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Abstract: We present an extension of a non-iterative, partitioned method previously designed and
used to model the interaction between an incompressible, viscous fluid and a thick elastic structure.
The original method is based on the Robin boundary conditions and it features easy implementation
and unconditional stability. However, it is sub-optimally accurate in time, yielding only (’)(At%)
rate of convergence. In this work, we propose an extension of the method designed to improve
the sub-optimal accuracy. We analyze the stability properties of the proposed method, showing
that the method is stable under certain conditions. The accuracy and stability of the method are
computationally investigated, showing a significant improvement in the accuracy when compared to
the original scheme, and excellent stability properties. Furthermore, since the method depends on a
combination parameter used in the Robin boundary conditions, whose values are problem specific,
we suggest and investigate formulas according to which this parameter can be determined.

Keywords: fluid—structure interaction; loosely coupled method; sub-optimal accuracy; partitioned
method; moving-domain problems

1. Introduction

Fluid-structure interaction (FSI) problems arise in many applications, such as aeroe-
lasticity, biomechanics and automotive engineering. In biomedical applications, FSI models
have been widely used to describe the interaction between blood and arterial walls. Com-
bining state-of-the-art numerical algorithms for FSI problems with non-invasive clinical
measurement tools provides an innovative approach to medical diagnosis and surgical
decision making for many cardiovascular diseases, such as aneurysms and atherosclerosis.
As a result, there is an increasing demand for fast and efficient numerical algorithms to
solve FSI problems arising from biomedical applications.

The interaction between an incompressible, viscous fluid and an elastic structure is
characterized by highly non-linear coupling between two different physical processes. As a
result, a comprehensive study of such problems is challenging [1]. Solution strategies
for FSI problems can be classified as monolithic and partitioned schemes. In monolithic
algorithms, the entire coupled problem is solved as one system of algebraic equations,
treating the coupling conditions implicitly. However, they can be quite expensive in
terms of the computational time and memory requirements. Furthermore, they require
well-designed preconditioners [2—4] in blood flow applications. Alternatively, to obtain
smaller and better conditioned sub-problems, and treat each physical process separately,
partitioned algorithms have been used. The development of partitioned numerical methods
for FSI problems has been extensively studied in the literature. However, stability issues
often arise as a result of the coupling at the interface. Even when the partitioning is
carefully designed, stable partitioned algorithms may also suffer from the sub-optimal time
accuracy [5-9].

The design of non-iterative, partitioned methods is particularly challenging when the
dimension of the solid domain is the same as the dimension of the fluid domain, i.e., when
the structure is thick. Thin structures, which are described by a lower-dimensional model,
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can easily be used in the design of partitioned methods based on the Robin boundary
conditions since their entire domain is a part of the fluid domain boundary, which has
been exploited in [8,10-12]. In cases when the structure is thick, such approaches can not be
directly extended because the structure domain exists outside of the fluid domain, which
makes the design of stable, non-iterative partitioned algorithms especially challenging.

A review of recent developments of robust monolithic fluid—-structure interaction
solvers can be found in [13]. Partitioned methods for FSI problems can be classified as
strongly coupled, if the fluid and structure sub-problems require sub-iterations at each time
step, or loosely coupled, if no sub-iterations are needed. Strongly coupled methods have
been studied in [14-18], where the coupling conditions are linearly combined to obtain the
generalized Robin interface conditions, which are then used in the fluid and/or structure
sub-problems. Strongly coupled fictitious-pressure and fictitious-mass algorithms have also
been proposed in [19,20], where the added mass effect is accounted for by incorporating
additional terms into governing equations. Algorithms based on the Nitsche’s penalty
method have been proposed in [6,21], where a weakly consistent stabilization term was
added to obtain stability. However, since the rate of convergence in time was sub-optimal,
a few defect-correction sub-iterations were performed. A loosely coupled, partitioned
algorithm based on the so-called added-mass partitioned Robin conditions was proposed
in [22], which was shown to be stable under a condition on the time step that depends on
the structural parameters. The method was extended to finite deformations, and the explicit
fluid solver was replaced by a fractional-step implicit-explicit scheme in [23]. A generalized
Robin-Neumann explicit coupling scheme based on an interface operator accounting for
the solid inertial effects within the fluid has been proposed in [7]. The scheme has been
analyzed on a linear FSI problem and shown to be stable under a time-step condition.
Previously, we developed a partitioned method for FSI with a thick, viscoelastic structure
based on the Lie operator splitting approach [24]. However, the assumption that the
structure is viscoelastic was necessary in the derivation of the scheme, and the solid
viscosity was solved implicitly with the fluid problem. The scheme was shown to be stable
under a time-step condition in [8].

A partitioned, loosely coupled method for FSI problems between an incompressible,
viscous fluid and a thick, elastic structure was presented in [25] and further used in [5,9,26].
In the proposed method, the fluid and structure sub-problems are each discretized using
the backward Euler method and solved separately using Robin boundary conditions at
the interface. The Robin boundary conditions are obtained by linearly combining the
kinematic and dynamic coupling conditions, and as such they depend on the combination
parameter, «. Using energy estimates for both fixed and moving domain FSI problems,
the method is proved to be unconditionally stable. However, the accuracy of the method

is shown to be only (’)(At%) in time [5,9], compared to the expected accuracy of O(At).
The sub-optimal accuracy comes from the estimation of the terms present in the Robin
coupling conditions. However, despite the sub-optimal accuracy, the method is attractive
due to its unconditional stability, easy implementation and the fact that no sub-iterations
are required between the fluid and solid sub-problems.

