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Abstract—Energy-efficient methods are addressed for lever-
aging low energy barrier nanomagnetic devices within neuro-
morphic architectures. Using a Magnetoresistive Random
Access Memory (MRAM) probabilistic device (p-bit) as the
basis of neuronal structures in Deep Belief Networks (DBNs),
the impact of increasing the Magnetic Tunnel Junction’s
(MTJ’s) energy barrier is assessed and optimized for the
resulting stochasticity present in the learning system. A self-
compensating circuit is developed herein providing a compact,
and low complexity approach to mitigating process variation
impacts towards practical implementation and fabrication. As
evaluated for the MNIST dataset for energy barriers (Es) at
near-zero kT to 2.0 kT, it is shown that the proposed variation-
tolerant circuit can effectively increase the reduced probabilistic
fluctuation speed of the nanomagnet in p-bits with Eg > OkT
achieving approximately 5x improvement in the total energy
consumption of a 784 x 200 x 10 DBN.

Keywords—Low energy barrier magnetic tunnel junction,
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1. INTRODUCTION AND BACKGROUND

Stochastic computing has been studied as the foundation
of brain-inspired computing frameworks. However, hardware
implementation of stochastic computing models have received
less consideration despite the use of stochasticity being
widespread in the computational neuroscience field. In many
cases, the underlying CMOS hardware used to imitate
neuronal functionality has been deterministic and would thus
require area-consuming random number generators to realize
stochastic behavior. On the contrary, post-CMOS
technologies such as spintronic devices exhibit inherent
randomness during their switching processes. Recently, the
stochasticity behavior of these single-bit spin-based hardware
units has been used to realize compact and effective neuronal
hardware in various learning systems [1]-[4].

A recently-proposed building block based on embedded
Magnetoresistive Random Access Memory (MRAM)
technology is the probabilistic p-bit device [5]. This hardware
utilizes a 2-terminal magnetic tunnel junction (MTJ) having
two feasible resistive levels depending on the orientation of its
ferromagnetic (FM) layers. The FM layers involve a fixed
layer that contains a fixed magnetic orientation and a free layer
with a magnetization orientation that can be switched. In
conventional MRAM cells, the free layer is fabricated with a
thermally-stable nanomagnet with a large energy barrier in
accordance with the thermal energy, k7. Consequently, the
fixed layer operates as a single-bit non-volatile storage
element whereas providing a thresholding behavior suitable
for neural network applications. In recent years, several
studies theoretically and experimentally have investigated the
usage of thermally-unstable MTJs with near-zero energy
barrier based on superparamagnetic materials to realize
probabilistic neuromorphic paradigms using functional
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Figure 1: (a) Embedded MRAM-based neuron (p-bit) [5], (b) The output
probability of p-bit being in state “1” vs. its input voltage over for 14nm
PTM with Vpp=0.8V nominal voltage.

spintronic devices [2]-[4]. For instance, [6][7] focus on
leveraging p-bit devices in deep belief network (DBN)
architectures. In this paper, we seek to examine the effects of
process variation (PV) on the energy barrier of the p-bit
devices and their consequent impacts on the accuracy and
energy consumption of a representative neuromorphic DBN
architecture. Finally, we propose a method based on temporal
redundancy, as well as a circuit-level approach to address the
PV-induced performance challenges of p-bit based DBNs.

II. P-BIT AS A STOCHASTIC NEURON

Camsari et al. [5] proposes a thermally-unstable MRAM
device with a low energy-barrier nanomagnet (E;, < 40 kT).
The MTJ resistance of this device arbitrarily fluctuates
between the two possible resistive states. As a consequence,
the output voltage at the drain of the NMOS transistor is
fluctuating. Moreover, a CMOS inverter which is modulated
by the input voltage will amplify such voltage deviation from
the threshold voltage in order to produce a stochastic
sigmoidal output. As the drain-source resistance (rg) is
increased by reducing the input voltage (Vw), the voltage at
the drain of the NMOS transistor is raised to V'pp. On the other
hand, it is shorted to ground by decreasing the r4 through an
increase of V. Such device operation is formulated
considering the MTJ conductance:

TMR

GMT] = GO [1 + mzm (1)

where m, is the free layer magnetization, G, denotes the
average MTJ conductance, (Gp + Gup)/2 , and TMR
represents the tunneling magnetoresistance ratio. The drain
voltage can be written as:

) . _ __@+TMR) + TMRm,
brain/ Vpp = Q2+TMR)Y1+p) + TMRm,
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where § is the ratio of the transistor conductance (G7) to the
average MTJ conductance (G,). Figure 1 shows the relation

between the probability of p-bit’s output being in state “1”” and

Viv. A close observation shows that Vjy = YD — 400 mv

leads to approximately 50% probability of p-bit’s output being
in state “1”.

