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Abstract—In this paper, we develop a low-power and area-
efficient hardware implementation for Long Short-Term 
Memory (LSTM) networks as a type of Recurrent Neural 
Network (RNN). The LSTM network herein employs Resistive 
Random-Access Memory (ReRAM) based synapses along with 
spin-based non-binary neurons to achieve energy-efficiency 
while maintaining comparable accuracy. The proposed neuron 
provides a novel activation mechanism with five levels of output 
accuracy to mimic the ideal tanh and sigmoid activation 
functions. We have examined the performance of an LSTM 
network for name prediction purposes utilizing ideal, binary, 
and the proposed non-binary neuron. The comparison of the 
results shows that our proposed neuron can achieve up to 85% 
accuracy and perplexity of 1.56, which attains performance 
similar to algorithmic expectations of near-ideal neurons. The 
simulations show that our proposed neuron achieves up to 34-
fold improvement in energy efficiency and 2-fold area reduction 
compared to the CMOS-based non-binary designs.  

Keywords—Long Short-Term Memory, Binary Stochastic 
Neuron, Activation functions, Non-Binary Neuron 

I. INTRODUCTION 

Long Short-Term Memory (LSTM) networks, as a form of 
Recurrent Neural Networks (RNNs), have achieved 
noticeable recognition due to their ability to process sequential 
data and gathering the impacts of the input data over time. 
LSTMs have demonstrated high performance in various 
sequence prediction problems in applications such as speech 
recognition and machine translation. Fig. 1 shows the basic 
RNN and LSTM structures. Both networks have a feedback 
loop in their recurrent layer to sustain the information over 
time. LSTM utilizes additional units including a memory cell 
capable of storing information for long periods [1].  

There are several research works exploring hardware 
implementation of RNNs which employ a non-von-Neumann 
architecture, based on the Compute-in-Memory (CiM) 
designs to provide highly parallel and efficient models [2, 3]. 
Most of the previous designs utilize emerging Non-Volatile 
Memory (NVM) devices such as Resistive Random-Access 
Memory (ReRAM) [4], to implement the Multiplication and 
Accumulation (MAC) operation via the intrinsic weighted 
summation capability of cross-bar designs based on CiM 
architecture. However, these designs require significant power 
and area due to the employment of CMOS-based non-linear 
sigmoid and tanh neurons, as their main thresholding 
functions. The utilized CMOS-based neurons in prior works 
[2, 3] require large built-in truth tables with extra clock cycles 
that lead to higher area and energy consumption. 

In this paper, we implement an LSTM network with 
ReRAM-based synaptic crossbar arrays and spin-based non-
binary neurons mimicking the ideal sigmoid and tanh 
thresholding functions while maintaining accuracy. To 
achieve an area and energy-efficient neuron design, we 

employ probabilistic spin logic devices referred to in the 
literature as probabilistic bits (p-bits) [6] to develop a shared 
neuron unit in the hidden layer. We investigate the 
performance and efficiency of the LSTM network with three 
distinct neuron structures.  

II. LSTM STRUCTURE

Fig. 1. (a) shows the basic RNN structure. The RNN 
output depends on both the current sample ( 𝑖𝑡 ) and the
previously calculated network state (𝑤𝑡) as the network input.
Unlike ANN, RNN has a feedback loop which enables it to 
store the previous states and make the future decision based 
on the previous values. The LSTM network is designed to 
overcome the problem of vanishing gradients that occurs 
while using the backpropagation technique in RNNs [5]. Fig. 
1. (b) indicates an LSTM cell that contains input gate 𝑥𝑡 ,
forget gate 𝑓𝑡  , and output gate 𝑜𝑡  . The forget gate decides
which information from the previous cell state must be 
preserved or forgotten. This decision is taken using a sigmoid 
layer with an output between 0 and 1 [6]. The input gate 
decides what values of the new cell must be written to the cell 
state. The sigmoid layer determines the input values (a 
concatenation of new input values and output values from 
previous states), while the tanh layer produces a vector of new 
candidate values. The output gate works based on given inputs 
and previous state values. The output vector is obtained by 
multiplying a new cell state which is normalized to values 
between -1 to 1 using tanh activation function and output of 
sigmoid layer that decides the output. The dimensions of all 
the gates are the same as the dimensions of the hidden state 
[7]. The computational equations of LSTM are given below: 

