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Abstract. This work focuses on the derivation and the analysis of a novel, strongly-coupled partitioned method for fluid—
structure interaction problems. The flow is assumed to be viscous and incompressible, and the structure is modeled using
linear elastodynamics equations. We assume that the structure is thick, i.e., modeled using the same number of spatial
dimensions as fluid. Our newly developed numerical method is based on Robin boundary conditions, as well as on the
refactorization of the Cauchy’s one-legged ‘6-like’ method, written as a sequence of Backward FEuler—Forward Euler steps
used to discretize the problem in time. This family of methods, parametrized by 6, is B-stable for any 6 € [%, 1] and second-

order accurate for § = % + O(71), where 7 is the time step. In the proposed algorithm, the fluid and structure sub-problems,
discretized using the Backward Euler scheme, are first solved iteratively until convergence. Then, the variables are linearly
extrapolated, equivalent to solving Forward Euler problems. We prove that the iterative procedure is convergent, and that
the proposed method is stable provided 6 € [%, 1]. Numerical examples, based on the finite element discretization in space,
explore convergence rates using different values of parameters in the problem, and compare our method to other strongly-
coupled partitioned schemes from the literature. We also compare our method to both a monolithic and a non-iterative
partitioned solver on a benchmark problem with parameters within the physiological range of blood flow, obtaining an
excellent agreement with the monolithic scheme.
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1. Introduction

Fluid-structure interaction (FSI) describes a specific type of problem that involves the highly non-linear
relationship between a fluid and deformable structure. The importance of solving FSI problems is made
clear when one simply sits back to observe everyday life — in the wind that blows across an airplane wing
or bridge, a vessel or fish that ventures across the ocean, or even someone’s heart sending a pulse of blood
through an artery. Since these ubiquitous occurrences cannot be over-emphasized with their pertinent
applications in the biomedical, engineering, and architectural realms, FSI problems have received a lot of
attention from both theoretical and computational perspectives. In particular, with increasing medical
demand revolving around hemodynamics-related problems, engineering advancements for the understand-
ing and improvement of aeronautical and naval applications, and demand for more sustainable energy
harvesting, there is a high demand for fast and accurate numerical solvers for FSI problems.

Two main methodologies for numerically solving FSI problems are monolithic and partitioned schemes.
Both monolithic and partitioned algorithms begin with the same set of governing equations describing
the motion of the fluid and solid, as well as their interaction at the interface, but differ in the way they are
solved. Monolithic schemes [6,7,24,30,32,37,42,45] solve the governing equations in one, fully-coupled,
algebraic system, with implicitly imposed interface conditions. While in this way the fluid and struc-
ture remain strongly-coupled, the large system may likely become ill-conditioned and require specially
designed preconditioners. On the other hand, partitioned methods [2,4,5,10,11,23,25-27,35,40,41,43,44]
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use separate solvers for the fluid and structure sub-problems while enforcing coupling at the interface
using a variety of potential boundary conditions, e.g. Dirichlet, Neumann, and Robin. In this way, each
sub-problem has fewer unknowns and is better conditioned. However, stability issues often arise as a
result of the coupling at the interface unless the design and implementation of a partitioned scheme is
carefully developed.

Furthering the varying difficulties that arise amongst partitioned methods, certain physical factors
play another role in making FSI problems especially challenging to solve. One such instance occurs in
hemodynamics, where the structure and fluid densities are comparable, jeopardizing the stability due
to the added mass effect [19]. In the case of thin structures, enforcing the structure’s mass in the fluid
problem is successfully done using different Robin boundary conditions on the interface [10,26,40,44].
However, such approaches cannot be directly applied when the dimension of the structure is the same as
that of the fluid, i.e., in case of thick structures.

Whenever these added mass effect scenarios occur in FSI cases with thick structures, explicit Dirichlet—
Neumann approaches are notorious for falling short because they are proven to be unconditionally unstable
[19]. Even when sub-iterations are implemented in these cases in order to enforce stability (resulting in
strongly-coupled partitioned schemes), convergence issues still arise. Hence, alternative options are to use
the Robin—Dirichlet, Robin—-Neumann, and Robin—Robin types of boundary conditions to be implemented
on the fluid-structure interface [1,2,22,31,43]. These have been intensively analyzed for their efficacy in
maintaining stability and convergence, and therefore widely used in different applications. We also mention
the fictitious-pressure and fictitious-mass strongly-coupled algorithms proposed in [3,49], in which the
added mass effect is accounted for by incorporating additional terms into governing equations.

When FSI problems with thick structures are solved using partitioned methods without sub-iterations,
sub-optimal convergence in time may become an issue as seen in [10,13,15,28,46]. In particular, a par-
titioned, loosely-coupled scheme based on the Nitsche’s penalty method was proposed in [15,17], where
some interface terms were time-lagged in order to decouple the fluid and structure sub-problems. The
scheme is proved to be stable under a CFL condition if a weakly consistent stabilization term that
includes pressure variations at the interface is added. It was shown that the rate of convergence in time
is O(T%), which was then corrected to obtain O(7) by proposing a few defect-correction sub-iterations.
A non-iterative, Robin—-Neumann partitioned scheme based on an interface operator accounting for the
solid inertial effects within the fluid, has been proposed in [28]. The scheme has been analyzed on a linear
FSI problem and shown to be stable under a time-step condition. However, a time step 7 = O(h%), where
h is the mesh size, is needed to achieve a first-order accuracy.

An alternative class of Added-Mass Partitioned algorithms has also been developed in [4,5,47]. A non-
iterative, partitioned algorithm for FSI with thick structures was first proposed in [4]. It was shown that
the algorithm is stable under a condition on the time step, which depends on the structure parameters.
Although the authors do not derive the convergence rates, their numerical results indicate that the scheme
is second-order accurate in time. In [47], the previously developed algorithms have been extended to finite
deformations, and the explicit fluid solver was replaced by a fractional-step implicit-explicit scheme. We
also mention an explicit Robin—Neumann scheme recently proposed and analyzed in [33], where the
dependance of the stability of the method on the interface parameter in the Robin condition was studied.
Furthermore, the stability of the method was analyzed on a model problem, and sufficient conditions
for instability and stability were found. In our previous work [8], using the operator splitting approach,
we developed a partitioned scheme for FSI with a thick, linearly viscoelastic structure. However, the
assumption that the structure is viscoelastic was necessary in the derivation of the scheme, and the solid
viscosity was solved implicitly with the fluid problem. Furthermore, the scheme was shown to be stable
only under a condition on the time step [10]. More recently, we proposed a loosely-coupled method for
FSI with thick structures [46] based on Robin coupling conditions, similar to a parallel work by Burman
et al [14]. We proved that the method is unconditionally stable on a moving domain FSI problem using
energy estimates. However, the method is shown to be only O(T%) in time [13,46].
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In this paper, we are interested in solving FSI problems with thick, elastic structures and with a par-
ticular interest in applications with similar fluid and solid densities. The time dependent Stokes equations
are used to describe the incompressible, viscous fluid, and the linearly elastic equations are employed for
the solid. We propose a novel partitioned, strongly-coupled scheme, where the interface conditions are
enforced with the use of Robin coupling conditions, similar as in [14,16,46]. These conditions are obtained
by linearly combining the kinematic (Dirichlet) and dynamic (Neumann) interface conditions, along with
the use of a combination parameter, or, whose purpose is to dictate the emphasis on either the kinematic
or dynamic condition. The time discretization is based on the one-legged ‘6-like’ method proposed by
Cauchy [18]. This family of methods, parametrized by 6, is B-stable for any 6 € [%, 1] and second-order
accurate for § = 2 + O(7). We note that 6§ = $ corresponds to the midpoint rule.

