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Abstract— A Compressive Sensing (CS) approach is applied to
utilize intrinsic computation capabilities of Spin-Orbit Torque
Magnetic Random Access Memory (SOT-MRAM) devices for IoT
applications wherein lifetime energy, device area, and
manufacturing costs are highly-constrained while the sensing
environment varies rapidly. In this manuscript, we propose the
Adaptive Compressed-sampling via Multi-bit Crossbar Array
(ACMCA) approach to intelligently generate the CS measurement
matrix using a multi-bit SOT-MRAM crossbar array. SPICE
circuit and MATLAB algorithm simulation results indicate that
ACMCA reduces reconstruction error by up to 4dB using a 4-bit
quantized CS measurement matrix while incurring a negligible
increase in the energy consumption of generating the matrix.
Additionally, we introduce an algorithm called Energy-aware
Adaptive Sensing for IoT (EASI) which determines the frequency
of measurement matrix updates within the energy budget of an
IoT device.

Index Terms— Non-Uniform Compressive Sensing, Adaptive
Compressive Sensing, SOT-MRAM, Crossbar Architecture.

I. INTRODUCTION

In recent years, one of the main focuses of research in the
Internet of Things (IoT) applications has been optimizing
energy consumption while maximizing signal sampling
performance and reconstruction accuracy [1], [2]. Recently, to
decrease the energy consumption as well as storage needs and
data transmission overheads, Compressive Sensing (CS)
approaches are being investigated. Unlike conventional
sampling methods that require the sampling to be performed at
the Nyquist rate, CS algorithms aim to sample spectrally-sparse
wide-band signals close to their information rate. Utilizing CS
approaches help mitigate the overhead cost of sampling
hardware [3], [4]. Non-uniform CS algorithms utilize Random
Number Generator (RNG) for random sampling of the signal
[4]. As opposed to True RNGs (TRNGs), Pseudo-RNGs
(PRNGs) need to surmount challenges including limited quality
of randomness, area utilization, and energy consumption
overheads due to post-processing requirements [5], [6].

Thus, there is an increased demand for RNG circuits that are
energy- and area-efficient and can provide adaptive behavior.
Traditional implementation of non-uniform CS algorithms in

hardware have been implemented using Complementary Metal
Oxide Semiconductor (CMOS) technology [7], [8] and often
result in inefficiencies in terms of area and power dissipation.
Furthermore, recent advances in spintronics have enabled
researchers to design TRNGs using Magnetic Tunnel Junctions
(MT1Js) [5], stochastic switching in MTJs using sub-threshold
voltages [6], [9] precessional switching in MTJs [10], and
Voltage-Controlled Magnetic Anisotropy (VCMA) MTJs [11].
However, all of these designs result in area footprint and energy
consumption overheads due to their relatively complex
hardware.

Herein, we devise a novel circuit-algorithm solution called
Adaptive Compressed-sampling via Multi-bit Crossbar Array
(ACMCA), which utilizes a novel spin-based hardware circuit
together with non-uniform compressive sensing algorithms to
minimize energy consumption and area overheads while
maximizing the sampling and reconstruction performance. The
proposed ACMCA approach utilizes Spin Orbit Torque
Magnetic Random Access Memory (SOT-MRAM) based
multi-bit resistive devices to generate and store the CS
measurement matrix elements. As developed herein, SOT-
MRAM-based multi-bit resistive devices can attain a small area
footprint and offer significant reduction in energy consumption
[12]. Namely, to further leverage their intrinsic computationally
ability in edge-based IoT application, SOT-MRAM-based
Multi-bit Cells (SMCs) are utilized in a crossbar array fashion
to perform Vector Matrix Multiplications (VMMs) required for
sampling and reconstruction of the IoT signals.

The remainder of this paper is organized as follows: In
Section II, background and related work are discussed and a
detailed description of the SOT-MRAM-based multi-bit
resistive devices utilized herein is provided. The proposed
ACMCA approach is described in detail in Section III.
Additionally, simulation results and comparisons are presented
in Section IV. Finally, Section V concludes this manuscript.

II. BACKGROUND AND RELATED WORK

A. Fundamentals of Compressive Sensing

Compressive Sensing (CS) techniques are designed to
perform reconstruction algorithms to recover a k-sparse signal
of length N using M measurements, with M <« N. Based on
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Fig. 1: Compressive Sensing with a (a) Bernoulli measurement
matrix and (b) Gaussian non-uniform measurement matrix.

the definition, a k-sparse signal has k non-zero entries in a
given basis. Furthermore, the sparsity rate of the signal is

defined as (%). Fundamentally, in order to sample the sparse

signal vector, x € R", we can use the measurement matrix, ® €
RM*N  and the relationy = ®x to find the compressed
measurements vector, y € RM. According to the literature, the
sparse signal vector, x € RN, can be recovered from M
measurements by solving the basis pursuit problem [13]:

=

= argmin ||x||; s.t.y = ®x, €))

where [[x||; = X;|x|. It has been shown that £ reconstructs the
original signal vector if @ satisfies a special condition known
as the Restricted Isometry Property (RIP). An M X N matrix ¢
satisfies RIP(p) if for any k-sparse vector x:

llxll, (1 = &) < ll®ox|l, < llxll,(1 + &), 0<6<1 (2

Furthermore, the sparsity of the signal may be non-uniform
and parts of the signal may carry more weight in the
reconstruction accuracy, which are called Regions of Interest
(Rol) [2]. Thus, it is crucial to employ an adaptive measurement
matrix that is non-uniform and allows maximizing performance
of reconstruction of the Rol parts of the signal that maintain
higher sparsity rates. This is attained by sampling the Rol with
higher frequency by adjusting the measurement matrix. Authors

in [8] and [14] have verified that RIP condition is satisfied by
non-uniform measurement matrices. Thus, non-uniform
measurement matrices may be used for sparse signal sampling
and reconstruction. Typically, non-uniform CS measurement
matrix utilize Bernoulli and Gaussian distributions as shown in
Fig. 1.

Spectrally sparse signals are utilized in many applications
such as frequency hopping communications, musical audio
signals, cognitive radio networks, and radar/sonar imaging
systems [1]. As mentioned earlier, maximizing non-uniform
CS reconstruction accuracy can be done through utilization of
a measurement matrix that can adaptively change based on
sparse input signal characteristics observed over time [2].
Recent achievements in high-performance sparse signal
recovery algorithms utilizing adaptive measurement matrices
have shown promising performance improvements [14]-[17].
However, they lack a feasible pathway to implement the
algorithm within a hardware fabric considering the signal and
hardware constraints or they require extensive hardware
support to implement Adaptive Non-uniform CS (ANCS)
techniques [2]. Additionally, previous CS hardware
implementations incur significant overheads in terms of area
footprint and energy consumption due to the use of a large
number of CMOS transistors [7], [8]. Thus, in order to reduce
area and energy consumption overheads, we devise a low-
complexity hardware design.

B. SOT-MRAM-based Multi-bit Resistive Device

Recently, researchers have proposed use of multi-bit Voltage
Controlled SOT-MRAM devices for dense memory system
design [18], [19]. Although such devices offer energy-efficient
write operation for dense memory systems, they incur overhead
in terms of signaling and area. Thus, herein, we utilize the SOT-
MRAM-based multi-bit resistive devices proposed in [12],
which utilize the intrinsic probabilistic switching of
nanomagnets while reducing signaling requirements compared
to Voltage Controlled SOT-MRAM devices. The SOT-
MRAM-based multi-bit resistive device provides a separate
read and write path which will reduce the read error rate, since
write operation is performed using the spin Hall Effect (SHE)
write mechanism [12]. Additionally, SOT-MRAM is expected
to perform better in terms of endurance, power consumption,
and speed [20]. The SMCs utilize the intrinsic probabilistic
switching property of SOT-MRAM. Authors in [12] have
fabricated and characterized an array of nanomagnets with
Perpendicular Magnetic Anisotropy (PMA) located on a
tantalum layer that acts as a SHE channel. Probabilistic
switching of the individual nanomagnets is used to change the
state of each SMC.

The total magnetization state of the nanomagnets in an SMC
can be gradually increased or decreased by applying a proper



current pulse through the tantalum layer. It is worth noting that
the increase and decrease of the magnetization states of the
SMCs is non-linear due to their stochastic nature. However, this
can be addressed by modifying the amplitude and duration of
the write current pulse applied. SOT switching of a fabricated
Hall bar with a single nanomagnet is performed using current
pulses of 50us width in the presence of an in-plane external
field of 20mT in the current direction. Note that the presence of
an external magnetic field has been shown to not be a
requirement for SOT driven switching of PMA nanomagnets
[12].

Some of the SOT switching approaches used structures like
wedges [21] or novel GSHE materials such as antiferromagnet
PtMn [22] to eliminate the need for utilizing an external
magnetic field. It has been demonstrated that a current pulse
with width of 50us can be applied to deterministically reset the
state of all nanomagnets to -1. Moreover, a current with varying
amplitudes is applied to probabilistically set the state of
nanomagnets to +1. Note that higher current amplitude during
the set operation will result in higher switching probability.
Additionally, reducing the current pulse to 20us will be required
to increase the current amplitude. We can utilize 2"
nanomagnets operating in the probabilistic switching regime
and working in parallel to design an n-bit SMC, where the
resistances are calculated using (3).

