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Abstract—This paper investigates the ultimate performance
limits of Linear Function Retrieval (LFR) by cache-aided users
from distributed coded servers. Each user aims to retrieve a
linear function of the files of a library, which are Maximum
Distance Separable (MDS) coded and stored at multiple servers.
The system needs to guarantee robust decoding in the sense that
each user must decode its demanded function with signals from
any subset of servers whose cardinality exceeds a threshold. In
addition, the following conditions must be met: (a) the content
of the library must be kept secure from a wiretapper who
obtains all the signals sent by the servers; (b) any subset of users
together can not obtain any information about the demands of
the remaining users; and (c) the users’ demands must be kept
private against all the servers even if they collude. A scheme that
uses the superposition of security and privacy keys is proposed
to meet all those conditions. The achieved load-memory tradeoff
is the same as that achieved in single-server case scaled by the
inverse of the MDS code rate used to encode the files, and the
same optimality guarantees as in single-server setup are obtained.

I. INTRODUCTION

Coded caching, introduced by Maddah-Ali and Niesen
(MAN) [1], is a technique to reduce the communication load
by leveraging the multicast opportunities created by caches at
the users. The model consists of a single-server, multiple users,
and two phases. In the placement phase, the users’ caches are
filled without the knowledge of their future demands. In the
delivery phase, when users’ demands are revealed, the server
satisfies them by transmitting coded packets over a shared
link. It turns out that for a system with N files and K users,
the MAN scheme achieves the optimal load-memory tradeoff
among all uncoded placement schemes when N ≥ K [2],
and after removing some redundant transmissions, also for
N < K [3]. Recently, it was showed that allowing the users
to demand arbitrary linear combinations of the files does not
increase the load compared to single file retrieval [4].

In practical systems, content security and demand privacy
are both critical aspects. In [5], the content of the files must
be protected against a wiretapper who obtains the delivery
phase transmissions. We investigated demand-privacy against
colluding users in [6] for both single file retrieval and linear
function retrieval, where any subset of users must not obtain
any information about the demands of other users, even if
they exchange the content in their caches. The key idea in [5]
and [6] is that users cache, in addition to the content as in
the MAN scheme [1], also some security keys or privacy keys
for the MAN uncached part of the files; this is done in a
structured way so that each user can retrieve all the multicast

Fig. 1: System model

messages needed for correct decoding. We investigated the
content Secure and demand Private Linear Function Retrieval
(SP-LFR) problem in [7], For linear function retrieval [4] with
security [5] and user-privacy constraints [6]. We designed a key
superposition scheme to guarantee the security and privacy
conditions simultaneously by superposing (i.e., sum together)
the security keys and privacy keys. It was showed that the
load-memory tradeoff is the same as in the setup with only
content security guarantees.

Since node failures and erasures arise naturally in any
storage system, redundancy should be introduced [8]. A com-
mon erasure coding technique is to use Maximum Distance
Separable (MDS) codes. An (H,L) MDS code encodes L
packets into H packets, with the property that upon obtaining
any L (out of H) coded packets one can recover the L
information packets. This motivates us to investigate cache-
aided LFR from a distributed storage system [9]–[11], as in
Fig. 1. The model consists of H servers, where each file is
stored at the servers in the form of (H,L) MDS coded version.
Each server is connected to the users via a dedicated shared
link, but may not reach all of the users. The coding scheme
needs to guarantee that each user can retrieval an arbitrary
linear function of the files from the signals of arbitrary L
servers. The security [5] and user-privacy [6] conditions are
also imposed. In addition, the users’ demands must kept
private against all the servers, even if they exchange their
available information, which we refer to as server-privacy.
We propose a scheme that builds on the key superposition
idea from [7]. In particular, key superposition is used on the
MDS coded packets in the delivery phase. Interestingly, both
the achieved load and converse are increased by a factor H

L
compared to the the single server case [7], and thus the same
optimality guarantees of the single-server case continue to hold
in the multi-server case.



