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Abstract. We consider a moving domain, fluid-porohyperelastic structure interaction problem
in a dual-mixed formulation. The fluid is described using the Navier–Stokes equations, and the
porohyperelastic structure is described using the Biot equations. To solve this problem numerically,
we propose two novel, partitioned, loosely coupled methods based on the generalized Robin boundary
conditions. In the first partitioned method, the Navier–Stokes problem is solved separately from the
Biot problem. In the second proposed method, the problem is further split by separating the Biot
problem into a mechanics subproblem and a Darcy subproblem. We derive the energy estimates for
the proposed methods on a simplified, linear problem and show that the first partitioned method is
unconditionally stable. The second partitioned method is shown to be energy-stable if the structure
is viscoelastic and if certain conditions on the problem parameters and the time step are satisfied.
The performance of both methods is investigated in the numerical examples.
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1. Introduction. Poroelastic materials are found throughout our entire uni-
verse, from large asteroids circling our galaxy to the smallest clumps of tissue inside an
animal. They include both manmade and natural materials, with examples including
biological systems found in bones, flesh, tissue, or blood clots; geological landscapes
composed of rocks, soil, sand, or volcanic debris; and manmade substances such as
ceramics, foams, or cements. To describe poroelastic structures, a commonly used
model is the Biot model [7, 27], which consists of the mechanics equation describing
the elastic phase and Darcy’s law describing the fluid phase. The two phases are
mutually coupled. In many instances, the poroelastic materials are in contact with
a free-flowing fluid, and their interaction forms a two-way coupled problem. Due to
their many applications, the development of numerical methods for fluid-poroelastic
structure interaction (FPSI) has been an area of active research.

The enforcement of coupling conditions between the fluid and a poroelastic struc-
ture in the development of numerical methods generally varies based on which formu-
lation is used for Darcy’s equations. The primal and primal-mixed formulations allow
for the natural enforcement of coupling conditions, which has been used in the design
of many splitting strategies [24, 8]. This contrasts with the dual-mixed formulation,
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which yields a more accurate approximation to the Darcy velocity, where the kine-
matic coupling condition is often numerically imposed using Lagrange multipliers or
penalties, commonly used in monolithic solvers [2, 29]. While the coupling is treated
implicitly in monolithic methods, this approach often leads to ill-conditioned and
large algebraic systems that need specifically designed preconditioners in order to
converge. Although stability is easily maintained, solving a system of equations using
a monolithic method can be quite computationally expensive, especially when moving
domain FPSI problems with nonlinear poroelastic models are considered. Separating
the problem into smaller subproblems helps to reduce the computational cost and al-
lows the use of existing solvers. However, stability issues may arise if the partitioning
is not carefully performed.

Monolithic methods for FPSI have been studied in [20, 29, 4, 2, 11, 25, 9]. In [9],
a monolithic solver based on Nitsche’s penalty method was presented and analyzed,
and this solves was used in [29] to investigate the energy distribution of a coupled
blood flow and arterial deformation. A fluid-porohyperelastic structure interaction
problem was used in a computational study [20] to model the interaction between
blood flow and a deformable arterial wall. In [4], a monolithic solver with incom-
plete LU factorization with thresholding preconditioning techniques was applied to
study a coupled Navier–Stokes/Biot system. A Brinkman–Biot coupled problem was
used in [11] to formulate a dimensional model reduction for flow in fractures. Mono-
lithic solvers based on the Lagrange multiplier method were introduced and analyzed
in [2, 22]. In [25], a finite element-based immersed method for an FPSI problem was
introduced and used to model cell-tissue interactions. We also mention [1], where a
nonlinear Stokes–Biot model for the interaction of a non-Newtonian fluid with poro-
elastic media was presented and analyzed.

The design of partitioned methods for FPSI is often based on extending existing
partitioned methods for Stokes–Darcy interaction and fluid-structure interaction prob-
lems. Strongly coupled partitioned methods for FPSI problems based on generalized
Robin boundary conditions were proposed in [4]. This approach uses a dual-mixed
formulation for the Darcy’s law but requires subiterations between the fluid and the
Biot subproblems. Partitioned, loosely coupled methods for the interaction between
a fluid, elastic structure and a poroelastic material in the primal formulation have
been proposed and analyzed in [8, 10]. Two second-order accurate, loosely coupled
partitioned methods for fluid-poroviscoelastic structure interaction problems were de-
veloped in [24], where their stability properties were investigated. A noniterative
partitioned approach for the dual-mixed problem based on Nitsche’s coupling was
considered in [9]. The error analysis of this method, however, showed a reduction
of accuracy due to the splitting. The partitioned scheme was then used as a pre-
conditioner for the monolithic solver. A similar approach based on Nitsche’s method
was applied to a moving domain fluid-porohyperelastic structure interaction problem
in [30], where the coupled problem consisting of a free fluid flow, porous media flow,
and solid mechanics was split among its components and solved using a partitioned
approach. We note that besides [30, 4], all of the partitioned schemes mentioned
above use the assumption that the domain remains fixed.

In this work, we present novel partitioned methods for the interaction between a
free-flowing fluid and a porohyperelastic structure. To model the free-flowing fluid, we
use the Navier–Stokes equations in the arbitrary Lagrangian Eulerian (ALE) formula-
tion [19, 15, 23]. The porohyperelastic structure is modeled using the Biot equations
of poroelasticity in a dual-mixed formulation, and a hyperelastic structural model, al-
lowing large deformations, is used to describe the structural mechanics. Therefore, we
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formulate a dual-mixed, moving domain fluid-porohyperelastic structure interaction
problem and propose two partitioned numerical methods. In the first method, the
Navier–Stokes equations are solved separately from Biot’s system. In the second
method, the Biot problem is further split into a mechanics problem and Darcy’s
problem. In that way, we can first solve the mechanics problem in the Lagrangian
formulation. After that, the domain is updated and the remaining flow problems are
solved with respect to the current configuration. This approach also facilitates the
use of Newton’s method for nonlinear structural models, since only the mechanics
subproblem needs to be subiterated.

The proposed methods are based on the generalized Robin interface conditions,
which are formulated differently than in [4], due to which the proposed methods do not
require subiterations between subproblems to achieve stability. The stability proper-
ties of the proposed methods are analyzed on a simplified, linear model. Our proof,
based on energy estimates, shows that the proposed numerical method, where the
problem is split into a fluid and a poroelastic material subproblem, is unconditionally
stable. The second numerical scheme, where the poroelastic material is further split
into a mechanics and the Darcy subproblem, is stable if the structure is poroviscoelas-
tic and conditions on the parameters of the problem and the time step are satisfied.
Both algorithms are implemented using the finite element method and investigated
numerically in two examples. In the first example, we compute the convergence rates
and propose a strategy for a dynamical update of the combination parameter used in
the derivation of the generalized Robin boundary conditions. In the second example,
we investigate the effects of the fixed domain and linear structural model assumptions
on the solution using a linear structural model and a neo-Hookean model. Despite the
theoretical results obtained in the stability analysis, we do not observe any instabilities
in the numerical examples even when purely (hyper)elastic structure models are used.

While the partitioned methods based on Robin boundary conditions have been
widely used in fluid-structure interaction problems, they have not been as widely
studied in coupled flow-porous medium problems. Only a few works investigated nu-
merical methods based on this approach, but the resulting methods required subitera-
tions [4, 14]. To the best of our knowledge, this is the first work where the generalized
Robin conditions are used to derive a partitioned, loosely coupled method, allowing us
to use a mixed formulation of the Biot equations and therefore achieve better accuracy
in the approximation of the Darcy velocity.

This paper is organized as follows. The mathematical model is presented in section
2. Section 3 presents the derivation of the partitioned numerical methods, which we
then analyze for stability in section 4. The numerical examples are featured in section
5. Finally, conclusions are drawn in section 6.

2. Mathematical model.

2.1. Computational domains and mappings. We consider the interaction
between an incompressible, Newtonian fluid and a fully saturated, deformable porous
medium. We denote the reference fluid domain by Ω̂F , the reference solid domain
by Ω̂P , and their common interface by Γ̂; see Figure 1. The fluid and solid reference
external boundaries are denoted by Σ̂D

F ∪ Σ̂N
F and Σ̂D

P ∪ Σ̂N
P , respectively, i.e., ∂Ω̂F =

Σ̂D
F ∪ Σ̂N

F ∪ Γ̂ and ∂Ω̂P = Σ̂D
P ∪ Σ̂N

P ∪ Γ̂, where subscript F refers to the fluid region
and subscript P refers to the poroelastic region. The fluid and solid domains at time t
are denoted by ΩF (t) and ΩP (t), respectively, while the interface at time t is denoted
by Γ(t). We assume that both regions are regular, bounded domains in d = 2, 3
dimensions.
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F
PnP nF

^
F P

nP nF
(t) (t)

(t)
^

^
^^

Fig. 1. Left: Reference domains Ω̂F ∪ Ω̂P . Right: Deformed domains ΩF (t) ∪ ΩP (t).

