
to a map with domain €2 which (in abuse of notation) we will continue to denote
Ep,: Q — H>. We then have the following.

PROPOSITION 2.13
If f: A — Q is the uniformizing map, thenr o f = Ep, .

Proof
Given z € Q, there is a unique horosphere f) based at z that intersects H(A) at exactly
one point with this point being the projection r(z).

The hyperbolic plane tangent to h at r(z) is a support plane for H(A) and its
boundary bounds a round disk D, C  which contains z. If pp_(z) = ps(z), then
Ep iy (z) =r o f from the construction of the Epstein map for the projective metric.
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By the definition of the projective metric, pp,(z) > pr(z), so we just need to
show that pp_(z) < pr(2).

If pp.(z) > py(z), then there exists a round disk D C Q with pp_(z) > pp(2).
Let b’ be the horosphere of points whose visual metrics agree with pp at z. Since
pp. (z) > pp(z), the horosphere b’ bounds a horoball whose interior contains b. The
open hyperbolic half-space bounded by D will contain the interior of this horoball
and hence . Since b intersects H(A), this open half-space will intersect H(A), a
contradiction. O

Combining this proposition with Theorem 2.11 and Corollaries 2.7 and 2.12, we
have the following.

THEOREM 2.14

If f:A—-QC Cisa conformal homeomorphism, then the retract r: Q —
dome(R2) is a /1 + 2||Sf||co-Lipschitz map from the hyperbolic metric on Q2 to the
path metric on dome(S2). In particular, if Q is simply connected, then r is 2-Lipschitz,
and if 2 is not simply connected with 8q > 0, then r is /1 + 3 coth? (8¢ /2)-Lipschitz.

When €2 is simply connected, Epstein, Marden, and Markovic proved that the
retract map was 2-Lipschitz (see [13, Theorem 3.1]). When € is not simply con-
nected, Bridgeman and Canary showed that r was (A4 + %)-Lipschitz for universal
constants A, B > 0 (see [5, Corollary 1.8]). Our bounds are better both when dg, is
small and large. The simplicity of the proof here indicates one strength of our meth-
ods.

2.6. Hyperbolic 3-manifolds

The above result in turn can also be interpreted in terms of hyperbolic 3-manifolds.
Let T" be a discrete, torsion-free subgroup of PSL(2, C). Let 2 be a component the
domain of discontinuity of I', and let I'q C I" be the subgroup that stabilizes 2. Then
the projective structure ¥ = Q/I'q is a component of the conformal boundary of
the hyperbolic 3-manifold M = H3/T, and X = dome(R2)/ g is the component
of the boundary of the convex core, C(M), of M that faces X. The nearest point
retraction M — C(M) extends continuously to a map r: ¥ — X. Note that ¥ is
incompressible in M if and only if €2 is simply connected. If ¥ is compressible in
M , then compressible curves in X lift to homotopically nontrivial closed curves in 2.
In particular, the length of the shortest compressible geodesic in ¥ will be twice the
injectivity radius of 2. In this setting, Theorem 2.14 becomes the following.
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THEOREM 2.15

Let M be a complete hyperbolic 3-manifold, ¥ the complex projective structure on a
component of the conformal boundary of M, and X the component of the boundary
of the convex core of M facing X. Then the retractionr: ¥ — X isa /1 + 2||Sf || co-
Lipschitz map from the hyperbolic metric on X to the path metric on X . In particular,
if X is incompressible in M, then r is 2-Lipschitz, and if the length of every com-
pressible curve on X has length > § > 0, then r is v/1 + 3 coth?(8/4)-Lipschitz.

We can also apply the Schwarzian bounds to obtain bounds on the length of the
bending lamination. In particular, Theorem 2.10 becomes the following.