In this work, we propose an extension of the method used in [5,9,25,26], designed to
restore the optimal rate of convergence. In particular, we consider an FSI problem where
the fluid is modeled using the Navier-Stokes equations for an incompressible, viscous fluid,
and the structure using the equations of linear elasticity. The Navier-Stokes equations
are written in the arbitrary Lagrangian—Eulerian (ALE) [27-29] formulation to resolve the
issues related to the deformation of the fluid mesh. We propose an alternative formulation
of the Robin interface conditions, where a second-order extrapolation is used to achieve a
better accuracy. The method is analyzed on a linear FSI problem, and shown to be stable
under certain assumptions. The scheme is discretized in space using the finite element
method and implemented to computationally study its stability and accuracy properties.
Our simulations show a significant improvement in the accuracy, both in terms of the rates
of convergence and the magnitude of the errors, when the new Robin boundary conditions
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are used. Our results also indicate that the theoretical stability conditions are not required
to hold in order to achieve numerical stability. In the second example, we propose and
investigate different formulas for computing the values of the combination parameter, «,
used in the Robin boundary conditions, providing guidance on how to determine the value
of this parameter in the numerical simulations.

The outline of this paper is as follows: We define the problem in Section 2. In Section 3,
we present the numerical methods and perform the stability analysis. Numerical examples
are presented in Section 4. Section 5 highlights the conclusions of the main results presented
in this paper.

2. Problem Description

Let OF denote the reference fluid domain and (g denote the reference structure do-
main. We assume that () E, 05 C ]Rd, d = 2,3 are open, smooth sets of the same dimension,
with common interface . The fluid and structure domains at time t are denoted by Q(t)
and Qg(t), respectively. An example of a fluid-structure interaction problem is shown
in Figure 1.

| pe A | [0
re [ rg” Ts(t)

¥ o N N fou

I

e (1)

Figure 1. Left: Reference domain () U Q)5. Right: Deformed domain Qr () U Qg(t).

To track the deformation of the fluid domain in time, we introduce a smooth, invertible,
ALE mapping A : QO x [0, T] — Qf(t) given by

AX,t) =X +9:(X,t), forallX € Opt e [0,T],

where #, denotes the displacement of the fluid domain. We assume that #; equals the
structure displacement on [, and is arbitrarily extended into the fluid domain QF [30].
The fluid domain is determined by Qf(t) = A(QF,t). The deformation gradient of the
fluid domain is denoted by F = V A, and its determinant by J.

We model the structure deformation in the Lagrangian framework, with respect to
the reference domain Q)s. The fluid equations are described in the ALE formulation. To
simplify the notation, we will write

f v" instead of f v" o A(t") o A7L(H™)
Q(tm) Q(tm)

whenever we need to integrate " on a domain Q)(t™), for m # n.
To model the fluid flow, we use the Navier—Stokes equations in the ALE formula-
tion [24,30,31], given by

or (3l + (u—w) - Vat) = V- op(u,p) + f; in Qp(t) x (0,T), (1)
V-u=20 in Qp(t) x (0,T), 2
where u is the fluid velocity, pr is fluid density, o is the Cauchy stress tensor and f is
the forcing term. For a Newtonian fluid, the Cauchy stress tensor is given by or(u, p) =
—pI + 2urD(u), where p is the fluid pressure, pF is the fluid viscosity and D(u) = (Vu +

(Vu)T)/2 is the strain rate tensor. The domain velocity is denoted by w = 9x| ar =
9;Ao A1 and 9;u |y, denotes the Eulerian description of the ALE field ou 0 A[32], ie.,

a,u(x,t)|ﬁr = (A (x,1),1).
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At the fluid external boundaries we prescribe the following boundary conditions:

u=up onTR(t) x (0,T), ©)]

X (U,
orng =gp on FFN(t) x (0,T), 4)

where 0Qp(t) = T(t) UTR(t) UTN(t), nf is the outward normal to the fluid domain,
and up and g are given functions.

To describe the deformation of the structure, we use the linear elastodynamics equa-
tions written in the first order form as

s =V -5+ fs in Qg x (0,T), (5)
o =¢& in Qg x (0,T), (6)

where 7 is the structure displacement, ¢ is the structure velocity, ps is the structure density,
f s is the forcing term and o g is the solid Cauchy stress tensor, given by

os(n) =2usD(n) + As(V )1,

where g and Ag are Lamé constants. We define a norm associated with the structure elastic
energy as

9112 = 20D 122 0y + As IV -1l -

We assume that the following conditions are prescribed on the structure external
boundaries:

N=1p on fSD x (0,T), ?)
osns = g on 'Y x (0,T), (8)

where 0Q)s = f'U fls) U IA‘IS\’ , ng is the outward normal to the structure domain, and #, and
& are given functions.