III. EFFECTS OF PROCESS VARIATION ON P-BIT

The p-bit device is not entirely tolerant of defects and
device-to-device variations even though is more error resilient
than strictly digital computing devices [8]. The statistical
distribution of the magnetization fluctuations, such as the
power spectral density become affected by the presence of
both localized and delocalized structural defects and moderate
variations for the barrier height of the nanomagnet which is
caused by small size variations [9]. It is investigated that the
power spectral density is relatively insensitive to the presence
of small localized defects and moderate barrier height change.
Nevertheless, the power spectral density is substantially
affected by delocalized defects such as thickness variations
over a significant fraction of the nanomagnet [10].
Delocalized defects can considerably change the fluctuation
rate of the magnetization in low barrier nanomagnets. This
will affect applications in p-bit-based neurons for
neuromorphic architectures because the fluctuation rate is
essential for stochastic computing applications.

The near-zero energy barrier in p-bit devices is
achievablee by reducing the total magnetic moment through
decreasing volume (V) and/or manage a small anisotropy field
(Hk) [11], according to the below relation:

1 1
Ep = EHKMSV = EHKMS(n(d/Z)th) (3

where d and trare the diameter and thickness of the MTJ’s free
layer. Due to the variations in the fabrication process of low
energy barrier nanomagnets, p-bits may exhibit different
energy barriers [12]. Based on (4), variations in MTJ’s
anisoptropy field (cHg) and nanomagnet diameter (cd) cause
linear and quadratic variations in energy barrier (oEjg ),
respectively. As described in previous section, the near-zero
energy barrier free layer will fluctuate arbitrarily between the
parallel and anti-parallel magnetic states. The magnetization
dwell time in the parallel and anti-parallel states creates a
distribution which confirms that the nanomagnet fluctuates
stochastically. By switching the magnetization direction of the
free layer between parallel and anti-parallel states, a sigmoidal
distribution is observed over a sequence of samples. These
state transitions are instigated by thermal energy which is
adequate to randomly fluctuate when using a sufficiently
small energy barrier. The fluctuation speed of a nanomagnet
can be obtained from the average dwell time in parallel and
anti-parallel states Tp and 7,p as follows [13], 771 = 751 +
T4, and, this time scale is related to the energy barrier (Ep)
of the nanomagnet through T = 74 X exp(Eg/KgT). Thus,
the fluctuation speed of nanomagnet can be increased or
decreased by reducing or increasing the energy barrier,
respectively, which will impact the probabilistic behavior of
the p-bit devices as described in Section V.

The defects caused by the fabrication imperfections are
required to be addressed for neuromorphic applications using
p-bit based neurons such as DBNs due to their significant
impact on their performance and accuracy. Generally, these
challenges raised by variations can be addressed by two
approaches. Firstly, a fabrication-oriented approach aims to
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Figure 2: Effects of neuron’s energy barriers on the DBN accuracy with
a fixed sampling time for the p-bit’s output. The accuracy reduction can
be effectively recovered by increasing the sampling window of the p-
bit’s device, which is referred to herein as temporal redundancy.

refine materials and production processes. Alternatively, a
post-fabrication mechanism is proposed herein which
leverages temporal redundancy as well as a circuit-level
mechanism to address the aforementioned PV-imposed
challenges. Moreover, a sensitivity-analysis will be conducted
to inform the production process with the acceptable range and
tolerances for critical parameters impacting the energy-barrier
and resulting stochasticity of the p-bit device.

