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Abstract— A Compressive Sensing (CS) approach is applied to 

utilize intrinsic computation capabilities of Spin-Orbit Torque 

Magnetic Random Access Memory (SOT-MRAM) devices for IoT 

applications wherein lifetime energy, device area, and 

manufacturing costs are highly-constrained while the sensing 

environment varies rapidly. In this manuscript, we propose the 

Adaptive Compressed-sampling via Multi-bit Crossbar Array 

(ACMCA) approach to intelligently generate the CS measurement 

matrix using a multi-bit SOT-MRAM crossbar array. SPICE 

circuit and MATLAB algorithm simulation results indicate that 

ACMCA reduces reconstruction error by up to 4dB using a 4-bit 

quantized CS measurement matrix while incurring a negligible 

increase in the energy consumption of generating the matrix. 

Additionally, we introduce an algorithm called Energy-aware 

Adaptive Sensing for IoT (EASI) which determines the frequency 

of measurement matrix updates within the energy budget of an 

IoT device.   

 
Index Terms— Non-Uniform Compressive Sensing, Adaptive 

Compressive Sensing, SOT-MRAM, Crossbar Architecture. 

 

I. INTRODUCTION 

n recent years, one of the main focuses of research in the 

Internet of Things (IoT) applications has been optimizing 

energy consumption while maximizing signal sampling 

performance and reconstruction accuracy [1], [2]. Recently, to 

decrease the energy consumption as well as storage needs and 

data transmission overheads, Compressive Sensing (CS) 

approaches are being investigated. Unlike conventional 

sampling methods that require the sampling to be performed at 

the Nyquist rate, CS algorithms aim to sample spectrally-sparse 

wide-band signals close to their information rate. Utilizing CS 

approaches help mitigate the overhead cost of sampling 

hardware [3], [4]. Non-uniform CS algorithms utilize Random 

Number Generator (RNG) for random sampling of the signal 

[4]. As opposed to True RNGs (TRNGs), Pseudo-RNGs 

(PRNGs) need to surmount challenges including limited quality 

of randomness, area utilization, and energy consumption 

overheads due to post-processing requirements [5], [6].  

Thus, there is an increased demand for RNG circuits that are 

energy- and area-efficient and can provide adaptive behavior. 

Traditional implementation of non-uniform CS algorithms in 

 
  

  

hardware have been implemented using Complementary Metal 

Oxide Semiconductor (CMOS) technology [7], [8] and often 

result in inefficiencies in terms of area and power dissipation. 

Furthermore, recent advances in spintronics have enabled 

researchers to design TRNGs using Magnetic Tunnel Junctions 

(MTJs) [5], stochastic switching in MTJs using sub-threshold 

voltages [6], [9] precessional switching in MTJs [10], and 

Voltage-Controlled Magnetic Anisotropy (VCMA) MTJs [11]. 

However, all of these designs result in area footprint and energy 

consumption overheads due to their relatively complex 

hardware.  

Herein, we devise a novel circuit-algorithm solution called 

Adaptive Compressed-sampling via Multi-bit Crossbar Array 

(ACMCA), which utilizes a novel spin-based hardware circuit 

together with non-uniform compressive sensing algorithms to 

minimize energy consumption and area overheads while 

maximizing the sampling and reconstruction performance. The 

proposed ACMCA approach utilizes Spin Orbit Torque 

Magnetic Random Access Memory (SOT-MRAM) based 

multi-bit resistive devices to generate and store the CS 

measurement matrix elements. As developed herein, SOT-

MRAM-based multi-bit resistive devices can attain a small area 

footprint and offer significant reduction in energy consumption 

[12]. Namely, to further leverage their intrinsic computationally 

ability in edge-based IoT application, SOT-MRAM-based 

Multi-bit Cells (SMCs) are utilized in a crossbar array fashion 

to perform Vector Matrix Multiplications (VMMs) required for 

sampling and reconstruction of the IoT signals. 

The remainder of this paper is organized as follows: In 

Section II, background and related work are discussed and a 

detailed description of the SOT-MRAM-based multi-bit 

resistive devices utilized herein is provided. The proposed 

ACMCA approach is described in detail in Section III. 

Additionally, simulation results and comparisons are presented 

in Section IV. Finally, Section V concludes this manuscript.  