We assume that the solid equations are given in the Lagrangian framework with
respect to the reference domain Ω̂P . Let the solid domain deformation be a smooth,
injective mapping φ̂P : Ω̂P × [0, T ] → ΩP (t) from the reference to the deformed
configuration given by

φ̂P (x̂, t) = x̂+ η̂(x̂, t) for all x̂ ∈ Ω̂P , t ∈ [0, T ],

where η̂ = (η̂i)i=1,...,d denotes the structure displacement. The deformation gradient

is given by F̂ (x̂, t) = ∇̂φ̂P (x̂, t) = I + ∇̂η̂(x̂, t), and its determinant is denoted by Ĵ .
To track the deformation of the fluid domain in time, we introduce a smooth,

invertible, ALE mapping φ̂F : Ω̂F × [0, T ] → ΩF (t) given by

φ̂F (x̂, t) = x̂+ η̂F (x̂, t) for all x̂ ∈ Ω̂F , t ∈ [0, T ],

where η̂F denotes the fluid displacement. We assume that the fluid displacement
equals the structure displacement, η̂ = η̂F , on Γ̂ and is arbitrarily extended into the
fluid domain Ω̂F [15]. We denote the determinant of φ̂F by ĴF . For any function

f : ΩF (t)× [0, T ] → R, we indicate with f̂ = f ◦ φ̂F the corresponding function in the
ALE frame:

f̂ : Ω̂F × [0, T ] → R, f̂(x̂, t) = f(φ̂F (x̂, t), t).(2.1)

2.2. Fluid subproblem. We use the Navier–Stokes equations in the ALE for-
mulation to describe the fluid flow. The ALE time derivative of a function u is defined
to be the Eulerian description of the ALE field ∂tû [16], i.e., ∂tu|Ω̂F

= ∂tû ◦ φ̂−1
F .

Then, the following identity holds:

∂tu|Ω̂F
= w · ∇u+ ∂tu,

where w is the domain velocity given by w = ∂tx|Ω̂F
= ∂tφ̂F ◦ φ̂−1

F .
The fluid problem in the ALE form is given by

ρF

(
∂tv|Ω̂F

+ (v −w) · ∇v
)
= ∇ · σF (v, pF ) + f in ΩF (t)× (0, T ),(2.2a)

∇ · v = 0 in ΩF (t)× (0, T ),(2.2b)

σFnF = g on ΣN
F (t)× (0, T ),(2.2c)

v = 0 on ΣD
F (t)× (0, T ),(2.2d)

where v is the fluid velocity, w is the domain velocity, ρF is the fluid density, nF is the
outward normal vector, σF is the fluid stress, tensor, and f and g are the forcing
terms. For a Newtonian fluid, the stress tensor is given by σF (v, pF )=− pF I +
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2µFD(v), where pF is the fluid pressure, µF is the fluid viscosity, and D(v) =
(∇v + (∇v)T )/2 is the strain rate tensor.

We note that the ALE method works well for small to moderate deformations.
For examples with large changes in the domain, a different approach may have to
be considered, such as combining the ALE with remeshing or, for example, using a
hybrid ALE method presented in [5].

2.3. Biot subproblem. To describe the deformation of the solid, we use Biot’s
poroelasticity equations, whose formulation in the Lagrangian framework is given
by [30, 7, 13, 27]:

ρ̂P∂tξ̂ = ∇̂ ·
(
F̂ ŜP

)
in Ω̂P × (0, T ),(2.3a)

κ̂−1q̂ = −∇̂p̂P in Ω̂P × (0, T ),(2.3b)

c0∂tp̂P + αĴ(F̂−T ∇̂) · ξ̂ + ∇̂ · q̂ = 0 in Ω̂P × (0, T ),(2.3c)

F̂ ŜP n̂P = 0, pP = 0 on Σ̂N
P × (0, T ),(2.3d)

η̂ = 0, q̂ · n̂P = 0 on Σ̂D
P × (0, T ),(2.3e)

where p̂P is the fluid pore pressure, ξ̂ = ∂tη̂ is the solid velocity, q̂ is the average
velocity of the fluid relative to the velocity of the solid, ρ̂P is the density of the
solid material, κ̂ is the hydraulic conductivity tensor, ĉ0 is the storativity coefficient,
and α is the Biot–Willis parameter accounting for the coupling strength between the
fluid and solid phases. The second Piola–Kirchhoff stress tensor for the poroelastic
structure is ŜP = Ŝ − αĴp̂P Ĉ

−1, where Ŝ is the second Piola–Kirchhoff stress for
the elastic phase and Ĉ = F̂ T F̂ is the right Cauchy–Green deformation tensor. We
assume that the structure is governed by a hyperelastic model, in which case Ŝ =

2∂Ŵ
∂Ĉ

, where Ŵ is the strain energy density function. The particular choices of Ŵ
will be specified in section 5. The Cauchy stress tensor for the poroelastic structure is
given by

σP = Ĵ−1F̂ ŜP F̂ T .

The fluid pore pressure, p̂P , solid velocity, ξ̂, and displacement, η̂, in the reference
configuration are related to their Eulerian counterparts via p̂P = pP ◦ φ̂P , ξ̂ = ξ ◦ φ̂P ,
and η̂ = η ◦ φ̂P , while the Darcy velocity and the hydraulic conductivity tensor are
related through the Piola transform, given by [27]

q̂ = ĴF̂−1q, κ̂ = ĴF̂−1κF̂−T .(2.4)

2.4. Coupling conditions. To couple the fluid and poroelastic material, we
follow the approach in [28, 6]. The fluid mass conservation across the interface is
given by

(ξ + q) · nF = v · nF on Γ(t)× (0, T ).(2.5)

We assume that the Darcy flow across the interface is driven by the jump between
the normal fluid stress and the pressure internal to the porous medium according to

nF · σFnF + pP = δq · nP on Γ(t)× (0, T ),(2.6)

where δ ≥ 0 is the fluid entry resistance. To prescribe the conservation of momentum,
we impose

σFnF = σPnF on Γ(t)× (0, T ).(2.7)
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Finally, we prescribe the Beavers–Joseph–Saffman condition with slip rate γ > 0,
given by

τF,i · σFnF = −γ(v − ξ) · τF,i for i = 1, . . . , d− 1 on Γ(t)× (0, T ),(2.8)

where τF,i = τP,i, i = 1, . . . , d − 1, is the orthonormal basis for the tangential space
of Γ(t).

2.5. Weak formulation and energy estimates of the continuous prob-
lem. Given an open set S, we consider the usual Sobolev spaces Hk(S) with k ≥ 0.
For all t ∈ [0, T ], we introduce the following functional spaces:

V F (t) =
{
ϕ : ΩF (t) → Rd | ϕ = ϕ̂ ◦φ−1

F , ϕ̂ ∈ (H1(Ω̂F ))
d, ϕ̂ = 0 on Σ̂D

F

}
,

XF (t) =
{
ψ : ΩF (t) → R | ψ = ψ̂ ◦φ−1

F , ψ̂ ∈ L2(Ω̂F )
}
,

V̂ P =
{
ζ̂ : Ω̂P → Rd | ζ̂ ∈ (H1(Ω̂P ))

d, ζ̂ = 0 on Σ̂D
P

}
,

V P (t) =
{
ζ : ΩP (t) → Rd | ζ = ζ̂ ◦φ−1

P , ζ̂ ∈ V̂ P
}
,

V̂ Q =
{
r̂ : Ω̂P → Rd | ∇̂ · r̂ ∈ L2(Ω̂P ), r̂ · n̂P = 0 on Σ̂D

P

}
,

V Q(t) =
{
r : ΩP (t) → Rd | r = Ĵ−1F̂ r̂, r̂ ∈ V̂ Q

}
,

X̂P =
{
ψ̂ : Ω̂P → R | ψ̂ ∈ L2(Ω̂P )

}
, XP (t) =

{
ψ : ΩP (t) → R | ψ = ψ̂ ◦φ−1

P , ψ̂ ∈ X̂P
}
,

V NSB(t) =
{
(ϕ, ζ, r) ∈ V F (t)× V P (t)× V Q(t) | ϕ · nF = (ζ + r) · nF on Γ(t)

}
.

We define the following bilinear forms associated with the fluid problem:

atF (v,ϕ) = 2µ

∫
ΩF (t)

D(v) : D(ϕ)dx, btF (p,ϕ) =

∫
ΩF (t)

p∇ · ϕdx

for all v,ϕ ∈ V F (t) and p ∈ XF (t). To shorten the notation, we introduce

aS(η̂, ζ̂) =

∫
Ω̂P

F̂ Ŝ(η̂) : ∇̂ζ̂dx̂, bS(p̂P , ζ̂) =

∫
Ω̂P

αĴp̂P F̂
−T : ∇̂ζ̂dx̂

and consider them on a subset of V̂ P on which the integrals are well-defined. We also
define bilinear forms associated with the Darcy problem:

aQ(q̂, r̂) =

∫
Ω̂P

κ̂−1q̂ · r̂dx̂, bQ(p̂P , r̂) =

∫
Ω̂P

p̂P ∇̂ · r̂dx̂

for all q̂, r̂ ∈ V̂ Q and p̂P ∈ X̂P and

atQ(q, r) =

∫
ΩP (t)

κ−1q · rdx, btQ(pP , r) =

∫
ΩP (t)

pP∇ · rdx

for all q, r ∈ V Q and pP ∈ XP .
To derive the weak formulation, we multiply the fluid problem (2.2a)–(2.2b) by

ϕ and ψ, respectively, the structure problem (2.3a)–(2.3c) by ζ̂, r̂ and φ̂, respectively,
and add the equations together, obtaining

D
ow

nl
oa

de
d 

09
/1

4/
21

 to
 1

29
.7

4.
25

0.
20

6 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NUMERICAL MODELING OF THE FPSI A2929

ρF

∫
ΩF (t)

∂tv|Ω̂F
· ϕdx+ ρF

∫
ΩF (t)

((v −w) · ∇)v · ϕdx+ atF (v,ϕ)− btF (pF ,ϕ) + btF (ψ,v)