In this work, similarly as in [12], we refactorize the Cauchy’s method by writing it as sequential
Backward Euler (BE)-Forward Euler (FE) problems. This results in first solving a partitioned scheme
on [t" t"*?] discretized using the Backward Euler method in which we sub-iterate the fluid and struc-
ture sub-problems until convergence. Then, the variables are linearly extrapolated, equivalent to solving
the Forward Euler problems on [t"+? ¢"*1]. The partitioned scheme solved in the BE step is based on
the loosely-coupled scheme presented in [14,16,46]. Therefore, the proposed method can be seen as its
second-order extension (when 6 = %) We prove that the sub-iterative process in the proposed method is
convergent and that the method is stable provided 6 € [%, 1]. We also present an extension of our method
to model a moving domain FSI, where the fluid is described using the Navier—Stokes equations in the
Arbitrary Lagrangian-Eulerian (ALE) form.

The promising theoretical results are further illustrated in numerical examples, where the finite element
method is used to discretize the problem in space. The first example uses the method of manufactured
solutions to investigate convergence rates across varying values of the combination parameter, «, used in
the derivation of the Robin coupling condition, a parameter 6, used in the time discretization, and the
tolerance, €, used to control the sub-iterative procedure. The examples successfully meet, and in some
cases exceed, the expectations of the second-order convergence in time. We also compare the average
number of sub-iterations across multiple sub-iterative methods to our novel scheme in order to illustrate
the reduced computational cost of our iterative approach. In particular, we show that the proposed
method requires significantly fewer sub-iterations than the aforementioned Robin—Neumann and Robin—
Robin methods. In the second numerical example, we consider a moving domain benchmark problem
describing the flow in a two-dimensional channel with parameters similar to that of blood flow in order
to show a comparison of the our method with the loosely-coupled scheme presented in [14,16,46].

The outline of this paper is as follows: We define the problem in Sect. 2 and elaborate upon our novel
numerical method in Sect. 3. Convergence of the iterative procedure is analyzed and proven in Sect. 4,
following up with the stability analysis in Sect. 5. Numerical examples are presented in Sect. 6. Section 7
highlights the conclusions of the main topics and results presented in this paper.

2. Problem Description

We consider the interaction between an incompressible, viscous fluid and a linearly elastic structure. The
fluid domain is denoted by Qp and the structure domain by Qg. We assume that Qp, Qg C R%,d = 2,3
are open, smooth sets of the same dimension, and that the fluid—structure interface I' is the common
boundary between the two domains, i.e. 00rNONs = T, 00rNIQs =T, (see Fig. 1). The fluid inlet and
outlet boundaries are designated by I'" and T'%, respectively, the solid inlet and outlet boundaries by

@ and I'2"!, respectively, and the external solid boundary by I'¢"". Therefore, 9Qp = I'" UT% UT and
0Ng = Fg" UTZ*uTgt UT. In the following, similarly as in [10,13-15,28], we assume that the structure
deformation is infinitesimal, that fluid—structure interaction is linear, and that the fluid domain does not
change.
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Fic. 1. Fluid domain Qg and structure domain g, separated by a common interface I'

To model the fluid flow, we use the time dependent Stokes equations, given as follows:
prou =V -op(u,p)+ fr in Qp x (0,7, (2.1a)
V-u=0 in Qp x (0,7), (2.1b)
where w is the fluid velocity, pr is fluid density, o r is the fluid stress tensor and f is the forcing term.
For a Newtonian fluid, the stress tensor is given by op(u,p) = —pI + 2upD(u), where p is the fluid

pressure, pp is the fluid viscosity and D(u) = (Vu+ (Vu)?)/2 is the strain rate tensor. At the inlet and
outlet sections we prescribe Neumann boundary conditions:

ornp = —pim(tng on }’3 x (0,7, (2.2a)
ornp = —pout(t)nr on T'%* x (0,T), (2.2b)

where np is the outward unit normal to the fluid domain.
To model the elastic structure, we use the elastodynamics equations written in the first order form as

psO& =V -as(n) in Qg x (0,7), (2.3a)
om=¢& in Qg x (0,7, (2.3b)
where 7 is the structure displacement, £ is the structure velocity, pgs is the structure density and og is

the solid Cauchy stress tensor. To describe the elastic material, we use the Saint Venant—Kirchhoff model,
given as

os(n) =2usD(n) + As(V-n)I,

where pug and \g are Lamé constants. We define a norm associated with the structure elastic energy as

Il = 2psI D122 (g + AsIV - 1ll72(0y)- (2.4)
The structure is assumed to be fixed at the inlet and outlet boundaries:
n=0 on I'PUTY x(0,7), (2.5)
and at the external structure boundary, I'¢", we impose:
osns =0 on I'¢" x (0,T), (2.6)

where ng is the outward normal to the structure domain.

To couple the fluid and structure sub-problems, we prescribe the kinematic and dynamic coupling
conditions [9,39], given as follows:
Kinematic (no-slip) coupling condition describes the continuity of velocity at the fluid—structure interface:

u=¢ onl x (0,7, (2.7)
Dynamic coupling condition describes the continuity of stresses at the fluid—structure interface:
ornp+osng =0 onI x (0,7). (2.8)

Initially, the fluid and structure are assumed to be at rest:
u=0 InQp, n=0,£6=0 inQgs att=0. (2.9)
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3. Numerical Method

Let t" = nt forn = 0,..., N, where 7 denotes the time step, and t"*¢ = " + 7, for any 6 € [0, 1] and for
all n > 0. Let 2™ denote the approximation of a time-dependent function z at time level ¢". The proposed
algorithm is based on the refactorization of the Cauchy’s one-legged ‘#-like’ method. In particular, for an
initial value problem y’ = f(¢,y(t)), the Cauchy’s one-legged ‘6-like’ method is given as
n+1 n
Y —Y n n

T = ), (3.1)
for 6 € [0,1], where y"*? = 0y"*! + (1 — 0)y™. We note that this method is a one-legged version of the
‘classical’ 8-method

n

yn+1 —y
i
analyzed in [34]. In the linear case both methods are the same, just as the trapezoidal and midpoint rule
coincide, when one analyzes the A-stability property. For fully nonlinear cases, the methods have different
behaviors, where the one-legged ‘Cauchy’ method is stable, unlike the §-method [21,48].
The Cauchy’s method (3.1) can be solved in the BE-FE fashion [12] as

=0f(t" Ty + (1= 0)f(t"y")

n—+0 n
Yy —Y n n
BE: S = ("),
T
n+1 n+60
. Y -y _ n+60  n-+0
FE:. LY _ runto .
a=0)r fE ")

The FE problem can also be written as a linear extrapolation given by

1 1
nt+l _ =, nt+6 _ -1 n.
Y el/ <9 )y

Using this approach, the main computational load of the algorithm is related to the computation of the
BE steps, while computationally inexpensive linear extrapolations increase the accuracy of the scheme.
We note that the case when 6 = % corresponds to the midpoint rule, and it generally differs from the
Crank-Nicolson method which is based on the trapezoidal rule [20,38].