II. BACKGROUND AND RELATED WORK 

A. Fundamentals of Compressive Sensing 

Compressive Sensing (CS) techniques are designed to 

perform reconstruction algorithms to recover a 𝑘-sparse signal 

of length 𝑁  using 𝑀 measurements, with 𝑀 ≪ 𝑁. Based on 
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the definition, a 𝑘-sparse signal has 𝑘 non-zero entries in a 

given basis. Furthermore, the sparsity rate of the signal is 

defined as (
𝑘

𝑁
). Fundamentally, in order to sample the sparse 

signal vector, 𝑥 ∈ 𝑅𝑁, we can use the measurement matrix, Φ ∈
𝑅𝑀×𝑁, and the relation 𝑦 = Φ𝑥 to find the compressed 

measurements vector, 𝑦 ∈ 𝑅𝑀. According to the literature, the 

sparse signal vector, 𝑥 ∈ 𝑅𝑁, can be recovered from 𝑀 

measurements by solving the basis pursuit problem [13]: 

 

𝑥  =  𝑎𝑟𝑔𝑚𝑖𝑛 ‖𝑥‖1 𝑠. 𝑡. 𝑦 = Φ𝑥, (1) 

 

where ‖𝑥‖1  =  ∑ |𝑥|𝑖 . It has been shown that 𝑥  reconstructs the 

original signal vector if Φ satisfies a special condition known 

as the Restricted Isometry Property (RIP). An 𝑀 × 𝑁 matrix Φ 

satisfies RIP(𝑝) if for any 𝑘-sparse vector 𝑥: 

 

‖𝑥‖𝑝(1 − 𝛿) < ‖𝛷𝑥‖𝑝 ≤ ‖𝑥‖𝑝(1 + 𝛿), 0 < 𝛿 < 1. (2) 

 

Furthermore, the sparsity of the signal may be non-uniform 

and parts of the signal may carry more weight in the 

reconstruction accuracy, which are called Regions of Interest 

(RoI) [2]. Thus, it is crucial to employ an adaptive measurement 

matrix that is non-uniform and allows maximizing performance 

of reconstruction of the RoI parts of the signal that maintain 

higher sparsity rates. This is attained by sampling the RoI with 

higher frequency by adjusting the measurement matrix. Authors 

in [8] and [14] have verified that RIP condition is satisfied by 

non-uniform measurement matrices. Thus, non-uniform 

measurement matrices may be used for sparse signal sampling 

and reconstruction. Typically, non-uniform CS measurement 

matrix utilize Bernoulli and Gaussian distributions as shown in 

Fig. 1.   

Spectrally sparse signals are utilized in many applications 

such as frequency hopping communications, musical audio 

signals, cognitive radio networks, and radar/sonar imaging 

systems [1].  As mentioned earlier, maximizing non-uniform 

CS reconstruction accuracy can be done through utilization of 

a measurement matrix that can adaptively change based on 

sparse input signal characteristics observed over time [2]. 

Recent achievements in high-performance sparse signal 

recovery algorithms utilizing adaptive measurement matrices 

have shown promising performance improvements [14]–[17]. 

However, they lack a feasible pathway to implement the 

algorithm within a hardware fabric considering the signal and 

hardware constraints or they require extensive hardware 

support to implement Adaptive Non-uniform CS (ANCS) 

techniques [2]. Additionally, previous CS hardware 

implementations incur significant overheads in terms of area 

footprint and energy consumption due to the use of a large 

number of CMOS transistors [7], [8]. Thus, in order to reduce 

area and energy consumption overheads, we devise a low-

complexity hardware design.  

B. SOT-MRAM-based Multi-bit Resistive Device 

Recently, researchers have proposed use of multi-bit Voltage 

Controlled SOT-MRAM devices for dense memory system 

design [18], [19]. Although such devices offer energy-efficient 

write operation for dense memory systems, they incur overhead 

in terms of signaling and area. Thus, herein, we utilize the SOT-

MRAM-based multi-bit resistive devices proposed in [12], 

which utilize the intrinsic probabilistic switching of 

nanomagnets while reducing signaling requirements compared 

to Voltage Controlled SOT-MRAM devices. The SOT-

MRAM-based multi-bit resistive device provides a separate 

read and write path which will reduce the read error rate, since 

write operation is performed using the spin Hall Effect (SHE) 

write mechanism [12]. Additionally, SOT-MRAM is expected 

to perform better in terms of endurance, power consumption, 

and speed [20]. The SMCs utilize the intrinsic probabilistic 

switching property of SOT-MRAM. Authors in [12] have 

fabricated and characterized an array of nanomagnets with 

Perpendicular Magnetic Anisotropy (PMA) located on a 

tantalum layer that acts as a SHE channel. Probabilistic 

switching of the individual nanomagnets is used to change the 

state of each SMC.  

The total magnetization state of the nanomagnets in an SMC 

can be gradually increased or decreased by applying a proper 
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Fig. 1: Compressive Sensing with a (a) Bernoulli measurement 
matrix and (b) Gaussian non-uniform measurement matrix. 
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current pulse through the tantalum layer. It is worth noting that 

the increase and decrease of the magnetization states of the 

SMCs is non-linear due to their stochastic nature. However, this 

can be addressed by modifying the amplitude and duration of 

the write current pulse applied. SOT switching of a fabricated 

Hall bar with a single nanomagnet is performed using current 

pulses of 50μs width in the presence of an in-plane external 

field of 20mT in the current direction. Note that the presence of 

an external magnetic field has been shown to not be a 

requirement for SOT driven switching of PMA nanomagnets 

[12].  