II. SYSTEM MODEL

Let N,K,L,H be positive integers satisfying L ≤ H . The
(N,K,L,H) system illustrated in Fig. 1 consists of H servers
(denoted by 1, . . . ,H), where each server is connected to K
users (denoted by 1, . . . ,K) via a dedicated shared-link. A
file library of N files (denoted by W1, . . . ,WN ∈ FB

q ) are
stored at the H servers in the form of an (H,L) MDS code
as follows, where B denotes the file length. Each file Wn, n ∈
[N ], is composed of L equal-size subfiles Wn,1, . . . ,Wn,L ∈
FB/L
q and is encoded into H coded subfiles Wn,1, . . . ,Wn,H

with a given (H,L) MDS code with generator matrix

G =

 g1,1 . . . g1,H
...

. . .
...

gL,1 . . . gL,H

 , (1)

that is, the coded subfiles are given by

Wn,h =
∑
l∈[L]

gl,hWn,l, ∀h ∈ [H], n ∈ [N ]. (2)

The N files are mutually independent and uniformly dis-
tributed over FB

q , that is,

H(W1) = . . . = H(WN ) = B, (3a)
H(W1, . . . ,WN ) = H(W1) + . . .+H(WN ). (3b)

Therefore, each subfile or coded subfile is uniformly dis-
tributed over FB/L

q . Server h ∈ [H] stores the h-th coded
subfile of each file, i.e., W [N ],h := (W 1,h, . . . ,WN,h).

For notational simplicity, for any given vector a =
(a1, . . . , aN )> ∈ FN

q , we denote the linear combination of
the files or (coded) subfiles for all l ∈ [L] and h ∈ [H] as

Wa :=
∑

n∈[N ]

anWn, Wa,l :=
∑

n∈[N ]

anWn,l, (4a)

W a,h :=
∑

n∈[N ]

anWn,h =
∑
l∈[L]

gl,hWa,l. (4b)

Notice that, Wa,Wa,l,W a,h are linear in a, e.g., for any
u, v ∈ Fq and a,b ∈ FN

q , Wua+vb = uWa +vWb. Moreover,
since Wn,[H] := (Wn,1, . . . ,Wn,H) is the MDS coded ver-
sion of Wn,[L] := (Wn,1, . . . ,Wn,L), ∀n ∈ [N ], by linearity
we have that W a,[H] := (W a,1, . . . ,W a,H) is the MDS coded
version of Wa,[L] := (Wa,1, . . . ,Wa,L), ∀a ∈ FN

q , as in (4b).
The system operates in two phases as follows.

Placement Phase: The servers can communicate with
each other, and all users can access all servers. To ensure the
security condition in (10b), the servers share some randomness
V from some finite alphabet V . Each user k ∈ [K] generates
some random variable Pk from some finite alphabet Pk and
cache some content Zk as a function of Pk, V and the file
library W[N ]. Let the cached content be

Zk := ϕk(Pk, V,W[N ]), ∀k ∈ [K], (5)

for some encoding functions ϕk : Pk × V × FNB
q 7→

FbMBc
q , ∀k ∈ [K]. The quantity M is referred to as memory

size. The encoding functions ϕ1, . . . , ϕK are known by the
servers, but the randomness P1, . . . , PK are kept private by
the corresponding users.

Delivery Phase: Each user k ∈ [K] generates a demand
dk = (dk,1, . . . , dk,N )> ∈ FN

q , meaning it is interested
in retrieving the linear combination of the files Wdk

. The
following random variables are independent

H(d[K],W[N ], P[K], V )

=
∑

k∈[K]

H(dk) +
∑

n∈[N ]

H(Wn) +
∑

k∈[K]

H(Pk) +H(V ). (6)

User k ∈ [K] generates queries Qk,[H] := (Qk,1, . . . , Qk,H)

as Qk,h := κk,h(dk, Zk) ∈ F`k,h
q , ∀h ∈ [H], (7)

for some query functions κk,h : FN
q ×FbMBc

q 7→ F`k,h
q , where

`k,h is the length of the query Qk,h. If any randomness is
needed in the queries, it has to be stored in the cache. Then
user k ∈ [K] sends the query Qk,h to server h ∈ [H].

