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Abstract—This paper studies the secure decentralized Pliable
Index CODing (PICOD) problem, where the security constraint
forbids users to decode more than one message while the
decentralized setting imposes that there is no central transmitter
in the system, and thus transmissions occur only among users.
A converse bound from the Authors’ previous work showed
a factor of three difference in optimal code-length between
the centralized and the decentralized versions of the problem,
under the constraint of linear encoding. This paper first lists
all linearly infeasible cases, that is, problems where no linear
code can simultaneously achieve both correctness/decodability
and security. Then, it proposes linear coding schemes for the
remaining cases and shows that their code-length is to within an
additive constant gap from the converse bound.

I. INTRODUCTION

Index Coding: Pliable Index CODing (PICOD) is a
variant of the Index Coding (IC) problem. The traditional IC
setting consists of m messages, one central transmitter and n
users connected by an error-free broadcast channel. Each user
has some messages locally stored as its side information set
and has one pre-determined message to decode. The structure
of the side information sets and the desired messages are
known to the transmitter and all the users. The transmitter
broadcasts coded symbols to all users. The users decode based
on the received coded symbols and their own side information
set. The goal for IC is to find the smallest code-length (i..e,
number of transmitted coded symbols) such that all users can
decode correctly their desired messages.

Pliable Index Coding: PICOD is a variant of IC moti-
vated by the scenarios where the desired message at the users
is not be pre-determined [2], such as for example streaming
services and online advertisement systems. In PICOD a user is
satisfied whenever it can correctly decode at least one message
that is not in its side information set. Therefore, the transmitter
can leverage the freedom of choosing the desired messages
for the users so as to reduce the code-length. Compared to the
IC with the same number of users and side information sets,
PICOD needs less transmissions to satisfy all the users [9].

Decentralized Problems: The decentralized IC problem
is motivated by peer-to-peer communication systems where
there is no central transmitter and instead coded symbols are
generated by the users based on their side information set
and sent through a common time-sharing noiseless broadcast
channel. The goal is again to find the minimal code-length
that allows every user to correctly decode its desired message.
Under linear encoding constraint, the minimum code-length

of the decentralized IC is shown to be no more than twice
that of its centralized counterpart [1]. The pliable version
of decentralized IC was studied in [4], where information
theoretical bounds on the optimal code-length were given for
some cases and the multiplicative gap between centralized and
decentralized PICOD shown to be less than two in general.

Secure Centralized Problems: Security in IC means that
the users can only decode their desired message while all
other messages that are not in their side information set must
remain unknown to the users. The secure IC problem was first
proposed in [7], where private one-time-pad keys were used
to meet the security demand. A weaker definition of security,
which can be achieved without security keys, was discussed
in [7] and later extended to the PICOD setting [8]. Achievable
and converse bounds for the case of circular side information
structure and linear encoding were derived in [5].

Secure Decentralized Problems: In this paper we are
interested in the secure and decentralized setting. Recently,
the secure PICOD problem in [5] has been extended to the
decentralized setting in [6], where a converse bound under the
constraint of linear encoding showed a multiplicative gap of
roughly three between the secure centralized and decentralized
versions of PICOD. This gap is strictly larger than the one
between the centralized and decentralized versions of IC
without security, which equals two [1].

Contributions: This paper continues the study of the
secure decentralized PICOD problem initiated in [6]. The main
contribution is a proof that the proposed linear converse in [6]
is tight to within a constant additive gap. Specifically, (i) we
provide a complete list of linearly infeasible cases, which
shows that most cases when the number of messages m is
odd are actually feasible, and (ii) we show linear achievable
schemes for all remaining feasible cases. We conclude that the
proposed schemes achieve the converse bound in [6] to within
an additive constant gap. Note that the proposed achievable
schemes in this work are not straightforward extensions of the
schemes for centralized secure PICOD. The schemes in the
decentralized setting are more complicated and we have not
yet found a single general scheme working for all cases, as
what we did for centralized secure PICOD in [6].