The ‘classical’ -method can be refactorized in a similar way as a FE-BE sequence. However, we use
the Cauchy method since for § = 1, we have a method that is B-stable even for variable steps [12], and
the constant in the local truncation error (1/24) is half the size of the constant corresponding to the
trapezoidal rule (-1/12).

The BE step of the proposed algorithm is obtained by sub-iterating the loosely-coupled scheme used
in [14,16,46]. In particular, the method used in [14,16,46] is based on the Robin boundary conditions

given as
a€n+1 + Ug+1nS = ou” — U%TLF onl' x (O,TV)7 (32)

at™ — " i = au! — olnp onT x (0,7), (3.3)

where o > 0 is a combination parameter. Condition (3.3) was obtained by multiplying (2.7) by « and
adding the normal fluid stress to both sides of the equation. After time discretization, the two normal
stresses were evaluated at different time levels. Condition (3.2) was obtained by multiplying (2.7) by «
and adding it to (2.8).

Condition (3.2) is used as a Robin boundary condition for the structure sub-problem, and condi-
tion (3.3) is used as a Robin boundary condition for the fluid problem. We note that the difference
between these coupling conditions and the ones used in the classical Robin—Robin method is in the sec-
ond equation where the fluid normal stress is used twice, at different time levels. Due to this change,
the method is unconditionally stable without requiring sub-iterations between the fluid and structure
sub-problems [46]. However, it was noted that the method is sub-optimally, O(72), accurate [14,46].
Hence, we propose to improve the accuracy by sub-iterating the fluid and solid sub-problems, combined
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with an extrapolation step after the convergence is obtained, which for 6 = % give second-order accuracy.
Conditions (3.2)-(3.3) are adjusted so that the data taken from the previous time step is now taken from
the previous sub-iteration. In particular, we use the following Robin boundary conditions

aﬁ?,:fl) + Ugj('zﬂ)ns = au?’;;‘g - O'Z—.IZ)TLF onT x (0,7), (3.4)
asgjfl) — a;ﬁzﬂ)nF = au?:fl) — a;ajz)np onT x (0,T). (3.5)

Once the sub-iterations converge, these conditions yield back the dynamic and kinematic condition at
t"*+0 respectively.
The proposed partitioned numerical method is given in the following algorithm.

Algorithm 1. Given u® in Qp, and 170,50 in Qg, we first need to compute p’, p' 0 w',u?® in Qp, and

7]1,772,51,52 in Qg with a second-order method. A monolithic method could be used. Then, for alln > 2,
compute the following steps:

STEP 1. Set the initial guesses as the linearly extrapolated values:
oy = (1 + 9)77" — ",
and similarly for "w, w't?. The pressure initial guess is defined as
(0) »7(0)
0 —140 —2+40
Py = (L +7)p" T = rph

For k > 0, compute until convergence the following Backward Euler partitioned problem:

n+60 n
W =¢ptt in Qg, (3.6a)
n+6 n
S% =V-os(nitly) in Qs, (3.6b)
Solid : § ag("l)) + os(n( ) ns = auf’
fo'p(u?ﬂte,p&'gg)np on T, (3.6¢)
nitl, =0 on T UL, (3.6d)
Us(n?:fl))ng =0 on TG (3.6¢)
n+6 n
ppw ~Veor(ult o) (3.7a)
= (") in Qp, (3.7b)
Vougtl =0 in Qp, (3.7¢)
P i tfy — ey o0 mr = o€
—or(ul il o) e onT, (3.7d)
o p(uff, pi e = —pin (" )np on T, (3.7e)
o (u, p( e = —pow ) on T, (3.76)

The converged solutions,

n+6 STH_O n+60 _n+60 K—O n+6 £n+0
b )

n+60 _n+6
My »Sw) " Y(w) Plry — M

u P )
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then satisfy:

n+60 _ .n
ot
€n+9 _ £n p )
> 5 _v. n+ Qg,
Solid: 4 ¥ o7 os(™) s
US(nn+0)nS = *U'F(un+eapn+9)nF on T,
"t =0 on TG UTY,
os(m")ng =0 on TE*
un+9 —um
pFT V- O_F(un+0,pn+0)
-
= fp(t"?) in Qp,
Fluid: { V-u"? =0 in Qp,
w't? = gntt onT.
or(u"t? p" ) np = —pin (1" )np on I,
or(u" p" g = —pou (") np on T3
STEP 2. Now evaluate the following (equivalent to solving Forward Euler problems):
1 1-6
,’,]n+1 _ 5 n+6 ; ,',’n in QS’»
Solid: ] 1—o
Fluid: { wtl = éu""'e — %un mn Qp,

Set n =n+ 1, and go back to Step 1.

Remark 1. From a computational viewpoint, the bulk of the work in Algorithm 1 is performed in the BE
steps (3.6)—(3.7), as the FE steps (3.10)—(3.11), written as linear extrapolations, act as time-filters. For

the theoretical argumentation, we will use their equivalent FE form:

T’n+1 o nn+0

— n+0 i Q
i (1-0)r ¢ RS
Solid: gl gno )
psWZV-Cfs(n’“r ) in Qg,
un—i—l _ un+0
Fluid: pFW —-V- U(u”+9,p"+9)
= fr("*?) in Qp.

(3.12a)

(3.12D)

(3.13)

Remark 2. We note that the proposed method is similar to the algorithm developed in [15,16], which
was obtained by enforcing coupling conditions using Nitsche’s penalty method. In particular, an explicit
method was proposed in [15] based on the Nitsche’s method, which was shown to be sub-optimally
convergent in time. The incomplete version of that method, without stabilizing terms that were added in
[15], is equivalent to the loosely-coupled Robin—Robin scheme used in [14,16,46]. To obtain convergence
rate O(7), the authors in [15] suggested to perform a few defect-correction iterations in the similar way
as in the BE step of Algorithm 1. However, the method in [15] contains additional terms that come from
the application of Nitsche’s method. Furthermore, no second-order extensions were considered in [15].
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Remark 3. The classical strongly coupled Robin—Robin methods typically use the Robin boundary con-
ditions obtained with two different combination parameters, ar and ag [1,2]. However, we consider a
single parameter & = ap = g, which is needed in order to obtain unconditional stability, both in [14,46]
and this work.

4. Convergence of the Partitioned Iterative Method

In this section, we show that the iterative method defined by (3.6)—(3.7) converges. In the following, we
will use the polarized identity given by:

20a—c)b=a*>—c*— (a—b)*+ (b—c)? (4.1)
Theorem 1. The sequences u?$9,n?$9,£"+0 generated by the iterations (3.6)—(3.7) converge as k — oo:
u?;)f’ — ™ in (> (HYD)) N2 (LAD) N2 (HY(QF)),
nih? — 0" in 2(9),
§0 — €0 in P(LP(Qg)) N (LA(T)).

