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Neuromorphic architectures with low energy barrier nanomagnetic devices have been attracting increasing interest over the past
few years. More recently, a low barrier nanomagnet (LBNM)-based probabilistic device (p-bit) has been shown to be the basis
of neuronal nodes in deep belief networks (DBNs). The LBNMs with perpendicular magnetic anisotropy (PMA) are analyzed
and optimized in the interest of achieving stochasticity present in the learning system. In p-bit-based DBNs, several defects, such
as variation of the nanomagnet diameter (σ d), thickness (σ t f ), and anisotropy field (σ HK ), which results in alteration of the
fluctuation speed of the p-bit’s nanomagnet can impair functionality. In this article, the accuracy of p-bit-based DBNs is examined
under variation of nanomagnet diameter, thickness, and anisotropy field for various tilt angles and temperatures. As evaluated for
the MNIST data set for temperature and tilt angle of 300 K and 25◦, accordingly, it is shown that the process variation (PV) of
σ d , σ t f , and σ HK can be tolerated up to 8%, 23%, and 25%, respectively. A new method is developed to control the fluctuation
frequency of the output of a p-bit device by employing a feedback mechanism. The feedback can alleviate this PV sensitivity of
p-bit-based DBNs. The compact and low complexity method, which is presented by introducing the self-compensating circuit, can
alleviate the influences of PV in fabrication and practical implementation.

Index Terms— Deep belief network (DBN), low barrier nanomagnetic (LBNM) devices, probabilistic spin logic device (p-bit).

I. INTRODUCTION AND BACKGROUND

AGROWING focus of recent research has been on gaining
the advantages of binary stochastic neurons as the basis

of brain-inspired computing frameworks. By considering the
widespread utilization of stochasticity in the neuromorphic
science field, inadequate focus has been on hardware imple-
mentation of stochastic computing models. The underlying
CMOS hardware employed in several approaches to realizing
the neuronal functionality needs area-consuming pseudo or
true random number generators to perform stochastic behavior
due to its deterministic behavior. In contrast, inherent ran-
domness is demonstrated in post-CMOS technologies, such
as spintronic devices within their switching processes. In [4]–
[13], efficient and small neuronal hardware in several learning
systems is realized by utilizing these single-bit spin-based
hardware units’ stochasticity behavior.

The probabilistic spin logic device (p-bit) with perpendic-
ular magnetic anisotropy (PMA) is among the new building
block, which is completely tunable by spin-orbit torque (SOT)
[1]–[3]. The output of p-bit can be varied by adjusting a
dc current through the giant spin Hall effect (GSHE) Ta
Hall bar, as shown in Fig. 1. By adjusting the direction of
the dc current (IC), then the magnetization direction will
probabilistically favor either the “UP” or “DOWN” state that
produces a sigmoidal curve by taking the average of the states
as the current is swept across a range of values. The charge
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current flowing through the layer with GSHE modifies the
dwell time in the two stable states and, as a result, changes
the output significantly for a low barrier nanomagnet (LBNM)
with a thermal barrier close to zero kT. According to the
thermal energy, the p-bit is implemented with a thermally
stable nanomagnet in regular MRAM cells with a high energy
barrier. As a result, the p-bit offers a thresholding behavior
appropriate for neural network applications and meanwhile
works in non-volatile storages in the form of a single-bit
element. The magnetization direction in the device is read
through anomalous Hall effect (AHE), which requires large
CMOS circuitry to amplify the weak output signal generated.
However, if the single nanomagnet of the device can be
replaced by an MTJ where the free layer is designed to have
a similarly weak perpendicular anisotropy, then the magne-
tization fluctuations can be read through a much stronger
tunneling magnetoresistance (TMR) effect. A similar device
is proposed in [7] and shown in Fig. 1. This device uses
the same technology as the SOT-MRAM, with one modifi-
cation, i.e., the MTJ free layer is made thermally unstable.
Hence, the implementation of p-bits requires small changes
to the MRAM fabrication flow. In [5]–[12], the utilization of
thermally unstable low energy barrier p-bits on the basis of
superparamagnetic materials has been examined theoretically
and experimentally in order to achieve probabilistic neuro-
morphic paradigms by utilizing functional spintronic devices.
As an illustration, the work of [13] and [14] employed them
in spiking neural networks (SNNs), while the work of [15]
and [16] investigated deep belief network (DBN) structures by
employing p-bit devices. In this article, we have carried out
several simulations to explore the effects of process variation
(PV), including anisotropy field, nanomagnet thickness, and
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Fig. 1. Diagram of the probabilistic device (p-bit) with perpendicular
magnetic anisotropy (PMA) as a binary stochastic neuron for DBNs [1]–[3].
The experiments in [1]–[3] used AHE to read the magnetization state. This
read scheme can be replaced by an MTJ. The magnetization state of the weak
perpendicular anisotropy free layer can be read through the resistance change
of an MTJ as proposed in [7].