To couple the fluid and structure sub-problems, we prescribe the kinematic and
dynamic coupling conditions [30,31], given as follows:

Kinematic (no-slip) coupling condition describes the continuity of velocity at the
fluid-structure interface:

u(X +5(X,t),t) =&X,t) onl x(0,T). )

Dynamic coupling condition describes the continuity of stresses at the fluid-structure
interface:
JopF Tnp + osns =0 onT x (0,T). (10)

Initially, the fluid and structure are assumed to be at rest, with zero displacement from
the reference configuration:

u=0 inQp, 7=0,&=0 inQs att=0.

3. Numerical Method

Let At be the time step and t" = nAt forn = 0,..., N, where T = AtN is the final
time. We denote by v" the approximation of a time-dependent function v at time level "
and define the discrete backward difference operator d;v"*! as

Un+1 — ot

dio"tt =
! At
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To simplify the analysis, we will assume that the fluid domain is fixed and drop the
hat notation. This is a common assumptions in the analysis of partitioned schemes for
FSI problems [6,8,11,22]. The extension of the proposed algorithm to moving domains is
presented in Section 3.2.

To solve the fluid—structure interaction problem described in Section 2, a non-iterative
partitioned method was proposed in [9]. The method is based on the Robin boundary
condition obtained by multiplying the kinematic condition (9) by a combination parameter,
« > 0, and adding it to the dynamic coupling condition (10). With the assumption that the
domain is fixed, the method is described in Algortihm 1. The moving domain version of
the method can be found in [9].

Algorithm 1 Given 1% in O, and 110, (f,o in Qg, for all n > 1, compute the following steps:

Structure sub-problem: Find #"*! and "™ = d;5"*! such that

psdtgnJrl . v 0’5(11n+1) + fs(tn-l-l) in Qg, (11)
"+ os(yf" )ng = au’ — o(u”, p")ng onT. (12)
= g (71 on 2, (13)
os(f"ng = gs(th) on lA“IS\[ (14)

Fluid sub-problem: Find v"*! and p"*! such that

prdi™h = V- op(u" pt ) 4 fp () in O, (15)
V. 0 in QF, (16)
a1 4 O_F(unJrl’anrl)nF _ agn-i—l +op(u", p"np onT, (17)
un+l _ uD(tn+1) on FD/ (18)
0'p(lln+1, pn+1)n1__ _ gF(tn-‘rl) on 1—'5:\]. (19)

Since the method described in Algorithm 1 was shown to be unconditionally stable

without sub-iterating between the fluid and structure sub-problems, but only O(At%)
accurate, we propose to modify the coupling conditions in order to recover the first-order
accuracy in time. Hence, we denote the extrapolation of a function v by

S0t = 20" — "L,

The extrapolation will be used in the Robin boundary conditions in order to improve
the convergence rate. The proposed method is given in the following algorithm.

To solve the problem in time, we use the finite element method. We introduce the
following conforming finite element spaces

VEc v ={ve (H(QF))? |v=00nTP},
Qn C Q=L*OQF),
Vy C V8 ={ne (H(Q))" [y=00nT¢},

based on conforming triangulations in Qf, (0g with maximum triangle diameter h. We will
use polynomials of degree k < 1 for the fluid velocity, » < 1 for the structure velocity and
displacement, and I > 0 for the pressure. We assume that k —1 <[ < k. Whenever the
considered velocity/pressure pair fails to satisfy the standard inf-sup condition [33], we
assume that the following pressure stabilization operator

yh?
— Vo, Vi,
e Jo, PV
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where v > 0, is added to the weak formulation. We introduce the following bilinear forms

as(n.0) =2ps [ DO):DE)+As [ (V)(V-0), InLeVs,

ap(u, @) = 2 /Q D(u):D(p), Vu,¢ e VF,

F

bp(ll],u)Z/ Voup, YucVipecQ.

Qp(t)

The weak formulation of the fully discrete method described in Algorithm 2 is given
as follows.

Algorithm 2 Given 1 in QF, and 170, §O in g, we first need to compute pl,ul in Qp,
and 111, §1 in Qg. A monolithic method could be used. Then, for all n > 2, compute the
following steps:

Structure sub-problem: Find #"*! and &" ' = d;"*! such that

psdig" =V - os(y"™) + f5 (") in Qs (20)
w8 L os(" N ng = adu™ — op(Su”, 5p™")ng onT, (21)
7 = g (71 on I, (22)
os(yns = gg(#"1) on Y. (23)

Fluid sub-problem: Find #"*! and p"*! such that

prde™™ =V - op (", p" ) + fR () in QF, (24)
V-t =0 in Q, (25)
" o (™, p" e = a4 o (S, 5p")n onl, (26)
W = g (#7H1) onTf, (27)
U_P(un—l—l, Pn+1)nF — gp(tn-&-l) on r?f_ (28)
Structure sub-problem: Find (‘,’ZH and 112“, where @,‘Z“ = dtqZH, such that for all

g, € VP we have

os [ dE Gudx+aslry 0 o [ (G oup) - x
S
= — [Lorout opmme - Gux+ [ Fo(t ) -5, 29)
. E S