(2.9)

+ ρ̂P

∫
Ω̂P

∂tξ̂ · ζ̂dx̂+ aS(η̂, ζ̂)− bS(p̂P , ζ̂) + aQ(q̂, r̂)− bQ(p̂P , r̂)

+ c0

∫
Ω̂P

∂tp̂P φ̂+ bS(φ̂, ξ̂) + bQ(φ̂, q̂)

=

∫
Γ(t)

σFnF · ϕdx+
∫
Γ̂

F̂ ŜP n̂P · ζ̂dx̂−
∫
Γ̂

p̂P r̂ · n̂P dx̂︸ ︷︷ ︸
I

+

∫
ΩF (t)

fF · ϕdx+
∫
ΣN

F
(t)

g · ϕdx,

for all ϕ ∈ V F (t), ψ ∈ XF (t), ζ̂ ∈ V̂ P , r̂ ∈ V̂ Q, φ̂ ∈ XP . Recasting the solid interface
terms to Γ(t), decomposing the stresses into normal and tangential components, and
using (2.5)–(2.8) we have

I =

∫
Γ(t)

(nF · σFnF )(ϕ · nF )dx+

d−1∑
i=1

∫
Γ(t)

(τF,i · σFnF )(ϕ · τF,i)dx−
∫
Γ(t)

pPr · nP dx

+

∫
Γ(t)

(nP · σPnP )(ζ · nP )dx+

d−1∑
i=1

∫
Γ(t)

(τP,i · σPnP )(ζ · τP,i)dx

=

∫
Γ(t)

(δq · nP − pP ) (ϕ− ζ) · nF dx−
d−1∑
i=1

∫
Γ(t)

γ(v − ξ) · τF,i(ϕ− ζ) · τF,idx

−
∫
Γ(t)

pPr · nP dx.

Grouping similar terms and assuming that (ϕ, ζ, r) ∈ V NSB(t), we get

I = −
∫
Γ(t)

δ(q · nP )(r · nP )dx−
∫
Γ(t)

d−1∑
i=1

γ(v − ξ) · τF,i(ϕ− ζ) · τF,idx.(2.10)

Combining (2.10) with (2.9), we get the following weak formulation: Find (v, ξ, q) ∈
V NSB(t), pF ∈ XF (t) and p̂P ∈ XP , where ξ̂ = ξ ◦ φP , q̂ = ĴF̂−1q and ξ̂ = ∂tη̂,
such that

ρF

∫
ΩF (t)

∂tv|Ω̂F
· ϕdx+ ρF

∫
ΩF (t)

((v −w) · ∇)v · ϕdx+ atF (v,ϕ)− btF (pF ,ϕ) + btF (ψ,v)

+ ρ̂P

∫
Ω̂P

∂tξ̂ · ζ̂dx̂+aS(η̂, ζ̂)−bS(p̂P , ζ̂)+aQ(q̂, r̂)−bQ(p̂P , r̂)+c0
∫
Ω̂P

∂tp̂P φ̂+bS(φ̂, ξ̂)

+ bQ(φ̂, q̂) +

∫
Γ(t)

δ(q · nP )(r · nP )dx+

∫
Γ(t)

d−1∑
i=1

γ(v − ξ) · τF,i(ϕ− ζ) · τF,idx

=

∫
ΩF (t)

fF · ϕdx+

∫
ΣN

F
(t)

g · ϕdx,

for all (ϕ, ζ, r) ∈ V NSB(t), ψ ∈ XF (t), φ̂ ∈ XP .

3. Numerical scheme. Let ∆t denote the time step and tn = n∆t for n =
0, . . . , N , where T = N∆t is the final time. In the following, we will denote the
discrete time derivative of a function u at time tn+1 by dtu

n+1, defined as

dtu
n+1 =

un+1 − un

∆t
.
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The proposed scheme is based on generalized Robin boundary conditions, which
are obtained by multiplying (2.5) by a combination parameter L ≥ 0 and adding it
to nF · σFnF as follows:

nF · σFnF + Lv · nF = nF · σFnF + L (ξ + q) · nF on Γ(t)× (0, T ).(3.1)

Evaluating the normal component of fluid normal stress on the left at time tn+1 and
one on the right at tn, we will obtain a Robin boundary condition for the fluid problem.
The same condition will be used in the structure problem (2.3a) after noting that,
due to (2.7), we have

nP · σPnP = nF · σFnF = nF · σFnF + L (ξ + q − v) · nF .(3.2)

Noting that δq · nP − pP = nF · σFnF , we can write (3.1) as

nF · σFnF + Lv · nF = δq · nP − pP + L (ξ + q) · nF on Γ(t)× (0, T ).(3.3)

Expressing pP from (3.3) will give us a Robin condition for the Darcy problem (2.3b).
We also note that, due to (2.7), we have

τP,i · σPnP = γ(v − ξ) · τP,i for i = 1, . . . , d− 1 on Γ(t)× (0, T ).(3.4)

To derive the partitioned scheme, we start from the monolithic weak formula-
tion (2.9). Focusing on the interface integral and decomposing the stress in the normal
and tangential components, we have

I =

∫
Γ(t)

(nF · σFnF )(ϕ · nF )dx+

d−1∑
i=1

∫
Γ(t)

(τF,i · σFnF )(ϕ · τF,i)dx−
∫
Γ(t)

pPr · nP dx

+

∫
Γ(t)

(nP · σPnP )(ζ · nP )dx+

d−1∑
i=1

∫
Γ(t)

(τP,i · σPnP )(ζ · τP,i)dx.

Plugging in conditions (3.1) and (2.8) in the fluid part and (3.2), (3.4), and (3.3) in
the solid part, we obtain

I =

∫
Γ(t)

(L (ξ + q − v) · nF + nF · σFnF ) (ϕ · nF )dx

+

∫
Γ(t)

(−L (ξ + q − v) · nP + nF · σFnF ) (ζ · nP )dx

−
d−1∑
i=1

∫
Γ(t)

γ(v − ξ) · τF,iϕ · τF,idx+
d−1∑
i=1

∫
Γ(t)

γ(v − ξ) · τP,iζ · τP,idx

−
∫
Γ(t)

(δq · nP − nF · σFnF + L (ξ + q − v) · nP )(r · nP )dx.(3.5)

Note that all the coupling conditions have been taken into account. To discretize the
problem in time and decouple the fluid and structure, we time-lag the fluid variables
that will appear in the Biot subproblem. After solving the Biot subproblem, we
take the most recent variables in the fluid problem. Furthermore, to avoid additional
nonlinearities, we evaluate the interface integral in the Biot subproblem on Γ(tn),
giving the following discrete approximation of (3.5):

I ≈
∫
Γ(tn+1)

(
L
(
ξn+1 + qn+1 − vn+1) · nn+1

F + nn
F · σn

Fn
n
F

)
(ϕ · nn+1

F )dx

(3.6)

+

∫
Γ(tn)

(
−L

(
ξn+1 + qn+1 − vn) · nn

P + nn
F · σn

Fn
n
F

)
(ζ · nn

P )dx
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−
d−1∑
i=1

∫
Γ(tn+1)

γ(vn+1−ξn+1) · τn+1
F,i ϕ · τn+1

F,i dx+

d−1∑
i=1

∫
Γ(tn)

γ(vn−ξn+1) · τn
F,iζ · τn

F,idx

−
∫
Γ(tn)

(
δqn+1 · nn

P − nn
F · σn

Fn
n
F + L

(
ξn+1 + qn+1 − vn) · nn

P

)
(r · nn

P )dx.

To discretize the other terms in (2.9), we apply the backward Euler method. This
method is chosen to discretize the structural problem because it has been shown that
the second-order conservative methods, such as the trapezoidal and the midpoint rule,
exhibit numerical instabilities in real-life simulations and hence do not work well for
nonlinear structures [21]. The proposed semidiscretized numerical scheme in the weak
form is described in Algorithm 3.1.

Algorithm 3.1. Biot–Navier–Stokes partitioned method

Given η̂0, ξ̂0,v0, p0F , for n ≥ 0, compute the following:

Step 1 (Biot subproblem). Find ξ̂n+1 = dtη̂
n+1 ∈ V̂ S , q̂n+1 ∈ V̂ Q, and p̂n+1

P ∈ X̂P

such that for all ζ̂ ∈ V̂ S , r̂ ∈ V̂ Q, and φ̂ ∈ X̂P we have

ρ̂P

∫
Ω̂P

dtξ̂
n+1 · ζ̂ + aS(η̂

n+1, ζ̂)− bS(p̂
n+1
P , ζ̂) + aQ(q̂

n+1, r̂)− bQ(p̂
n+1
P , r̂)(3.7)

+ c0

∫
Ω̂P

dtp̂
n+1
P φ̂+ bQ(φ̂, q̂

n+1) + bS(φ̂, ξ̂
n+1)

=

∫
Γ(tn)

nn
P · σn

Fn
n
P (ζ + r) · nn

P −
∫
Γ(tn)

L
(
ξn+1 + qn+1 − vn) · nn

P (ζ + r) · nn
P

+

d−1∑
i=1

∫
Γ(tn)

γ(vn − ξn+1) · τn
P,i(ζ · τn

P,i)−
∫
Γ(tn)

δqn+1 · nn
Pr · nn

P .

