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ABSTRACT

The successes of deep learning, variational inference, and many other fields have
been aided by specialized implementations of reverse-mode automatic differenti-
ation (AD) to compute gradients of mega-dimensional objectives. The AD tech-
niques underlying these tools were designed to compute exact gradients to nu-
merical precision, but modern machine learning models are almost always trained
with stochastic gradient descent. Why spend computation and memory on exact
(minibatch) gradients only to use them for stochastic optimization? We develop a
general framework and approach for randomized automatic differentiation (RAD),
which can allow unbiased gradient estimates to be computed with reduced memory
in return for variance. We examine limitations of the general approach, and argue
that we must leverage problem specific structure to realize benefits. We develop
RAD techniques for a variety of simple neural network architectures, and show
that for a fixed memory budget, RAD converges in fewer iterations than using a
small batch size for feedforward networks, and in a similar number for recurrent
networks. We also show that RAD can be applied to scientific computing, and use
it to develop a low-memory stochastic gradient method for optimizing the control
parameters of a linear reaction-diffusion PDE representing a fission reactor.

1 INTRODUCTION

Deep neural networks have taken center stage as a powerful way to construct and train massively-
parametric machine learning (ML) models for supervised, unsupervised, and reinforcement learning
tasks. There are many reasons for the resurgence of neural networks—large data sets, GPU numerical
computing, technical insights into overparameterization, and more—but one major factor has been the
development of tools for automatic differentiation (AD) of deep architectures. Tools like PyTorch and
TensorFlow provide a computational substrate for rapidly exploring a wide variety of differentiable
architectures without performing tedious and error-prone gradient derivations. The flexibility of
these tools has enabled a revolution in AI research, but the underlying ideas for reverse-mode AD
go back decades. While tools like PyTorch and TensorFlow have received huge dividends from a
half-century of AD research, they are also burdened by the baggage of design decisions made in a
different computational landscape. The research on AD that led to these ubiquitous deep learning
frameworks is focused on the computation of Jacobians that are exact up to numerical precision.
However, in modern workflows these Jacobians are used for stochastic optimization. We ask:

Why spend resources on exact gradients when we’re going to use stochastic optimization?

This question is motivated by the surprising realization over the past decade that deep neural network
training can be performed almost entirely with first-order stochastic optimization. In fact, empirical
evidence supports the hypothesis that the regularizing effect of gradient noise assists model gen-
eralization (Keskar et al., 2017; Smith & Le, 2018; Hochreiter & Schmidhuber, 1997). Stochastic
gradient descent variants such as AdaGrad (Duchi et al., 2011) and Adam (Kingma & Ba, 2015) form
the core of almost all successful optimization techniques for these models, using small subsets of the
data to form the noisy gradient estimates.
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from math import sin , exp

def f (x1, x2):
a = exp(x1)
b = sin (x2)
c = b ⇤ x2
d = a ⇤ c
return a ⇤ d

(a) Differentiable Python function
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(b) Primal graph
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Figure 1: Illustration of the basic concepts of the linearized computational graph and Bauer’s formula. (a) a
simple Python function with intermediate variables; (b) the primal computational graph, a DAG with variables
as vertices and flow moving upwards to the output; (c) the linearized computational graph (LCG) in which the
edges are labeled with the values of the local derivatives; (d) illustration of the four paths that must be evaluated
to compute the Jacobian. (Example from Paul D. Hovland.)

The goals and assumptions of automatic differentiation as performed in classical and modern systems
are mismatched with those required by stochastic optimization. Traditional AD computes the
derivative or Jacobian of a function accurately to numerical precision. This accuracy is required for
many problems in applied mathematics which AD has served, e.g., solving systems of differential
equations. But in stochastic optimization we can make do with inaccurate gradients, as long as
our estimator is unbiased and has reasonable variance. We ask the same question that motivates
mini-batch SGD: why compute an exact gradient if we can get noisy estimates cheaply? By thinking
of this question in the context of AD, we can go beyond mini-batch SGD to more general schemes
for developing cheap gradient estimators: in this paper, we focus on developing gradient estimators
with low memory cost. Although previous research has investigated approximations in the forward or
reverse pass of neural networks to reduce computational requirements, here we replace deterministic
AD with randomized automatic differentiation (RAD), trading off of computation for variance inside
AD routines when imprecise gradient estimates are tolerable, while retaining unbiasedness.