Proof. We begin by subtracting (3.6)—(3.7) at iteration k from the same equations at iteration x + 1.
Using notation

n+6 n+6
624—1 = 77(:+1) 77(,:3 )
n+0 n+60
6i+1 = 5 :+1 E(,:S ;
u n+6 n+6
I
n+6 n+6
52 p(:+1) p(:) ) (4.2)
we obtain the following:
5"
;:1 =05, in Qg, (4.3a)
6i+1 n .
Ps—g— = V-os(6,,1) in Qg, (4.3b)
Solid: 0 066 | + o5(87,)ns = ad!
—op(d,,0")np onT, (4.3¢)
6., =0 on T UTZ™, (4.3d)
os(8), )ng =0 on T'§" (4.3¢)
671.
pF g“ ~Vop(8,,,00,,)=0 in Qp, (4.4a)
V.6, = in Qp, (4.4b)
Fluid: ady . — U'F(‘Sm Sp)np
= adiH —0op(0;,1,0n)NF on I (4.4c)
op(8y, 1,00, )np =0 on I (4.4d)
or(d; 1,00 )np =0 on 9. (4.4e)

We multiply (4.3b) by 8% ~,1 and integrate over Qg. Using (4.3a) and (2.4), we have:

H +1Hs /F”S(5~+1)"S 5€+1~

OZPS‘

or

“H‘ L2(Qs)
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Using condition (4.3¢) and identity (4.1), we have:

OZPS‘

or

H n-HHS 2‘ n+1)

5 ( -
k+1 LQ(F)

6", op 8¢
(F)+A ( K rz)nF k41"

L2(Qs)

+2]
2

85, —o"

o w2
1)

64

(4.5)

We address the fluid in a similar manner. Multiplying (4.4a) by d;, , (4.4b) by 9}, integrating over

Qp and adding the resulting equations together, we obtain:

0= pF — |9 sllzz o) + 267 D@D o) /FUF(‘SZ+175£+1>"F"SZ+1'

Using Robin condition (4.4c) and identity (4.1), we have:

p 2 2
0= i 10541l 72y + 207 ([ DO )| 20,y + ||6 +1”L2
« £ 2 13
_'5"5“+1‘ o2 ‘ o 6”+1‘L%r>

- / (8, 8)np - 60,

Combining structure (4.5) and fluid (4.6) estimates, we obtain:

P 2 p u
0= ﬁ’ iﬂ’ £2(0s) H n+1Hs = ||5 +1HL2(QF)
+2up | D8}, HL?(QF) H6 +1HL2(F) ||(szHLz(F)
Allse o 5P
T3 ’6n+1 52 L) T3 ‘5Z+1 6n+1’ L)

+ [ or@tne (6,62,

Using (4.4¢) and (4.1), the last term can be written as:
RIS R
1 2 1 9
=50 ’|0'F((sz+la5£+1)nF||L2(F) ~ % lor (8%, 8% )npl[72r

_ % ||0’F(6z+1,5£+1)np — aF(JK,JK nFHiz(l") .

Using (4.4c¢) again, and combining (4.8) with (4.7) we obtain:

P
0= ﬁ’ n+1’ [2(0s ) H +1Hs H5 +1HL2(QF)
+2ur || D( R+1HLqQF>+ |5 +Jhp = 5 182052 ry
a u u
+ 9 ‘ K41 -9, L2(r) + % ||0-F(6n+17§£+1)nFH2LQ(F)
1
~ 5 lor (@ o0mel e )

Summing from k =1 to [ — 1, we get:

-1
ps E ‘55
=
k=1

p
T zua all+ 28 zua llean

"“'H‘ L2(Qs)

(4.8)
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u

+2MFZHD KA1 HL?(QF T3 Z‘

1
e Lo R S

K+1 LZ(F)

u 1 u 2
=35 ||51 ||L2(r) + % llor( 175113)nFHL2(r) : (4.10)
Hence, n(”;e and 5(,@) , and uz:ga are Cauchy sequences in (2(S),2(L?(Qg)) N ¢2(L*(T")) and
°(HY(T))N2(L2(T))Ne2(H (), respectively. The completeness of the spaces implies the convergence
of the iterations, completing the proof. (I

5. Stability Analysis

In this section, we prove the stability of the partitioned method presented in Algorithm 1. In particular,
we consider the scheme described by the BE steps (3.8)-(3.9) and FE steps (3.12)—(3.13). As noted in
Remark 1, the FE steps are equivalent to linear extrapolations (3.10)—(3.11).

Let £™ denote the sum of the kinetic and elastic energy of the solid, and kinetic energy of the fluid,
defined as:

Ps
& = 7”5””%2(95 *||77an + £r ||Un||L2(QF)
let D™ denote the fluid viscous dissipation, given by:
n—1
D" = pup7 Y [IDW))22 0,0,
k=2

let N denote the terms present due to numerical dissipation:

A — (20 — 1) ( H€1<:+1 k‘ 2
k=

2T L2(Qs)

2
+ [ —n’“Hs>

pr(20 —1) <= 1 k2
+ o7 ’;”U — w120,

and let 7" denote the forcing terms:

n—1

n T
Fr =13 (Culf e () e + Callpin ()2 i)
1393 2 F
- n—1
+— Z 02\|pout(tk+9)||i2(r%ut)~
HF =

The stability result is given in the following theorem.

Theorem 2. Let {(§",n",u", p™)}a<n<n be the solution of Algorithm 1. Assume that 6 € [%, 1]. Then,
the following estimate holds:

EN + DN+ NV <2+ FN. (5.1)
Proof. We multiply (3.8b) by 0£" | integrate over Qg, and use (3.8a) and (4.1), which yields:

Ps n n n n
0= 25 (16" I32() — €7 3200y + €7 = €730

1 n n n n n n
+5-(Im G = ™ 1S+ 0 =" IF) — 6/FUS(W nsg e (5.2)
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Similarly, we multiply (3.12b) by (1 — 0)¢"?, integrate over Qg and use (3.12a) and (4.1) in order to

obtain:
n+1

Ps
0= (||s"+1||Lzms 1€ W3z gy — €™+ — €™ I2(0))

7 (™ IS = ™ 1% = ™ =" 1[3)

-(1- 9)/03(77"+0)ns €M (5.3)
r
Adding (5.2) and (5.3), and using (3.8¢), we have:
Ps n n n n
0= 22 (g™ 22as) — €7 132 o 116" — €220
S n n n n n n
— D jgmtl g2, g ta3- (||77 FHE — " 1E + 0"t —n%)
1
_ 7” n+60 _ nn-i-lH% + / ap(u"+‘9,p"+9)np . £n+0. (5.4)
r
Using (3.10b), we have:
n+6 n n+60 n
€™+ — €120y — 1€" = €" 72104
_ n+1 n
- (29 - 1) Hg - £ HL2(QS) ) (55)
noting that (20 — 1) > 0 since 6 € [$,1]. Similarly, using (3.10a), we can write:
n n n n n n 2
™ =5 = ln" 0 — 0" & = (20 = 1) |]n" " =" |- (5.6)
Using (5.5) and (5.6), the solid estimate (5.4) becomes:
Ps n n ps(20 — 1)\ .. 2
0= 22 (1" 22 as) = 1€ 320y ) + 255 1€ = €" 300y
1 (20— 1)
n+1(2 n|2 n+1 n
o (12 = I13) + Z =2
(5.7)