Paper Organization: Section II introduces the problem.
Section III summarizes the main results. In Section IV we
prove the infeasible cases. In Section V we illustrate the main
ideas for the achievable schemes by giving examples that
highlight the main ideas for the general schemes. Section VI



concludes the paper. The details of the general achievable
schemes can be found in the longer version of this paper at [3].

II. PROBLEM FORMULATION

We consider the (m, s) secure decentralized PICOD prob-
lem with circular side information structure at the users. The
system consists of m messages and m users. The messages
are vectors of length κ ∈ N independent and uniformly
distributed bits. W := {w1, . . . , wm} denotes the set of all
messages. WA := {wi, i ∈ A} denotes the set of messages
with indices in set A. U := {u1, . . . , um} denotes the set of
the users. User ui has message WAi

as its side information,
where Ai = {i, i − 1 . . . , i − s + 1}. The entries in the
side information set are intended modulo m. The collection
A = {A1, . . . , Am} is globally known to all users. The
coded symbols are generated by the users based on their side
information sets. The encoding function at user ui is

xκ`i := ENCi(WAi
,A), i ∈ [m], (1)

where `i ∈ N is the code-length. The overall transmission is
represented by the vector xκ` = (xκ`1 , . . . , xκ`m) with the
total normalized code-length ` :=

∑
i∈[m] `i.

Each user must correctly acquire a message that is not in
its side information set. The decoding function at user ui is

ŵi := DECi(xκ`,WAi
,A), i ∈ [m]. (2)

The decoding is correct if ŵi = wdi for some di ∈ [m] \Ai.
The security constraint requires that user ui decodes no

more than one message. Specifically, we have

I(wj ;x
κ`,WAi) = 0, ∀j ∈ [m] \ {Ai ∪ {di}}, ∀i ∈ [m]. (3)

The goal is to find the smallest ` :=
∑
i∈[m] `i such that all

users meet the correctness and security constraints.

III. MAIN CONTRIBUTIONS

For the (m, s) secure decentralized PICOD with circular
side information at the users, the converse bound in [6] gives

`∗ ≥


m
s ,

m
m−s ∈ Z,

3m
2s ,

m
m−s /∈ Z, linear encoding,m > 2s,

2, m
m−s /∈ Z, linear encoding,m < 2s.

(4)

In [6] we found several cases where the problem is linearly
infeasible, that is, no linear scheme exists such that every
user can decode one and only one message outside its side
information set. For such linearly infeasible cases, the converse
bound in (4) is not tight. In this paper, we first give a complete
list of all linearly infeasible cases. We then show schemes that
attain the converse bound in (4) to within an additive constant
gap for all feasible cases. Specifically, we have the following.

Theorem 1 (All infeasible cases). The (m, s) secure decen-
tralized PICOD with circular side information sets and linear
encoding is infeasible if

1) m ≥ 2s+ 1, s = 1 or 2;
2) Odd m ≥ 7, s = 3 or 4;
3) Odd m, s = m− 2.

Theorem 2 (Achievability to within an additive gap of 7).
For the (m, s) secure decentralized PICOD with circular side
information sets that are not listed in Theorem 1, the following
is attainable

`∗ ≤


m
s ,

m
m−s ∈ Z,

3m
2s + 3, m

m−s /∈ Z, linear encoding,m > 2s,

2 + 7, m
m−s /∈ Z, linear encoding,m < 2s.

(5)

IV. PROOF OF THEOREM 1

In this section we prove the only linearly infeasible case
in Theorem 1 that has not been proved in [6], namely, odd
m ≥ 7, s = 4. The proof is split into two cases.