Fluid sub-problem: Find ]! and p}'*! such that for all ¢, € V[ and ¢, € Q; we have
PF /Q douty "1 pydx + ap(u ™, @) = br(py ™, ) + b ()
F

7h2/ / n+1 n+1
+ — VoV, +a | (u — -, dx
i o, VP n F( I &)

= Jroetouwt oy me - gyxt [ Fe) gy (30)
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3.1. Stability Analysis

In this section, we prove the stability of the partitioned method presented in Algorithm 2.
In the following, we will use the polarized identity given by

2a—c)b=a> -2 —(a—b)?+(b—c)? (31)

Let £" denote the sum of the kinetic and elastic energy of the solid, and kinetic energy
of the fluid, defined as

_Ps 1
e ||§h||Lz (Qs) 5“’12“% + = ”uh”LZ (QF)

let D" denote the fluid viscous dissipation, given by

k+1
= At Z | D (u Lz Q)

let N'" denote the terms present due to numerical dissipation

AT PsAf k+1 k1 PFN k+1
b o R S ol Ll I M
zxAt At"
zmﬁ“u +w“15m@m) M LECART AR

and let S denote the term due to the pressure stabilization

" =At Z ||VPZ+1||L2(QF)
k=

The stability result is given in the following theorem.

Theorem 1. Let { (&}, 1}, u};, pji) }1<n<n be the solution of (29) and (30). Assume that the system
is isolated, i.e., up = )p = gr = ¢ = fr = fg = 0. Furthermore, assume that
Yh?  10C%Cp

4012 Crk?
THEETIR S0 and ey = X2 TP g (32)

— _ 2 2
€1 = 2“111: SIXCTCPCK ah IiF 2

Then, the following estimate holds:

2C2CpAt
EN 4 DN 4,8V §€1+TTP(

51VP 22 0p) + 1VP02200))
8;12 Crik?At
+GN@@@+FMI@me@mgHWWW@mN'

Proof. We let ;, = & in (29) and ¢, = u ™, g, = p/™! in (30). Multiplying by At,
using (31) and adding equations together, we obtain

Ps psAt
B (181 B2y — 180200 ) + |M¢“L2 5 (13 — g 13)
pFAt
28 a1+ ey — ZE Ry + R W
aAt
+ 2upA|D () |, + 5l 2 |Wm”p
ocAt YAX?At
gt = dup | gy + g — *wpw+ VP 22 0,

HF
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= At/r(fp((suzlg;pz)w.( s §n+1) (33)

To estimate the integral on the right-hand side, we use (26) and (31) as follows
At/ or(duy, opy )nr - ( u' 1 C"H)
r

At
= = [ eeouy, opme - (e (0uf, opme — o (u ™, pi e ) dx

At

= o (Nl (6, appme ) — Nl Gy

fPh )"FH%Z(r))
At
+ o Ner (=™ o+ dujt, —pi ™+ opi)me (34)
Using (26) again, we have

At
S o (a4, o gy = Sl 39

Combining (35) and (34) with (33), we have

At?
psmaﬁwggs 127 1200)) + 25— eﬁlL o+ 5 (I = 1 1R)
A2
B g | 2 (1 By — 19 ) + 22 i By
aAt

AHWNW(”WWW%U*mh“H wﬁmm+wﬂl&mmm)

At YAX?At

+ 5 Uee e me o) = e (G opme ey ) + F= =198

—0. (36)

It remains to bound Al
& 2
1= > ”‘SMQHLZ r

and Al
_ 2
I, = ﬂ||‘TF(5”Z/5PZ)"FHL2(r)

Using the trace inequality, followed by the Poincare’s and Korn’s inequalities, we have

aAt aAtC2CpC2
I, = TH&‘E”%Z(U = #HD 5”11)HL2(Q

< aAICACrCR (D)) Bagryy + 1D D 2yy)  B7)

To bound Z,, we use the discrete trace-inverse inequality, and the Poincare’s and
Korn’s inequalities as follows

At
= 7||2VFD(‘51"Z)”F - 5PZ"FH%2(I~)

At
< = (4D @) 22 r) + Iopfmel ) )
4;1 Crik?At C2 cp
< S D (6w 22 ) + 16V P22

8u%Crik>At
s—77*@w<mm,wm nmm)
2C2CpAt 1
+ = (419 P + VP gy )- (38)
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Combining (37) and (38) with (36), summing from n = 1 to N — 1 yields the desired
estimate. The inequalities used in this proof are outlined in Appendix A. O

Remark 1. We note that conditions (32) are restrictive, and while we are not able to prove a better
estimate, we expect this to be a theoretical restriction rather than practical. In numerical examples,
we only observed instabilities for « = 1. No instabilities were present for larger values of .

3.2. Extensions to the Moving Domain FSI

In this section we outline the proposed algorithm applied to a moving domain FSI
problem. For this purpose, we consider the Navier-Stokes equations written in the ALE
Formulations (1) and (2). The moving-domain algorithm is presented as follows.