+ / o'p(u"+0,p"+0)np . €n+9'
T

In a similar way, to derive an estimate for the fluid part we multiply (3.9a) by fu"+? (3.9b) by p"*+?
and (3.13) by (1 — 0)u"*?, add together and integrate over 2, which results in:

PF

2L (" g0y = 1" Baqpy + 1™ = ulFacq,) )
PF

- EHU"% - U"+1||2L2(QF) + 2MF||D(Un+6)H%2(QF)

N / or" ™ p" g w4+ [ f () ut?
r QF

—I—/ Pin(t" T np +/ Pout T DU np.
%n F%ut

Note that using (3.11), we have:

Hu"+9 u"““?}(m) = (20— 1)||un+1 - u"||2L2(QF)-

- un||2L2(QF) - ||un+6

Hence, the estimate for the fluid problem reads as follows:
pF n n pF(29 - 1) n
(Il e gy = "2 ) + 2552l =

2T
2 D)2, = / o p (U™, p ) -
I

2
un||L2(QF)
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+ fF(tTH_a) . un—i—@ 4 / pin(tn+0)un+9 ‘np
Qp I

iFn,
+ / Pout T np. (5.8)
F%ut

Combining solid (5.7) and fluid (5.8) estimates and using (3.9¢), we obtain:

Ps n n PS(207 1) n n||2
o (16 sy = €7 1200y + 25— €7 = € 20
1 n n (29_ 1) n n||2 PF n
b (= 1) + Z =B PR
pF(29 - 1)

pF n n n n
- EHU ”%2(917) + [u™t —u ||2L2(szp) + 2up|D(u +9)”%2(QF)

2T

= Fr™?) w4 / Pin(t" )"t mp
Qr r

iFn
+ / Pout (tn+0)un+0 ‘Nnp. (59)
FoFut
Using the Cauchy—Schwarz, Trace, Poincaré and Korn inequalities [11], we can estimate:

fF(tn+0) . un+9 + / pm(thrG)unJrO ‘npg+ / t Pout (tn+9)un+0 ‘np
res

C C ¢
< R )+ 2 i ey + o o) g

+MF||D(U’”+0)H%2(QF)7 (5.10)
where C; and Cy do not depend on the time-discretization parameter 7. Combining (5.10) with (5.9),
summing from n = 2 to N — 1 and multiplying by 7 yields the desired estimate. (I

6. Extension to Moving Domain Fluid—Structure Interaction

In this section, we extend the model and numerical scheme presented in Algorithm 1 to describe a moving
domain FSI problem. We assume that the structure equations are given in the Lagrangian framework,
with respect to a reference domain Qg. The fluid and structure domains at time ¢ will be denoted as
Qp(t) and Qg(t), respectively. The fluid equations will be described in the ALE formulation.

To track the deformation of the fluid domain in time, we introduce a smooth, invertible, ALE mapping
A:Qp x [0,T] — Qp(t) given by

AX,t) =X +np(X,t), forall X € Qp,tel0,T],

where 1y denotes the displacement of the fluid domain. The fluid domain is determined by Qp(t) =
A(Q r,t). We denote the fluid deformation gradient by F' = V.A and its determinant by .J. We assume
that np equals the structure displacement on f, and is arbitrarily extended into the fluid domain Qp
[39]. To simplify the notation, we will write

/ v" instead of v" 0 A(t") o ATH(t™)
Q(tm) Q™)

whenever we need to integrate v™ on a domain Q(t™), for m # n.
To model the fluid flow, we consider the Navier—Stokes equations in the ALE form [8,9,39], given by

pPF <3t“|(zp + (v —w)- VU) =V-or(u,p)+ fr in Qp(t) x (0,7),
V-u=0 in Qp(t) x (0,7),
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where w = Btw|QF = 0, Ao A7! is the domain velocity. We note that Btu\QF denotes the Eulerian
description of the ALE field dyu o A [29], i.e.,

Oru(x, t)|QF = Ou(A " (z,t),1).

The structure model remains the same as in (2.3). Hence, the fully-coupled, moving domain FSI problem
is given by

PF (atu\m + (u —w) ~Vu> =V-op(u,p)

+fr in Qp(t) x (0,7), (6.1a)
V-ou=0 in Qp(t) x (0,7), (6.1b)
omn=¢ in Qg x (0,7), (6.1c)
ps0& =V -as(n) in Qg x (0,7), (6.1d)
uoA=¢ on T x (0,T), (6.1e)
JorF Tngp+osng =0 on T x (0,7), (6.1f)

complemented with boundary conditions (2.2), (2.5) and (2.6), and initial conditions (2.9).
To solve problem (6.1), we extend the approach presented in Algorithm 1. In the following, we denote

n+6 n n n n — n
UFnF(,{) = J(K—;QUF(U’(,;geap(,;ge)(FnJre) TnFjEZ)

The resulting scheme is presented as follows.

1 1

Algorithm 2. Given u® in Qp, and n°, &% in Qg, we first need to compute p?,p'T? ul, u? nh, w' and

nt,n? &, 52 with a second-order method. A monolithic method could be used. Then, for alln > 2, compute
the following steps:

STEP 1. Set the initial guesses as the linearly extrapolated values:
+6 __ -1
Moy = (1 +9)n" —On",

n+60 _ n+0

and similarly for 5(0) s W) - The pressure initial guess is defined as

n+6 __ (1 + T)pn—l-i-@ o Tpn—2+9.

Py =
For k > 0, compute until convergence the Backward Euler partitioned problem:
nnte pn o
% e ?’;:_91) n 957
57;-51)75” =V n—+60 . Q
Solid: pPs o = V- US("(K_H)) niig,
+0 +6 _ +6
af( ) +os(ngl)ns = oug)
n+0 S
—TFNE () onl,
+6 _ LA
—An’}7(ﬁ+l) =0 in Qp,
niie, =0 on T U,
+6  _, n+6 2
Geo.: 771},(,€+1) = 77?,{“) on T,
0 W;YZJA)_U? A
wiff)) = R —r in S,
+6 +6 %
Q) = T M) OF,
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n+9 u”
PR 7“%1
+6 +6 +6
+pF( ?n) w?ﬁ+1> vunﬁ+1)
0 0 0
Fluid: 4 = V" OF (), P + Fr(™) in Q).
Veuptl) =0 in Q0L
n+6 +6 +0 +6
iy — Or (UG Py ) )
+0 n+0 + +6 +6
= o‘g?n-s-l) or(u (Ln+1)7p?n+1)) 71?',(5+1) F?m—l)
The converged solutions,
777(1;07 5?59’ n+ 7p( ) ( ) ,,r’?JEZ) K—00 ’I']n+9, £n+07 un+97pn+9’ w"+9, ,',’713_‘+97
then satisfy:
77n+;;ﬂn — £n+€ in QS;
Solid: psgn-*—;i‘rfﬁn =V - o-S(n”+0) in QS)
os(n"tng = —@nw on T,
—AnEt? =0 in Qp,
n%+0 0 on ]_'wn U ]_"out
Geo.: 777} = qnnto on I,

nt0 _n
w"” 6 _ 1 -n :
+ =1 —Ir in Qp,

Qn+9 (I + "7n+9)QFa

w n+6

oF 07_—14" + (’U,n+9 _ wn+9) . VU"+9
Pl ) = Vo or@ T pt ) £ () in Q5
| Vot =0 in Q0
u"t? = €n+9 on I'to,

STEP 2. Now evaluate the following:

nt+l _ lond60 _ 1-0_.n ZTLQ
Solid-{" 6" g1 S

n+l _ 1 ¢n+0 1—0 ¢n O
£ =587 — ¢ infg,

A’l’]n+1 0 m QF,
,’77}+1 =0 on ]_'wn U Fout

Geo.: { mptt = nntt on T,
nt+l_ n+t6 N
1.1 s .