A. Case Odd m ≥ 9, s = 4

Assume we have an achievable scheme that satisfies all
constraints. Since here we have m > 2s, from [5, Propo-
sition 1], one transmission involves at least 2 messages. The
number of messages in one transmission is either 2 or 3, since
involving s = 4 consecutive messages in one transmission is
insecure as shown in [6]. For a linear code, a user can decode
its desired message if there exists one linear combination
of the codewords such that all the messages but its desired
message that are involved are in the user’s side information
set. Therefore, if two transmissions do not satisfy one user
and involve no messages in common, the linear combination
of these two transmissions will not satisfy the user. Each
transmission involving 2 or 3 consecutive messages satisfies 2
users. Each transmission involving 2 nonconsecutive messages
satisfies 4 users. Thus, if no transmissions have common
messages, the total number of satisfied users is even, which
contradicts to the condition that m is odd. Therefore, there
must exist two transmissions that have messages in common.
We consider the following sub-cases.

a) Both transmissions involve 2 messages: There exists
a user that can decode the common message by one transmis-
sion, then decode another message by the other transmission.
Therefore the user can decode two messages, which violates
the security constraint.

b) One transmission involves 2 messages and the other
3 messages: Let g(.) denote a linear combination of its
argument. We have the following cases:

1) g1(W{4,5}) and g2(W{4,5,6}): the user with side infor-
mation W{1,2,3,4} can decode W{5,6}, which is insecure;

2) g1(W{4,5}) and g2(W{5,6,7}): the user with side infor-
mation W{6,7,8,9} can decode W{4,5}, which is insecure;

3) g1(W{4,6}) and g2(W{4,5,6}): the user with side infor-
mation W{1,2,3,4} can decode W{5,6}, which is insecure;

4) g1(W{4,6}) and g2(W{5,6,7}): the user with side infor-
mation W{6,7,8,9} can decode W{4,5}, which is insecure;

5) g1(W{3,5}) and g2(W{5,6,7}): the user with side infor-
mation W{6,7,8,9} can decode W{3,5}, which is insecure.

c) Both transmissions involve 3 consecutive messages:
We have the following cases:



1) g1(W{4,5,6}) and g2(W{4,5,6}): a linear combination of
these two transmissions can generate a linear combina-
tion of W{4,5}. This case is insecure as shown in case 1
of paragraph IV-A0b;

2) g1(W{4,5,6}) and g2(W{5,6,7}): the user with side infor-
mation W{2,3,4,5} can decode W{6,7}, which is insecure;

3) g1(W{4,5,6}) and g2(W{6,7,8}): a linear combination of
these two transmissions can generate a linear combi-
nation of W{4,5,6,7,8}. This is the only case that does
not violate the security constraint. However, this case
does not allow any new users to decode. Therefore, the
number of satisfied users is the the sum of the number
of users satisfied by each transmission, which even. This
contradicts the condition that m is odd.

This concludes the linearly infeasible proof.

B. Case m = 7, s = 4

Assume we have an achievable scheme that satisfies all the
constraints. If all the transmissions are linear combinations
of at least 2 messages, the argument for the case s = 4,
odd m ≥ 9 in the previous subsection holds and thus the
case is infeasible. Therefore, it is enough to show that the
case s = 4,m = 7 is insecure if there is one transmission
that involves only one message. Without loss of generality,
assume one transmission is a linear function of w4. Users
u1, u2, u3 will decode w4 since they do not have it in their
side information set. User u3 has the same side information of
user u4 after decoding. Therefore, the desired message of user
u4 needs to be inside the side information of u3. The desired
message of u4 can only be w7. The the argument applies to u7
and its desired message can only be w1. Thus, only the desired
message of user u5 and user u6 are not fixed yet. Consider
the following cases for the desired message of user u5.

a) d5 = 1: User u5 can mimic u4 and decode w7.
b) d5 = 7: There must exists a linear combination of

codewords that is a linear combination of messages W{2,3,5,7}
by the decoding condition of the linear index code, where w7

has non-zero coefficient. Let k ∈ {2, 3, 5} be the largest index
in {2, 3, 5} so that wk has non-zero coefficient in said linear
combination. User uk−1 can decode wk when k = 2, 3, user
u3 can decode w5 when k = 5. Since these users already have
other decoded message, the security constraint is violated.

c) d5 = 6: There must exist a linear combination of
codewords that is a linear combination of messages W{2,3,5,6}
by the decoding condition of the linear index code, where
the coefficient of w6 is non-zero. Therefore, there exists one
transmission involving w6. We consider all possible linear
combinations that involve w6.
• Linear combination of w6, or W{4,6}, or W{1,6}, or
W{6,7}, or W{1,6,7}. User u3 can decode parts of w6.