nanomagnet diameter on the p-bit devices’ energy barrier and
their resulting influence on the proposed DBN architecture’s
accuracy. Measurements and analysis results indicate that
p-bit-based DBNs are sensitive more to diameter, anisotropy
field, and then thickness. Thus, here, we introduce an in-circuit
design approach to self-compensate for PV LBNM SOT-based
devices.

II. P-BIT AS A STOCHASTIC NEURON

A thermally unstable low energy barrier SOT-MRAM device
with a PMA nanomagnet (Eb ∼ 18 kB T ) is proposed by
Debashis et al. [1]–[3]. By configuring the nanomagnet’s
energy barrier to be equivalent or less than the ambient thermal
noise, the nanomagnet will act in the form of a true random
number generator (TRNG) and randomly fluctuate among
“UP” and “DOWN” states. The p-bit has the ability to work
as a tunable TRNG by tuning the probability of nanomagnet
being in one of the two states through an external input.
A three-terminal SOT-based neuron is much more suitable to
be utilized into neural networks for several reasons. The shared
read/write path across the whole device in STT-based neurons
results in a read reliability issue, while serious stress can be
applied on the MTJ by the write current. Also, the shared
read and write path causes the concatenation of these devices
into a neural network to become complicated since the input
and output signals are not isolated from each other. Moreover,
due to considerable incubation delays of STT-MRAM devices,
they are unable to work reliably at ns and sub-ns scales [17]–
[20]. The functionality of this device is formulated through
the MTJ conductance [14]

GMTJ = G0

[
1 + mz

TMR

2 + TMR

]
(1)

where the MTJ conductance’s average (G P+GAP)/2 is G0, mz

is the free-layer magnetization, and the ratio of tunneling mag-
netoresistance is TMR. By substituting TMR = (G P /GAP)−1,

Fig. 2. Probability output of SOT-MRAM-based neuron being in logic
state “1” versus its input current over input range from −40 to 40 μA.

it can be deduced from (1) that GMTJ = G P and GMTJ = GAP,
when m Z = +1 and m Z = −1, respectively. Considering
m Z = +1, we have

GMTJ = G P + GAP

2

[
1+ (G P/GAP−1)

(G P/GAP + 1)

]
= G P . (2)

Similarly, substituting m Z = −1, we have

GMTJ = G P + GAP

2

[
1− (G P/GAP−1)

(G P/GAP + 1)

]
= GAP. (3)

The fluctuations in the MTJ conductance are converted to
a voltage at the input of the inverter through the potential
divider formed by the MTJ and the reference resistance Rref

(see Fig. 1)

VM/VDD = ± RMTJ − Rref

RMTJ + Rref
(4)

where VM is the voltage at the input of the inverter, RMTJ =
(1/GMTJ) is the fluctuating MTJ resistance, and Rref is the
reference resistance.