Some of the SOT switching approaches used structures like 

wedges [21] or novel GSHE materials such as antiferromagnet 

PtMn [22] to eliminate the need for utilizing an external 

magnetic field. It has been demonstrated that a current pulse 

with width of 50μs can be applied to deterministically reset the 

state of all nanomagnets to -1. Moreover, a current with varying 

amplitudes is applied to probabilistically set the state of 

nanomagnets to +1. Note that higher current amplitude during 

the set operation will result in higher switching probability. 

Additionally, reducing the current pulse to 20μs will be required 

to increase the current amplitude. We can utilize 2n 

nanomagnets operating in the probabilistic switching regime 

and working in parallel to design an n-bit SMC, where the 

resistances are calculated using (3). 

 

for i = 1:(n + 1) do 
RSMC(i) = RPRAP / (RAP(n – (i − 1)) + RP(i − 1)) 

end 
(3) 

III. PROPOSED APPROACH  

Herein, we propose a novel MRAM-based Adaptive Non-

uniform CS approach that utilizes the aforementioned multi-bit 

SOT-MRAM resistive devices. We utilize the SOT-MRAM 

based multi-bit crossbar array structure as shown in Fig. 2(b) to 

implement a CS algorithm. The SMCs shown in Fig. 2(a) are 

used within the crossbar array architecture to generate and store 

the measurement matrix, which is consisted of three main steps: 

reset, write, and read operations. In order to write into SMCs, 

first the write operation control signals, WWL and 𝑊𝑊𝐿̅̅ ̅̅ ̅̅ ̅̅ , enable 

the write transmission gates, TGW1 and TGW2, which will 

connect the write path from bit line (BL) to source line (SL). 

Then, a write current will be applied with controlled pulses to 

enable probabilistic switching of the SMCs. To read the value 

stored in SMCs, the read operation control signals, RWL and 

𝑅𝑊𝐿̅̅ ̅̅ ̅̅ ̅, enable the read path from input port (In) to output port 

(Out), through the read transmission gates, TGR1 and TGR2. 

After the read process, the measurement matrix elements can be 

modified via resetting the state of SMCs. This is performed 

similar to the write process except with a higher write current 

amplitude for deterministic switching.  

According to the experimental results demonstrated in [12], 

the authors apply 20 current pulses with 6.97mA magnitude and 

20μs width. In this approach, due to the probabilistic nature of 

switching of the SMC nanomagnets, depending on number of 

current pulses applied, magnitude of current, and width of 

pulses, only some of the nanomagnets may switch. Note that 

since all the current pulses have the same direction, they can 

only switch the nanomagnets from -1 to +1 state and once a 

nanomagnet is switched to +1, it will maintain that state in all 

subsequent current pulses. Herein, we devise a 4-bit SMC using 

MTJ devices instead of nanomagnets, where the overall 

resistance of the SMC is distributed between 1KΩ to 5KΩ.  

As shown in Fig. 2, our proposed architecture offers control 

over the number of measurements and signal elements to 

provide flexibility to adjust to the signal characteristics such as 

sparsity rate, noise, etc. In particular, due to the non-volatility, 

zero leakage power dissipation, small area footprint, and 

instant-on operation features of the SMCs, the unused SMCs 

can be turned off while incurring nearly zero overhead in terms 

of energy consumption and area. Thus, we can modify the 

number of rows in the measurement matrix to increase the 

number of measurements in order to account for increased 

sparsity rate. Moreover, it becomes feasible to adjust the 

number of columns in the measurement matrix to increase the 

accuracy of the signal recovery.  

Moreover, the SMC crossbar is utilized to perform the 

VMMs required for compressive sampling and reconstruction 

of the IoT signals. In the SMC crossbar array, the number of 

input ports are equal to the number of signal elements while the 

number of output ports are equal to the number of 
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Fig. 2: Multi-bit stochastic SOT-MRAM-based (a) single cell, and 
(b) crossbar array. 
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measurements. Thus, VMM is performed by applying the input 

signal elements to the input ports of the SMC crossbar array, 

similar to the one shown in Fig. 2(a) as In0, and the result of the 

analog VMM for each measurement will be provided at the 

output ports of each row of the measurement matrix, similar to 

the one shown in Fig. 2(a) as Out0, where the outputs will be 

connected to a Winner Takes All (WTA) circuit in the output 

node. Furthermore, the number of signal elements and the 

number of measurements can be adaptively adjusted, which will 

enable the algorithm to adapt to the signal characteristics as well 

as the hardware constraints. In particular, the algorithm can 

trade off its reconstruction accuracy versus energy consumption 

by reducing the number of measurements or increase the 

number of measurements in case of high signal sparsity rate to 

maximize the reconstruction performance.  