Upon receiving the queries from all the users, server h ∈
[H] creates a signal Xh as

Xh := φh(V,Q[K],h,W [N ],h), (8)

for some encoding function φh : V × F
∑

k∈[K] `k,h

q × F
NB
L

q 7→
FbRhBc
q . The quantity Rh, h ∈ [H], is referred to as the load

of server h. The load of the system is defined as

R :=
∑

h∈[H]

Rh. (9)

A Robust Secure and (user- and server-) Private cache-aided
Linear Function Retrieval (RSP-LFR) scheme must satisfy

[Correctness] H(Wdk
|XL,dk, Zk) = 0,

∀ k ∈ [K],L ⊆ [H] : |L| = L, (10a)
[Security] I(W[N ];X[H]) = 0, (10b)

[Server Privacy] I(d[K];Q[K],[H],W [N ],[H], V ) = 0, (10c)
[User Privacy] I(d[K]\S ;X[H],dS , ZS |W[N ]) = 0,

∀S ⊆ [K] : S 6= ∅. (10d)

Objective: A memory-load pair (M,R) ∈ [1, N ]×R+ is
said to be achievable if, for any ε > 0, there exists a scheme
satisfying all the above conditions with memory size less than
M + ε and load less than R+ ε, for some file-length B. The
objective of this paper is to characterize the optimal load-
memory tradeoff of the system, defined as

R∗(M) := inf
B∈N+

{
R : (M,R) is achievable for B

}
. (11)

Throughout this paper, we consider the case N ≥ 2, since
demand privacy is impossible for N = 1 (i.e., there is only
one possible file to be demanded).

Remark 1 (Implications of the conditions in (10)). The con-
strains (10a)–(10d) imply the following:

1) The correctness condition in (10a) guarantees that each



user can correctly decode its required linear function by
receiving any L-subsets of the transmitted signals. Since
each user decodes independently, the available subset of
signals L need not to be same across the users.

2) The security condition (10b) guarantees that a wiretap-
per, who is not a user in the system and observes the
delivery signals, can not obtain any information about
the contents of the library files. It was proved in [7, Ap-
pendix A] that the conditions in (10b) and (10d) imply
I(W[N ],d[K];X[H]) = 0, that is, the wiretapper having
access to X[H] in fact can not obtain any information
on both the files and the demands of the users.

3) The server-privacy condition in (10c) guarantees that the
servers can not obtain any information on the demands
of the users, even if all the servers collude by exchanging
their stored contents.

4) The user-privacy condition in (10d) guarantees that
any subset of users who exchange their cache contents
cannot jointly learn any information on the demands of
the other users, regardless of the file realizations.

Remark 2 (Minimum memory size). It was proved in [5] that,
in order to guarantee the correctness condition in (10a) and the
security condition in (10b) simultaneously, the memory size
M has to be no less than one. Thus the load-memory tradeoff
is defined for M ∈ [1, N ].
Remark 3 (File retrieval). If the demands d1, . . . ,dK are
restricted to {e1, . . . , eN}, where en ∈ FN

q , n ∈ [N ], is the
vector with the n-th digit being 1 and all the others zero, then
each user is interested in retrieving one single file.
Remark 4 (Comparison with [12]). For case L = 1 and G =
[1, 1, . . . , 1], the servers store replicated databases. A scheme
to retrieve a single file per user from replicated databases
while guaranteeing server-privacy was proposed in [12]. This
differs from our setup, even if we remove the user-privacy and
security conditions, since we impose robustness, i.e., each user
can decode from the signal received from of any one server
(i.e., L = 1). Our set-up does not reduce to the PIR setting
in [?] again because of the robustness constraint.

III. MAIN RESULT AND AN EXAMPLE

The following theorem is our main result, achieved by the
Key Superposition RSP-LFR scheme described in Section IV.

Theorem 1. For an (N,K,L,H) system, the lower convex
envelope of the following points is achievable(
Mt, Rt) =

(
1 +

t(N − 1)

K
,
H(K − t)
L(t+ 1)

)
, t ∈ [0 : K]. (12)

Moreover, this load-memory tradeoff is optimal to within a
multiplicative gap of at most 8 in all regimes, except for M ∈
[1, 2) with N < K.