Step 2 (geometry subproblem). In this step, we compute the fluid domain displace-
ment and domain velocity, and we move the fluid domain. For this purpose, we use
a harmonic extension, defined as follows. Find η̂n+1

F ∈ V̂ F such that η̂n+1
F = 0 on

Σ̂N
F ∪ Σ̂D

F , η̂n+1
F = η̂n+1 on Γ̂, and∫

Ω̂F

∇̂η̂n+1
F : ∇̂χ̂ = 0(3.8)

for all χ̂ ∈ PF . Furthermore, compute ŵn+1 such that ŵn+1 = dtη̂
n+1
F in Ω̂F and

update the fluid domain by setting ΩF (t
n+1) = (I + η̂n+1

F )(Ω̂F ).

Step 3 (fluid subproblem). Find vn+1 ∈ V F (tn+1) and pn+1
F ∈ XF (tn+1) such that

for all ϕ ∈ V F (tn+1) and ψ ∈ XF (tn+1) we have

ρF

∫
ΩF (tn+1)

dtv
n+1 · ϕ+ ρF

∫
ΩF (tn+1)

((
vn −wn+1) · ∇)

vn+1 · ϕ+ an+1
F (vn+1,ϕ)

(3.9)

− bn+1
F (pn+1

F ,ϕ) + bn+1
F (ψ,vn+1)

=

∫
ΩF (tn+1)

fn+1 · ϕ+

∫
ΣN

F
(tn+1)

gn+1 · ϕ−
∫
Γ(tn+1)

L
(
vn+1−ξn+1−qn+1) · nn+1

F ϕ · nn+1
F

+

∫
Γ(tn+1)

(nn
F · σn

Fn
n
F )(ϕ · nn+1

F )−
d−1∑
i=1

∫
Γ(tn+1)

γ(vn+1 − ξn+1) · τn+1
F,i ϕ · τn+1

F,i .

Set n = n+ 1 and go back to Step 1.
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Algorithm 3.2. Structure Darcy–Navier–Stokes partitioned method

Given η̂0, ξ̂0,v0, p0F , for n ≥ 0, compute the following:

Step 1 (structure subproblem). Find ξ̂n+1 = dtη̂
n+1 ∈ V̂ S such that for all ζ̂ ∈ V̂ S

we have

ρ̂P

∫
Ω̂P

dtξ̂
n+1 · ζ̂ + aS(η̂

n+1, ζ̂)−
∫
Ω̂P

αJnp̂nP (F̂
n)−T : ∇̂ζ̂dx̂(3.10)

=

∫
Γ(tn)

(nn
P · σn

Fn
n
P ) (ζ · nn

P )−
∫
Γ(tn)

L
(
ξn+1 + qn − vn

)
· nn

P (ζ · nn
P )

+
d−1∑
i=1

∫
Γ(tn)

γ(vn − ξn+1) · τn
P,i(ζ · τn

P,i).

Step 2 (geometry subproblem). Find η̂n+1
F ∈ V̂ F such that η̂n+1

F = 0 on Σ̂N
F ∪ Σ̂D

F ,

η̂n+1
F = η̂n+1 on Γ̂, and ∫

Ω̂F

∇̂η̂n+1
F : ∇̂χ̂ = 0(3.11)

for all χ̂ ∈ PF . Set ŵn+1 = dtη̂
n+1
F and update the fluid domain by setting

ΩF (t
n+1) = (I + η̂n+1

F )(Ω̂F ) and the structure domain by setting ΩP (t
n+1) =

(I + η̂n+1)(Ω̂P ).

Step 3 (darcy subproblem). Find qn+1 ∈ V Q(tn+1) and pn+1
P ∈ XP (tn+1) such that

for all r ∈ V Q(tn+1) and φ ∈ XP (tn+1) we have

an+1
Q (qn+1, r)−bn+1

Q (pn+1
P , r)+c0

∫
ΩP (tn+1)

dtp
n+1
P φ+bn+1

Q (φ, qn+1) +

∫
ΩP (tn+1)

αφ∇ · ξn+1

(3.12)

=

∫
Γ(tn+1)

(nn
P · σn

Fn
n
P )

(
r · nn+1

P

)
−

∫
Γ(tn+1)

L
(
ξn+1 + qn+1 − vn) · nn+1

P

(
r · nn+1

P

)
−

∫
Γ(tn+1)

δ
(
qn+1 · nn+1

P

) (
r · nn+1

P

)
.

Step 4 (fluid subproblem). Find vn+1 ∈ V F (tn+1) and pn+1
F ∈ XF (tn+1) such that

for all ϕ ∈ V F (tn+1) and ψ ∈ XF (tn+1) we have

ρF

∫
ΩF (tn+1)

dtv
n+1 · ϕ+ ρF

∫
ΩF (tn+1)

((
vn −wn+1) · ∇)

vn+1 · ϕ+ an+1
F (vn+1,ϕ)

(3.13)

− bn+1
F (pn+1

F ,ϕ) + bn+1
F (ψ,vn+1)

=

∫
ΩF (tn+1)

fn+1 · ϕ+

∫
ΣN

F
(tn+1)

gn+1 · ϕ−
∫
Γ(tn+1)

L
(
vn+1−ξn+1−qn+1) · nn+1

F

(
ϕ · nn+1

F

)
+

∫
Γ(tn+1)

(nn
F · σn

Fn
n
F )(ϕ · nn+1

F )−
d−1∑
i=1

∫
Γ(tn+1)

γ(vn+1 − ξn+1) · τn+1
F,i

(
ϕ · τn+1

F,i

)
.

Set n = n+ 1 and go back to Step 1.D
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The proposed method can be further partitioned to split the Biot problem into
a structure subproblem and a Darcy subproblem. In that way, the domain can be
updated after the new displacement is computed in the mechanics subproblem, and
the Darcy subproblem can be solved on the current domain. The fully decoupled
method is given in Algorithm 3.2.

Remark 1. We note that in both (3.7) and (3.10), the boundary conditions in
Step 1 can be recast onto the reference boundary Γ̂ to simplify the numerical imple-
mentation.

4. Stability analysis. In this section, to simplify the analysis, we will assume
that the flow is described using the Stokes equations and that the fluid and the poro-
elastic domain are fixed. We will also assume that the structure is linearly viscoelastic,
with the Cauchy stress tensor given by

σE(η, ξ) = 2µPD(η) + λP∇ · ηI + 2µV D(ξ),(4.1)

where µP and λP are Lamé’s parameters and µV is the viscous modulus of the struc-
ture. These assumptions are commonly used in the analysis of partitioned methods
for fluid-structure interaction and FPSI problems [12, 2]. Even with these assump-
tions, the problem still remains challenging due to the complexity of the domain
decomposition. For simplicity, we will drop the hat notation in this section.

We note that, in this case, Algorithm 3.1 can be written in the strong form as
follows.
Step 1 (Biot subproblem (linear)). Find ξn+1 = dtη

n+1, qn+1, and pn+1
P such that

ρP dtξ
n+1 = ∇ ·

(
σE(η

n+1, ξn+1)− αpn+1
P I

)
in ΩP ,

(4.2a)

κ−1qn+1 = −∇pn+1
P in ΩP ,

(4.2b)

c0dtp
n+1
P + α∇ · ξn+1 +∇ · qn+1 = 0 in ΩP ,

(4.2c)

nF · σn+1
P nF + L

(
ξn+1 + qn+1

)
· nP = nF · σn

FnF + Lvn · nP on Γ,

(4.2d)

τP,i · σn+1
P nF = γ(vn − ξn+1) · τP,i for i = 1, . . . , d− 1 on Γ,

(4.2e)

δqn+1 · nP − pn+1
P + L

(
ξn+1 + qn+1

)
· nP = nF · σn

FnF + Lvn · nP on Γ.

(4.2f)

Step 2 (fluid subproblem (linear)). Find vn+1 and pn+1
F such that

ρF dtv
n+1 = ∇ · σF (v

n+1, pn+1
F ) + fn+1 in ΩF ,(4.3a)

∇ · vn+1 = 0 in ΩF ,(4.3b)

nF · σn+1
F nF + Lvn+1 · nF = nF · σn

FnF + L
(
ξn+1 + qn+1

)
· nF on Γ,(4.3c)

τF,i · σn+1
F nF = −γ(vn+1 − ξn+1) · τF,i, i = 1, . . . , d− 1 on Γ.(4.3d)

Problems (4.2) and (4.3) are solved with boundary conditions (2.3d)–(2.3e) and (2.2c)–
(2.2d), respectively. In the case when the Biot problem is split into a structure
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subproblem and a Darcy subproblem (described in Algorithm 3.2), Step 1 can be
written as follows.
Step 1a (structure subproblem (linear)). Find ξn+1 = dtη

n+1 such that

ρP dtξ
n+1 = ∇ ·

(
σE(η

n+1, ξn+1)− αpnP I
)

in ΩP ,(4.4a)

nF · σn+1
P nF + L

(
ξn+1 + qn

)
· nP = nF · σn

FnF + Lvn · nP on Γ,(4.4b)

τP,i · σn+1
P nF = γ(vn − ξn+1) · τP,i for i = 1, . . . , d− 1 on Γ.(4.4c)

Step 1b (Darcy subproblem (linear)). Find qn+1 and pn+1
P such that

κ−1qn+1 = −∇pn+1
P in ΩP ,

(4.5a)

c0dtp
n+1
P + α∇ · ξn+1 +∇ · qn+1 = 0 in ΩP ,

(4.5b)

δqn+1 · nP − pn+1
P + L

(
ξn+1 + qn+1

)
· nP = nF · σn

FnF + Lvn · nP on Γ.