4. Numerical Results

We present two numerical examples to study various features of the proposed method.
In the first example, we use the method of manufactured solutions defined on a linear,
fixed FSI problem to compute the numerical rates of convergence. The results obtained
using the proposed extension are compared to the ones obtained with the original method
using two different sets of discretization parameters. In the second example, we study
a moving domain FSI problem where the parameters are within the physiological range
for blood flow. Here we focus on the investigation of different formulas suggested for the
computation of the combination parameter, «.

4.1. Example 1

In the first example, we use the method of manufactured solutions to compute the
convergence rates of the proposed method, similarly as in [9]. We define the struc-
ture and fluid domains as upper and lower parts of the unit square, respectively, i.e.,
Qs = (0,1) x (3,1) and Qf = (0,1) x (0, 3). Assuming that the fluid-structure interaction
is linear, and that the fluid domain is fixed, true solutions for the structure displacement, #,
the fluid velocity, #, and the fluid pressure, p, are given by

_ ] [107%2x(1 = x)y(1 - y)ef
n = ] = [ 0500
= 1] _ [107%22(1 = x)y(1 - y)e!

o= i) = [ Z 500
Pref = —107%A5(2(1 — 22)y(1 — y) + x(1 — x)(1 — 2y)).

Since the fluid velocity is not divergence-free, a forcing term is added to the conserva-
tion of mass Equation (2), resulting in

V-u=s inQp x (0, T).

Using the exact solutions, we compute forcing terms f, fs and s. We also impose
Dirichlet boundary conditions based on the exact solutions on the entire external boundary
of the structure domain, so that ['Y = @ and 2 = 005\ I'. In a similar way, we impose
Dirichlet boundary conditions on the entire external boundary of the fluid domain, so that
N =@and TP = 0Q)f\T.

The parameters used in this example are ys = As = ps = pr = pr = 1, while various
values of «, specified below, are used in simulations. The simulations are performed until
the final time T = 0.3 s is reached. For spatial discretization, IP; elements are used for both
the structure displacement and velocity, while IP; bubble - P; elements are used for the fluid
velocity and pressure, respectively. In this case, the pressure stabilization is not needed in
order to satisfy the inf-sup condition, and hence no pressure stabilization was used.
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Using the time and space discretization parameters
4

we compute the relative errors for the structure displacement and velocity, and fluid
velocity, defined as

&) — 1=t E o = |2 2Os) o= ons 2(0y)
S e = , ep= .
‘”ref ’s ‘g”f L2(%) ‘v”f L2(Q)

Similarly as in [9], the relative errors are computed across a wide range of values of
in order to study the relation between « and the convergence rates. The results obtained
using Algorithm 2 are compared to the ones obtained using Algorithm 1.

We note that Algorithm 2 was unstable when used with & = 1. No instabilities were
observed for other values of « studied in this work.

The relative errors obtained using parameters (39) and « = 10, 100,500 and 1000 are
shown in Figure 2. The results obtained using Algorithm 2 are shown using dashed lines,
while the results obtained using Algorithm 1 are shown using solid lines. Very slight
differences in the errors for the structure displacement can be seen for all the considered
cases, maintaining a first-order rate of convergence. When Algorithm 1 is used, the relative
errors increase as « increases for both structure and fluid velocities. When Algorithm 2 is
applied, the relative errors for the structure velocity differ between & = 10 and the other
values of «, for which the errors are significantly smaller. In both cases, the errors are
smaller than the ones obtained using Algorithm 1. The relative errors for the fluid velocity
are similar across different values of «, and just slightly larger than one ones obtained
using Algorithm 1 and & = 10.

a=10, Alg.1
«=100, Alg.1
«=500, Alg.1
«=1000, Alg.1
= = «a=10, Alg.2
= = «a=100, Alg.2
a=500, Alg.2
= = «a=1000, Alg.2
=—===rate 1
........ rate 05

Figure 2. Example 1. Errors for the solid displacement # (top-left), solid velocity ¢ (bottom-left),
and fluid velocity v (bottom-right) obtained using parameters (39) at the final time T = 0.3 s.
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The rates of convergence for the solid and fluid velocities, which can be seen in
Figure 2, are also given in Table 1 in order to provide a more precise comparison. We
observe that for & = 500 and 1000, the rates become suboptimal when Algorithm 1 is used.
However, the rates obtained using Algorithm 2 remain O(At) or larger across all values
of w, and are mostly unaffected when « is changing, with the exception of « = 10 for the
structure velocity.

Table 1. The rates of convergences obtained using Algorithm 2 and Algorithm 1 with discretization
parameters (39).

o: 10 100 500 1000 10 100 500 1000
Algorithm 1 Y u
At - - - - - - - -
At/2 2.04 1.49 0.89 0.78 2.48 1.57 0.74 0.61
At/4 1.27 1.12 0.58 0.41 1.84 1.03 0.54 0.37
At/8 1.11 1.06 0.69 0.47 1.72 1.01 0.75 0.51
At/16 1.02 1.03 0.85 0.66 1.5 1.01 0.92 0.75
Algorithm 2 ¢ u
At - - - - - - - -
At/2 2.18 2.30 2.26 2.24 2.4 2.43 2.44 2.44
At/4 1.34 2.02 2.05 2.03 1.62 1.72 1.74 1.78
At/8 1.15 2.12 2.13 2.13 1.28 1.33 1.33 1.34
At/16 1.05 1.99 1.81 1.79 1.08 1.07 1.06 1.05

We also compute the relative errors and rates of convergence using a second set of
parameters,

5.10°2 2.10-1\*
(At,h)e{( AT )}k_o, (40)

where the time and space discretization parameters are closer in size.