'w”+ 11179)7_ m QF,

Qn+1 (I + nn+1)
Fluid: { u" ! = a0 — % in QL.

Set n =n + 1, and go back to Step 1.
The problems above are complimented with the same boundary conditions as in Algorithm 1.
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7. Numerical Examples

In this section, we investigate the accuracy and the rates of convergence of the proposed method. To
discretize the problem in space, we use the finite element method with uniform, conforming meshes, and
denote the mesh size by h. The numerical method is implemented in the finite element solver FreeFem++
[36]. The benchmark problem presented in Example 1 is based on the method of manufactured solutions.
In this example, we compute the convergence rates obtained with Algorithm 1 for different values of
parameters ¢, « and the tolerance e. In the second example, we consider a moving domain benchmark
problem commonly used to test FSI solvers. Using this example, we compare the results obtained using
Algorithm 2 to a loosely-coupled partitioned scheme [46].

7.1. Example 1

In this example we use a method of manufactured solutions to investigate the accuracy of the computa-
tional method presented in Algorithm 1. For this purpose, the set of problems we are solving is based on
the time-dependent Stokes equations and elastodynamics equations with added forcing terms:

prOiu =V -op(u,p)+ fr in Qp x (0,7),
V-u=gyg in Qp x (0,7,
ps0:& =V -as(n)+ fs in Qg x (0,7).

The FSI problem is defined in a unit square domain such that the fluid domain resides in the lower
half, Qr = (0,1) x (0,0.5), and the solid domain occupies the upper half, Qg = (0,1) x (0.5,1). We
assume that the FSI problem is linear and that the domain remains fixed. We use the following physical
parameters: A\g = ps = ps = pr = pr = 1. The exact solutions are given by:

_[107322(1 — 2)y(1 — y)et
Mref = { 10732(1 — x)yy(l — ;)et } ’

s — {103‘2x(1 —x)y(l - y)et}
ref 10732(1 — 2)y(1 —y)et |’

Pref = —107%efAg (2(1 — 22)y(1 — y) + 2(1 — 2)(1 — 2y)) .

Using the exact solutions, we compute the forcing terms f,¢g and fg. We impose Dirichlet boundary
conditions on the bottom of the fluid domain, and Neumann conditions on other external boundaries.
The sub-iterative portion of the scheme, defined by equations (3.6)—(3.7), is run until the relative errors
between two consecutive approximations for the fluid velocity, structure velocity and displacement are
less than a given tolerance, €. To discretize the problem in space, we used Py elements for the fluid velocity
and solid displacement and velocity, and P; elements for the pressure. In order to compute the rates of
convergence, we first define the errors for the solid displacement and velocity, and fluid velocity as:

. HTI—TIrefHQS . HE_grefHLZ(QS) . ||U—“ref||L2(QF)

n = 3 = y CFR =
Hnmes

)

||€7'5f||L2(QS) ”urefHLz(QF)

respectively.

Recall that the Robin-type boundary conditions at the interface include a combination parameter, «,
which places an emphasis on the coupling condition of choice (i.e. kinematic or dynamic). In particular,
case a = 0 gives the dynamic coupling condition, while = oo leads to the kinematic coupling condition.
As similar Robin boundary conditions have been used by other authors, finding an optimal value of «
has been previously investigated. In particular, a heuristic formula for « is given by [31]:

psHs
T

+ BHgr, (7.1)

Qopt =
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—=— =10 —=—a 107 —e— =10 —=—q

opt opt
—#— =100 - = rate 1 —=— =100 = = rate 1
a=500 =-—-rate?2 a=500 =-=-rate?2

—=—=1000 —=—=1000

108 L

0.004 0.006 0.0080.01 0.014 0.02 0.004 0.006 0.0080.01 0.014 0.02

T T
107 ¢ o
a=10 opt
—=— =100 = — rate
=500 =—-—-rate?2

10 F —s— 21000

T

FiG. 2. Example 1: Errors obtained with = 0.5 and ¢ = 10~ by varying « for the solid displacement, 1, (top-left), solid
velocity, &, (top-right), and fluid velocity, w, (bottom) at the final time

E
where Hg is the height of the solid domain and 8 = m(élpf — 2(1 — v)p3), with E denoting the
Young’s modulus, v representing the Poisson’s ratio and p; and ps signifying the mean and Gaussian

curvatures of the fluid—structure interface, respectively. In our case, we compute 3 as:
E
/8 = 2 2 K
(1-v?)R
where R is the height of the fluid domain. In addition to ¢, we explore other values: a = 10, 100, 500
and 1000.
In the first test, we set ¢ = 107% and 6 = % We recall that we expect to obtain the convergence rate

of O(7?) because for § = 3, the discretization method corresponds to the midpoint rule. To compute the
rates of convergence, we use the following time and space discretization parameters:

3
0.02 0.25
h} = . :
{T’ } { 91 ? 91 }

The final time is T = 0.3 s. The rates of convergence obtained for different values of a are shown in
Fig. 2.

Overall, Fig. 2 shows very promising convergence rates, averaging around 2 or above for all variables.
The errors for i are almost indistinguishable for different values of «, showing a near-perfect convergence
rate of 2. For &, we observe that there is only a very slight disadvantage for & = 10 and 1000, with errors
only slightly increased at the finest mesh size and time step; the convergence rates for all values of «

i=0
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—=—0=0.5 6=0.9 —&—(=0.5 6=0.9
101 b —=—¢=0.6 — — rate 1 P 101 TF0=06 = — rate 1 L
O | ——0=07 —-=-rate2 " —8—9=0.7 =-—-rate 2

—=—¢-0.8 P —=—0-0.8

4"’
2 /”
o 107 "_/‘
R
" -
ﬂ’ > - -
4’ = - -
» > _ - -

10'3,;/, --

0.004 0.006 0.0080.01 0.014 0.02
T T

—8—(=0.5 0=0.9
—=—0=0.6 = = rate 1
—#—(=0.7 —-—-rate 2

—=—0=0.8 -

0.004  0.006 0.0080.01 0.014 0.02
T

F1G. 3. Example 1: Errors obtained with o = 100 and € = 10~* by varying @ for the solid displacement, 7, (top-left), solid
velocity, &, (top-right), and fluid velocity, u, (bottom) at the final time

are mostly better than 2. Finally, for u, the convergence rates slightly exceed 2 for the most part with
smallest errors when a = 100 and ;.