THEOREM 2.16
Let ¥ be a component of the projective boundary of a hyperbolic 3-manifold M with
bending lamination Ax. Then L(Ax) < 47| x(2)|||¢dx|lco- In particular, we have the

Sfollowing:
. If 3 is incompressible, then L(Ax) < 67|y (2)|.
. If ¥ is compressible and the length of the shortest compressible curve is § > 0,

then L(Ax) < 67| x(Z)| coth?(5/4).

The bound in the incompressible case was first obtained by Bridgeman and Ca-
nary in [6]. In the compressible case, the bound in [4] is (% + B)|x(%)|, which is
stronger than the bound here. With more work, our methods can obtain similar bounds
as in [4]. The proof is technical and this result will not be used in the rest of the paper.

THEOREM 2.17

If ¥ is a compressible component of the boundary of a hyperbolic 3-manifold with
bending lamination Ay, and the length shortest compressible curve is § > 0, then
L(Ay) < (% ~+ B)|x(2)| for universal constants A, B > 0.

Proof
The central idea is that that the ratio between the projective metric and the hyperbolic
metric can only be large in the (compressible) thin part of the surface.

The complex projective structure X is the quotient of a domain Q C C.Let X be
the conformal structure on X with hyperbolic metric py . Then 2 is a covering space
of X, and the hyperbolic metric pg is the lift of py. Similarly, the Schwarzian ¢g on
2 is the lift of the Schwarzian ¢x on X, and ps is the lift of the projective metric
px. We would like to bound above the ratio px(z)/px(z). To do this, we will use
Corollary 2.7, which will require us to bound the Schwarzian |¢x(z’)| for all z’ in
the disk B(z,1). (The choice of radius 1 is essentially arbitrary.) To bound ¢5, we
will use Corollary 2.12 to bound ¢g, and then use ¢g as the lift of ¢x.
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For z € , let

injg(z) = inf injg(z)).
A simple estimate shows that there exists a constant Ap > 0 such that inj}z(z) >
injg(z)/Ao (which holds for any complete hyperbolic surface).

Let € > 0 be the two-dimensional Margulis constant, and let C C 2 be a compo-
nent of e-thin part Q=€ = {z € Q | injg (z) < €}. There is also a constant A; > 0 such
that %cothz(x/2) < % for x < €. Then by Corollary 2.12, for all z’ € B(z, 1) with
z € C, we have

A24,

(Z)2 " injg(2)*

) < =:

After applying Corollary 2.5, we see that, for z € C,

p2(2) = P () (1 4+ 255 ) coth?(1/2).

( )?

We want to bound the area of C in the projective metric. We let £ be the length
of the core geodesic of C in the hyperbolic metric. We give C coordinates S! x
(—w(£),w(f)), where S x {0} is the geodesic and is parameterized by arc length,
and each {6} x (—w(£), w(f)) is a geodesic segment orthogonal to the core geodesic.
The area form for the hyperbolic metric is then cosh? d6 dt. The constant w(¥) is
chosen such that injo (8, zw({)) = €. Another basic estimate in hyperbolic geometry
gives that there exists A, > 1 such that

el A5 < injg(6,1).
Here, it is important that z = (6,¢) € C is in the e-thin part.
We now calculate the area of C in the projective metric:
w L
area(ps|c) = / / coshtpzi/pé dodt
—w JO
w pl 2
2A5A,

< coth2(1/2)(area(pg )—I—/ / Lo
le _wJo injg(6,1)2

Then we use the lower bound on the injectivity radius to bound the remaining integral:

v 2A2A1 2A2A1
/_w/o injq(0.1)% coshrdf dt = 2/ / —zgar coshrdbdi

20A2A4, A2
:2/ Z2P07NT2 oshit dB dt
0

€2€2t

cosht df dt).
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w et
§A3/0 Zert

= %(1 —emy 22

v

Since £ > §, this becomes

area(pg|c) < coth®(1/2) (area(pg|c) + %)