2 AUTOMATIC DIFFERENTIATION

Automatic (or algorithmic) differentiation is a family of techniques for taking a program that computes
a differentiable function f : Rn ! R

m, and producing another program that computes the associated
derivatives; most often the Jacobian: J [f ] = f 0 : Rn ! R

m⇥n. (For a comprehensive treatment
of AD, see Griewank & Walther (2008); for an ML-focused review see Baydin et al. (2018).) In
most machine learning applications, f is a loss function that produces a scalar output, i.e., m = 1,
for which the gradient with respect to parameters is desired. AD techniques are contrasted with the
method of finite differences, which approximates derivatives numerically using a small but non-zero
step size, and also distinguished from symbolic differentiation in which a mathematical expression is
processed using standard rules to produce another mathematical expression, although Elliott (2018)
argues that the distinction is simply whether or not it is the compiler that manipulates the symbols.

There are a variety of approaches to AD: source-code transformation (e.g., Bischof et al. (1992);
Hascoet & Pascual (2013); van Merrienboer et al. (2018)), execution tracing (e.g., Walther & Griewank
(2009); Maclaurin et al.), manipulation of explicit computational graphs (e.g., Abadi et al. (2016);
Bergstra et al. (2010)), and category-theoretic transformations (Elliott, 2018). AD implementations
exist for many different host languages, although they vary in the extent to which they take advantage
of native programming patterns, control flow, and language features. Regardless of whether it
is constructed at compile-time, run-time, or via an embedded domain-specific language, all AD
approaches can be understood as manipulating the linearized computational graph (LCG) to collapse
out intermediate variables. Figure 1 shows the LCG for a simple example. These computational
graphs are always directed acyclic graphs (DAGs) with vertices as variables.
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Let the outputs of f be yj , the inputs ✓i, and the intermediates zl. AD can be framed as the
computation of a partial derivative as a sum over all paths through the LCG DAG (Bauer, 1974):

@yj
@✓i

= Jθ[f ]j,i =
X

[i!j]

Y

(k,l)2[i!j]

@zl
@zk

(1)

where [i! j] indexes paths from vertex i to vertex j and (k, l) 2 [i! j] denotes the set of edges
in that path. See Figure 1d for an illustration. Although general, this naïve sum over paths does
not take advantage of the structure of the problem and so, as in other kinds of graph computations,
dynamic programming (DP) provides a better approach. DP collapses substructures of the graph until
it becomes bipartite and the remaining edges from inputs to outputs represent exactly the entries of the
Jacobian matrix. This is referred to as the Jacobian accumulation problem (Naumann, 2004) and there
are a variety of ways to manipulate the graph, including vertex, edge, and face elimination (Griewank
& Naumann, 2002). Forward-mode AD and reverse-mode AD (backpropagation) are special cases
of more general dynamic programming strategies to perform this summation; determination of the
optimal accumulation schedule is unfortunately NP-complete (Naumann, 2008).

While the above formulation in which each variable is a scalar can represent any computational graph,
it can lead to structures that are difficult to reason about. Often we prefer to manipulate vectors
and matrices, and we can instead let each intermediate zl represent a dl dimensional vector. In this
case, ∂zl/∂zk 2 R

dl⇥dk represents the intermediate Jacobian of the operation zk ! zl. Note that
Equation 1 now expresses the Jacobian of f as a sum over chained matrix products.

3 RANDOMIZING AUTOMATIC DIFFERENTIATION

We introduce techniques that could be used to decrease the resource requirements of AD when used
for stochastic optimization. We focus on functions with a scalar output where we are interested in
the gradient of the output with respect to some parameters, Jθ[f ]. Reverse-mode AD efficiently
calculates Jθ[f ], but requires the full linearized computational graph to either be stored during the
forward pass, or to be recomputed during the backward pass using intermediate variables recorded
during the forward pass. For large computational graphs this could provide a large memory burden.

The most common technique for reducing the memory requirements of AD is gradient checkpoint-
ing (Griewank & Walther, 2000; Chen et al., 2016), which saves memory by adding extra forward
pass computations. Checkpointing is effective when the number of "layers" in a computation graph is
much larger than the memory required at each layer. We take a different approach; we instead aim to
save memory by increasing gradient variance, without extra forward computation.

Our main idea is to consider an unbiased estimator Ĵθ[f ] such that EĴθ[f ] = Jθ[f ] which allows us
to save memory required for reverse-mode AD. Our approach is to determine a sparse (but random)
linearized computational graph during the forward pass such that reverse-mode AD applied on the
sparse graph yields an unbiased estimate of the true gradient. Note that the original computational
graph is used for the forward pass, and randomization is used to determine a LCG to use for the
backward pass in place of the original computation graph. We may then decrease memory costs by
storing the sparse LCG directly or storing intermediate variables required to compute the sparse LCG.