The relative errors obtained using this set of discretization data are shown in Figure 3.
The errors for the structure displacement are still close together, but with slight sub-
optimalities present in the results obtained using Algorithm 1. Larger differences are
observed in the errors for the solid and fluid velocities obtained using Algorithm 2 for
different values of & when compared to the ones in Figure 2, with the errors increasing as «
increases. However, the errors obtained using Algorithm 2 are smaller in magnitude than
the ones obtained using Algorithm 1.

The rates for the solid and fluid velocities obtained using Algorithm 2 and Algorithm 1
with discretization parameters (40) are given in Table 2. In this case, Algorithm 1 produces
sub-optimal rates even when & = 100, with the rates further degrading as « increases.
However, the rates obtained using Algorithm 2 remain O(At).
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a=10, Alg.1
a=100, Alg.1
a=500, Alg.1
«=1000, Alg.1
= = a=10, Alg.2
= = «a=100, Alg.2
«=500, Alg.2
= = «a=1000, Alg.2
=—===rate 1

Figure 3. Example 1. Errors for the solid displacement # (top-left), solid velocity ¢ (bottom-left),
and fluid velocity v (bottom-right) obtained using parameters (40) at the final time T = 0.3 s.

Table 2. The rates of convergences obtained using Algorithm 2 and Algorithm 1 with discretization
parameters (40).

' 10 100 500 1000 10 100 500 1000
Algorithm 1 Y u
At - - - - - - - -
At/2 1.51 0.97 0.79 0.76 1.36 0.71 0.51 0.48
At/4 1.08 0.64 0.33 0.27 1.03 0.56 0.23 0.16
At/8 1.02 0.71 0.29 0.19 1.01 0.75 0.29 0.19
At/16 0.97 0.85 0.39 0.24 1.0 0.92 0.45 0.29
Algorithm 2 ¢ u
At - - - - - - - -
At/2 2.01 2.01 191 1.86 2.48 2.45 1.98 1.94
At/4 1.26 1.58 1.45 1.28 1.86 1.89 1.37 0.91
At/8 1.13 1.44 1.58 1.37 1.77 1.92 2.42 1.78
At/16 1.05 1.28 1.44 1.69 1.57 1.85 1.71 2.18

4.2. Example 2

In the second example, we use a moving domain model to study the pressure propagation
in a two-dimensional channel, commonly used to validate FSI solvers [24]. The reference fluid
domain is a rectangle defined by Qr = (0,6) x (0,0.5), interacting with a deformable wall
Qs = (0,5) x (0.5,0.6). We consider the FSI problem described in Section 2, where we add a
linear “spring” term, vy, to the elastodynamic Equation (5), yielding

ps&+ =V -os(y)  inQgx(0,T).

The term <y#, obtained from the axially symmetric model, represents a spring keeping
the top and bottom boundaries in a two-dimensional model connected [24].
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The flow is driven by a time-dependent pressure drop at the inlet and outlet sections,
prescribed by

ornp = —piy(t)np on T := {0} x (0,0.5),
Ornp = —pout(t)F on T := {6} x (0,0.5),
where
Pmax 27t ):| .
——1|1—cos , ift <t
pin(t) = 2 [ (tmux - ’ Pout =0,
0, if t > tax

forallt € (0,T). At the bottom fluid boundary we prescribe symmetry conditions given by

We assume that the structure is fixed at the edges, with zero normal stress at the
external boundary. The pressure pulse is in effect for t;,x = 0.03 s with maximum
pressure pyay = 1.333 X 10% dyne/ cm?. The final time is T = 12 ms, and the time step is
At = 5-107°. The parameter values used in this example are given in Table 3.

Table 3. Fluid and structural parameters used in Example 2.

Parameters Values Parameters Values

Fluid density pf (g/ cm?) 1 Dyn. viscosity u (poise) 0.035

Wall density ps(g/cm?) 1.1 Spring coeff. y(dynes/cm?) 4 % 106

Shear mod. ys (dyne/cm?) 5.575 x 10° Lamé’s 1st par. Ag (dyne/cm?) 1.7 x 10°

We use P, — IP; elements for the fluid velocity and pressure, respectively, and P,
elements for the structure velocity and displacement on a mesh containing 7500 elements
in the fluid domain and 1200 elements in the structure domain. As in the previous example,
the pressure stabilization is not needed in order to satisfy the inf-sup condition, and hence
no pressure stabilization was used.