Given a point z € X, let Z € Q be a point in the preimage of z. We then define
iflj ¥ (z) = injg(Z) and observe that this definition is independent of our choice of Z.
Injectivity radius can only increase in a cover so injy (z) < iﬁj x (2). The compressible
€-thin part is the set of points

X ={zeX|injx(z) <€}

If C is a component of the compressible e-thin part, then each component of the
preimage of C in  will be contained in a component C, as well as the e-thin part of
2, and we will have area(ps|c) < area(ps|c). Furthermore, each C will contain a
simple closed geodesic, so there can be at most 3g — 3 = %| x(X)| components of the
compressible e-thin part, and, therefore,

34
area(ps|x) < coth?®(1/2) (area(px xz0) + 5= x(T)]).

On the other hand, if iﬁj x(2) > €, then for z’ € B(z, 1), we have as above that
inj x (2") = €/ Ap. Therefore, by Corollary 2.5,

~ ~ €
P20/ 95 () = 0§(2)/0h(2) = (1 + 3eoth® (571 ) ) eoth?(1/2) = A,
Therefore, we have that
area(pz|y=<) < Asarea(px|y=c),

where X7 is the compressible e-thick part of X .
By letting A = %A3 coth?(1/2) and B = 27w A4 and combining our two area
bounds, we have

A
L(ks) < area(ps) = area(ps|yz<) + area(pslyz) < [x(®)I(5 + B). O
2.7. L2-Bounds for the bending lamination

Given a quadratic differential ¢ on hyperbolic surface X with metric py, the ratio
|¢|/p% is a function on X. We define the L?-norm of ¢ to be the L?-norm of this
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function with respect to the hyperbolic metric. In order to prove our main theorem
about renormalized volume, we will need a bound on L(Ayx) in terms of the L2-norm
of the quadratic differential ¢5;. We begin with the following lemma.

LEMMA 2.18
Let ¢ be a holomorphic quadratic differential on a hyperbolic surface X .
Then

10112 2, T nk(ini (/2) 92|

Proof

Let B = B(z,r) be the disk centered at z of radius = injy (z). Let ||@| x.» be the L?-
norm of ¢ on X, and let ||¢|| 5.2 be the L?-norm of ¢ on B. Then ||¢|| x> > ||$|l 5.2 by
the Schwarz lemma. By [9, Lemma 5.1], we have | ¢| 2 > 2\/n_/3||¢>(z)||3, where
ll¢(2)]| B is the norm of ¢ on B. Comparing the complete hyperbolic metric on B to
that on X, we see [|¢(2)]| g = tanh®(r/2)[|¢(2) ]| x - O

We now combine the above with the prior results to obtain comparisons of the
Thurston metric and Poincaré metric for quadratic differentials with small L2-norm
on the thick part of the surface. For € > 0, we define the € thick-thin decomposition
tobe XZ€ ={z€ X |injy(z) > €} and X< ={z € X | injy(2) < €}.

LEMMA 2.19
Let © € P(X) be a projective structure such that ||¢s |2 < €>. Then for z € X =€,

pz(z) < (1+ F(e))px (2),
where F(t) ~ (24 4+/3/m)t ast — 0.
Proof
We can assume that € < 1 and then define r > 0 such that e = ¢™". Let z € X =€, For
w € B(z,r) then, a simple calculation shows that injy (w) > injy (z)e™" > €2. This

follows from the fact that for C, a hyperbolic annulus with core geodesic of length £
is then

sinh(inj¢ (x)) = sinh(£/2) cosh(d(x)),

where d(x) is the distance from x to the geodesic. By comparing two points x, y with
injc (x) > injc (), one obtains

injc (x) - sinh(inj¢ (x)) _ cosh(d(x)) < pd@—d()
injc (y) ~ sinh(inj¢ () ~ cosh(d(y)) ~ '



884 BRIDGEMAN, BROCK, and BROMBERG

Therefore, for w € B(z,r) by Lemma 2.18,

Tl 3
=) < \/;(tanhz(éz/@) = 4w (tanh2(€2/2)).