In this section we provide general recipes for randomizing AD by sparsifying the LCG. In sections
4 and 5 we apply these recipes to develop specific algorithms for neural networks and linear PDEs
which achieve concrete memory savings.

3.1 PATH SAMPLING

Observe that in Bauer’s formula each Jacobian entry is expressed as a sum over paths in the LCG.
A simple strategy is to sample paths uniformly at random from the computation graph, and form
a Monte Carlo estimate of Equation 1. Naïvely this could take multiple passes through the graph.
However, multiple paths can be sampled without significant computation overhead by performing a
topological sort of the vertices and iterating through vertices, sampling multiple outgoing edges for
each. We provide a proof and detailed algorithm in the appendix. Dynamic programming methods
such as reverse-mode automatic differentiation can then be applied to the sparsified LCG.
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3.2 RANDOM MATRIX INJECTION

In computation graphs consisting of vector operations, the vectorized computation graph is a more
compact representation. We introduce an alternative view on sampling paths in this case. A single
path in the vectorized computation graph represents many paths in the underlying scalar computation
graph. As an example, Figure 2c is a vector representation for Figure 2b. For this example,

@y

@✓
=

@y

@C

@C

@B

@B

@A

@A

@✓
(2)

where A,B,C are vectors with entries ai, bi, ci, ∂C/∂B, ∂B/∂A are 3⇥ 3 Jacobian matrices for the
intermediate operations, ∂y/∂C is 1⇥ 3, and ∂A/∂θ is 3⇥ 1.
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(c) Vector graph for (b).

Figure 2: Common compu-
tational graph patterns. The
graphs may be arbitrarily deep
and wide. (a) A small number
of independent paths. Path sam-
pling has constant variance with
depth. (b) The number of paths in-
creases exponentially with depth;
path sampling gives high variance.
Independent paths are common
when a loss decomposes over data.
Fully interleaved graphs are com-
mon with vector operations.

We now note that the contribution of the path p = ✓ ! a1 ! b2 !
c2 ! y to the gradient is,

@y

@C
P2

@C

@B
P2

@B

@A
P1

@A

@✓
(3)

where Pi = eie
T
i (outer product of standard basis vectors). Sampling

from {P1, P2, P3} and right multiplying a Jacobian is equivalent to
sampling the paths passing through a vertex in the scalar graph.

In general, if we have transition B ! C in a vectorized com-
putational graph, where B 2 R

d, C 2 R
m, we can insert a ran-

dom matrix P = d/k
Pk

s=1 Ps where each Ps is sampled uniformly
from {P1, P2, . . . , Pd}. With this construction, EP = Id, so

E



@C

@B
P

�

=
@C

@B
. (4)

If we have a matrix chain product, we can use the fact that the
expectation of a product of independent random variables is equal
to the product of their expectations, so drawing independent random
matrices PB , PC would give

E



@y

@C
PC

@C

@B
PB

�

=
@y

@C
E [PC ]

@C

@B
E [PB ] =

@y

@C

@C

@B
(5)

Right multiplication by P may be achieved by sampling the in-
termediate Jacobian: one does not need to actually assemble
and multiply the two matrices. For clarity we adopt the nota-
tion SP [∂C/∂B] = ∂C/∂BP . This is sampling (with replacement) k
out of the d vertices represented by B, and only considering paths
that pass from those vertices.

The important properties of P that enable memory savings with an
unbiased approximation are

EP = Id and P = RRT , R 2 R
d⇥k, k < d . (6)

We could therefore consider other matrices with the same properties. In our additional experiments
in the appendix, we also let R be a random projection matrix of independent Rademacher random
variables, a construction common in compressed sensing and randomized dimensionality reduction.

In vectorized computational graphs, we can imagine a two-level sampling scheme. We can both
sample paths from the computational graph where each vertex on the path corresponds to a vector.
We can also sample within each vector path, with sampling performed via matrix injection as above.