Choosing the combination parameter « is not trivial. For example, taking « = 0 in
Equation (12) yields the dynamic coupling condition. On the other side, # = oo recovers
the kinematic condition. Hence, we propose to update « dynamically by measuring the
errors in the approximations of the kinematic and dynamic coupling conditions so that both
conditions are satisfied with comparable accuracy. Therefore, we consider the following
two formulas to update « at every time step

1
2
W = agld (eK> , (41)
€D
3
e —agt (S5 @)
€p

where

_ (& - ”)HLZ(f)

|JopF~ Tng + UsnSHLz(f)
ex — =

7 ED—

1Jull 2 IJorF~ gl 2 ¢y
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We note that in other studies where similar combination parameters are introduced,
such as [17], the authors suggest to use

H
« = pzts + BHsAt, (43)

where Hg is the height of the solid domain and

E
p= m@ﬁ% -2(1- V)P%)/

with E denoting the Young’s modulus, v denoting the Poisson’s ratio and p; and p, denoting
the mean and Gaussian curvatures of the fluid-structure interface, respectively. However,
this choice of « is proposed to obtain faster convergence of sub-iterative methods for
strongly coupled FSI problems. Since we do not require sub-iterations to achieve stability,
we do not need similar conditions on «. Indeed, it was noted in [9] that using Algorithm 1
with &« computed according to (43) yields results that exhibit a larger error that one ones
obtained using other values of a. Hence, we do not consider Formula (43) in this study.

We solve the problem using Algorithm 3 with initial « = 1, which is then updated
according to the given fomulas. The evolution of « obtained by two different cases is shown
in Figure 4.

4000

3000 -

3 2000

1000

0
0 0.002 0.004 0.006 0.008 0.01 0.012

time

Figure 4. Example 2. Evolution of « obtained using (41) and (42).

The results indicate that the values of « obtained using (41) (Case 1) exhibit larger
oscillations than the ones obtained using (42) (Case 2). For the majority of the simulation,
the values of « in Case 1 grow, with the final range between 600 and 4000, and show smaller
oscillations in Case 2, with the values between 1000 and 2000.

The comparison of the structure displacement, flowrate and pressure along the bottom
boundary is shown in Figures 5-7, respectively. The results are compared with the ones
obtained using an implicit solver, which serve as a reference solution. For the displacement
and flowrate, we can observe small improvement in the solution when Case 2 is used
instead of Case 1, but both results provide a good comparison with the reference solution.
However, there are large variations in the approximations of the fluid pressure. Overall,
Case 2 still provides a more accurate solution than Case 1. However, there is still a
significant error present when Case 2 is used, especially at time t = 4 ms.
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Algorithm 3 Given 10 in Qp, and 170, @'0 in QS, we first need to compute pl, ul in Qp(tl),

and 111, i;l in Qg. A monolithic method could be used. Then, for all n > 2, compute the
following steps:

Structure sub-problem: Find #"*! and &" ! = d;"*! such that

Psdtf.nﬂ =V os(h) + fs(tnﬂ) in O,
a]"§ T o ns = ad(Ju)" — 2" o (u", p") (F~T) ng

+ " ep @ p ) (FTT) g onf,
’7’1Jrl = ’ip(tnﬂ) on D,
Us(ﬂnﬂ)"s :gs(th) on fé\]

Geometry sub-problem: Find 112*1 such that

— At =0 in O,
7l =0 on fRUTY,
AL onT,

and w" ! such that
wl’l+l OA(H’H’l) — dt’]§+1 m QF

Compute Qp (1) as Qp(#"1) = (I + 42 1) (Qp).
Fluid sub-problem: Find #"*! and p"*! such that

OF (dtun+1 + (u” _ wn+1) X vun+1) =V. (TF(un+l’pn+l) +fF(tn+1) in Qp(tn+l),

V-u"l =0 in Qp ('),
Dc]”+lu”+1 + ]n+10.F<un+1’ pn+1)(F7T)n+1nF _ D‘]nJrlgn-l—l
—anv'p(un,pn)(F_T)nnp—I—]n_lv'p(un_l,pn_l)(F_T)n_lnp on T,
un+1 _ uD(tn—H) on F?(t"'ﬂ),
U_F(un+1, pn+1>nF — gF(tn+1) on r%\l(trwl)'
t=4ms t=8ms
£ 002 icr:”aps':i: £ 002 A
% 001 Case 2 % 0.01 / A\ N
8 of — 8 0 f\\/ -
o o
2 0.01 + 2 0.01 V
-0.02 : : : : : ! -0.02 : :
0 1 2 3 4 5 6 1 2 3 4 5 6
X axis X axis
t=12ms
€ 0.02r
Q) ‘
£ 001 A SR
8 L ~
r-T R
(2]
o -0.01 | \/
-0.02 : : :
0 1 2 3 4 5 6
X axis

Figure 5. Example 2. Displacement vs. x-axis obtained with an implicit scheme and Algorithm 3
where « is dynamically updated according to (41) and (42).
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t=4ms t=8ms
— implicit
2 Case 1
g
= Case 2
2 I
3 4 5 6 0 1 2 3 4 5 6
X axis X axis
t=12ms
10
[0]
§ 5
3
2 0\
0 1 2 3 4 5 6
X axis

Figure 6. Example 2. Flowrate vs. x-axis obtained with an implicit scheme and Algorithm 3 where «

is dynamically updated according to (41) and (42).