• Linear combination of W{5,6} or W{4,5,6}. User u2 can
decode parts w5.

Therefore, the case s = 4,m = 7 is infeasible.
Overall, we conclude that the case s = 4, odd m ≥ 7 is

infeasible. This completes the proof of Theorem 1.

V. PROOF OF THEOREM 2

In this section, we give examples to demonstrate the key
ideas of our achievable scheme in Theorem 2. This is because,
unlike the centralized setting, we have not found a general
scheme that works for all decentralized secure PICODs. There-
fore, our achievability contains multiple schemes targeting
different cases. We choose several cases as the examples to
show the similarity and difference among the schemes. The
details on the schemes can be found in [3].

The converse bound in (5) includes three regimes, which
we shall address separately. Some intuitions of the general
schemes are provided in the remarks at the end of each
subsection.

A. Case m
m−s ∈ Z: `∗ = m

s

The information theoretical converse was derived in [6] for
the centralized case. The achievable scheme is the one for
the decentralized PICOD without security constraint discussed
in [4], which satisfies the security constraint because for each
user, among all the messages that are involved in the encoding
function, there is one and only one message that is not in its
side information set. Therefore, the scheme is also information
theoretically optimal with an additional security constraint.

B. Case m
m−s /∈ Z,m > 2s: ` ≤ 3m

2s + 3

The converse bound in this regime is 3m
2s . Therefore, in

order to have an achievable scheme that is optimal within
an additive constant gap, we aim to satisfy on average
2s
3 users in one transmission. It has been shown that, for

the cases where m
2s ∈ Z, an optimal secure centralized

scheme is {w1+2sk+w2+2sk, w3+2sk+ws−2+2sk, ws−3+2sk+
ws−4+2sk}, k ∈ {0, 1, . . . , m2s − 1}, for a total 3m

2s transmis-
sions [6]. In this section, by ways of examples, we show how
this scheme can be extended to all feasible cases in the regime
m
m−s /∈ Z,m > 2s. The detailed proof is in [3, Appendix A].

To make the exposition easier, we shall use the case m =
26 in the following examples and represent the scheme in a
“matrix” form in the figures. In the figures, a row with X’s
represents a transmission that is a linear combination of the
messages marked by the X. A row with U’s shows the users
that are satisfied by the transmission shown by the row right
above with X’s. The user represented by the U in position i is
the user with side information set WAi

= {wi−s+1, . . . , wi}.
a) Case m = 26, s = 6: The scheme is illustrated in

Fig. 1. We have two groups of 2s = 12 users each. Six
transmissions are used to satisfy the 24 users in these groups.
The transmissions are w1 + w2, w3 + w7, w8 + w9, w13 +
w14, w15 + w19, w20 + w21. The two remaining users are
satisfied by the last transmission w22+w23+w24+w25+w26.
The total number of transmissions is ` = 7.

b) Case m = 26, s = 10: We have one group of 2s =
20 users, and 6 remaining users. The transmissions and the
users that are satisfied by each transmission are illustrated in
Fig. 2. Three transmissions satisfy the 20 users’ group. The
transmissions are w1 + w2, w3 + w12, w13 + w14. For the
remaining users, we use two transmissions w15+w17+w18+
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Fig. 1: Achievable scheme for m = 26, s = 6.
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Fig. 2: Achievable scheme for m = 26, s = 10.

w19 +w20 +w21 +w22 and w18 +w19 +w20 +w21 +w22 +
w23 + w25, each satisfying three of the remaining users. The
total number of transmissions is ` = 5.