In many situations the full intermediate Jacobian for a vector operation is unreasonable to store.
Consider the operation B ! C where B,C 2 R

d. The Jacobian is d ⇥ d. Thankfully many
common operations are element-wise, leading to a diagonal Jacobian that can be stored as a d-vector.
Another common operation is matrix-vector products. Consider Ab = c, ∂c/∂b = A. Although A has
many more entries than c or b, in many applications A is either a parameter to be optimized or is
easily recomputed. Therefore in our implementations, we do not directly construct and sparsify the
Jacobians. We instead sparsify the input vectors or the compact version of the Jacobian in a way that
has the same effect. Unfortunately, there are some practical operations such as softmax that do not
have a compactly-representable Jacobian and for which this is not possible.
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3.3 VARIANCE

The variance incurred by path sampling and random matrix injection will depend on the structure of
the LCG. We present two extremes in Figure 2. In Figure 2a, each path is independent and there are a
small number of paths. If we sample a fixed fraction of all paths, variance will be constant in the
depth of the graph. In contrast, in Figure 2b, the paths overlap, and the number of paths increases
exponentially with depth. Sampling a fixed fraction of all paths would require almost all edges in the
graph, and sampling a fixed fraction of vertices at each layer (using random matrix injection, as an
example) would lead to exponentially increasing variance with depth.

It is thus difficult to apply sampling schemes without knowledge of the underlying graph. Indeed, our
initial efforts to apply random matrix injection schemes to neural network graphs resulted in variance
exponential with depth of the network, which prevented stochastic optimization from converging. We
develop tailored sampling strategies for computation graphs corresponding to problems of common
interest, exploiting properties of these graphs to avoid the exploding variance problem.

4 CASE STUDY: NEURAL NETWORKS

We consider neural networks composed of fully connected layers, convolution layers, ReLU nonlinear-
ities, and pooling layers. We take advantage of the important property that many of the intermediate
Jacobians can be compactly stored, and the memory required during reverse-mode is often bottle-
necked by a few operations. We draw a vectorized computational graph for a typical simple neural
network in figure 3. Although the diagram depicts a dataset of size of 3, mini-batch size of size 1,
and 2 hidden layers, we assume the dataset size is N . Our analysis is valid for any number of hidden
layers, and also recurrent networks. We are interested in the gradients ∂y/∂W1 and ∂y/∂W2.

4.1 MINIBATCH SGD AS RANDOMIZED AD

At first look, the diagram has a very similar pattern to that of 2a, so that path sampling would be a
good fit. Indeed, we could sample B < N paths from W1 to y, and also B paths from W2 to y. Each
path corresponds to processing a different mini-batch element, and the computations are independent.

In empirical risk minimization, the final loss function is an average of the loss over data points.
Therefore, the intermediate partials ∂y/∂h2,x for each data point x will be independent of the other
data points. As a result, if the same paths are chosen in path sampling for W1 and W2, and if we
are only interested in the stochastic gradient (and not the full function evaluation), the computation
graph only needs to be evaluated for the data points corresponding to the sampled paths. This exactly
corresponds to mini-batching. The paths are visually depicted in Figure 3b.

4.2 ALTERNATIVE SGD SCHEMES WITH RANDOMIZED AD
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Figure 3: NN computation graphs.

We wish to use our principles to derive a randomization
scheme that can be used on top of mini-batch SGD. We
ensure our estimator is unbiased as we randomize by ap-
plying random matrix injection independently to various
intermediate Jacobians. Consider a path corresponding to
data point 1. The contribution to the gradient ∂y/∂W1 is

@y

@h2,1

@h2,1

@a1,1

@a1,1
@h1,1

@h1,1

@W1
(7)

Using random matrix injection to sample every Jacobian
would lead to exploding variance. Instead, we analyze
each term to see which are memory bottlenecks.

∂y/∂h2,1 is the Jacobian with respect to (typically) the loss.
Memory requirements for this Jacobian are independent
of depth of the network. The dimension of the classifier is
usually smaller (10� 1000) than the other layers (which
can have dimension 10, 000 or more in convolutional net-
works). Therefore, the Jacobian at the output layer is not a
memory bottleneck.
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Figure 4: Convnet activation sampling for one mini-
batch element. X is the image, H is the pre-activation,
and A is the activation. A is the output of a ReLU, so
we can store the Jacobian ∂A1/∂H1 with 1 bit per entry.
For X and H we sample spatial elements and compute
the Jacobians ∂H1/∂W1 and ∂H2/∂W2 with the sparse
tensors.

∂h2,1/∂a1,1 is the Jacobian of the hidden layer with respect to the previous layer activation. This can be
constructed from W2, which must be stored in memory, with memory cost independent of mini-batch
size. In convnets, due to weight sharing, the effective dimensionality is much smaller than H1 ⇥H2.
In recurrent networks, it is shared across timesteps. Therefore, these are not a memory bottleneck.