fori=1:(n+1)do
Rsmc(@) = ReRar / (Rar(n - (1 — 1)) + Re(i — 1)) (3)
end

III. PROPOSED APPROACH

Herein, we propose a novel MRAM-based Adaptive Non-
uniform CS approach that utilizes the aforementioned multi-bit
SOT-MRAM resistive devices. We utilize the SOT-MRAM
based multi-bit crossbar array structure as shown in Fig. 2(b) to
implement a CS algorithm. The SMCs shown in Fig. 2(a) are
used within the crossbar array architecture to generate and store
the measurement matrix, which is consisted of three main steps:
reset, write, and read operations. In order to write into SMCs,
first the write operation control signals, WWL and WW L, enable
the write transmission gates, 7TGWI and TGW2, which will
connect the write path from bit line (BL) to source line (SL).
Then, a write current will be applied with controlled pulses to
enable probabilistic switching of the SMCs. To read the value
stored in SMCs, the read operation control signals, RWL and
RWL, enable the read path from input port (/) to output port
(Out), through the read transmission gates, TGRI and TGR2.
After the read process, the measurement matrix elements can be
modified via resetting the state of SMCs. This is performed
similar to the write process except with a higher write current
amplitude for deterministic switching.

According to the experimental results demonstrated in [12],
the authors apply 20 current pulses with 6.97mA magnitude and
20ps width. In this approach, due to the probabilistic nature of
switching of the SMC nanomagnets, depending on number of
current pulses applied, magnitude of current, and width of
pulses, only some of the nanomagnets may switch. Note that
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Fig. 2: Multi-bit stochastic SOT-MRAM-based (a) single cell, and
(b) crossbar array.

since all the current pulses have the same direction, they can
only switch the nanomagnets from -1 to +1 state and once a
nanomagnet is switched to +1, it will maintain that state in all
subsequent current pulses. Herein, we devise a 4-bit SMC using
MTJ devices instead of nanomagnets, where the overall
resistance of the SMC is distributed between 1KQ to SKQ.

As shown in Fig. 2, our proposed architecture offers control
over the number of measurements and signal elements to
provide flexibility to adjust to the signal characteristics such as
sparsity rate, noise, etc. In particular, due to the non-volatility,
zero leakage power dissipation, small area footprint, and
instant-on operation features of the SMCs, the unused SMCs
can be turned off while incurring nearly zero overhead in terms
of energy consumption and area. Thus, we can modify the
number of rows in the measurement matrix to increase the
number of measurements in order to account for increased
sparsity rate. Moreover, it becomes feasible to adjust the
number of columns in the measurement matrix to increase the
accuracy of the signal recovery.

Moreover, the SMC crossbar is utilized to perform the
VMMs required for compressive sampling and reconstruction
of the IoT signals. In the SMC crossbar array, the number of
input ports are equal to the number of signal elements while the
number of output ports are equal to the number of



Algorithm 1: Energy-aware Adaptive Sensing for [oT (EASI).

Input: Energy Threshold (+y), Energy Budget (EB), Critical Energy (CE),
Matrix Generation Energy (MGE), Iteration ¢ — 1 Matrix (Az—1 (M, N)),
Iteration ¢ Matrix Update (@), Update Frequency: Soft Threshold (cx) and
Hard Threshold (8) where 8 > «
Output: Measurement Matrix of iteration £ (A4 (M, N))
if t == 1then
A¢(M, N) = & /#Matrix Update*/
L v = v — MGE {*Energy Threshold Update*/

W -

4 else

5 if v > E B then

6 A¢(M, N) = & /*Matrix Update*/

7 ¥ = 4 — MGE [*Energy Threshold Update*/

8 if CE < v < EB then

9 if t%c == 0 then

10 Ay (M, N) = & /*Matrix Update®/

1 v = v — MGE /[*Energy Threshold Update*/

12 else

13 L A:(M,N)= A;_1(M, N) /*No Matrix Update*/
14 if v < CE then

15 if t%83 == 0 then

16 Ay(M, N) = @ /*Matrix Update®/

17 v = v — MGE [*Energy Threshold Update*/

18 else

19 | A:(M, N) = A;_ (M, N) /*No Matrix Update*/

20 return A (M, N)

measurements. Thus, VMM is performed by applying the input
signal elements to the input ports of the SMC crossbar array,
similar to the one shown in Fig. 2(a) as /n0, and the result of the
analog VMM for each measurement will be provided at the
output ports of each row of the measurement matrix, similar to
the one shown in Fig. 2(a) as Out0, where the outputs will be
connected to a Winner Takes All (WTA) circuit in the output
node. Furthermore, the number of signal elements and the
number of measurements can be adaptively adjusted, which will
enable the algorithm to adapt to the signal characteristics as well
as the hardware constraints. In particular, the algorithm can
trade off its reconstruction accuracy versus energy consumption
by reducing the number of measurements or increase the
number of measurements in case of high signal sparsity rate to
maximize the reconstruction performance.