Therefore, by the local bound in Theorem 2.8, we have

px(2) \F €5
ox(2) < \/1 + ;(7tanh2(62/2)) coth(r/2)

5
- \/l + \/g<tanh;(ez/2))<11 i_S) =1+ F(e).

Computing the first two terms of the Taylor series shows that, as t — 0,

F(t) ~ (2+4\/§)z. 0

We now use the above to get prove the L?-bound on the length of the bending

lamination.

THEOREM 2.20

Let ¥ € P(X) be a projective structure with Schwarzian quadratic differential ¢y
with ||¢x]leo < K. Then

L(Az) <27|x(X)|Gk([9=]2),

where G (t) ~ 1'% ast — 0.

Proof
We let € = ||¢||;/5. As ||¢x]loo < K, by Theorem 2.8 we have px(z) < +/1 4+ 2K x
px (z) for all z. We decompose X into the thick-thin pieces

2
areaipn) = [ b+ [ s [ (eF@Per [ a+2m0
X=z€ X <€ X=€ X <e
Therefore,
area(py) < (1+ F(e))zarea(sze) + (1 4+ 2K)area(py<e).

Since area(px=¢) < area(py) = 27| y(S)| and for the genus g surface S there are at
most (3g — 3) e-thin parts each with area bounded by 2¢, we have

27| x(S)| + L) < (1 + F(e)) 27| x(S)| + (1 + 2K)(3g — 3)2e.
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Since | x(S)| = 2g — 2 when we apply Lemma 2.9, we have

L(As) < 2n|)((S)|((1 + F(e)) + 23—;(1 +K) — 1)
— 27{|)((S)|(2F(6) +F(e)? + 23—6(1 + 2K)). 0
T

3. Renormalized volume

We now describe the renormalized volume for a convex cocompact hyperbolic 3-
manifold M. We also review many of its fundamental properties as developed by
Krasnov and Schlenker. While it will take some setup before we state the definition,
we will see that renormalized volume has many nice properties that make its definition
natural.

3.1. The W -volume
Throughout this subsection and the next, we fix a convex cocompact hyperbolic 3-
manifold M and let 9. M be its conformal boundary, X be its projective boundary, A 5
be the bending lamination of the convex core, and ¢ps be the Schwarzian derivative
of X. We also let pps be the hyperbolic metric on d. M and py be the projective
metric determined by X.

Let N C M be a smooth, compact convex submanifold of M with C L1 pound-
ary. Here, and in what follows, N is convex if every geodesic segment with endpoints
in N is contained in N. Then the W -volume of N is

W(N) =V01(N)—%/8NHda,

where H is the mean curvature function on dN. That is, H is the average of the
principal curvatures or, equivalently, one half the trace of the shape operator. The C !*!
condition (the normal vector field is defined everywhere and is Lipschitz) implies that
H is defined almost everywhere and that the integral

2 Hda
ON

is the variation of area of dN under the normal flow.
We let N; be the t-neighborhood of N in M. Then there is a very simple formula
for the W-volume of N; in terms of N.

PROPOSITION 3.1 (Krasnov and Schlenker [17])

Let M be a convex cocompact hyperbolic 3-manifold, and let N be a convex subman-
ifold with C'! boundary. Then

W(N;) = W(N) — tr1(d: M).
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(The desired statement follows directly from [17, Lemma 4.2].)

As defined, the W-volume is a function on the space of convex submanifolds
of M with C"! boundary. We would like to reinterpret it as a function on smooth,
conformal metrics on d. M. We need the following lemma.

LEMMA 3.2

Let H be a closed convex submanifold of H3, and let A = H N Cand Q = @\A.
Then there exists a conformal metric p = pg on §2 such that Ep,, is the nearest point
retraction r: Q — oH. If y € PSL(2,C) with y(H) = H, then y*p = p.