∂a1,1/∂h1,1 contains the Jacobian of the ReLU activation function. This can be compactly stored
using 1-bit per entry, as the gradient can only be 1 or 0. Note that this is true for ReLU activations
in particular, and not true for general activation functions, although ReLU is widely used in deep
learning. For ReLU activations, these partials are not a memory bottleneck.

∂h1,1/∂W1 contains the memory bottleneck for typical ReLU neural networks. This is the Jacobian of
the hidden layer output with respect to W1, which, in a multi-layer perceptron, is equal to x1. For B
data points, this is a B ⇥D dimensional matrix.

Accordingly, we choose to sample ∂h1,1/∂W1, replacing the matrix chain
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This can be interpreted as sampling activations on the backward pass. This is our proposed alternative
SGD scheme for neural networks: along with sampling data points, we can also sample activations,
while maintaining an unbiased approximation to the gradient. This does not lead to exploding
variance, as along any path from a given neural network parameter to the loss, the sampling operation
is only applied to a single Jacobian. Sampling for convolutional networks is visualized in Figure 4.

4.3 NEURAL NETWORK EXPERIMENTS

We evaluate our proposed RAD method on two feedforward architectures: a small fully connected
network trained on MNIST, and a small convolutional network trained on CIFAR-10. We also
evaluate our method on an RNN trained on Sequential-MNIST. The exact architectures and the
calculations for the associated memory savings from our method are available in the appendix. In
Figure 5 we include empirical analysis of gradient noise caused by RAD vs mini-batching.

We are mainly interested in the following question:

For a fixed memory budget and fixed number of gradient descent iterations, how quickly does our
proposed method optimize the training loss compared to standard SGD with a smaller mini-batch?

Reducing the mini-batch size will also reduce computational costs, while RAD will only reduce
memory costs. Theoretically our method could reduce computational costs slightly, but this is not our
focus. We only consider the memory/gradient variance tradeoff while avoiding adding significant
overhead on top of vanilla reverse-mode (as is the case for checkpointing).

Results are shown in Figure 6. Our feedforward network full-memory baseline is trained with a mini-
batch size of 150. For RAD we keep a mini-batch size of 150, and try 2 different configurations. For
"same sample", we sample with replacement a 0.1 fraction of activations, and the same activations are
sampled for each mini-batch element. For “different sample”, we sample a 0.1 fraction of activations,
independently for each mini-batch element. Our "reduced batch" experiment is trained without RAD
with a mini-batch size of 20 for CIFAR-10 and 22 for MNIST. This achieves similar memory budget
as RAD with mini-batch size 150. Details of this calculation and of hyperparameters are in the
appendix.
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Limited-memory learning and optimization Memory is a major bottleneck for reverse-mode AD,
and much work aims to reduce its footprint. Gradient checkpointing is perhaps the most well known,
and has been used for both reverse-mode AD (Griewank & Walther, 2000) with general layerwise
computation graphs, and for neural networks (Chen et al., 2016). In gradient checkpointing, some
subset of intermediate variables are saved during function evaluation, and these are used to re-compute
downstream variables when required. Gradient checkpointing achieves sublinear memory cost with
the number of layers in the computation graph, at the cost of a constant-factor increase in runtime.

Stochastic Computation Graphs Our work is connected to the literature on stochastic estimation
of gradients of expected values, or of the expected outcome of a stochastic computation graph. The
distinguishing feature of this literature (vs. the proposed RAD approach) is that it uses stochastic
estimators of an objective value to derive a stochastic gradient estimator, i.e., the forward pass is
randomized. Methods such as REINFORCE (Williams, 1992) optimize an expected return while
avoiding enumerating the intractably large space of possible outcomes by providing an unbiased
stochastic gradient estimator, i.e., by trading computation for variance. This is also true of mini-batch
SGD, and methods for training generative models such as contrastive divergence (Hinton, 2002), and
stochastic optimization of evidence lower bounds (Kingma & Welling, 2013). Recent approaches
have taken intractable deterministic computation graphs with special structure, i.e. involving loops or
the limits of a series of terms, and developed tractable, unbiased, randomized telescoping series-based
estimators for the graph’s output, which naturally permit tractable unbiased gradient estimation
(Tallec & Ollivier, 2017; Beatson & Adams, 2019; Chen et al., 2019; Luo et al., 2020).