(4.5c)

In this section, we will use the polarization identity

2(a− b)a = a2 − b2 + (a− b)2(4.6)

and the following notation for the solid elastic energy:

∥ηn∥2S = 2µP ∥D(ηn)∥2L2(ΩP ) + λP ∥∇ · ηn∥2L2(ΩP ).

Let En denote the sum of kinetic and elastic energy of the solid and kinetic energy of
the fluid, given by

En =
ρP
2
∥ξn∥2L2(ΩP ) +

1

2
∥ηn∥2S +

c0
2
∥pnP ∥2L2(ΩP ) +

ρF
2
∥vn∥2L2(ΩF );

let Dn denote the fluid dissipation and dissipation due to the fluid entry resistance and
the slip between the fluid and solid in the tangential direction at the fluid-structure
boundary, given by

Dn = µF∆t
n∑

k=1

∥D(vk)∥2L2(ΩF ) +∆t
n∑

k=1

∥∥∥κ− 1
2 qk
∥∥∥2
L2(ΩP )

+
∆tδ

2

n−1∑
k=1

∥qk · nP ∥2L2(Γ)

+∆tγ

(
d−1∑
i=1

n∑
k=1

∥(vk − ξk) · τF,i∥2L2(Γ) +
d−1∑
i=1

n∑
k=1

∥(ξk − vk−1) · τF,i∥2L2(Γ)

)
;

let Nn
1 and Nn

2 denote the remaining terms due to numerical dissipation,

Nn
1 =

∆tγ

2

d−1∑
i=1

∥vn · τF,i∥2L2(Γ) +
∆tL

2
∥vn · nF ∥2L2(Γ) +

∆t

2L
∥nP · σn

FnP ∥2L2(Γ),

Nn
2 =

ρP
2

n∑
k=1

∥ξk − ξk−1∥2L2(ΩP ) +
1

2

n∑
k=1

∥ηk − ηk−1∥2S +
c0
4

n∑
k=1

∥pkP − pk−1
P ∥2L2(ΩP )

+
ρF
2

n∑
k=1

∥vk − vk−1∥2L2(ΩF ) +
∆tL

2

n∑
k=1

∥
(
ξk + qk − vk−1

)
· nP ∥2L2(Γ);
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NUMERICAL MODELING OF THE FPSI A2935

and let Fn denote the forcing terms

Fn =
∆tC2

K

2µF

n∑
k=1

∥fk∥2L2(ΩF ) +
∆tC2

trCPC
2
K

2µF

n∑
k=1

∥gk∥2L2(ΣN
F ),

where CP , CK , and Ctr are Poincaré–Friedrichs (A.3), Korn’s (A.5), and trace (A.4)
inequality constants, respectively.

Theorem 4.1. Let (ξn,ηn,vn, pn) be the solution of the fully partitioned method
described by (4.4), (4.5), and (4.3). Assume that the following conditions are satisfied:

CV := µV − 2L2C2
trCPC

2
K

δ
> 0, ∆t <

CV c0
α2dC2

K

.(4.7)

Then, the following a priori energy estimate holds:

EN +DN +NN
1 +NN

2 +∆t

(
CV − ∆tα2dC2

K

c0

)N−1∑
n=0

∥D(ξn+1)∥2L2(ΩP )

+
3∆tδ

4
∥qN · nP ∥2L2(Γ)

≤ E0 +N 0
1 + FN +

∆tδ

4
∥q0 · nP ∥2L2(Γ).

Proof. We multiply (4.4a) by ∆tξn+1, (4.5a) by ∆tqn+1, and (4.5b) by ∆tpn+1
P

and integrate over ΩP . Similarly, we multiply (4.3a) by ∆tvn+1 and (4.3b) by ∆tpn+1
F

and integrate over ΩF . Adding the equations together, integrating by parts, and
incorporating the interface conditions (4.4b)–(4.4c), (4.5c), and (4.3c)–(4.3d) as well
as the boundary conditions, we have

ρP
2

(
∥ξn+1∥2L2(ΩP )−∥ξn∥2L2(ΩP )+∥ξn+1−ξn∥2L2(ΩP )

)
+
1

2

(
∥ηn+1∥2S−∥ηn∥2S+∥ηn+1 − ηn∥2S

)(4.8)

+
c0
2

(
∥pn+1

P ∥2L2(ΩP ) − ∥pnP ∥2L2(ΩP ) + ∥pn+1
P − pnP ∥2L2(ΩP )

)
+ µV ∆t∥D(ξn+1)∥2L2(ΩP )

+∆t∥κ− 1
2 qn+1∥2L2(ΩP ) +

ρF
2

(
∥vn+1∥2L2(ΩF ) − ∥vn∥2L2(ΩF ) + ∥vn+1 − vn∥2L2(ΩF )

)
+ 2µF∆t∥D(vn+1)∥2L2(ΩF ) +∆tδ∥qn+1 · nP ∥2L2(Γ)

= −∆t

∫
ΩP

α∇ · ξn+1 (pn+1
P − pnP

)
+∆t

∫
Γ

nP · σn
FnP

(
ξn+1 + qn+1 − vn+1) · nP

−∆t

∫
Γ

L
(
ξn+1+qn − vn) · nP ξ

n+1 · nP −∆t

∫
Γ

L
(
ξn+1 + qn+1 − vn) · nPq

n+1 · nP

−∆t

∫
Γ

L
(
vn+1 − ξn+1 − qn+1) · nFv

n+1 · nF

+∆t

d−1∑
i=1

∫
Γ

γ(vn − ξn+1) · τP,iξ
n+1 · τP,i −∆t

d−1∑
i=1

∫
Γ

γ(vn+1 − ξn+1) · τF,iv
n+1 · τF,i

+∆t

∫
ΩF

fn+1 · vn+1 +∆t

∫
ΣN

F

gn+1 · vn+1.

We bound the right-hand side as follows. To estimate the first term, we use the
Cauchy–Schwarz (A.2) and Young’s (A.1) inequalities. Together with ∥∇ · ξn+1∥ ≤√
d∥∇ξn+1∥ and Korn’s inequality (A.5), we have
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A2936 A. SEBOLDT, O. OYEKOLE, J. TAMBAČA, AND M. BUKAČ

−∆t

∫
ΩP

α∇ · ξn+1 (pn+1
P − pnP

)
≤ ∆t2α2dC2

K

c0
∥D(ξn+1)∥2L2(ΩP ) +

c0
4
∥pn+1

P − pnP ∥2L2(ΩP ).

(4.9)

Using the polarization identity (4.6), we estimate the tangential components as fol-
lows:

−∆t
d−1∑
i=1

∫
Γ

γ(vn+1 − ξn+1) · τF,iv
n+1 · τF,i +∆t

d−1∑
i=1

∫
Γ

γ(vn − ξn+1) · τP,iξ
n+1 · τP,i

(4.10)

= −∆tγ

2

d−1∑
i=1

(
∥vn+1 · τF,i∥2L2(Γ) −∥ξn+1 · τF,i∥2L2(Γ) + ∥(vn+1− ξn+1) · τF,i∥2L2(Γ)

)
− ∆tγ

2

d−1∑
i=1

(
∥ξn+1 · τF,i∥2L2(Γ) − ∥vn · τF,i∥2L2(Γ) + ∥(ξn+1 − vn) · τF,i∥2L2(Γ)

)
= −∆tγ

2

d−1∑
i=1

(
∥vn+1 · τF,i∥2L2(Γ) − ∥vn · τF,i∥2L2(Γ) + ∥(vn+1 − ξn+1) · τF,i∥2L2(Γ)

+ ∥(ξn+1 − vn) · τF,i∥2L2(Γ)

)
.

Using (4.3c) and (4.6), the term involving the fluid normal stress gives us

∆t

∫
Γ

nP · σn
FnP

(
ξn+1 − vn+1 + qn+1) · nP

=
∆t

L

∫
Γ

nP · σn
FnP

(
nF · σn

FnF − nF · σn+1
F nF

)
=

∆t

2L

(
∥nP · σn

FnP ∥2L2(Γ) − ∥nP · σn+1
F nP ∥2L2(Γ) + ∥nF · σn+1

F nF − n·
Fσ

n
FnF ∥2L2(Γ)

)
=

∆t

2L

(
∥nP · σn

FnP ∥2L2(Γ)−∥nP · σn+1
F nP ∥2L2(Γ)

)
+
∆tL

2
∥(ξn+1+qn+1−vn+1) · nP ∥2L2(Γ).

To bound the terms containing the combination parameter, L, we rearrange and
use (4.6) as follows:

−∆t

∫
Γ

L
(
ξn+1 + qn+1 −vn) · nP (ξ

n+1 + qn+1) · nP +∆t

∫
Γ

L
(
qn+1 − qn) · nP ξ

n+1 · nP

(4.11)

−∆t

∫
Γ

L
(
vn+1 − ξn+1 − qn+1) · nFv

n+1 · nF

= −∆tL

2

(
∥
(
ξn+1 + qn+1) · nP ∥2L2(Γ) − ∥vn · nP ∥2L2(Γ) + ∥

(
ξn+1 + qn+1 − vn) · nP ∥2L2(Γ)

)
− ∆tL

2

(
∥vn+1 · nF ∥2L2(Γ) − ∥

(
ξn+1 + qn+1) · nF ∥2L2(Γ)

+∥
(
ξn+1 + qn+1 − vn+1) · nF ∥2L2(Γ)

)
+∆t

∫
Γ

L
(
qn+1 − qn) · nP ξ

n+1 · nP

= −∆tL

2

(
∥vn+1 · nF ∥2L2(Γ) − ∥vn · nF ∥2L2(Γ) + ∥

(
ξn+1 + qn+1 − vn) · nP ∥2L2(Γ)

)
− ∆tL

2
∥
(
ξn+1 + qn+1 − vn+1) · nP ∥2L2(Γ) +∆t

∫
Γ

L
(
qn+1 − qn) · nP ξ

n+1 · nP .