In particular, if N C M is a convex submanifold of a convex cocompact hyper-
bolic manifold M, then there exists a smooth metric p = py on d.M such that
Ep, =r, wherer: 0. M — ON is the nearest point retraction.
Finally, if Ny is the t-neighborhood of N, then pn, = e’ pn.

o

Proof

For each z € 2, there is a unique horosphere f,; based at z that intersects H at exactly
one point and r(z) is the point of intersection. We then define p(z) = v, (), where
Vr(z) 1s the visual metric. Then r satisfies all the properties of the Epstein map for p,
and since the Epstein map is unique, we have r = Ep,. The construction is clearly
equivariant. Equivariance implies the second paragraph, and the last statement then
follows from Proposition 2.2. O

We then have a nice formula for the integral of the mean curvature in terms of the
of the area of px and N .

LEMMA 3.3
Let N be a smooth convex submanifold of a convex cocompact hyperbolic 3-
manifold M. Then

1
Hda = Earea(,oN) —area(dN) — zy(OM).
N

Furthermore, if py = pym, then

[ H da = a2
oN

Proof

Let B: T(dN) — T(dN) be the shape operator given by B(v) = —Vyn, where n is
the normal vector field to dN. In particular, the eigenvalues of B are the principal
curvatures of dN . Then
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1
H =

=3 tr(B) = %(det(] + B) —det(I — B)),

where I : T(dN) — T (0N) is the identity operator. An elementary calculation shows
that the pullback via the retraction r: . M — 9N of the 2-form det(/ + B) da is the
area form for the metric py on d. M (see [17, Equation 30]). Therefore,

area(py) =/ det(/ + B)da.
aN

On the other hand,
det(/ + B) +det(I — B) =4+ 2K,

where K = det(B) — 1 is the Gaussian curvature of d/N. Therefore,
/ (det(I + B) + det(I — B)) da = 4area(dN) + 47y (IN).
N

Rearranging the terms proves the first statement in the lemma.
For pny = par the hyperbolic metric, by Theorem 2.3 the principal curvatures at

r(z) are m Therefore, if da* is the area form for pjy, then
|
area(dN) = da = / ——da* = / 1—lpp(2))?) da*
ON a.m det(/ + B) BCM( )
= area(pa) — 4 3-
Therefore as area(pps) = 27| x(0M)], the result follows. O

This gives us an alternate way of defining the W -volume by setting
1 1 1
W(N) =vol(N) — Zarea(pN) + Earea(aN) + En)((aN).

Note that the definition makes sense even if the boundary N is not C1!. Also,
regardless of the regularity of N, the z-neighborhood N; will always have C!-!
boundary. In particular, the scaling property (Proposition 3.1) still holds for this alter-
native definition of the W-volume, even when the boundary of N is not C L1 One
advantage of this definition is that we can use it to see that the W-volume varies
continuously.

PROPOSITION 3.4

The W -volume is continuous on the space of compact convex submanifolds of M with
the Hausdorff topology. The map from compact, convex submanifolds to metrics on
dc M is continuous in the L*°-topology.
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Proof

Fix a convex submanifold N, and let V; be convex submanifolds such that the distance
between N and V; in the Hausdorff metric is less then 1/i. We can assume that
N C V;, and if not, we can replace V; with its 1/i-neighborhood. By Proposition 3.1,
the W-volume of the V; will converge to W(N) if and only if the W -volume of the
1/i-neighborhoods also converge to W(N).

To see that the W -volume converges, we first observe that volume is continuous
in the Hausdorff topology on the space of convex submanifolds. Next we note that
the nearest point retraction of dV; to dN is 1-Lipschitz, so area(dV;) > area(dN).
Since V; C Ny;i, we similarly have that area(dN;,;) > area(dV;). We also have
area(0N;,;) — area(dN ), and therefore area(dV;) — area(dN).