7 CONCLUSION

We present a framework for randomized automatic differentiation. Using this framework, we construct
reduced-memory unbiased estimators for optimization of neural networks and a linear PDE. Future
work could develop RAD formulas for new computation graphs, e.g., using randomized rounding to
handle arbitrary activation functions and nonlinear transformations, integrating RAD with the adjoint
method for PDEs, or exploiting problem-specific sparsity in the Jacobians of physical simulators. The
randomized view on AD we introduce may be useful beyond memory savings: we hope it could be a
useful tool in developing reduced-computation stochastic gradient methods or achieving tractable
optimization of intractable computation graphs.
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APPENDIX A: NEURAL NETWORK EXPERIMENTS

RANDOM PROJECTIONS FOR RAD

As mentioned in Section 3.2 (around Equation 5) of the main paper, we could also use different
matrices P that have the properties

EP = Id and P = RRT , R 2 R
d⇥k, k < d .

In the appendix we report experiments of letting R be a matrix of iid Rademacher random variables,

scaled by
p
k. P = RRT defined in this way satisfies the properties above. Note that this would lead

to additional computation: The Jacobian or input vector would have to be fully computed, and then
multiplied by R and stored. In the backward pass, it would have to be multiplied by RT . We report
results as the “project” experiment in the full training/test curves in the following sections. We see
that it performs competitively with reducing the mini-batch size.

ARCHITECTURES USED

We use three different neural network architectures for our experiments: one fully connected feedfor-
ward, one convolutional feedforward, and one recurrent.

Our fully-connected architecture consists of:

1. Input: 784-dimensional flattened MNIST Image

2. Linear layer with 300 neurons (+ bias) (+ ReLU)

3. Linear layer with 300 neurons (+ bias) (+ ReLU)

4. Linear layer with 300 neurons (+ bias) (+ ReLU)

5. Linear layer with 10 neurons (+ bias) (+ softmax)

Our convolutional architecture consists of:

1. Input: 3⇥ 32⇥ 32-dimensional CIFAR-10 Image

2. 5⇥ 5 convolutional layer with 16 feature maps (+ 2 zero-padding) (+ bias) (+ ReLU)

3. 5⇥ 5 convolutional layer with 32 feature maps (+ 2 zero-padding) (+ bias) (+ ReLU)

4. 2⇥ 2 average pool 2-d

5. 5⇥ 5 convolutional layer with 32 feature maps (+ 2 zero-padding) (+ bias) (+ ReLU)

6. 5⇥ 5 convolutional layer with 32 feature maps (+ 2 zero-padding) (+ bias) (+ ReLU)

7. 2⇥ 2 average pool 2-d (+ flatten)

8. Linear layer with 10 neurons (+ bias) (+ softmax)

Our recurrent architecture was taken from Le et al. (2015) and consists of:

1. Input: A sequence of length 784 of 1-dimensional pixels values of a flattened MNIST image.

2. A single RNN cell of the form

ht = ReLU(Wihxt + bih +Whhht�1 + bhh)

where the hidden state (ht) dimension is 100 and xt is the 1-dimensional input.

3. An output linear layer with 10 neurons (+ bias) (+ softmax) that has as input the last hidden
state.

CALCULATION OF MEMORY SAVED FROM RAD

For the baseline models, we assume inputs to the linear layers and convolutional layers are stored in
32-bits per dimensions. The ReLU derivatives are then recalculated on the backward pass.

For the RAD models, we assume inputs are sampled or projected to 0.1 of their size (rounded up)
and stored in 32-bits per dimension. Since ReLU derivatives can not exactly be calculated now, we
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assume they take 1-bit per dimension (non-reduced dimension) to store. The input to the softmax
layer is not sampled or projected.

In both cases, the average pool and bias gradients does not require saving since the gradient is
constant.

For MNIST fully connected, this gives (per mini-batch element memory):

Baseline: (784 + 300 + 300 + 300 + 10) · 32 bits = 6.776 kBytes

RAD 0.1: (79 + 30 + 30 + 30 + 10) · 32 bits + (300 + 300 + 300) · 1 bits = 828.5 bytes

which leads to approximately 8x savings per mini-batch element.

For CIFAR-10 convolutional, this gives (per mini-batch element memory):

Baseline: (3 ·32 ·32+16 ·32 ·32+32 ·16 ·16+32 ·16 ·16+32 ·8 ·8+10) ·32 bits = 151.59 kBytes

RAD 0.1: (308+1639+820+820+205+10) ·32 bits+(16384+8192+8192+2048) ·1 bits =
19.56 kBytes

which leads to approximately 7.5x savings per mini-batch element.