10000 t=4ms 10000 t=8ms
— implicit

Case 1

Case 2

5000

pressure
o
pressure
(6]
o
o
o o
|

-5000

o
o
o
o

pressure

X axis

Figure 7. Example 2. Pressure vs. x-axis obtained with an implicit scheme and Algorithm 3 where «

is dynamically updated according to (41) and (42).

To improve the solution, we revisit the suggested dynamic updates of « and propose
to add a scaling factor, which will provide a preference to one of the coupling conditions.
In practice, the kinematic coupling condition is often imposed using large penalty parame-
ters (for example, when Nitche’s method is used [6]). Since the results obtained in Case 2
provide a better approximation than the ones in Case 1, we consider only (42), but modify
it to include a scaling parameter 7 as follows

1
3
e = gl (ZEDK> . (44)

Figures 8-10 show the displacement, flowrate and pressure along the bottom bound-
ary, respectively, obtained using an implicit method, Algorithm 3 where « was updated
according to (42), and Algorithm 3 where a was updated according to (44) with ¢ = 10.
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t=4ms t=8ms
- — implicit -
g 00 Case 2 without scaling & 0.02
% 0.01 Case 2 with scaling % 0.01
5 0 s o0
2 2
2 .0.01 2 .0.01
-0.02 ‘ -0.02
0 1 2 3 4 5 6
X axis
t=12ms
c 0.02
£
£ 001}
[&]
© 0
2]
5 -0.01
-0.02

X axis

Figure 8. Example 2. Displacement vs. x-axis obtained with an implicit scheme and Algorithm 3
where a is dynamically updated according to (41) and (42).

t=4ms t=8ms

10

— implicit
Case 2 without scaling
Case 2 with scaling

flowrate
flowrate

X axis

Figure 9. Example 2. Flowrate vs. x-axis obtained with an implicit scheme and Algorithm 3 where «
is dynamically updated according to (41) and (42).

We can observe that the displacement does not change significantly when (42) and (44)
are used, and the flowrate shows a small improvement when (44) is used instead of (42).
However, a major improvement is obtained in the pressure approximation when the scaling
is used. All the results provide a good comparison with the implicit solution.

Finally, Figure 11 shows the evolution of & obtained using (42) and (44). We note
that the main difference in the results is at the beginning of the simulation, when (44)
predicts much larger values of a than (42), which helps to improve the approximation of
the pressure at the beginning of the simulation, and subsequently.
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t=4ms t=8ms

1,0000 10000

— implicit

o Case 2 without scaling @
z 5000 Case 2 with scaling 2 5000
9 1%}
2 o
0 2 4 6 0 2 4 6
X axis X axis
t=12ms
10000
[0)
5 5000
[}
%)
o
)
0 2 4 6
X axis

Figure 10. Example 2. Pressure vs. x-axis obtained with an implicit scheme and Algorithm 3 where «
is dynamically updated according to (41) and (42).

3000 Case 2 without scaling Case 2 with scaling
2000
3
1000
0
0 0.002 0.004 0.006 0.008 0.01 0.012
time

Figure 11. Example 2. Evolution of « obtained using (42) and (44).

5. Conclusions

In this work, we presented an extension of the loosely coupled method for FSI prob-
lems presented in [9]. The proposed extension is designed to improve the sub-optimal
convergence in time present in the original method. Our stability analysis showed that
the proposed method is stable under certain conditions. Even though these conditions are
restrictive, our computational results indicate that they are not required to hold in order to
obtain numerical stability. Furthermore, our results show that the optimal convergence is
restored when the proposed scheme is used, also providing a smaller error in almost all
cases considered in this study.

Since the method depends on the combination parameter, «, which is problem-
dependent and difficult to determine in different applications, we propose a formula
for its computation. We computationally investigated several formulas, and showed that
the formula based on the scaled ratio of the errors in the approximation of the kinematic
and dynamic coupling conditions provides a good agreement between the computed
results and the reference solution.

Funding: This research was partially supported by NSF under grants DMS 1912908 and DCSD
1934300.
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Abbreviations

The following abbreviations are used in this manuscript:
FSI  Fluid-structure interaction

Appendix A. Inequalities Used in the Stability Analysis

Lemma A1. Suppose S C R? is an open set with piecewise smooth boundary and T is part of 9S
with positive measure. The following inequalities hold true: The trace inequality: There exists a
constant Ct > 0 depending on S such that

1ol 2y < Crlloll}ls) [IVoll55, Vo € HY(S); (A1)

The Poincaré~Friedrichs inequality: Assuming that v € (H'(S))“ vanishes on a part of the
boundary 9S with positive measure, there exists a positive constant Cp depending on S such that

[vl[2(s) < CplIVol12(5); (A2)

The Korn inequality: Assuming that v € (H'(S))? vanishes on a part of the boundary dS
with positive measure, there exists a positive constant Cx depending on S such that

[[Vol|12(5) < Ck|[D(0)]]12(s)- (A3)

The discrete trace-inverse inequality: For a triangular domain Q. C R? there exists a positive
constant Ctr depending on the angles in the finite element mesh such that

Crk?
||Uh|‘%2(r)§ I ||vh||%2(0), Vo, € Vy,

where Vy, is the space of polynomials of order k defined on Q).
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