To compare the metrics px and py;, fix a point z € 3. M and let b, and h; be the
horospheres based at z that meet N and V;, respectively, in a single point. Then b
will be disjoint from N, but its 1/i-neighborhood will intersect N. This implies that
1 <pv.(2)/pn(z) < e'/?_ Tt follows that the map from convex submanifolds with
the Hausdorff topology to the space of conformal metrics with the L°°-topology is
continuous. Therefore, area(py) varies continuously in N and this, along with the
previous paragraph, implies that the W -volume varies continuously. O

Let M(d.M) be continuous conformal metrics on d. M with the L°°-topology,
and let M¢ (d. M) be the subspace of metrics p such that there exists a convex sub-
manifold N with py = e’p for some ¢ € R. We can then define the W -volume as a
function on Mc¢ (d. M) by setting

W(p) =W(N) + 1 y(0:.M).

Note that M¢ (9. M) will not be all continuous metrics. For example, a metric that
locally has the form 1|i|z le will not be in M¢ (0. M). However, we have the following
proposition.

PROPOSITION 3.5 (Krasnov and Schenker [17, Theorem 5.8])
Let p be a smooth metric on 0. M. Then for t sufficiently large there exists a convex
submanifold N C M such that e’ p = py. In particular, p € Mc (0. M).

We are now finally in position to define the renormalized volume. We let pys be
the hyperbolic metric on d. M, and define

Vr(M) = W(pm).
We have, by Lemma 3.3, that if N is the submanifold corresponding to ps, then

VR(M) = vol(N) — [l |12.
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THEOREM 3.6 (Schlenker [24, Proposition 3.11, Corollary 3.8])

Let M be convex cocompact. Then we have the following.

. (Maximality): If p € Mc (0. M) with area(p) = area(pys), then W(p) <
Vr(M) with equality if and only if p = ppy.

. (Monotonicity): If pg, p1 € Mc (3. M) have nonpositive curvature on 0. M
and po < p1, then

W(po) < W(p1).

3.2. Bounds on renormalized volume

For quasi-Fuchsian manifolds, Schlenker used the W -volume of the convex core to
get upper and lower bounds on the renormalized volume (see [24, Theorem 1.1]). This
is generalized easily to convex cocompact 3-manifolds with incompressible boundary
(see [0, Theorem 1.1]).

Schlenker’s approach was to use the monotonicity property and maximality prop-
erty of W-volume. If N is the convex core of M, then by Proposition 2.13, the metric
at infinity py = pyx is the projective metric. As the projective metric is nonposi-
tively curved and is greater than the hyperbolic metric, the monotonicity property of
W -volume (see Theorem 3.6) gives an upper bound on the renormalized volume. By
rescaling the metric so that it has the same area as the hyperbolic metric, the maximal-
ity property (again, see Theorem 3.6) gives a lower bound on renormalized volume.

In order to obtain L2-bounds, we will use the same strategy as Schlenker. We first
need the following theorem. The upper bound is due to Schlenker (see [24]), and the
lower bound is a simple application of the monotonicity and maximality properties of
renormalized volume.

THEOREM 3.7
Let M be a convex cocompact hyperbolic 3-manifold. Then

Ve (M)~ S L0u) < V(M) < Ve (M) = TLGw),

and Vo (M) = Vr(M) if and only if the convex core of M has totally geodesic bound-
ary.

Proof
As noted above, the metric at infinity py for the convex core N is the projective
metric py. Using our formula for the W -volume in terms of area, we compute that

W(pg)=W(N)=Vc(M)— %area(pz) + %area(aN) + %n}((aN).
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By Lemma 2.9, area(px) = L(Ap) + 27| x(S)|. Since the boundary of the convex
core is a hyperbolic surface, we have area(dN) = 27| x(S)|. Therefore,

1
Wlpz) =Vc(M) - 7 L(Anm).
Since px > ppr, by the monotonicity property we have W(px) > Vr(M), so
1
Ve(M) z Ve (M) = 2 L(Am) 2 VR(M).

with Ve (M) = Vg(M) if and only if L(Aas) = 0. This proves the upper bound.