D
ow

nl
oa

de
d 

09
/1

4/
21

 to
 1

29
.7

4.
25

0.
20

6 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NUMERICAL MODELING OF THE FPSI A2937

To bound the last term in (4.11), we use the Cauchy–Schwarz (A.2), Young’s (A.1),
trace (A.4), Poincaré–Friedrichs (A.3), and Korn’s (A.5) inequalities as follows:

∆t

∫
Γ

L
(
qn+1 − qn

)
· nP ξ

n+1 · nP ≤ ∆tδ

8
∥(qn+1 − qn) · nP ∥2L2(Γ)(4.12)

+
2∆tL2C2

trCPC
2
K

δ
∥D(ξn+1)∥2L2(ΩP ).

Finally, we bound the forcing terms using the Cauchy–Schwarz (A.2), Young’s (A.1),
trace (A.4), Poincaré–Friedrichs (A.3), and Korn’s (A.5) inequalities as follows:

∆t

∫
ΩF

fn+1 · vn+1 +∆t

∫
ΣN

F

gn+1 · vn+1

(4.13)

≤ ∆tC2
K

2µF
∥fn+1∥2L2(ΩF ) +

∆tC2
trCPC

2
K

2µF
∥gn+1∥2L2(ΣN

F ) + µF∆t∥D(vn+1)∥2L2(ΩF ).

Combining (4.9)–(4.13) with (4.8) and summing from n = 0, . . . N − 1, we get

EN +DN +NN
1 +NN

2 +
∆tδ

2

N−2∑
n=0

∥qn+1 · nP ∥2L2(Γ) +∆tδ∥qN · nP ∥2L2(Γ)(4.14)

+

(
µV − ∆tα2dC2

K

c0
− 2L2C2

trCPC
2
K

δ

)
∆t

N−1∑
n=0

∥D(ξn+1)∥2L2(ΩP )

≤ E0 +N 0
1 + FN +

∆tδ

8

N−1∑
n=0

∥(qn+1 − qn) · nP ∥2L2(Γ).(4.15)

For the last term on the right-hand side, we proceed as follows. Using the inequality
(a+ b)2 ≤ 2(a2 + b2) and rearranging the terms in the summation, we have

∆tδ

8

N−1∑
n=0

∥(qn+1 − qn) · nP ∥2L2(Γ) ≤
∆tδ

4

N−1∑
n=0

(
∥qn+1 · nP ∥2L2(Γ) + ∥qn · nP ∥2L2(Γ)

)
≤ ∆tδ

2

N−2∑
n=0

∥qn+1 · nP ∥2L2(Γ) +
∆tδ

4
∥q0 · nP ∥2L2(Γ)

+
∆tδ

4
∥qN · nP ∥2L2(Γ).(4.16)

Using (4.5a) and combining (4.16) with (4.15) yields the desired energy estimate.

Remark 2. For the first condition in (4.7) to hold, the combination parameter,
L, needs to satisfy

L <

√
µV δ

2C2
trCPC2

K

.(4.17)

The second condition in (4.7) is independent of the mesh size, but it yields restrictive
values of the time step for small values of c0 and CV . However, we note that no
stability issues were observed when Algorithm 3.2 was used with µV = 0 and c0 = 10−3

in section 5. Even though our simulation results are limited, they indicate that the
parameter dependence in (4.7) is likely not sharp.
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Remark 3. To extend the analysis to the nonlinear, moving domain problem,
condition (2.6) would need to be changed to

nF · σFnF +
ρF
2
|v|2 + pP = δq · nP on Γ(t)× (0, T )

in order to obtain energy estimates even at the continuous level. Additional difficulties
would come from estimation of terms associated with the linearization of nonlinearities
due to the domain motion, as well as the terms due to splitting of the solid and Darcy
problems in the Biot’s system, i.e.,

−
∫
Ω̂P

αĴnp̂nP (F̂
n)−T : ∇̂ξ̂n+1dx̂+

∫
Ω̂P

αĴn+1p̂n+1
P (F̂ n+1)−T : ∇̂ξ̂n+1dx̂.

If the Biot–Stokes partitioned method (4.2)–(4.3) is considered instead of the fully
partitioned scheme analyzed in Theorem 4.1, the terms estimated in (4.9) and (4.12)
would be equal to zero. Hence, the unconditional stability is achieved independently
of the structure viscous modulus, µV , and the storativity coefficient, c0. In that case,
purely elastic structures could be considered. The stability of method (4.2)–(4.3) is
given in the following corollary.

Corollary 4.2. Let (ξn,ηn,vn, pn) be the solution of the Biot–Stokes parti-
tioned method described by (4.2)–(4.3). Then, the method (4.2)–(4.3) is uncondi-
tionally stable and the following a priori energy estimate holds:

EN +DN +NN
1 +NN

2 +
c0
4

n∑
k=1

∥pkP − pk−1
P ∥2L2(ΩP ) +

∆tδ

2

N−2∑
n=0

∥qn+1 · nP ∥2L2(Γ)

+∆tδ∥qN · nP ∥2L2(Γ)

+∆tµV

N−1∑
n=0

∥D(ξn+1)∥2L2(ΩP ) ≤ E0 +N 0
1 + FN .

We note that the results in Corollary 4.2 can be easily extended to nonlinear,
hyperelastic structures.

5. Numerical examples. In the numerical examples, we investigate the sta-
bility and accuracy properties of the proposed methods. For spatial discretization,
we use the finite element method. The finite element solver FreeFem++ [17] is used
for computations. In the first example, using the method of manufactured solutions,
we investigate the convergence rates of the proposed methods with respect to the
combination parameter, L. We also suggest how to choose L based on three different
methods where L is dynamically updated. In the second example, we compare the
computational results to the ones obtained using a monolithic scheme. We also inves-
tigate the effects of fixed versus moving domain assumptions, as well as linear versus
nonlinear solid models.

5.1. Example 1. In the first example, we use the method of manufactured
solutions to investigate the accuracy of the proposed methods. We assume that the
domain is fixed and that the structure is described using a linearly elastic model (4.1),
where µV = 0. The structure domain is defined as ΩP = (0, 1)× (−1, 0) and the fluid
domain as ΩF = (0, 1) × (0, 1) with the interface Γ = (0, 1) × {0}. The true solution
is defined as
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NUMERICAL MODELING OF THE FPSI A2939

ηref =

[
sin(πt)(cos(y)− 3x)

sin(πt)(y + 1)

]
, pP,ref = sin

(
πt+

π

4

)
sin(πx) cos(0.5πy),

vref =

[
π cos(πt)(cos(y)− 3x)

π cos(πt)(y + 1)

]
, pF,ref = sin

(
πt+

π

4

)
sin(πx) cos(0.5πy) + 2π cos(πt).

In this example, the parameters ρF , µF , ρP , µP , λP , α, c0, and γ are all set to
one, κ is equal to an identity matrix, and δ = 0. For spatial discretization, we use
MINI elements [3] (Pb

1 - P1) for the fluid velocity and pressure, P1 elements for the
solid, and the Raviart–Thomas RT 0 − P0 elements [26] for the Darcy problem. The
final time is T = 0.2.

We first compute the convergence rates for both Biot–Stokes partitioned algo-
rithm (4.2)–(4.3) and the structure Darcy–Stokes partitioned algorithm given by (4.4)–
(4.5) and (4.3) obtained with different values of the combination parameter, L. In
particular, we compute the relative errors for η, ξ, and v defined as

eη =
∥η − ηref∥2S
∥ηref∥2S

, eξ =
∥ξ − ξref∥2L2(ΩP )

∥ξref∥2L2(ΩP )

, eF =
∥v − vref∥2L2(ΩF )

∥vref∥2L2(ΩF )

.

We note that the Biot–Stokes partitioned algorithm (4.2)–(4.3) corresponds to Algo-
rithm 3.1 and that the structure Darcy–Stokes partitioned algorithm given by (4.4)–
(4.5) and (4.3) corresponds to Algorithm 3.2, obtained with the assumption that the
domain is fixed. To compute the rates of convergence, we use the following time and
space discretization parameters:

{∆t,∆x} =

{
0.01

2i
,
0.1

2i

}3

i=0

,

where ∆x is the mesh size.
Figure 2 shows the errors for the displacement (left), structure velocity (middle),

and fluid velocity (right) obtained using L = 0.01, 0.1, 1, 10, 100, 200, and 500. The
top panel shows the results obtained using the Biot–Stokes partitioned algorithm
and the bottom panel shows the results obtained using the structure Darcy–Stokes
partitioned algorithm. In both cases, very similar behavior is observed, with small
differences in the errors for the structure velocity. For both η and ξ, we observe that
L = 0.01 gives the worst error and rate but is resolved for all other tested L-values.
For η, the errors and rates are nearly indistinguishable for larger values of L, and
almost identical results are obtained for both partitioned methods. The rates for η
all hug a value of 1, with the exception of L = 0.01, which starts off at a rate of 1
but begins to decrease as the time step decreases. Other than L = 0.01, when the
Biot–Stokes partitioned algorithm is considered, the solid velocity, ξ, offers slightly
more variance in the results when L=0.1, in which case the smallest error is obtained.
The errors are similar for the other values of L, with a slight loss in accuracy which
is initially observed for larger values of L, but is resolved as the time step decreases.
In the structure Darcy–Stokes partitioned algorithm, the smallest errors for the solid
velocity are obtained using L = 500, and they grow as L decreases. Other than
L = 0.01, a small loss in accuracy is observed for L = 100 and L = 200 and initially
for all values of L other than 1. Finally, the errors for the fluid velocity obtained
using the two methods look nearly identical. Initially, the rates start off around 1.5
and end around 1 as the mesh size and time step are decreased. Very similar results
are obtained for all values of L.
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t 10-3

10-3
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2 4 6 8 10
t 10-3

10-4

e F

2 4 6 8 10
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2 4 6 8 10
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e F
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2 4 6 8 10
t 10-3

10-3
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L=0.01
L=0.1
L=1
L=10
L=100

L=200
L=500
rate 0.5
rate 1

Fig. 2. Example 1: Relative errors for the solid displacement η (left), solid velocity ξ (middle),
and fluid velocity v (right) at the final time T = 0.2 s. The top panel shows the results obtained
with the Biot–Stokes partitioned scheme, and the bottom panel shows the results obtained with the
structure Darcy–Stokes partitioned algorithm.