IV. PROPOSED VARIATION-IMMUNE P-BIT IMPLEMENTATION

Herein, the impact of energy barrier variation is assessed
by using a random distribution of parameters for several
ranges from near-zero kT to 2.0 kT. The higher energy barrier
of 1.5 kT, 1.75 kT, and 2.0 kT are realized by increasing the
small anisotropy field (Hk). As mentioned, increasing the
energy barrier decreases the probabilistic fluctuation speed of
the nanomagnet in p-bit devices, which means the sampling
window of the p-bit’s output should be increased to realize the
probabilistic sigmoidal activation function shown in Figure 1,
otherwise it will distorted. The results obtained by MATLAB
simulation, depicted in Figure 2, show that while the energy
barriers less than or equal to 1.5 kT yield an recognition error
of approximately 5% (i.e., accuracy rate ~95%) for MNIST
hand-written digit recognition application, the error rate will
be drastically increased to an unacceptable value of ~90% (i.e.
accuracy rate ~10%) for the energy barriers more than 1.75 kT
on a 784x200x10 DBN which is trained by 60,000 training
images. However, given sufficiently long sampling time, the
p-bit’s output voltage can realize its probabilistic sigmoidal
behavior without notable distortions [14], which can
effectively recover the above reduction in the recognition
accuracy of p-bit based DBN architecture.

To verify the effect of increasing the sampling window
period (tg) of p-bit’s output to address the energy-barrier
variation issues, we have examined p-bits with four different
energy barriers: 0.5 kT, 1 kT, 1.5 kT, and 2 kT. Figure 3 shows
an experiment conducted in SPICE circuit simulator, in which
the input voltage of the p-bit neurons with different energy
barriers is incrementally increased from 0.3V to 0.5V (i.e. the
active region of the p-bits probabilistic sigmoidal activation
function) with 20mV steps. In every step the input voltage
remains fixed for 75 period and the output voltage is
monitored. It is shown that in order to achieve the sigmoidal
output required to be realized by p-bit based neurons with 0.5
kT, 1 kT, 1.5 kT, and 2 kT, the minimum 75 should be tuned to
4ns, 11ns, 16ns, and 19ns, respectively, while the sampling
window period for a p-bit with near-zero energy barrier is 2
ns. These results are obtained using the SWEEP function
provided by HSPICE circuit simulator.
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Figure 3: Output of MRAM-based neuron vs. time for different energy barriers (a) Eg = 0.5 7, (b) Ez = 1.0 k7, (c) Eg = 1.5 kT, and (c) Ez = 2.0 AT
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Figure 4: Effect of temporal redundancy on the energy consumption of
a variation-tolerant p-bit based DBN with a 784x200%10 topology.

To assess differences in energy consumption of DBNs
under different energy barriers, we examined a 784x200x10
DBN circuit implemented by the PIN-Sim framework [7] for
MNIST digit recognition application. We have used p-bits
models with the maximum energy-barrier variations ranging
from ~0 kT'to 2.0 kT with 0.5 kT steps. Figure 4 illustrates the
energy consumptions of DBNs with various levels of energy
barrier variation tolerance using the temporal redundancy
mechanism. The energy that is consumed in DBN with ~2kT
energy barrier variation tolerance is approximately 10-fold
greater than variation-less DBNs utilizing p-bits with near-
zero energy barrier. The variations are applied via PIN-Sim
tool by using a randomly generated energy barrier value
between 0T and a maximum energy barrier variation defined
by user. Thus, in terms of energy consumption, a “knee effect”
point for the energy barrier is seen to be around 0.5 kT for our
DBN. This knee effect factor can be alleviated in practice by
configuring a feedback mechanism to increase the fluctuation
rate of the nanomagnet, as described in the following.

A. P-bit with feedback

In this Section, we demonstrate a p-bit neuron circuit, in
which the fluctuation rate of its nanomagnet can be tuned
using an electrical feedback. In this neuron, the average
fluctuation frequency (fy) is determined by the energy barrier
of the nanomagnet through the following equation [13]:

fo = (1o X exp(Eg/KzT))™* 4)

Herein, the output of the p-bit device is amplified and fed
back to the NMOS transistor, thus the magnetization
fluctuation becomes faster, depending on the polarity and
strength of the feedback, as a modulation method to
compensate towards optimal levels of thermal noise. An
implementation of the feedback configuration is illustrated in
Figure 5. In this case, the drain of the NMOS transistor tracks
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Figure 5: In-circuit adaptation of p-bit using resistive feedback.