For the lower bound, let
. area(px)
P = ——F— Pz
\ area(on)

Then area(py) = area(pps), so by the maximality property (see Theorem 3.6),
W(px) < Vr(M). Similarly, by the scaling property (see Theorem 3.6) and the for-
mula for area(pyx), we have

L(Anm)

Wipz) = Wips) ~ Tlos(1 4+ omies

)lx(@M)].
Aslog(1 + x) < x and area(pps) = 27| x(0M )|, we have
V(M) = W(ps) = Wipos) — { L(an) = Ve (M) = 5 L0han)
Thus it follows that
Ve (M)~ S LOuw) = V(M) < Ve (M) ~ TL0w).

We therefore have Vo (M) = Vgr(M) if and only if L(Ap) = 0. Thus, Ve (M) =
Vr(M) if and only if M has totally geodesic boundary. O

Combining the L2-bound for length in Theorem 2.20 with the above theorem, we
obtain the following.

THEOREM 3.8 (see Theorem 1.2)
There is a function G(t) ~ tY5 such that if M is a convex cocompact hyperbolic
3-manifold with incompressible boundary, then

Ve (M) = [x(OM)|G(ll¢mll2) < VR(M) < Ve (M),

and VR(M) = V¢ (M) if and only if the convex core of M has totally geodesic bound-
ary.
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Proof
As M has incompressible boundary, then we have the Nehari bound ||¢ps || < % By
Theorem 2.20, we have

L) <2710 M)IG 3 (Ipna |12).

where G (1) ~ t'/3 and the result follows with G = 7 - G- O

The results here should be compared to earlier work of Bridgeman and Canary.
For manifolds with incompressible boundary, they prove a lower bound where the
function G(¢) in Theorem 1.2 is replaced by a universal constant (see [0, Theo-
rem 1.1]). For manifolds with compressible boundary, they give upper and lower
bounds on the Vg (M) that depend on the length of the shortest compressible curve
in the boundary (see [0, Theorem 1.3]). In particular, one can produce a sequence
of Schottky manifolds (convex cocompact hyperbolic structures on a handlebody) of
fixed genus whose convex core volume is bounded above but the length of the shortest
compressible curve approaches zero. Then the Bridgeman—Canary bounds imply that
the renormalized volume of this sequence limits to —oo.

3.3. The gradient flow of Vg
Let N be a compact, hyperbolizable 3-manifold with incompressible boundary, and
let CC(N) be the space of convex cocompact hyperbolic structures on N. Then for
each M € CC(N), the map M +— d.M defines an isomorphism from CC(N) to
Teich(dN). The renormalized volume is then a function on CC(N) and, via the above
identification, a function on Teich(dN). By [17, Corollary 8.6], Vg is a smooth func-
tion and we let V' be the gradient flow of —Vg with respect to the Weil-Petersson
metric on Teich(dN).

Recall that a tangent vector to Teichmiiller space is given by a Beltrami differ-
ential and a cotangent vector is a holomorphic quadratic differential. The following
variational formula appears in [26, Theorem 6.2].

THEOREM 3.9
Given M € CC(N) and p € Ty, p Teich(ON), we have

dvR(m=Re/ ubar.

(&

Using this variational formula, we get an explicit description of the gradient flow.

PROPOSITION 3.10 B
The flow for V is defined for all time and for each M € CC(N), V(M) = —(ZTM.
M
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Proof
The isomorphism T’y Teich(S) — Tx Teich(S) determined by the Weil-Petersson

metric is given by ¢ — p%. Therefore, the second statement follows by Theorem 3.9.