In the next simulation, we investigate the effect of § on the convergence rates. In particular, we use
0 = 0.5,0.6,0.7,0.8 and 0.9, keeping the same values of ¢,7 and h, and using o = 100. The rates of
convergence are shown in Fig. 3. As before, the errors for n show a convergence rate of 2 for all values
of 0. For £, we observe that #=0.5 maintains a convergence rate of 2 or greater, while rates for other
values of 6 are larger than 2 for the coarsest mesh and time step and decrease to values close to 1 at
the most-refined time step and mesh size. We note that 6=0.5 has larger errors than either § = 0.6 or
0.7, albeit on the order of magnitude of 10~%. Finally, for u, the convergence rates are at least 2 for
larger values of time step and mesh size, but similar as in the previous case, they drop down to O(7) as
0 increases. The errors are the smallest when 6 = 0.5.

In the next test, we continue to evaluate similar conditions as in Fig. 2, but this time we use a tolerance
of € = 1073 instead of 107%. As in Fig. 2, we use 6 = % in conjunction with a range of different values of
a. Figure 4 shows the errors for the structure displacement (top-left), structure velocity (top-right), and
fluid velocity (bottom).

In this case, the rates for the solid velocity and displacement remain close to 2, while the rates for the
fluid velocity become sub-optimal in most cases.
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a=10 5= Yopy —=—a=10 ROy
—=— =100 = = rate 1 —=— =100 — = rate 1
=500 =—-—-rate?2 a=500 =-=-rate?2 -
—=— =1000 —=— 1,=1000 //
1072 102 /’
q)’t _ ” OJw
- - -
1073
108 L ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0.005 0.01 0.015 0.02 0.005 0.01 0.015 0.02
T T
107 ¢
—=— =10 = aopt
—=— =100 = — rate
a=500 =—-—-rate?2

P —®—=1000

0.005 0.01  0.015 0.02

FIG. 4. Example 1: Errors obtained with = 0.5 and ¢ = 10~2 by varying « for the solid displacement, 1, (top-left), solid
velocity, &, (top-right), and fluid velocity, w, (bottom) at the final time

To correct the loss of accuracy that occurs for a larger value of €, we model the same setting as in
Fig. 4, but halve € at the same rate as 7, i.e., using the following set of parameters:

0.02 0.25 10731
{T,h,G}—{ 22 9 21 721}

Figure 5 shows the rates of convergence obtained in this case. We observe that the convergence rates for
fluid and solid velocity improve when € is reduced at the same rate as 7.

To further emphasize the differences in the solution for different values of €, shown in Figs. 2, 4 and 5,
the convergence rates for the fluid and solid velocity obtained using € = 107%, ¢ = 103, and by decreasing
€ at the same rate as 7 are shown in Table 1.

In the cases presented above, we calculated the average number of sub-iterations in the sub-iterative
step of our scheme. Figure 6 shows the average number of sub-iterations obtained with § = % and e = 10~*

—353

(top-left), e = 10~3 (top-right), and with € = {1021} (bottom). About at most 6 sub-iterations are
i=0

needed when € = 10~% for o = 100 and 500. However, we notice that in all cases, the number of sub-
iterations decreases to about 2 when the discretization parameters decrease. As expected, a larger number
of sub-iterations is required for a smaller value of e. However, when e decreases at the same rate as 7, the
number of sub-iterations stays roughly the same in most cases. When looking across all three scenarios, we
note that o = 1000 yields the lowest number of sub-iterations and o = 10 typically results in the highest

number of sub-iterations with the exception of the coarsest 7 when the tolerance is fixed at e = 104,

i=0
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Fic. 5. Example 1: Errors, halving tolerance for each refinement, by varying « for the solid displacement, 7, (top-left),
solid velocity, &, (top-right), and fluid velocity, w, (bottom) at the final time

TaBLE 1. Example 1: Rates of convergence for the fluid and structure velocity obtained with 8 =

% and the following

values of €: ¢ = 1074 (top), e = 1072 (middle), and ¢ decreasing at the same rate as 7 (bottom)

e=10"* u I3
a: 10 100 500 1000 10 100 500 1000
r _ _ _ _ _ _ _ _
T/2 2.21 2.99 1.61 1.25 2.49 2.59 2.56 2.49
T/4 2.37 2.91 2.07 2.22 2.26 2.43 2.42 2.34
/8 2.49 2.30 2.29 2.29 2.38 2.51 2.46 2.35
e=10"3 u 3

: 10 100 500 1000 10 100 500 1000
r _ _ _ _ _ _ _ _
T/2 2.32 3.00 2.27 1.31 2.50 2.60 2.58 2.49
T/4 2.74 2.09 1.19 1.42 2.35 2.43 2.36 2.26
T/8 1.46 1.69 1.80 2.26 1.80 2.50 2.24 2.21
e changing u I3
a: 10 100 500 1000 10 100 500 1000
T _ _ _ _ _ _ _ _
T/2 2.31 3.00 2.27 1.31 2.50 2.60 2.58 2.49
/4 248 291 207 222 229 243 242 234
/8 231 230 229 229 234 251 246  2.35
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FIG. 6. Example 1: Number of sub-iterations when the tolerance is € = 10~% (top left), ¢ = 10~3 (top right), and when e
is halved in each run (bottom)

Finally, we compare the number of sub-iterations required by our scheme and a couple of commonly
used strongly-coupled methods for FSI problems: a Robin-Neumann scheme and a Robin-Robin scheme
[2]. We use o = apy and 0 = % in Algorithm 1. For the Robin—Robin method, we use

_ psH; H,ET o — 2ﬁ
o7 (1—v2)R2" % a7’

af

where E is the Young’s modulus and v is the Poisson’s ratio. The same « is used for the Robin—-Neumann
method, with ay = 0. Relaxation parameter w = 0.1 is used for the Robin—-Neumann method in all cases
except for pg = 10, when w = 0.3 is used. No relaxation is used for the Robin—-Robin method. Table 2
shows the number of sub-iterations required by all three methods for different parameter values. In all
considered cases, the proposed method features a smaller number of sub-iterations compared to other
methods. We note that for Algorithm 1, the number of sub-iterations decreased as the solid density
increased, and increased as the tolerance, €, decreased. The same behavior with respect to € was observed
in the Robin-Neumann and the Robin—Robin method. While the number of sub-iterations obtained using
the Robin—-Neumann method is quite large, we would like to point out that the same method has been
previously tested on similar examples, with oy computed using the same formula, without the need of
any relaxation, and achieving convergence in a smaller number of iterations (e.g., 4-9 sub-iterations in
[1], 4-11 sub-iterations in [31]).
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TABLE 2. Example 1: The number of sub-iterations required by the Robin-Neumann (RN) method, the Robin-Robin
(RR) method /2], and the proposed method (Algorithm 1) for different parameter values

T h PR ps € RN RR Algorithm 1
102 1.25-101 1 1 10—3 23 3.43 2

5-1073 1.25-10"1 1 1 10—3 16.7 3.28 2

102 6.25 - 1072 1 1 10-3 23.06 3.43 2

102 1.25-10~1 1 10 103 7.73 3.73 1.03

102 1.25-1071 10 1 1073 50.56 3.06 2

102 1.25-101 1 1 104 45.46 8.2 2.97

7.2. Example 2

In the second example, we consider a classical, moving domain benchmark problem typically used to val-
idate FSI solvers [8] describing the fluid flow in a two-dimensional channel interacting with a deformable
wall. The fluid and structure domains are defined as Qr = (0,5) x (0,0.5) and Qg = (0,5) x (0.5,0.6),
respectively. We consider the FSI problem (6.1), where we add a linear “spring” term, ym, to the elasto-
dynamic equation (2.3), yielding:

psO€&+ym =V -os(n) in Qg x (0,7).