2 4 6 8 10
t 10-3

10-4

10-2

100

102

e m
c

2 4 6 8 10
t 10-3

10-2

100

102

e pc

L=0.01
L=0.1
L=1
L=10
L=100

L=200
L=500
rate 0.5
rate 1

Fig. 3. Example 1: Absolute errors for the mass conservation (left) and the momentum con-
servation (right) obtained using the structure Darcy–Stokes partitioned algorithm at the final time
T = 0.2 s.

The Robin boundary conditions used in the derivation of the proposed methods
rely on the combination parameter, L, which was used to combine the kinematic condi-
tion describing the fluid mass conservation (2.5) and the dynamic condition describing
the momentum conservation (2.6) in the fluid phase. Therefore, we also investigate
the relation between L and the absolute errors for conditions (2.5) and (2.6), given as

emc = ∥(ξ + q − v) · nF ∥L2(Γ), epc = ∥nF · σFnF + pP ∥L2(Γ),

where emc denotes the error for the mass conservation and epc the error for the momen-
tum conservation. We note that L = 0 in (3.3) recovers the momentum conservation
condition, while L = ∞ recovers the mass conservation condition. Figure 3 shows
the absolute errors for emc and epc across different values of L obtained using the
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NUMERICAL MODELING OF THE FPSI A2941

structure Darcy–Stokes partitioned algorithm. The errors obtained using the Biot–
Stokes algorithm are nearly identical and hence not shown in the figure. As expected,
we observe that the errors for emc steadily decrease as L increases, and the errors
for epc decrease as L decreases. Furthermore, the rates of convergence for the mass
conservation condition increase for larger values of L.

5.2. Determining the values of the combination parameter L. To provide
a guideline on how to determine which values of L to use, we consider the relative
errors in the approximation of the coupling conditions (2.5) and (2.6), given by

erelmc =
∥(ξ + q − v) · nF ∥L2(Γ)

∥v · nF ∥L2(Γ)
, erelpc =

∥nF · σFnF + pP ∥L2(Γ)

∥nF · σFnF ∥L2(Γ)
.

We propose to determine L dynamically so that both coupling conditions (2.5) and (2.6)
are approximated with comparable accuracy. In particular, we consider the following
three formulae to update L at every time step:

Lnew
1 =


2Lold

1 if erelmc > erelpc ,

Lold
1 if erelmc = erelpc ,

1
2L

old
1 if erelmc < erelpc ,

(5.1)

Lnew
2 = Lold

2

(
erelmc

erelpc

) 1
2

,(5.2)

Lnew
3 = Lold

3

(
erelmc

erelpc

) 1
3

.(5.3)

To test the three different approaches, we consider the same benchmark problem as in
section 5.1. We use the time step of ∆t = 5 · 10−3 and the mesh size of ∆x = 5 · 10−2.
Initially, we take L = 1 in all three cases. Figure 4 shows the evolution of L during the
simulation obtained using formulae (5.1), (5.2), and (5.3). The results are obtained
using the structure Darcy–Stokes partitioned algorithm and are almost identical to
the results using the Biot–Stokes algorithm.

At the final time, we compared the errors for the fluid velocity, eF , the structure
velocity, eξ, and the structure displacement, eη, obtained using L = 0.1, 1, 10 and
when L is dynamically updated. The comparison for both partitioned methods is
shown in Table 1. We observe that when L is dynamically updated according to (5.1),

0 0.05 0.1 0.15 0.2
time

0

0.5

1

L

L1
L2
L3

Fig. 4. Example 1: The evolution of the combination parameter, L, obtained using (5.1) (blue
line), (5.2) (red line), and (5.3) (orange line).
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Table 1
Example 1: Errors for v, ξ, and η obtained using L = 0.1, 1, 10 and when L is dynamically

updated according to (5.1)–(5.2) at T = 0.2.

Biot–Stokes alg. Structure Darcy–Stokes alg.
eF eξ eη eF eξ eη

L = 0.1 1.102 · 10−4 2.216 · 10−3 4.745 · 10−3 1.108 · 10−4 2.332 · 10−3 4.691 · 10−3

L = 1 1.097 · 10−4 2.837 · 10−3 4.888 · 10−3 1.100 · 10−4 2.972 · 10−3 4.856 · 10−3

L = 10 1.101 · 10−4 2.904 · 10−3 4.906 · 10−3 1.106 · 10−4 2.881 · 10−3 4.795 · 10−3

L1 1.088 · 10−4 1.836 · 10−3 4.683 · 10−3 1.098 · 10−4 1.795 · 10−3 4.564 · 10−3

L2 1.092 · 10−4 1.796 · 10−3 4.682 · 10−3 1.102 · 10−4 1.771 · 10−3 4.568 · 10−3

L3 1.093 · 10−4 1.794 · 10−3 4.696 · 10−3 1.103 · 10−4 1.789 · 10−3 4.588 · 10−3

a smaller error is obtained for all the variables in both partitioned algorithms. In the
case when (5.2) and (5.3) are used to update L, the error is smaller for all the variables
when the Biot–Stokes algorithm is used. When the structure Darcy–Stokes scheme
is used, the error is smaller for the solid velocity and displacement and only slightly
larger than the smallest error obtained with a fixed L for the fluid velocity.

We note that in all the simulations performed in this example, no numerical
instabilities were observed for the structure Darcy–Stokes algorithm, even though the
purely elastic model for the structure was used.

5.3. Example 2. In the second example, we consider a benchmark problem
describing flow from the fluid domain into a poroelastic medium. We assume that the
fluid reference domain is Ω̂F = (0, 1)× (0, 1) and that the structure reference domain
is Ω̂P = (0, 1) × (1, 1.5). At the left and right boundaries, we set v = 0,η = 0, and
q · nP = 0. At the top structure boundary, we take pP = 0 and set the poroelastic
structure normal stress to zero. Finally, at the fluid bottom boundary, we prescribe
v = (0, 4vinx(1− x)), where vin = 5.

To solve this problem, four different methods are considered. In particular, we use
a monolithic method and the structure Darcy–Navier–Stokes method assuming that
the fluid domain remains fixed and that the structure model is linear and given by (4.1)
with µV = 0. To investigate the impact of fixed versus moving domain assumption,
we also solve the problem using the structure Darcy–Navier–Stokes method with the
linear wall model, but assuming that the domain moves. Finally, to investigate the
effect of the linear versus nonlinear structure model, we use the structure Darcy–
Navier–Stokes method on a moving domain (Algorithm 3.2) with a compressible neo-
Hookean hyperelastic wall model, given by [18]

Ŵ = C1(Î1 − tr(I)− 2 ln Ĵ) +D1(Ĵ − 1)2,(5.4)

where C1 and D1 are material constants, I is the identity matrix, and Î1 = tr(Ĉ) is

the first invariant of the right Cauchy–Green deformation tensor Ĉ. In all four cases
considered here, the flow is modeled using the Navier–Stokes equations (2.2).

In this example, we use the Taylor–Hood elements, P2–P1, for the fluid velocity
and pressure, P2 elements for the solid, and the Raviart–Thomas RT 1 − Pdc

1 ele-
ments [26] for the Darcy problem. The problem was solved with ∆x = 5 · 10−2 and
∆t = 10−3, and the final time is T = 3 s. The parameters used in this problem are
given in Table 2.

The combination parameter, L, was determined dynamically using (5.3), starting
from L =2000. Newton’s method is used for nonlinearities caused by the neo-Hookean
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Table 2
The fluid and structure parameters used in Example 2.