Remark 5 (Comparison with single-server system). If H =
L = 1, the system degrades to single-server shared-link
system, where all the files are stored at the server [1]. In [7], a
key superposition scheme was proposed to guarantee the cor-
rectness, security, and user privacy conditions simultaneously.

The scheme was presented in the Placement Delivery Array
(PDA) framework, which was proposed in [13] to find out low
subpacketization schemes. In particular, it was showed that
schemes based on PDAs describing the MAN scheme achieve
the lower convex envelope of the points

(Mt, R
′
t) =

(
1 +

t(N − 1)

K
,
K − t
t+ 1

)
, t ∈ [0 : K]. (13)

Notice that, when H/L = 1, the memory-load pairs in
(12) degrade to (13). In this case, each user needs to retrieve
information from all the servers, and the total load is the same
as that from a single server case (i.e., H = L = 1). Moreover,
this indicates that, in addition to guaranteeing correctness,
security, and user-privacy conditions, the server-privacy condi-
tion does not increase the load-memory tradeoff. Moreover, let
R(M) denote the tradeoff in (12) and RSignle(M) the tradeoff
in (13), then R(M) = H

L ·RSingle(M), i.e., the achieved load
is multi-server systems is the single-server load scaled by the
inverse of the MDS code rate.

We conclude this section with an example to highlight the
key ideas in the RSP-LFR scheme described in Section IV.

Example 1. Consider the (N,K,L,H) = (4, 3, 2, 3) system
with MDS generator matrix

G =

[
1 0 1
0 1 1

]
. (14)

That is, each file Wn, n ∈ [N ], N = 4, is split into L = 2
subfiles as Wn = (Wn,1,Wn,2), and the contents stored at
the H = 3 servers are W [4],1 = W[4],1, W [4],2 = W[4],2 and
W [4],3 =W[4],1 ⊕W[4],2, respectively.

Consider t = 1. We partition each subfile Wn,l into
(
K
t

)
=

3 equal-size packets as Wn,l = (Wn,l,1,Wn,l,2,Wn,l,3),
and as a result, also for each coded subfile Wn,h =

(Wn,h,1,Wn,h,2,Wn,h,3), where each packet is in FB/6
q . The

system operates as follows:
Placement Phase: The servers share L

(
K
t

)
= 6 random

packets {Vl,J : l ∈ [2],J ⊆ [3], |J | = 2}, which are gener-
ated independently and uniformly over FB/6

q . Each user k ∈
[3] generates a random vector pk = (pk,1, pk,2, pk,3, pk,4)

> ∈
F4
q and caches

Zk= {pk} ∪ {Wn,l,k : n ∈ [4], l ∈ [2]} (15a)
∪{Wpk,l,j + Vl,{j,k} : l ∈ [2], j ∈ [3], j 6= k}. (15b)

Delivery Phase: Let the users’ demands be Wd1
,Wd2

and Wd3
, where d1,d2,d3 ∈ F4

q . Each user k sends the query

qk = pk ⊕ dk, (16)

to all the servers. Upon receiving the queries q[3], each server
h ∈ [3] sends a signal Xh to the users, which is composed of
the queries q[3] and of the

(
K
t+1

)
= 3 coded packets

Y h,{j,k} = V h,{j,k} +Wqj ,h,k +Wqk,h,j , (17)

where {j, k} ⊆ [3] and (V 1,J , V 2,J , V 3,J ) is the MDS coded
version of (V1,J , V2,J ) for any J = {j, k} ⊆ [3].