The term ym is obtained from the axially symmetric model and it represents a spring keeping the top
and bottom boundaries in a two-dimensional model connected [8].

We use the following parameter values: ps = 1.1 g/em?, us = 1.67785 - 10° dyne/cm?, v = 4 - 10°
dyne/cm*, A\g = 8.22148 - 107 dyne/cm?, pr = 1 g/cm?, and up = 0.035 g/cm-s, which are within
physiologically realistic values of blood flow in compliant arteries. In this example, we set 0 = %, e=10"%
and o = appt, given by (7.1).

The flow is driven by prescribing a time-dependent pressure drop at the inlet and outlet sections, as
defined in (2.2), where

Pmazx 27t .
— |1 — cos Jift < thae

pln(t) = 2 |: (tmaw):| a s Pout =0, (72)
0, ift > thaa

for all t € (0,T). The pressure pulse is in effect for ¢4, = 0.03 s with maximum pressure pja. =
1.333 x 10* dyne/cm?. The final time is 7' = 12 ms, and the time step is 7 = 10~*. At the bottom fluid
boundary we prescribe symmetry conditions given by:

Oy _o

Ay
We assume that the structure is fixed at the edges, with zero normal stress at the external boundary, as
specified in (2.5)-(2.6).

We use P; — P; elements for the fluid velocity and pressure, respectively, and Py elements for the
structure velocity and displacement on a mesh containing 1,000 elements in the fluid domain and 300
elements in the structure domain. The problem is solved using the proposed strongly-coupled scheme
detailed in Algorithm 2, and a partitioned, explicit method [14,16,46] which was used in the development
of the proposed algorithm. Since the explicit scheme exhibits O(T%) convergence rate, we apply it using
both 7 =104 and 7 = 1075.

Figures 7, 8 and 9 show a comparison of the flowrate, pressure at the centerline, and the interface
displacement magnitude at times ¢t = 4,8, and 12 ms. While we notice a discrepancy between the results
obtained using Algorithm 2 and the explicit scheme with 7 = 10™%, an excellent agreement is obtained
between the two methods when 7 = 1070 is used in the explicit scheme. Since the proposed method can
be considered as a second-order extension (when 6§ = %) of the explicit scheme, this example demonstrates
the improvement in accuracy achieved by using this approach.

uy = 0,
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10 t=4 ms 10 t=8 ms 10 t=12 ms

— Alg. 2, dt=10"*

@5 explicit, dt=10"* o s @5

g — explicit, dt=10"6 £ g

H explicit, dt= H H

o o o

=0 =0 =0

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

X axis X axis X axis

Fi1G. 7. Example 2. Fluid flowrate versus x-axis obtained with Algorithm 2 and the explicit scheme [14,16,46] used in the
derivation of the proposed method

6000 t=4 ms 6000 t=8 ms 6000 t=12 ms
— Alg. 2, dt=10"*
o 4000 — explicit, dt=10"* o 4000 o 4000
> . 6 2 2
g 2000 explicit, dt=10 ® % 2000 % 2000
) 2 0 2 0
-2000 -2000 -2000
0 1 2 3 4 0 1 2 3 4 5 0 1 2 3 4 5
X axis X axis X axis

Fic. 8. Example 2. Fluid pressure at the centerline versus x-axis obtained with Algorithm 2 and the explicit scheme
[14,16,46] used in the derivation of the proposed method

t=4 ms t=8 ms t=12 ms
0.03 0.03 0.03

_ —Alg. 2, dt=10-4 ~

£ 0.02 - - S 0.02 S 0.02

g 0.0 explicit, dt=10 4 GE) g

g oot  explicit, dt=10° § *' g oot

2 0 a 0 5 ¢

001 S 001 S 0.01

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

X axis X axis X axis

F1a. 9. Example 2. Fluid-structure interface displacement magnitude versus x-axis obtained with Algorithm 2 and the
explicit scheme [14,16,46] used in the derivation of the proposed method

8. Conclusions

In this work, we propose a novel strongly-coupled method for FSI problems with thick structures. The
method is based on the Robin coupling conditions, which are split so that both the fluid and structure sub-
problems are implemented using a Robin-type boundary condition at the interface. In order to discretize
the FSI problem in time, our scheme implements a refactorization of the Cauchy’s one-legged ‘6-like’
method, where the fluid and structure sub-problems are solved in the BE-FE fashion. The BE part of the
algorithm is iterated until convergence, and the FE part is equivalent to linear extrapolations, making
it computationally inexpensive to solve. In this approach, the proposed method is second-order accurate
when 6 = % Using energy estimates, we show that the sub-iterative part of the scheme is convergent
and that the method is stable provided 0 € [%, 1]. We also present an extension of the method to moving
domain FSI problems.

The theoretical expectations have been validated in numerical examples. To discretize the problem in
space, we use the finite element method. We began by computing the convergence rates using the method
of manufactured solutions on a linear problem. In order to explore the variables in our scheme, we analyzed
rates amongst different values of the combination parameter, «, the time-discretization parameter, 6, and
tolerance, €, used to measure convergence of the BE steps. We considered a wide range of values for
the combination parameter, «, as well as an optimal value a,p; proposed in [31], which showed to be
effective at maintaining optimal convergence rates and reasonably reducing the error compared to other
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tested values. We obtained rates of O(72?) when 6 = %, while the rates decreased to orders of convergence
between O(7) and O(72) for other values of §. We also experienced sub-optimality in some cases if the
tolerance was too large, in particular for e = 1073. However, our results show that decreasing e at the
same rate as 7 corrects the sub-optimalities and yields the optimal convergence rate.

To better understand the relation between the parameters in the problem and the computational cost
of our method, we computed the average number of sub-iterations in the BE part of the scheme. Our
results show that the number of sub-iterations is reduced as the time step, 7, decreases, and in most
cases considered in our study, approaches 2. We also observe that while the case when e = 10~ requires
more sub-iterations than when € = 1073, if we start from the latter value and decrease it at the same
rate as 7, the number of sub-iterations remains roughly the same, while preserving optimal convergence
rates. We compared the number of sub-iterations required by our scheme to the ones needed by the
Robin—Neumann method and the Robin—Robin method across different parameter values and observed
that in every case, our scheme has fewer sub-iterations. Finally, we solved an FSI problem on a moving
domain benchmark example of a flow in a channel using parameters within physiologically realistic values
of blood flow in compliant arteries. In this example, the results obtained using the proposed method were
compared to the ones obtained using an explicit scheme which was used in its derivation. Our results
indicate a significant improvement in accuracy achieved with the proposed method.

A drawback of this work is that the analysis is performed assuming that the fluid—structure coupling
is linear and that the fluid domain is fixed. The extensions of the method to variable time-stepping
strategies are a focus of our on-going research.
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