Remark 1. In the regime m > 2s we use the scheme that
satisfies 2s users by using three transmissions. In the first
step, we group the users into disjoint groups of size 2s and
satisfy the users in each group with 3 transmissions. In the
second step, we satisfy the remaining users, which are less than
2s. Our scheme guarantees that the number of transmissions
needed to satisfy the remaining users is a constant that does
not grow with the system parameter (m, s). Therefore, the
proposed scheme can achieve the converse bound to within an
additive constant gap that equals the number of transmissions
in the second step.

C. Case m
m−s /∈ Z, s < m < 2s: ` ≤ 9

In this regime the scheme in [6] does not work because the
number of users is m < 2s, thus no group of size 2s users can
be formed. Here we aim to satisfy all users with a constant
number of transmissions that does not grow with the system
parameters (m, s). We treat two sub-cases separately.

1) Subcase m
m−s /∈ Z, s < m ≤ 3s

2 : In this case we
consider the complement of the side information set of every
user, which is of size m−s. The proposed scheme guarantees
that among every consecutive m− s messages, the codewords
contain one and only one message that is linearly independent
of the remaining m − s − 1 messages. In the following, we
provide examples to demonstrate the scheme. The detailed
proof can be found in [3, Appendix B].

a) Case m = 26, s = 20: The codewords, which are the
linear combinations of the messages, contain two parts:

U U
X X

UUU U U UU

X XXX X X XXX X
U U U

X X X
U UU UUU U U U UUU U U

XX X XX
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Fig. 3: Achievable scheme for m = 26, s = 20.
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Fig. 4: Achievable scheme for m = 26, s = 19.

• Part A are wi+1 + . . . + wi+(m−s−1) and wi+(m−s) +
wi+2(m−s−1). The involved messages are in a range of
2k1(m− s− 1), where k1 ≥ 2, k1 ∈ Z.

• Part B are wj , wj+1 + . . . + wj+(m−s−1). The involved
messages are in a range of k2(m− s), where k2 ∈ N.

The messages the these two parts do not overlap. Therefore,
this scheme works for the case m = k12(m−s−1)+k2(m−s),
where k1 ≥ 2, k2 ≥ 0, k1, k2 ∈ N. In the case of s = 20,m =
26 = 2(10) + 6, the proposed scheme takes 4 transmissions:
w1 + w2 + w3 + w4 + w5 + w21 + w22 + w23 + w24 + w25,
w6+w10+w26, w11+w12+w13+w14+w15, and w16+w20,
as shown in Fig. 3.

For the cases where m 6= k12(m−s−1)+k2(m−s), ∀k1 ≥
2, k2 ≥ 0, k1, k2 ∈ Z, we propose the following examples to
show how the scheme can be modified.

b) Case m = 26, s = 19: In this case the proposed
scheme takes 4 transmissions: w5, w2 + w3 + w4 + w6 +
w11 +w22, w12 +w13 +w14 +w15, and w18 +w21 +w24, as
shown in Fig. 4. Every 7 = m − s consecutive messages are
in two linear combinations where one contains one message
and the other contains all the other messages with nonzero
coefficients. The scheme can be seen as a modified version of
the scheme in Section V-C1a: the part from w6 to w17 is a
modified Part A; the part from w25 to w5 is a modified Part B;
and the rest is a new structure that combines these two pieces.

c) Case m = 26, s = 18: In this case the proposed
scheme takes 4 transmissions: w1+w4+w5+w6+w7, w8+
w13, w15+w16+w17+w18+w19, and w22+w26, as shown
in Fig. 5. One can check that for every 8 = m−s consecutive
messages are in two linear combinations where one contains
one message and the other contains all the other messages with
nonzero coefficients. The scheme can be seen as a modified
version of the scheme used in Section V-C1a: the part from
w1 to w14 is a modified Part A; the part from w15 to w26 is
a modified and shrunk Part A.