The p-bit device utilizes a near-zero energy barrier circular
nanomagnet without shape anisotropy. The magnetization of
free layer for the MTJ conductance discussed in (1) is given
by the stochastic Landau–Lifshitz–Gilbert (LLG) [7]

(1 + α2)dm̂/dt

= −|γ |m̂ × �

H − α|γ |(m̂ × m̂ × �

H)

+ 1/q N(m̂ × �

I s × m̂) + (α/q N(m̂ × �

I s)) (5)

where the nanomagnet damping coefficient is α, the electron

charge is q, the electron gyromagnetic ratio is γ , and
�

I S is
the free-layer spin current incident. Fig. 2 shows the relation
among input current and the probability of output being in
state “1.” As shown, approximately 50% probability of p-bit’s
output being in state “1” is obtained when input current
equals 0 μA. Thus, besides being compact with low area
requirement, it provides a tunable probability of generating
a “0” or “1” output state-based on the input current.

Stochastic circuits play a significant role in the imple-
mentation of networks with probabilistic nodes. For instance,
learning networks employing p-bits are worthwhile in realizing
DBNs in a way that a learning algorithm in software trains
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weights offline and inference tasks is effectively performed
repeatedly by utilizing the hardware. Unstable low barrier
nanomagnets present a direct mechanism to realize stochastic
sigmoidal neurons in DBNs through leveraging the arbitrarily
fluctuating magnetization to produce a stochastic time-varying
output voltage. If these nanomagnets are designed to have as
low energy barriers as feasible, then many random outputs
are produced in a short period of time. Under this strategy,
a low energy barrier (Eb � 40 kB T ) PMA nanomagnet has
the capability of flipping back and forth, which can be tuned
by modulating the input current.

III. EFFECTS OF PV ON P-BIT

Although the p-bit device is more error tolerant than conven-
tional digital computing devices, it is still not completely toler-
ant of device-to-device variations and defects [22]. It is shown
that the delocalized and localized defects impact the power
spectral density [23]. The power spectral density is impacted
much more by delocalized defects than localized defects such-
like thickness variations, whereas it is quite indifferent to the
presence of moderate barrier height change and small localized
defects [24]–[26]. The magnetization’s fluctuation rate in low
barrier nanomagnets is altered substantially by delocalized
defects. Consequently, p-bit-based neurons’ applications for
neuromorphic architectures will be impacted by considering
the necessity of the fluctuation rate in stochastic computing
applications.

As stated in the following equation, through decreasing the
total magnetic moment by managing a small anisotropy field
(HK ) and/or reducing volume (V ), the near-zero energy barrier
in p-bit devices is attainable [27]

EB = 1

2
HK Ms V = 1

2
HK Ms(π(d/2)2t f ) (6)

where the thickness and diameter of the PMA nanomagnet
are t f and d , respectively. P-bits may demonstrate different
“as-built” energy barriers as a consequence of the fabrica-
tion PVs of low energy barrier nanomagnets [22]. In accor-
dance with (6), variations in nanomagnet thickness (σ t f ) and
anisotropy field (σ HK) cause linear variations in energy barrier
(σ EB). However, variations in nanomagnet diameter (σd)
cause quadratic variations in energy barrier (σ EB).

As noted in the prior section, the low energy barrier
nanomagnet will oscillate irregularly between the “UP” and
“DOWN” states. The dwell time of magnetization in the “UP”
and “DOWN” states generates a distribution, which affirms the
stochastic fluctuation of nanomagnet. A sigmoidal distribution
is discovered over a series of samples by oscillating the
PMA nanomagnet’s magnetization direction between “UP”
and “DOWN” states. Thermal energy instigates these state
Transitions, which is sufficient to arbitrarily fluctuate as long
as adequately small energy barrier is used. The nanomagnet’s
fluctuation speed can be attained from the average dwell
time in “UP” and “DOWN” states τUp and τDown as fol-
lows [1], [3], [28]:

τ−1 = (τUp × τDown)
1/2 (7)

Fig. 3. Tunability of the average magnetization component in the Z -direction,
while the magnetization lies in the Z X plane.

and the dependence of this time scale on the nanomagnet
energy barrier (EB) is consistent with the Arrhenius-like
law [29]

τ = τ0 × exp(EB/KB T ) (8)

where the average dwell time of the magnetization is τ ,
the energy barrier separating the two stable states is EB ,
the Boltzmann constant is kB , and the temperature is T . τ0 is a
material parameter, often referred to as the attempt time and is
reported to be around 10 ps−1 ns1. From this equation, it can
be seen that when the thermal energy (kBT ) is comparable
to EB , the magnetization fluctuates at a rate given by 1/τ ,
which can reach upward of 1 GHz. Thereby, the probabilistic
behavior of the p-bit devices will be affected by decreasing
or increasing the fluctuation speed of nanomagnet through
increasing or reducing the energy barrier, respectively.