Parameters Values Parameters Values

Fluid density ρf (g/cm3) 1 Dynamic viscosity µ (poise) 0.035
Wall density ρs(g/cm3) 1.1 Storativity coeff. c0 (cm2/dyne) 10−3

Shear modulus µP (dyne/cm2) 1.67785× 105 Lamé’s first par. λP (dyne/cm2) 8.22148 · 106
Biot–Willis constant α 1 Slip rate γ (g/cm2 s) 103

Fluid entry resist. δ (g/cm2 s) 10

monolithic 
xed domain

linear model

partitioned 
moving domain

linear model

partitioned 
moving domain
nonlinear model

partitioned 
xed domain

linear model

κ=10-3
I
 

κ=10-4
I

displ. (cm
)

0.0034

0.0012

displ. (cm
)

0.032

0.012

0

0

displ. (cm
)

0.11

0.055

0

κ=10-5
I

Fig. 5. A comparison of the displacement obtained with κ = 10−3I (top), κ = 10−4I (middle),
and κ = 10−5I cm3 s/g (bottom) using four different methods, from left to right: a monolithic
method with a fixed domain assumption and a linear wall model, the structure Darcy–Navier–Stokes
method with a fixed domain assumption and a linear wall model, the structure Darcy–Navier–Stokes
method with a moving domain assumption and a linear wall model, and the structure Darcy–Navier–
Stokes method with a moving domain assumption and a nonlinear, hyperelastic wall model.

wall model. We note that when C1 = µP

2 and D1 = λP

2 , which are the values used
in this example, the neo-Hookean model is consistent with linear elasticity. In the
following examples, we consider three different choices of the hydraulic conductivity
tensor, κ, i.e., κ = 10−3I,κ = 10−4I, and κ = 10−5I cm3 s/g.

Figure 5 shows the poroelastic structure displacement obtained by four different
methods considered in this example. Each domain is colored by the displacement
magnitude and moved by the displacement vector for visualization purposes. The
results obtained using κ = 10−3I are shown in the top row, the results obtained
using κ = 10−4I are shown in the middle row, and the results obtained using κ =
10−5I are shown in the bottom row. Comparing the three rows, we can observe that
the displacement increases when κ decreases. An excellent agreement is observed
between the monolithic and the structure Darcy–Navier–Stokes method assuming a
linear structural model and a fixed domain. When κ = 10−3I and κ = 10−4I, all four
methods give similar approximations. In the case when κ = 10−5I, the displacement
is relatively large, and the assumption that the domain is fixed gives results which
overshoot the ones obtained using the moving domain assumption. We note that there
are no large differences between the results obtained using a linear and a nonlinear
wall model.

To further compare the displacements, we present the vertical displacement, ηy,
over the line y = 1.25 in Figure 6. The left panel shows the results obtained using
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0 0.2 0.4 0.6 0.8 1
x axis

0

1

2

3

4

y

10-3

monol. (lin., fixed)
part. (lin., fixed)
part. (lin., moving)
part. (nonlin., moving)

κ=10-3
I

0 0.2 0.4 0.6 0.8 1
x axis

0

0.05

0.1

0.15

y

κ=10-5
I

0 0.2 0.4 0.6 0.8 1
x axis

0

0.01

0.02

0.03

0.04

y

κ=10-4
I

Fig. 6. Vertical displacement, ηy, at y = 1.25 obtained with κ = 10−3I (left), κ = 10−4I
(middle), and κ = 10−5I cm3 s/g (right) using four different methods: a monolithic method with a
fixed domain assumption and a linear wall model, the structure Darcy–Navier–Stokes method with a
fixed domain assumption and a linear wall model, the structure Darcy–Navier–Stokes method with a
moving domain assumption and a linear wall model, and the structure Darcy–Navier–Stokes method
with a moving domain assumption and a nonlinear, hyperelastic wall model.

κ = 10−3I, the middle panel shows the results obtained using κ = 10−4I, and
the right panel shows the results obtained using κ = 10−5I. When κ = 10−3I,
the displacements obtained using all four methods are roughly the same. A small
difference between the linear and nonlinear wall model is observed when κ = 10−4I.
In this case, the moving domain assumption does not affect the solution. However, the
nonlinear wall modes gives slightly smaller displacement than the linear wall model.
When κ = 10−5I, the most apparent difference is the one between the models that
used the fixed domain assumption and those that used a moving domain assumption.
In particular, when the problem is simplified and a fixed domain is used, the resulting
displacements are significantly larger than the ones obtained using the moving domain
assumption. While the linear and nonlinear wall models give similar approximations
when the domain is moving, the displacement obtained using the non-linear model is
slightly smaller than the displacement obtained using the linear wall model.

Finally, Figure 7 shows the fluid velocity in both domains obtained using κ =
10−3I (top) and κ = 10−5I (bottom). The velocities obtained using κ = 10−4I
are very similar to the ones obtained using κ = 10−3I and therefore are not shown
in the figure. As before, the same four methods are considered. The velocity is
superimposed with the velocity magnitude. In both cases, an excellent agreement
is observed between the monolithic method and the partitioned method when the
domain is fixed and the structure model is linear. When κ = 10−5I, a significant
difference can be seen between the cases when a fixed domain assumption is used
versus the moving domain cases. We observe that more flow enters the poroelastic
domain when the domain is allowed to deform.

6. Conclusions. This work focuses on the numerical modeling of the FPSI prob-
lem with large structural displacements. In particular, we considered the coupled
problem where the flow is described using the Navier–Stokes equations in the ALE
form and the structure is described using the Biot model. We used the dual-mixed
formulation of the Darcy equations and a hyperelastic structural model. We intro-
duced two novel numerical methods based on the Robin–Robin interface conditions,
which were obtained by multiplying the kinematic coupling condition by a combina-
tion parameter, L, and adding it to the dynamic condition describing the momentum
conservation in the fluid phase. In the first proposed method (Algorithm 3.1), the
Biot problem is solved separately from the fluid problem, while in the second pro-
posed method (Algorithm 3.2) the Biot problem is additionally split into a mechanics
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monolithic 
xed domain

linear model

partitioned 
moving domain

linear model

partitioned 
moving domain
nonlinear model

partitioned 
xed domain

linear model

velocity (cm
/s)

0

5

2.5

κ=10-3
I

κ=10-5
I

Fig. 7. A comparison of the fluid and Darcy velocities obtained with κ = 10−3I (top) and
κ = 10−5I cm3 s/g (bottom) using four different methods, from left to right: a monolithic method
with a fixed domain assumption and a linear wall model, the structure Darcy–Navier–Stokes method
with a fixed domain assumption and a linear wall model, the structure Darcy–Navier–Stokes method
with a moving domain assumption and a linear wall model and the structure Darcy–Navier–Stokes
method with a moving domain assumption and a nonlinear, hyperelastic wall model.

problem and a Darcy problem. In that way, we can solve the mechanics problem first
in the Lagrangian formulation, compute the new domain, and then solve the Darcy
and the Navier–Stokes problems in the deformed domain.

We presented the stability analysis of the proposed methods on a simplified prob-
lem and showed that Algorithm 3.1 is unconditionally stable and that Algorithm 3.2
is stable when the structure is viscoelastic and when the problem parameters and the
time step satisfy conditions (4.7). However, in the numerical examples considered
in this manuscript, no stability issues were seen even when the structure was purely
elastic.

Our first example shows a first-order convergence in time when the values of L
are sufficiently large on a simplified example where the structure is assumed to be
linear and the fluid domain remains fixed. In the same example, a dynamic update
of L is suggested, which keeps the errors in the approximation of the kinematic and
dynamic coupling conditions of a similar size. Our results indicate that the proposed
dynamic update of L yields similar or smaller errors when compared across different,
fixed choices of L.

In the second numerical example, we investigated the effects of linear assumptions
in both the structural wall model, and the fluid-poroelastic structure coupling, where
the fluid domain is assumed to be fixed. In the example considered in this study,
the results obtained using the fixed versus the moving domain model increasingly
differ as the displacements increase. A smaller discrepancy is observed between the
linear and non-linear, hyperelastic wall models when the moving domain problem was
considered in both cases. The results obtained using a linear wall model and a fixed
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domain were compared to the ones obtained using a monolithic scheme with the same
assumptions, showing an excellent agreement. Hence, our results indicate that if the
physics of the problem is such that the displacement of the poroelastic medium is
significant, a moving domain model would need to be considered in order to obtain
a more accurate approximation. While we did not observe a large difference between
the results obtained using the linear versus nonlinear wall model, we would expect
the difference to become more apparent for problems with larger displacements.

The drawback of this work is that the analysis is performed on a simplified
problem and that only two-dimensional examples are presented. However, the same
methodology could be applied to three-dimensional problems. While we did not ob-
serve instabilities even though µV = 0 was used in both examples, if the instabilities
occur, (4.17) could be used to provide an upper bound on the dynamic estimate of L.
Alternatively, Algorithm 3.1 could be applied, for which we do not have any stability
conditions when analyzed in a simplified, linearized form.

Appendix A. Inequalities used in the stability analysis.

Lemma A.1. Suppose S ⊂ Rd is an open set with piecewise smooth boundary and
Γ is part of ∂S with positive measure. The following inequalities hold true:

Young’s inequality:

ab ≤ a2

2ϵ
+
ϵb2

2
for nonnegative real numbers a, b and ϵ > 0;(A.1)

the Cauchy–Schwarz inequality:∣∣∣∣ ∫
S

v · udx
∣∣∣∣ ≤ ||v||L2(S)||u||L2(S) ∀v,u ∈ L2(S);(A.2)

the Poincaré–Friedrichs inequality: assuming that v ∈ (H1(S))d vanishes
on a part of the boundary ∂S with positive measure, there exists a positive
constant CP depending on S such that

||v||L2(S) ≤ CP ||∇v||L2(S);(A.3)

the trace inequality: there exists a constant CT > 0 depending on S such that

||v||L2(Γ) ≤ Ctr||v||1/2L2(S)||∇v||1/2L2(S) ∀v ∈ H1(S);(A.4)

Korn’s inequality: assuming that v ∈ (H1(S))d vanishes on a part of the
boundary ∂S with positive measure, there exists a positive constant CK de-
pending on S such that

||∇v||L2(S) ≤ CK ||D(v)||L2(S).(A.5)
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