 Additionally, Algorithm 1 demonstrates our proposed 

solution for CS measurement matrix update rule called Energy-

aware Adaptive Sensing for IoT (EASI), which considers the 

energy-budget of IoT devices. We introduce an update 

parameter in the algorithm presented in [15], [23] to modulate 

the frequency of updates to the measurement matrix while 

maintaining control over the energy consumption overhead. 

This parameter, which is defined herein as transportable metric 

called Energy Threshold (γ), determines the update frequency 

of the measurement matrix and it is modified in each iteration 

according to the energy budget as shown in Algorithm 1. If γ is 

greater than the Energy Budget (EB), we will update the 

measurement matrix in every iteration of the algorithm. 

Moreover, if γ is less than the EB and greater than the Critical 

Energy (CE), we will reduce the frequency of updates to the 

measurement matrix by only updating the matrix every α 

iteration, where α is a soft update frequency threshold. 

Additionally, if γ is less than the CE, we will further decrease 

the frequency of updates made to the measurement matrix by 

updating it every β iteration, where β represents a strict 

threshold on the update rate. However, doing so might increase 

the overall reconstruction error rate. It is worth noting that the 

increase in the overall reconstruction error rate can be 

considered negligible since the reconstruction error rate of the 

RoI will still be reduced compared to uniform CS, which is the 

goal of the algorithm. Moreover, maximizing the update 

frequency of the measurement matrix will result in minimizing 

reconstruction error rate at the cost of increased energy 

consumption. This adaptive behavior will enable the designer 

to account for hardware constraints. Multi-objective 

optimization of energy parameters could be performed to 

improve performance while saving energy [24].  

IV. SIMULATION RESULTS  

We have performed SPICE circuit and MATLAB CS 

algorithm simulations to evaluate the behavior and efficiency 

of our proposed approach. We have used the 14nm FinFET 

PTM library [25], the Pin-Sim framework [26], and the SMC 

device simulation, demonstration, and experimental results 

provided in [12] in our simulations to validate the proposed 

ACMCA approach and extract area and energy consumption 

estimates. In particular, we utilize the scaled SMC device 

parameters within Pin-Sim to simulate the SMC crossbar array. 

According to our results, energy consumption estimates for 

VMM using an SMC crossbar array to implement our modified 

version of the CS algorithm introduced in [15], [23] using a 

variety of N and M values compared to CMOS crossbar array 

[27] are listed in Table 1. As shown in Table 1, utilizing the 
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Fig. 3: TNMSE vs. Number of Measurements (M) for Accuracy 

Comparison of ANCS [2], ACMCA (Proposed), and Uniform CS, 
using (a) 1-bit, (b) 2-bit, (c) 3-bit, and (d) 4-bit measurement matrix. 

 



 5 

SMC crossbar array for VMM operation provides nearly 10-

fold energy consumption reduction compared to a CMOS 

crossbar array. Write energy consumption estimates for 

populating the measurement matrix are 3nJ for N×M=100×25, 

12nJ for N×M=200×50, and 50nJ for N×M=400×100, on 

average.  

Furthermore, using the intrinsic probabilistic behavior of 

SMCs, ACMCA eliminates need for TRNG circuits, which are 

usually bulky and consume a significant amount of energy 

when implemented in CMOS. ACMCA using N×M=400×100 

increases energy consumption by 7-fold on average to populate 

the measurement matrix. However, the measurement matrix is 

populated infrequently and once an estimate of the RoI is 

achieved, there will only be small updates to a few SMCs and 

not the entire matrix. Thus, the energy consumption overhead 

of populating the measurement matrix can be considered 

negligible. Moreover, according to transistor count, our 

proposed approach achieves a ~26-fold device reduction 

compared to CMOS crossbar. 

V. CONCLUSION  

Herein, a spin-based non-uniform compressive sensing 

circuit-algorithm approach is developed to consider the signal 

dependent constraint as well as hardware limitations called 

Adaptive Compressed-sampling via Multi-bit Crossbar Array 

(ACMCA). ACMCA circuit-algorithm simulation results 

indicate a reduced reconstruction error by up to 4dB compared 

to Uniform CS methods while offering nearly 10-fold reduction 

in energy consumption for performing VMM compared to a 

CMOS-based crossbar. Moreover, we introduce the Energy-

aware Adaptive Sensing for IoT (EASI) algorithm, which 

considers the energy budget when updating the CS 

measurement matrix to reduce energy consumption of the IoT 

device at the cost of slight loss in accuracy. Due to infrequent 

updates of the measurement matrix, energy consumption 

overhead of populating the matrix can be considered negligible. 
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