Performance: To show that each user k can decode Wdk

with signals from any L = 2 servers, we notice that for
each J = {j, k} ⊆ [3], the packets (Y 1,J , Y 2,J , Y 3,J ) are
the MDS coded version of (Y1,J , Y2,J ), where Yl,{j,k} =
Vl,{j,k}+Wqj ,l,k+Wqk,l,j . Thus, upon receiving any L = 2 of
the signals X1, X2, X3, each user k can decode all the coded
packets {Yl,J : l ∈ [2],J ⊆ [3], |J | = 2}. For j ∈ [3]\{k}
and l ∈ [2], user k decodes Wdk,l,j from Yl,{j,k} since

Yl,{j,k} =Wdk,l,j + (Wpk,l,j + Vl,{j,k}) +Wqj ,l,k, (18)

where Wpk,l,j + Vl,{j,k} is cached by user k by (15b), and
Wqj ,l,k can be computed by user k from the vector qj in (16)
and the cache content in (15a). The security condition is
guaranteed since the transmitted signal is the coded version
of (Y1,J , Y2,J ) for each J ⊆ [3] with cardinality 2, and each
signal is added a random vector uniformly distributed over
FB/6
q . The server- and user-privacy conditions are guaranteed

since the query qk = pk + dk in (16) does not contain any
information about dk, since the vectors p[K] are independently
and uniformly distributed over F4

q .
Note that each packet is of length B

6 . Each user caches 12
packets and 1 vector in F4

q , and each of the servers send 3
packets and 3 vectors in F4

q . Since the length of vectors in
F4
q do not scale with B, the achieved memory-load point is

(M,R) = (12× 1
6 , 3× 3× 1

6 ) = (2, 32 ).

IV. KEY SUPERPOSITION RSP-LFR SCHEME

Here we describe the Key Superposition RSP-LFR Scheme in
full generality. The scheme is inspired by the key superposition
scheme for the single-server shared-link model [7].

For each t ∈ [K], define

Ωt = {I ⊆ [K] : |I| = t}. (19)

Notice that for t = K in (12), the achievability of
(MK , RK) = (N, 0) is trivial. In the following, we describe
the scheme for t ∈ {0, 1, . . . ,K − 1}.

Firstly, each subfile Wn,l is partitioned into
(
K
t

)
equal-size

packets, denoted by

Wn,l = {Wn,l,I : l ∈ [L], I ∈ Ωt}, ∀n ∈ [N ], l ∈ [L]. (20)

By (2), each coded subfile Wn,h is composed of
(
K
t

)
equal-

size packets, i.e.,

Wn,h = {Wn,h,I : I ∈ Ωt}, ∀n ∈ [N ], h ∈ [H], (21)

where Wn,h,I =
∑

l∈[L] gl,hWn,l,I ∈ FB/L
q for all I ∈ Ωt,

as per (4). The system operates as follows.
Placement Phase: The servers share L

(
K
t+1

)
security

keys denoted by {Vl,J : l ∈ [L],J ∈ Ωt+1}, which are

independently and uniformly distributed over FB/(L(Kt ))
q . Each

user k ∈ [K] generates a vector pk randomly and uniformly
from FN

q , and constructs
(
K−1

t

)
privacy keys {Wpk,l,I : l ∈

[L], I ∈ Ωt, k /∈ I}. User k ∈ [K] caches

Zk = {pk} ∪ {Wn,l,I : n ∈ [N ], l ∈ [L], I ∈ Ωt, k ∈ I} (22a)
∪{Wpk,l,I + Vl,I∪{k} : l ∈ [L], I ∈ Ωt, k /∈ I}. (22b)

Delivery Phase: Assume the demand vector of user k ∈
[K] is dk, ∀ k ∈ [K]. User k ∈ [K] generates a query vector
qk = pk + dk, and sends it to all the servers, i.e.,

Qk,1 = . . . = Qk,H = qk = pk + dk, ∀ k ∈ [K]. (23)

For each J ∈ Ωt+1, let (V 1,J , . . . , V H,J ) be the MDS coded
version of (V1,J , . . . , VL,J ) with generator matrix G, i.e.,
V h,J =

∑
l∈[L] gl,hVl,J for all h ∈ [H]. Upon receving the

queries q1, . . . ,qK , server h ∈ [H] creates a signal for each
J ∈ Ωt+1, i.e.,

Y h,J := V h,J +
∑
j∈J

Wqj ,h,J\{j}, ∀h ∈ [H]. (24)

Notice that (Y 1,J , . . . , Y H,J ) is the MDS coded version of
the (Y1,J , . . . , YL,J ) with the generator matrix G, where the
signals Yl,J are defined as