In a low perpendicular anisotropy p-bit device, any little
in-plane anisotropy can result in a considerable tilt angle (θ)
that may not be detectable in high perpendicular anisotropy
magnets. The in-plane spins do not impact the desired
direction of the average magnetization component in the
Z -direction when there is no tilt in the magnet’s anisotropy.
As a result, the average magnetization component in the
Z -direction remains around zero. Accordingly, the tilt direc-
tion is toward the X-axis in the Z X-plane, as shown in Fig. 3.
It has been proved that, in the Z -direction, perfect tunability
of the average magnetization component can be attained for
tilt angles around 25◦ [1]–[3].

The fabrication imperfections have a substantial impact on
the performance and accuracy of neuromorphic applications.
Accordingly, these imperfections cause several defects, which
are needed to be tolerated for p-bit-based neurons in DBNs.
In general, there are two solutions for these problems caused
by variations: 1) refine materials and production processes in a
fabrication-oriented approach and 2) solve the aforementioned
PV challenges in a circuit-level approach. Here, a variation
analysis will be carried out to report the satisfactory range
of production process and tolerances for crucial parameters
affecting the p-bit devices in terms of energy barrier and
accuracy. In this study, we use a variation-less 784 × 200 ×
10 DBN circuit as the baseline to investigate the accuracy
of p-bit-based DBNs, as shown in Fig. 4. The probabilistic
inference network simulator (PIN-Sim) [16] is employed as a
circuit-level implementation of DBNs. In PIN-Sim, embedded
MRAM-based p-bit neurons and resistive crossbars are utilized
as activation functions and weighted connections, respectively.
Here, the accuracy of DBN is calculated as the number of
input images that are correctly predicted divided by all the
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Fig. 4. Employed simulation framework including a 784 × 200 × 10 DBN
implemented for MNIST pattern recognition application and a subset of
MNIST data set, where the output neurons indicate to digital output class.

predictions as follows [30]:

Accuracy = Number of Correct Predicted Images

Total Number of Predictions
. (9)

More specifically, a correct prediction is considered as a true
positive or true negative, which is an input image that the DBN
correctly predicted as true or false, respectively. Therefore,
the total number of predictions is defined as the sum of
correct predictions involving true positives and true negatives
and incorrect predictions, including false positives and false
negatives as follows [30]:

Accuracy = TN+TP

TN + TP + FN + FP
(10)

where TN is true negatives, TP denotes true positives, FN rep-
resents false negatives, and FP is false positives.

IV. PV ANALYSIS OF P-BIT-BASED DBN

In this section, the impact of PV on the p-bit-based DBN is
evaluated. We have modeled a random variation distribution
of three types of PV, which affects the fluctuation speed
of nanomagnet: 1) (σ HK ): variations in the anisotropy field
(HK ); 2) (σd): variations in the diameter (d) of nanomagnet;
and 3) (σ t f ): variations in the thickness (t f ) of nanomagnet,
for various temperatures and tilt angles (θ). The nanomagnet
parameters used in our simulation for a variation-less p-bit-
based DBN as the baseline are HK = 400 mT, D = 36 nm,
t f = 1.3 nm, θ = 25◦, and temperature = 300 K. The
lower and higher energy barriers are realized by decreasing
and increasing these three parameters. As described in (7)
and (8), reducing and increasing the energy barrier increases
and reduces the nanomagnet’s probabilistic fluctuation speed
in SOT-MRAM devices.

A. Individual Variation

In this section, we analyze the impact of individual parame-
ter variation, while temperature and tilt angle are varying for
specified ranges. The results are achieved by MATLAB sim-
ulation for MNIST handwritten digit recognition application
by utilizing 60 000 training images on a 784×200×10 DBN.
It is mentioned that variations in the PIN-Sim framework are
applied by utilizing a randomly generated parameters value
between the baseline value of each parameter and a maximum
parameter variation of 25%.