To see that V is deﬁﬁed for all time, we observe that in the Teichmiiller metric,
the norm of V' is bounded by 3/2 from the Kraus—Nehari bound (Theorem 2.11).
Since the Teichmiiller metric is complete, a bounded vector field has a flow for all
time. O

Recall that Vg (N) is the infimum of the renormalized volume of M € CC(N).
We define V¢ (N) to be the same quantity with renormalized volume replaced by con-
vex core volume. While V¢ (N) is trivially nonnegative, this is not clear for Vg(N).
As noted above, if N is a handlebody, then work of Bridgeman and Canary (see [6])
implies that Vg (N) = —oo. However, if N has incompressible boundary, we prove
the following.

THEOREM 3.11

Let N be compact hyperbolizable 3-manifold with nonempty incompressible bound-
ary and without torus boundary components. Then VR (N) = V¢ (N). If there exists
an M € CC(N) with VrR(M) = Vg (N), then either N is acylindrical and M is the
unique manifold in CC(N) whose convex core boundary is totally geodesic, or N has
the homotopy of a closed surface and VR(N) = M if and only if M is a Fuchsian
manifold.

Proof
We first observe that, by the upper bound on renormalized volume from Theorem 1.2,
VR(N) <Vc(N). If we have M € CC(N) with V(M) = Vr(N), then M is crit-
ical point of Vg and therefore by the variational formula (Theorem 3.9), ¢ps = 0.
This occurs exactly when the convex core of M has totally geodesic boundary which
implies that either N is acylindrical or M is Fuchsian. In the acylindrical case, there
is a unique M € CC(N) whose convex core boundary is totally geodesic.

Now choose M € CC(N), let M, be the flow of V with M = My, and let ¢, be
the Schwarzian derivative of the projective boundary M;. We have

T
Ve(Mr) = V(M) — /0 o2 dr.

Since Vg is bounded below on CC(N), the integral fooo lp: 113 dt converges. There-
fore, there is a increasing sequence {t; } such that #; — oo and ||¢;, | = 0 as i — oo.
We also have that Vg(M;) is a decreasing function of ¢ that is bounded below, and
hence Vg(Mjy) is convergent as t — oco. Together with Theorem 1.2, these two facts
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imply that
lim Vr(M;,) = lim Ve (My;).
1—>00 1—>00
Since Vg(M;,) is a decreasing sequence, we have
VR(M) > lim Vr(My,).
1—>00
By definition, V¢ (M;) = V¢ (N), so
lim Ve (My;) = Ve (N).
1—>00

Therefore, VR(M) > Vc (N). Since M is arbitrary, we have Vg(N) > V¢ (N) com-
pleting the proof. O

By a theorem of Storm (see [25, Theorem 5.9]), the infimum of the volume of
the convex core is half the simplicial volume of the double of the manifold with the
infimum realized if and only N is acylindrical or N has the homotopy type of a closed
surface. As an immediate corollary of our result and Storm’s theorem, we have the
following.

COROLLARY 3.12 (see Corollary 1.3)

Let N be a compact hyperbolizable 3-manifold with nonempty incompressible bound-
ary and without torus boundary components. Then Vr(N) = %VS (DN), where DN
is the double of N and Vs (DN) is the simplicial volume. The infimum is realized if
and only if N is acylindrical or has the homotopy type of a closed surface.

The manifold DN is hyperbolic if and only if N is acylindrical; then Vg(DN) is
twice the volume of the convex core of the unique M € CC(NN) with totally geodesic
boundary. As noted in the introduction, Pallete has proved Corollary 1.3 if N is acylin-
drical. Pallete’s proof does not appeal to Storm’s result, so combining Theorem 3.1 1
together with Pallete’s work gives a new proof of the Storm theorem in the acylindri-
cal case. In fact, by studying the limit of the M; as t — 0o, one could directly prove
Storm’s theorem without appealing to [23]. This will be discussed further in [3].
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