Yl,J , Vl,J +
∑
j∈J

Wqj ,l,J\{j}, ∀ l ∈ [L]. (25)

Server h ∈ [H] sends the signal

Xh = {qk : k ∈ [K]} ∪ {Y h,J : J ∈ Ωt+1} (26)

to the users via its dedicated shared-link.
Correctness in (10a): We need to show that for each user

k ∈ [K], with any L ⊆ [K] such that |L| = L, user k can
decode Wdk

, i.e., all the packets {Wdk,l,I : l ∈ [L], I ∈ Ωt}.
In fact, for each I ∈ Ωt such that k ∈ I, by (22a),
user k has stored all the packets W[N ],[L],I , thus it can
directly compute the packets Wdk,l,I for each l ∈ [L]. Now,
consider any I ∈ Ωt such that k /∈ I. Let J = I ∪ {k},
recall that (Y 1,J , . . . , Y H,J ) is the MDS coded version of
(Y1,J , . . . , YL,J ) with generator matrix G, by the property of
MDS code, each user can decode all the L coded packets in
(25) with any L of the signals Y 1,J , . . . , Y H,J . Notice that
since J = I ∪ {k}, the signal Yl,J is given by

Yl,I∪{k} = Vl,I∪{k} +Wqk,l,I +
∑
j∈I

Wqj ,l,I∪{k}\{j} (27a)

=Wdk,l,I + Vl,I∪{k} +Wpk,l,I +
∑
j∈I

Wqj ,l,I∪{k}\{j}, (27b)

where (27b) follows from qk = pk + dk. Therefore, user k
can decode Wdk,l,I from the the signal Yl,I∪{k} by canceling
the remaining terms since

1) the coded packet Vl,I∪{k} +Wpk,l,I is cached by user
k by (22b);

2) for each j ∈ I , since k ∈ I ∪ {k}\{j}, user k can
compute Wqj ,l,I∪{k}\{j} from the vector qj and the
cached packets W[N ],l,I∪{k}\{j} by (22a).

Remark 6 (Robustness of Decoding). From the above decod-
ing process, user k can decode its demanded linear function
if for any I ∈ Ωt such that k /∈ I , user k can receive
any L of the coded signals Y 1,I∪{k}, . . . , Y H,I∪{k}. This is
less restrictive than the assumptions in our setup (i.e., each
user can obtain a fixed subset of signals XL), since: (i) it
allows the available subset L of signals varying over different



transmissions; and (ii) each user k ∈ [K] only needs to decode
packets over the signals assocatated to J ∈ Ωt+1 such that
k ∈ J .

Security in (10b): We have

I(W[N ];X[H]) (28a)

= I(W[N ];q[K], {Y h,J }h∈[H],J∈Ωt+1
) (28b)

= I(W[N ];q[K], {Yl,J }l∈[L],J∈Ωt+1
) (28c)

= I(W[N ];q[K]) + I(W[N ]; {Yl,J }l∈[L],J∈Ωt+1
|q[K]) (28d)

= 0, (28e)

where: (28c) holds since (Y 1,J , . . . , Y H,J ) is the MDS coded
version of (Y1,J , . . . , YL,J ) for each J ∈ Ωt+1, and hence
they determine each other; and (28e) follows since (a) the
vectors q[K] = d[K] +p[K] are independent of W[N ], and (b)
{Yl,J }l∈[L],J∈Ωt+1

are independent of (W[N ],q[K]) because
the random variables {Vl,J }l∈[L],J∈Ωt+1

are independently

and uniformly distributed over FB/(L(Kt ))
q .