Fig. 5. Accuracy of p-bit-based DBN versus σ HM for (a) temperature
of 200–400 K and (b) tilt angles of 10◦–30◦ .

1) Anisotropy Field Variation: Fig. 5(a) and (b) shows the
accuracy of p-bit-based DBN versus σ HK for various temper-
atures of 200–400 K and tilt angles of 10◦–30◦, respectively.
Other nanomagnet parameters are the same as the baseline
and fixed. As shown in Fig. 5(a), anisotropy field variations do
not affect the accuracy of p-bit-based DBN, while temperature
values range from 200 to 250 K. The worst case scenario is
when temperature = 400 K in the presence of around 7% PV
in anisotropy field in which the accuracy will be reduced to an
unsuitable value of around 10% (i.e., error rate around 90%).
As it can be seen in Fig. 5(b), tilt angle should be at least
around 18◦, while PV in anisotropy field can be completely
tolerated up to 25% (i.e., σ HK = 25%) for at least a tilt angle
of 28◦. Thus, the PV of anisotropy field in p-bit-based DBNs
is seen to be tolerated up to around 20% for the baseline
values of temperature and tilt angle. In this case, for the
temperature of 300 K and tilt angle 25◦, baseline values are
used throughout.

2) Diameter Variation: The accuracy of p-bit-based DBN
versus σd for various temperatures of 200–400 K and tilt
angles of 10◦–30◦ is shown in Fig. 6(a) and (b), respec-
tively, whereas other nanomagnet parameters are equivalent
to the baseline values and fixed. By decreasing tempera-
ture, higher diameter variation can be tolerated, as shown
in Fig. 6(a). The best case scenario is when temperature =
250 K in the presence of around 14% PV in diameter in
which the accuracy of around 90% is still obtained. As can
be observed in Fig. 6(b), diameter variation can be tolerated

Authorized licensed use limited to: University of Central Florida. Downloaded on October 12,2021 at 20:38:00 UTC from IEEE Xplore.  Restrictions apply. 



POURMEIDANI et al.: PROCESS VARIATION SENSITIVITY OF SOT PERPENDICULAR NANOMAGNETS IN DBNs 3401508

Fig. 6. Accuracy of p-bit-based DBN versus σd for (a) temperature of
200–400 K and (b) tilt angles of 10◦–30◦ .

up to around 8%, i.e., σd = 8%, for a small range of tilt
angles. Hence, the process variation of diameter in p-bit-based
DBNs is witnessed to be tolerated up to around 8% for the
baseline values of temperature and tilt angle. In comparison to
anisotropy field variation, p-bit-based DBNs are more sensitive
to diameter variation.

3) Thickness Variation: Fig. 7(a) and (b) shows the accuracy
of p-bit-based DBN versus σ t f , while temperature and tilt
angle range from 200 to 400 K and 10◦ to 30◦, respectively.
Other nanomagnet parameters are fixed values that are equiva-
lent to the baseline values. Thickness variations do not impact
the accuracy of p-bit-based DBN, while temperature values
range from 200 to 220 K, as shown in Fig. 7(a). The least
thickness variation tolerance is achieved when temperature
= 400 K in the presence of around 8% PV in thickness
in which the accuracy will be reduced to an inappropriate
value of around 10% (i.e., error rate around 90%). As shown
in Fig. 7(b), tilt angle should be at least around 18◦, while
process variation in thickness completely can be tolerated up
to 25% (i.e., σ t f = 25%) for at least a tilt angle of 28◦.
Therefore, the PV of thickness in p-bit-based DBNs is seen
to be tolerated up to around 23% for the baseline values of
temperature and tilt angle. The p-bit-based DBNs are less
sensitive to thickness variation in relation to anisotropy field
and diameter variations.