Additionally, Algorithm 1 demonstrates our proposed
solution for CS measurement matrix update rule called Energy-
aware Adaptive Sensing for loT (EASI), which considers the
energy-budget of IoT devices. We introduce an update
parameter in the algorithm presented in [15], [23] to modulate
the frequency of updates to the measurement matrix while
maintaining control over the energy consumption overhead.
This parameter, which is defined herein as transportable metric
called Energy Threshold (y), determines the update frequency
of the measurement matrix and it is modified in each iteration
according to the energy budget as shown in Algorithm 1. If y is
greater than the Energy Budget (EB), we will update the
measurement matrix in every iteration of the algorithm.
Moreover, if y is less than the EB and greater than the Critical
Energy (CE), we will reduce the frequency of updates to the
measurement matrix by only updating the matrix every o
iteration, where o is a soft update frequency threshold.
Additionally, if y is less than the CE, we will further decrease
the frequency of updates made to the measurement matrix by
updating it every [ iteration, where [ represents a strict
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Fig. 3: TNMSE vs. Number of Measurements (M) for Accuracy
Comparison of ANCS [2], ACMCA (Proposed), and Uniform CS,
using (a) 1-bit, (b) 2-bit, (c) 3-bit, and (d) 4-bit measurement matrix.

threshold on the update rate. However, doing so might increase
the overall reconstruction error rate. It is worth noting that the
increase in the overall reconstruction error rate can be
considered negligible since the reconstruction error rate of the
Rol will still be reduced compared to uniform CS, which is the
goal of the algorithm. Moreover, maximizing the update
frequency of the measurement matrix will result in minimizing
reconstruction error rate at the cost of increased energy
consumption. This adaptive behavior will enable the designer
to account for hardware constraints. Multi-objective
optimization of energy parameters could be performed to
improve performance while saving energy [24].

IV. SIMULATION RESULTS

We have performed SPICE circuit and MATLAB CS
algorithm simulations to evaluate the behavior and efficiency
of our proposed approach. We have used the 14nm FinFET
PTM library [25], the Pin-Sim framework [26], and the SMC
device simulation, demonstration, and experimental results
provided in [12] in our simulations to validate the proposed
ACMCA approach and extract area and energy consumption
estimates. In particular, we utilize the scaled SMC device
parameters within Pin-Sim to simulate the SMC crossbar array.
According to our results, energy consumption estimates for
VMM using an SMC crossbar array to implement our modified
version of the CS algorithm introduced in [15], [23] using a
variety of N and M values compared to CMOS crossbar array
[27] are listed in Table 1. As shown in Table 1, utilizing the



Table 1: Comparison of single VMM operation’s energy
consumption in 4-bit CMOS Crossbar vs. SMC Crossbar.

Array Size (NxM)| CMOS Crossbar [27] | SMC Crossbar |Improvement
100x25 589 pJ 60 pJ ~9.8X
200x50 2,354 pJ 242 pJ ~9.7X

400x100 9,416 pJ 960 pJ ~9.8X

SMC crossbar array for VMM operation provides nearly 10-
fold energy consumption reduction compared to a CMOS
crossbar array. Write energy consumption estimates for
populating the measurement matrix are 3nJ for NxM=100x25,
12n) for NxM=200x50, and 50n] for NxM=400x100, on
average.

Furthermore, using the intrinsic probabilistic behavior of
SMCs, ACMCA eliminates need for TRNG circuits, which are
usually bulky and consume a significant amount of energy
when implemented in CMOS. ACMCA using NxM=400x100
increases energy consumption by 7-fold on average to populate
the measurement matrix. However, the measurement matrix is
populated infrequently and once an estimate of the Rol is
achieved, there will only be small updates to a few SMCs and
not the entire matrix. Thus, the energy consumption overhead
of populating the measurement matrix can be considered
negligible. Moreover, according to transistor count, our
proposed approach achieves a ~26-fold device reduction
compared to CMOS crossbar.

V. CONCLUSION

Herein, a spin-based non-uniform compressive sensing
circuit-algorithm approach is developed to consider the signal
dependent constraint as well as hardware limitations called
Adaptive Compressed-sampling via Multi-bit Crossbar Array
(ACMCA). ACMCA circuit-algorithm simulation results
indicate a reduced reconstruction error by up to 4dB compared
to Uniform CS methods while offering nearly 10-fold reduction
in energy consumption for performing VMM compared to a
CMOS-based crossbar. Moreover, we introduce the Energy-
aware Adaptive Sensing for IoT (EASI) algorithm, which
considers the energy budget when updating the CS
measurement matrix to reduce energy consumption of the IoT
device at the cost of slight loss in accuracy. Due to infrequent
updates of the measurement matrix, energy consumption
overhead of populating the matrix can be considered negligible.
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