Remark 2. In this regime our proposed scheme is designed



U U
X X

UUU U UUU U

X X X XX
U UU U

X X
U UUU U U U UUU U U

XX X XX

1 432 5 876 9 121110 13 161514 17 201918 21 242322 25 26

Fig. 5: Achievable scheme for m = 26, s = 18.
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Fig. 6: Achievable scheme for m = 26, s = 16.

such that every consecutive m − s messages have one and
only one message that is linearly independent of the rest. The
scheme treats the m users as “sliding windows” of size m−s
on the m messages. The “sliding window” thus satisfies both
decodability and security. The scheme for case m > 2s can not
be extended straightforwardly in this case because to satisfy
users less than 2s the scheme has transmissions that take more
than 2s consecutive messages. This is not an issue in the case
m > 2s. But when m < 2s this means the transmissions
will have messages in common as the indices of the messages
are intended modulo m. The common messages among the
transmissions could allow one user to decode more than one
message so the security constraint thus does not hold anymore.

2) Subcase m
m−s /∈ Z, 3s2 < m < 2s: Here we propose

a scheme that can be seen as a combination of the ideas
we presented in Sections V-B and V-C1. That is, we first
use a finite number (less than a constant) of transmissions
to satisfy a finite number of users with the scheme in [6].
Then, we use a scheme similar to the one proposed for the
case m > 2s in Sections V-B for the remaining users. The total
number of transmissions is thus finite and the scheme achieves
the converse bound to within a constant gap. The following
example illustrates the proposed scheme. The detailed proof
can be found in [3, Appendix C].

a) Case m = 26, s = 16: The first two transmissions
are: w1 + · · · + w15 and w3 + w17. Four users are satisfied
by these two transmissions. The remaining users are grouped
into 6 groups and are satisfied by 3 transmissions, where each
transmission aims to satisfy 2 groups. The transmissions are:
w20 +w24, w8 +w14 + · · ·+w19, and w1 + · · ·+ 4+w10 +
w25 +w26. The transmissions and the corresponding satisfied
users are shown in Fig. 6. The scheme uses 5 transmissions.

We thus proposed schemes that are to within a constant
gap from the converse bound in (4). All cases and the
corresponding bounds are summarized in Table I.

TABLE I: All cases and the corresponding achievable schemes.
m|a represents m mod a, where a is an integer; “infea.” is the

abbreviation of “infeasible”.

Condition Subcase Converse `
m

m−s
∈ Z all m/s m/s

m
m−s

/∈ Z,
m− 4 ≥
s ≥ 5,
m > 2s

m|2s = 0

3m
2s

3m
2s

m|2s = 1 3m
2s

+ 4s−3
2s

m|2s = 2 3m
2s

+ s−3
s

m|2s = 3 3m
2s

+ 6s−3
2s

m|2s ∈ [4 : s] 3m
2s

+
4s−3m|2s

2s

m|2s ∈ [s+ 1 : 2s− 2] 3m
2s

+
6s−3m|2s

2s

m|2s = 2s− 1 3m
2s

+ 2s+3
2s

m
m−s

/∈ Z,
m− 4 ≥
s ≥ 5,
m < 2s

s < m ≤ 3s/2
2

≤ 4

3s/2 < m < 2s ≤ 9

s ≤ 4,
m

m−s
/∈ Z

s = 1 infea. ∞
s = 2 infea. ∞

s = 3, even m m
2

m
2

s = 3, odd m infea. ∞
s = 4, even m 3m

8
3bm

8
c+

m|8
2

s = 4, odd m infea. ∞

s ≥ m− 3,
m

m−s
/∈ Z

m− s = 2, odd m infea. ∞
m− s = 3, even m 3

2
+ 9

2s
3

m− s = 3, odd m 3
2
+ 9

2s
4

VI. CONCLUSION

In this paper we studied the secure decentralized PICOD
with circular side information at the users. We first proved
the infeasible case that has not been studied in the prior
work. Then for all the remaining cases, we proposed achiev-
able schemes that use the same number of transmissions
as predicted by our converse bound under the constraint
of linear encoding up to a constant additive gap. Ongoing
work includes extending the setting to other types of side
information structures.
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