B. Impact of Multiple Sources of Variation

In this section, we analyze the impact of multiple variation
sources of σ HK , σd , and σ t f ranging from 0% to 25%

Fig. 7. Accuracy of p-bit-based DBN versus σ t f for (a) temperature
of 200–400 K and (b) tilt angles of 10◦–30◦ .

on the p-bit-based DBNs, while temperature and tilt angle
are fixed values that are equivalent to the baseline values
of 300 K and 25◦, respectively. The results are achieved
by the MATLAB simulation for MNIST handwritten digit
recognition application by utilizing 60 000 training images on
a 784×200×10 DBN. As previously mentioned, the maximum
value of variation of all parameters is limited to 25%.

Fig. 8(a)–(c) shows the accuracy of p-bit-based DBN for
three different combinations of σ HK , σd , and σ t f , respec-
tively. As we can see, by increasing variation in a parameter,
less variation in another parameter is tolerable. Thus, the high-
est variation tolerance for each parameter is obtained when
variation in other parameters is 0% (i.e., other parameters are
set to the baseline values). In other words, less variation in
each parameter is tolerable in the presence of variation in more
than one parameter compared to the scenarios that only one
parameter has variation. As shown in Fig. 8(a), the highest
multiple variation tolerance for a combination of σd and σ HK

is obtained when σd = 5% and σ HK = 7%, which results
in an aggregated variation of 12%. Fig. 8(b) shows that the
highest multiple variation tolerance for a combination of σ t f

and σd is attained when σ t f = 15% and σd = 5%, which
leads to an aggregated variation of 20%. The highest multiple
variation tolerance for a combination of σ t f and σ HK is
achievable when σ t f = 11% and σ HK = 7%, which results in
an aggregated variation of 18%. The results show that the p-
bit-based DBNs are more sensitive to the multiple variations of
(σd versus σ HK ), (σ t f versus σ HK ), and (σ t f versus σd).
By employing a feedback approach, this knee effect factor
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Fig. 8. Accuracy of p-bit-based DBN for (a) σd versus σ HK , (b) σ t f versus
σd, and (c) σ t f versus σ HK .

can be mitigated in practice by changing the nanomagnet’s
fluctuation rate, as explained in Section V.

V. P-BIT WITH FEEDBACK

In this section, we present a method to control the fluc-
tuation frequency of the output of a p-bit. In this device,
the output voltage tracks the magnetization direction through
the anomalous Hall effect and fluctuates randomly between
two values, “UP” and “DOWN.” The energy barrier of the
nanomagnet defines the average fluctuation frequency ( f0)
through the following equation:

f0 =
(

τ0exp

(
EB

kB T

))−1

. (11)

A dc current through the layer with GSHE biases the stochastic
output of the device toward one of the two states. However,

Fig. 9. Tuning the effective energy barrier through electrical feedback.
(a) Measurement configuration with the feedback implemented through a
simple resistor of value 360 K	. (b) Measurement of the output fluctuations
of the device for various feedback configurations.

instead of a dc current, when the device’s output is ampli-
fied and fed back to the layer with GSHE, the fluctuation
of the magnetization based on the strength and polarity of
the feedback gets slower or faster, analogous to temperature
annealing. Fig. 9(a) shows the device schematic with the feed-
back configuration. The value of the resistor R f controls the
feedback, which alters the feedback current flowing through
the layer with GSHE. However, for experimental simplicity,
the resistor value is kept fixed and VDD of the amplifier is
changed in both magnitude and sign. Fig. 9(b) shows the
experimentally measured stochastic signal at the output of this
device for different feedback configurations. A large positive
VDD corresponds to a strong positive feedback, whereas a
large negative VDD corresponds to a strong negative feedback.
It can be seen that the fluctuations at the device output become
progressively faster as the feedback changes from positive to
negative (amplifier VDD changing from +5 to −5 V). The
output signals for various feedback configurations are shifted
artificially along the vertical axis for clarity. Please note that in
this experiment, the average fluctuation time scale, t , is 144 ms
at no feedback. This slow fluctuation speed is due to the fact
that the nanomagnet used in this experiment had an energy
barrier, EB = 18 kB T . In order to achieve fluctuations of 1 ns,
this energy barrier can be reduced to be closer to 1 kB T by
two approaches.