Server Privacy in (10c): We have

I(d[K];Q[K],[H]W [N ],[H], V ) (29a)
= I(d[K];q[K],W[N ], V ) (29b)
= I(d[K];W[N ], V ) + I(d[K];q[K] |W[N ], V ) (29c)
= 0, (29d)

where: (29b) follows from (23) and the fact W [N ],[H] and
W[N ] determines each other; and (29d) follows from (6) and
the fact q[K] = p[K]+d[K] are independent of (d[K],W[N ], V )
since the vectors p[K] are independent random variables
uniformly distributed over FN

q .
User Privacy in (10d): We have

I(d[K]\S ;ZS , X[H],dS |W[N ]) (30a)
= I(d[K]\S ;ZS ,q[K], {Yl,J }l∈[L],J∈Ωt+1

,dS |W[N ]) (30b)
= 0, (30c)

where: (30b) follows along similar lines as (28a)–(28c); and
(30c) follows since d[K]\S = q[K]\S −p[K]\S is independent
of (ZS ,W[N ],q[K],dS , {Y h,J }h∈[H],J∈Ωt+1

) since p[K]\S
are independently and uniformly distributed over FN

q .
Performance: By (20), each subfile is split into

(
K
t

)
equal-size packets, each of length B/(L

(
K
t

)
). By the cached

content in (22), each user k caches NL
(
K−1
t−1
)

uncoded packets
in (22a), L

(
K−1

t

)
coded packets in (22b) and a vecotor of

length N in (22a). Therefore, the achieved memory size is

M = inf
B∈N+

1

B

((
NL

(
K−1
t−1
)
+ L

(
K−1

t

))
B

L
(
K
t

) +N

)
(31)

= 1 +
t(N − 1)

K
. (32)

Moreover, by (26), each server sends K vectors of length N
and

(
K
t+1

)
coded packets, thus the load is given by

R = inf
B∈N+

H

B

(( K
t+1

)
B

L
(
K
t

) +KN

)
=
H(K − t)
L(t+ 1)

. (33)

Note that, although there are some redundant signals over
the servers in (26), i.e., the vectors q[K] are transmitted by
all the servers, by the calculation in (33), further reducing the
redundancy does not decrease the load, since the load needed
to transmit the vectors q[K] does not scale with B.

Optimality: Let R∗Single(M) be the optimal load-memory
tradeoff for a single-server network with N files and K users,
where the correctness, security and user privacy conditions
are imposed as in [7]. For any feasible design of caches Z[K]

and signals X[H] in our setup, for any L ⊆ [H], the contents
Z[K] and signal X , XL are a feasible scheme in the single
server setup. Thus, H(XL)

B ≥ R∗Single(M) holds for all L ⊆
[K], |L| = L. Therefore,

R∗(M) ≥ 1

B

∑
h∈[H]

H(Xh) =
H

B
· 1
H

∑
h∈[H]

H(Xh) (34a)

≥ H

B
· 1(

H
L

) ∑
L⊆[H],|L|=L

H(XL)

L
(34b)

= H · 1(
H
L

) ∑
L⊆[H],|L|=L

R∗Single(M)

L
(34c)

≥ H

L
·R∗Single(M), (34d)

where (34b) follows from Han’s inequality [14]. Recall that
R(M) = H

LRSingle(M) (see Remark 5), hence by (34d),

R(M)

R∗(M)
≤ RSingle(M)

R∗Single(M)
. (35)

Thus, the claimed multiplicative gap result directly follows
from (35) and the bound for RSingle(M)

R∗Single(M) in [7, Theorem 3].

Remark 7 (Special Cases). Note that

1) If the security keys are removed (i.e., setting VJ = 0
for all J ∈ Ωt+1), then the scheme degrades to an
LFR scheme only guaranteeing server- and user- privacy,
which achieves the same memory-load pair as in (12);

2) If the privacy keys are removed (i.e., setting p1 = . . . =
pK = 0), then the scheme degrades to a LFR scheme
that only guarantees security, which achieves the same
memory-load pair as in (12);

3) If both the security and privacy keys are removed (i.e.,
setting VJ = 0 for all J ∈ Ωt+1 and p1 = . . . =
pK = 0), then the scheme degrades to an ordinary
LFR scheme, which achieves the memory-load pair(
tN
K , H(K−t)

L(t+1)

)
.

Remark 8 (Improvement in Special Cases). In the special cases
that the security keys (i.e., cases 1) and 3) in Remark 7) are not
used, in the regime N ≤ K, and t ≤ K−N , some redundant
signals determined by the queries q1, . . . ,qK can be removed
from each server, similar to the single server cases [4], [6],
and better memory-load tradeoff can be achieved.
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