the magnetization direction of the free layer of the MTJ. The
inverter at the output of the device naturally generates the
inverse voltage, hence realizing a feedback compensation
mechanism. The feedback can be controlled by changing the
value of the resistor R; which changes the feedback current
flowing through the NMOS transistor. Figure 6 (a) shows the
output of p-bit with an energy barrier of Eg~1.5 kT and a
feedback with Re= 100 KQ, while in the no feedback case (R
= infinity), the nanomagnet of device fluctuates extremely
slower as shown in Figure 6 (b). Employing the feedback
resistor decreases the fluctuation time scale, T , by
approximately 5 times, which reduces the need for temporal
redundancy, in consequent of which the energy consumption
in the variation-tolerance p-bit neuron will be decreased.

A similar experiment involving feedback of the p-bit
output to its input was performed in a current controlled
device scheme [15]. The effect of feedback on frequency
tunability can be understood by considering the change to the
energy landscape of the nanomagnet. In the feedback
configuration, when magnetization is in the “P” state, the
device output feeds back a negative current to its input, thus
tilting the energy barrier in favor of the “AP” state, i.e, the
barrier that needs to be overcome to transition from the “P” to
the “AP” state becomes smaller than the barrier for the reverse
transition. Similarly, when the magnetization is in the “AP”
state, the barrier for transitioning from the “AP” to the “P”
state is smaller than the barrier for the reverse transition. So,
the energy landscape is dynamically modified in a way such
that the energy barrier appears to be lower to transition from
the occupied state to the other state. This effect increases
the fluctuation frequency of the device output, expressed as:

fo = (o X exp(Eperr/KpT)) ™! (5)
where the effective energy barrier (Ez.p) is given by:
EB,eff =Ep(1t Ifeedback/lc) (6)
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Figure 6: The output fluctuations of the device for Eg = 1.5 k7, (a) with
100 K€ feedback resistor, (b) without the feedback resistor.

where Ejp is the intrinsic energy barrier of the nanomagnet
given in equation (3), Jiedrack 1S the feedback current and /¢ is
the critical current for magnetization switching at zero
temperature. Jieanack can be replaced by Vpp/Ry from analyzing
the circuit configuration, considering that the NMOS
transistor resistance is much smaller than Ry (which can be
realized by choosing a large enough Ry). Next, by defining
Vpp/Ic as Ry, we get the following expression for the effective
energy barrier of the magnet:

Egerr = Eg(1 £ Ro/Ry) (7

Equations (5) and (7) elaborate that the fluctuation frequency
of the p-bit can be controlled by changing the feedback
resistor, as also demonstrated in the co-author’s experiment
[15]. The above analysis generally holds true for the device
presented in this paper. The circuit simulation results exhibit
that maximum variations of 0.5 &7, 1 kT, 1.5 kT and 2 kT can
be compensated using Ry with 30KQ, 60KQ, 100KQ,
120K resistances, respectively. This is realized with only
~12% energy overhead, which is 25.1 pJ for p-bit with 120K
feedback resistor compared to 22.4 pJ for p-bit without
feedback.

V. CONCLUSION

Herein, we investigated two approaches to mitigate the
effects of process variation on the energy barrier of the p-bit
based neurons, and their consequent impact on the
performance and accuracy of DBNs using p-bit devices as
probabilistic sigmoidal neurons. In the first approach, it was
shown that an increase in the energy barrier leads to decreased
fluctuation speed in the magnetization direction of the p-bit’s
nanomagnet. Thus, to observe the desired probabilistic
sigmoidal behavior in the p-bit based neuron a temporal
redundancy is required to be added to the sampling time of the
p-bits output to provide an operating interval sufficient for
probabilistic fluctuations. While the temporal redundancy has
shown to be an efficient mechanism, it was examined that it
can lead to approximately 10-fold higher energy consumption
in a 784x200%10 DBN which can tolerate maximum 2 k7 of
energy barrier variations compared to a variation-less DBN.
The second variation tolerance mechanism involved
implementing p-bit with a negative self-feedback, which
significantly increases the probabilistic fluctuation speed of
the free layer. In this case, the drain of the NMOS transistor
in the p-bit device tracks the magnetization direction of the
free layer of the MTJ, and the inverter at the output of the
device generates the inverse voltage, hence realizing a
negative feedback effect which compensates the variation
impacts with only ~10% energy consumption overheads.
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