1) By designing weaker perpendicular anisotropy stacks
through the ferromagnetic layer thickness optimization,
in a CoFeB/MgO perpendicular anisotropy magnetic
stack, the effective anisotropy energy density is given
by [31]

1

2
Ms HK = Keff = Ki

tF
− M2

S

2μ0
(12)
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where Ki is the interface anisotropy, tF is the thickness
of the ferromagnetic layer, MS is the saturation magne-
tization, and μ0 is permeability of free space. It can be
seen from the above equation that by engineering tF to
make the RHS close to zero, we can make the effective
perpendicular anisotropy to vanish, hence resulting in
very low EB .

2) By fabricating magnets with smaller diameters through
advanced lithography, the volume, and hence EB ,
of the nanomagnet can be made smaller. With currently
available industrial lithographic technology, a diameter
of 30 nm is possible [32].

In this device, a charge current input to the heavy metal
electrode adjacent to the nanomagnet produces a torque on its
magnetization via SOT. This was heuristically explained as a
tilting of the energy landscape, where a positive current tilts
the energy landscape toward the “UP” state and a negative
current causes a tilt toward the “DOWN” state. When the
device output is converted into a charge current and fed back to
the device input, the tilt of the energy landscape dynamically
depends on the instantaneous state of magnetization. This
results in a dynamic modification of the effective energy
barrier. The case for the negative feedback case is described as
follows. When the magnetization is in the “UP” state, the neg-
ative feedback produces a negative charge current through the
input that tilts energy landscape toward the “DOWN” state,
thus reducing energy barrier to hop out of the “UP” state.
Likewise, once the magnetization is in the “DOWN” state,
a positive feedback current is produced at the input that tilts
the energy landscape toward the “UP” state, hence reducing
energy barrier to hop out of the “DOWN” state. Hence,
a negative feedback results is an overall reduction of the
effective energy barrier to switch to the other state. Following
the modified Neel–Brown model [33], [34] to include the
effect of spin torque on the nanomagnet due to the current
flowing through the layer with GSHE, we have the following
expression for the fluctuation frequency:

f0 =
(

τ0exp

(
EB,eff

kB T

))−1

(13)

where the effective energy barrier (EB,eff) is given by

EB,eff = EB

(
1 ± Ifeedback

IC

)
(14)

where the nanomagnet’s intrinsic energy barrier is EB given
in (6), the feedback current is Ifeedback, and the critical current
for magnetization switching at zero temperature is IC . This
results in a faster fluctuation rate, as seen by replacing EB

with a smaller EB,eff in (11). By considering the GSHE layer,
resistance is much smaller than R f , and Ifeedback can be defined
as VDD/R f . Then, by replacing VDD/IC with R0, the below
expression is obtained for the magnet’s effective energy barrier

EB,eff = EB

(
1 ± R0

R f

)
. (15)

From (13) and (15), it is clearly seen that the p-bit’s fluctuation
frequency can be managed by altering the feedback resistor,
as is proved in the experiment.

VI. CONCLUSION

Here, we explored an approach to alleviate the PV’s impact
on the p-bit’s energy barrier and their following effect on the
accuracy of p-bit-based DBNs. In the proposed technique,
it was demonstrated that a variation in the parameters of
nanomagnet diameter (σd), thickness (σ t f ), and anisotropy
field (σ HK) leads to variation in the nanomagnet’s fluctuation
speed of the p-bit’s devices. As evaluated for the MNIST
data set for temperature and tilt angle of 300 K and 25◦,
accordingly, it is shown that the PV of σd , σ t f , and σ HK

can be tolerated up to 8%, 23%, and 25%, respectively.
It implies that in order to obtain the sigmoidal curve in the
p-bit-based neuron, a mechanism is needed to control the
nanomagnet’s fluctuation speed. In this article, a variation
tolerance technique is proposed by configuring p-bit with
electrical feedback, which could considerably change the PMA
nanomagnet’s probabilistic fluctuation speed. In such a case,
the device’s output is amplified and fed back to the layer with
GSHE, and based on the polarity and strength of the feedback,
the fluctuation of magnetization gets slower or faster, which
successfully compensates for the variation impacts.
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