For Sequential-MNIST RNN, this gives (per mini-batch element memory):

Baseline: (784 · (1 + 100) + 100 + 10) · 32 bits = 317.176 kBytes

RAD 0.1: (784 · (1 + 10) + 10 + 10) · 32 bits + (784 · 100) · 1 bits = 44.376 kBytes

which leads to approximately 7.15x savings per mini-batch element.

FEEDFORWARD NETWORK TRAINING DETAILS

We trained the CIFAR-10 models for 100, 000 gradient descent iterations with a fixed mini-batch
size, sampled with replacement from the training set. We lower the learning rate by 0.6 every 10, 000
iterations. We train with the Adam optimizer. We center the images but do not use data augmentation.
The MNIST models were trained similarly, but for 20, 000 iterations, with the learning rate lowered
by 0.6 every 2, 000 iterations. We fixed these hyperparameters in the beginning and did not modify
them.

We tune the initial learning rate and `2 weight decay parameters for each experiment reported in the
main text for the feedforward networks. For each experiment (project, same sample, different sample,
baseline, reduced batch), for both architectures, we generate 20 (weight decay, learning rate) pairs,
where each weight decay is from the loguniform distribution over 0.0000001� 0.001 and learning
rate from loguniform distribution over 0.00001� 0.01.

We then randomly hold out a validation dataset of size 5000 from the CIFAR-10 and MNIST training
sets and train each pair on the reduced training dataset and evaluate on the validation set. For each
experiment, we select the hyperparameters that give the highest test accuracy.

For each experiment, we train each experiment with the best hyperparameters 5 times on separate
bootstrapped resamplings of the full training dataset (50, 000 for CIFAR-10 and 60, 000 for MNIST),
and evaluate on the test dataset (10, 000 for both). This is to make sure the differences we observe
across experiments are not due to variability in training. In the main text we show 3 randomly selected
training curves for each experiment. Below we show all 5.

All experiments were run on a single NVIDIA K80 or V100 GPU. Training times were reported on a
V100.

RNN TRAINING DETAILS

All RNN experiments were trained for 200,000 iterations (mini-batch updates) with a fixed mini-batch
size, sampled with replacement from the training set. We used the full MNIST training set of 60,000
images whereby the images were centered. Three repetitions of the same experiment were performed
with different seeds. Hyperparameter tuning was not performed due to time constraints.
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The hidden-to-hidden matrix (Whh) is initialised with the identity matrix, the input-to-hidden matrix
(Wih) and hidden-to-output (last hidden layer to softmax input) are initialised with a random matrix
where each element is drawn independently from a N (0, 0.001) distribution and the biases (bih, bhh)
are initialised with zero.

The model was evaluated on the test set of 10,000 images every 400 iterations and on the entire
training set every 4000 iterations.

For the "sample", "different sample", "project" and "different project" experiments different activa-
tions/random matrices were sampled at every time-step of the unrolled RNN.

All experiments were run on a single NVIDIA K80 or V100 GPU.

The average running times for each experiment are given in Table 2. Note that we did not optimise
our implementation for speed and so these running times can be reduced significantly.

Table 2: Average running times for RNN experiments on Sequential-MNIST.

Experiment Running Time (hrs) GPU

Baseline 34.0 V100
Small batch 16.0 V100

Sample 96.0 K80
Different Sample 110.0 K80

Project 82.0 K80
Different Project 89.0 K80

IMPLEMENTATION

The code is provided on GitHub1. Note that we did not optimize the code for computational efficiency;
we only implemented our method as to demonstrate the effect it has on the number of gradient steps
to train. Similarly, we did not implement all of the memory optimizations that we account for in our
memory calculations; in particular in our implementation we did not take advantage of storing ReLU
derivatives with 1-bit or the fact that average pooling has a constant derivative. Although these would
have to be implemented in a practical use-case, they are not necessary in this proof of concept.

1https://github.com/PrincetonLIPS/RandomizedAutomaticDifferentiation
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APPENDIX B: REACTION-DIFFUSION PDE

The reaction-diffusion equation is a linear parabolic partial differential equation. In fission reactor
analysis, it is called the one-group diffusion equation or one-speed diffusion equation, shown below.

@�

@t
= Dr

2�+ C�+ S

Here � represents the neutron flux, D is a diffusion coefficient, and C� and S are source terms
related to the local production or removal of neutron flux. In this paper, we solve the one-speed
diffusion equation in two spatial dimensions on the unit square with the condition that � = 0 on the
boundary. We assume that D is constant equal to 1/4, C(x, y, t,θ) is a function of control parameters
θ described below, and S is zero. We discretize � on a regular grid in space and time, which motivates
the notation �! φt. The grid spacing is ∆x = 1/32 and the timestep is ∆t = 1/4096. We simulate
from t = 0 to t = 10. We use the explicit forward-time, centered-space (FTCS) method to timestep
φ. The timestep is chosen to satisfy the stability criterion, D∆t/(∆x)2  1

4 . In matrix notation, the
FTCS update rule can be written φt+1 = Mφt +∆tCt � φt, in index notation it can be written as
follows:

�
i,j
t+1 = �

i,j
t +

D∆t

(∆x)2

⇣

�
i+1,j
t + �

i�1,j
t + �

i,j+1
t + �

i,j�1
t � 4�i,j

t

⌘

+∆tCi,j
t �

i,j
t

The term C� in the one-speed diffusion equation relates to the local production or removal of neutrons
due to nuclear interactions. In a real fission reactor, C is a complicated function of the material
properties of the reactor and the heights of the control rods. We make the simplifying assumption that
C can be described by a 7-term Fourier series in x and t, written below. Physically, this is equivalent
to the assumption that the material properties of the reactor are constant in space and time, and the
heights of the control rods are sinusoidally varied in x and t. �0 is initialized so that the reactor
begins in a stable state, the other parameters are initialized from a uniform distribution.

C(x, y, t,θ) = ✓0 + ✓1 sin(⇡t) + ✓2 cos(⇡t) + ✓3 sin(2⇡x) sin(⇡t)+

✓4 sin(2⇡x) cos(⇡t) + ✓5 cos(2⇡x) sin(⇡t) + ✓6 cos(2⇡x) cos(⇡t)

The details of the stochastic gradient estimate and optimization are described in the main text. The
Adam optimizer is used. Each experiment of 800 optimization iterations runs in about 4 hours on a
GPU.
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APPENDIX C: PATH SAMPLING ALGORITHM AND ANALYSIS

Here we present an algorithm for path sampling and provide a proof that it leads to an unbiased
estimate for the gradient. The main idea is to sample edges from the set of outgoing edges for each
vertex in topological order, and scale appropriately. Vertices that have no incoming edges sampled
can be skipped.

Algorithm 1 RMAD with path sampling

1: Inputs:
2: G = (V,E) - Computational Graph. dv denotes outdegree, v.succ successor set of vertex v.
3: y - Output vertex
4: Θ = (✓1, ✓2, . . . , ✓m) ⇢ V - Input vertices
5: k > 0 - Number of samples per vertex
6: Initialization:
7: Q(e) = 0, 8e 2 E
8: for v in topological order; synchronous with forward computation do
9: if No incoming edge of v has been sampled then

10: Continue
11: for k times do
12: Sample i from [dv] uniformly.

13: Q(v, v.succ[i]) Q(v, v.succ[i]) + dv

k

∂v.succ[i]
∂v

14: Run backpropagation from y to Θ using Q as intermediate partials.
15: Output: rΘy

The main storage savings from Algorithm 1 will come from Line 9, where we only consider a vertex
if it has an incoming edge that has been sampled. In computational graphs with a large number of
independent paths, this will significantly reduce memory required, whether we record intermediate
variables and recompute the LCG, or store entries of the LCG directly.

To see that path sampling gives an unbiased estimate, we use induction on the vertices in reverse

topological order. For every vertex z, we denote z̄ = ∂y
∂z

and ẑ as our approximation for z̄. For our

base case, we let ŷ = dy
dy

= 1, so Eŷ = ȳ. For all other vertices z, we define

ẑ = dz
X

(z,v)2E

Iv=vi

@v

@z
v̂ (9)

where dz is the out-degree of z, vi is sampled uniformly from the set of successors of z, and Iv=vi is
an indicator random variable denoting if v = vi. We then have

Eẑ =
X

(z,v)2E

dzE[Iv=vi ]
@v

@z
Ev̂ =

X

(z,v)2E

@v

@z
Ev̂ (10)

assuming that the randomness over the sampling of outgoing edges is independent of v̂, which must
be true because our induction is in reverse topological order. Since by induction we assumed Ev̂ = v̄,
we have

Eẑ =
X

(z,v)2E

@v

@z
v̄ = z̄ (11)

which completes the proof.
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