𝑥 =  𝛔(𝑖𝑡𝑈𝑥  +  𝑤𝑡−1𝑊𝑥  +  𝑏𝑥  )  (1) 

𝑓 =  𝛔(𝑖𝑡𝑈𝑓  +  𝑤𝑡−1𝑊𝑓  +  𝑏𝑓 )  (2) 

𝑜 =   𝛔(𝑖𝑡𝑈𝑜  +  𝑤𝑡−1𝑊𝑜  +  𝑏𝑜 )  (3) 

𝑔 =  𝑡𝑎𝑛ℎ (𝑖𝑡𝑈𝑔  +  𝑤𝑡−1𝑊𝑔  +  𝑏𝑔 )  (4) 

𝑐𝑡  =  𝑐𝑡−1 ʘ 𝑓 +  𝑔 ʘ 𝑥  (5) 
𝑤𝑡  =  𝑡𝑎𝑛ℎ(𝑐𝑡) ʘ 𝑜.  (6) 

Fig. 1. (a) Basic RNN structure, (b) LSTM 
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Three main operation types can be observed from the above 
equations: nonlinear functions (sigmoid 𝛔  and hyperbolic 
tangent 𝑡𝑎𝑛ℎ ), matrix-vector multiplication (e.g., 𝑤𝑡−1𝑊𝑥

and 𝑖𝑡𝑈𝑥), and element-wise multiplication (e.g., 𝑔 ʘ 𝑥 ).

III. NEURON DESIGN

A. Probabilistic Spintronics 

The spintronic device used herein is derived from 
Magnetic Tunnel Junction (MTJ) which has a probabilistic 
behavior with a design of 1-Transistor-with-1- MTJ structure 
called an embedded probabilistic bit (p-bit) [8]. Due to the 
very low energy barrier of the free layer, the p-bit 
stochastically switches between its Parallel (P) and Anti-
Parallel (AP) states. The mean retention time for an MTJ (𝜏) 
is given by (7). 

𝜏 =  𝜏0𝑒𝑥𝑝(∆/𝑘𝑇)                                  (7)
where 𝑘 is Boltzmann’s constant, 𝜏0 is a material-dependent
parameter called the attempt time, and 𝑇 is temperature [8].  

 Fig. 2(a) shows the structure of the p-bit device which 
consists of a Spin Hall Effect Magnetic Tunnel Junction 
(SHE-MTJ)  with a circular unstable (low energy barrier) 
nanomagnet (Δ≪40kT) [8], to which two CMOS inverters 
are connected to amplify the output. The MTJ in the device is 
unstable with two ferromagnetic layers as a pinned layer and 
the free layer, separated by a thin oxide barrier on top of a 
Heavy Metal (HM) nanowire [9]. The pinned layer has a 
fixed orientation while the free layer can be oriented as 
parallel (P) and antiparallel (AP). As shown in Fig. 2(a), the 
charge current (Ic) injected to HM in the +x (/−x) direction 
affects the resistance levels [10]. This charge current will 
produce a spin current (Is) and a Spin-Orbit Torque (SOT) in 
+y (/−y) direction as oppositely directed spin vectors are 
accumulated on each surface of the HM. The direction of the 
charge current affects the spin current which further changes 
the magnetization configuration of the free layer in the ±z 
direction [11]. Sigmoidal function can be derived by taking a 
long-time average of magnetization fluctuations of the low 
energy barrier nanomagnet driven by spin-current, as shown 
in Fig 3(a). In Fig. 2(b) an equivalent read circuit of a SHE-
MTJ based p-bit is given in which reading operation is done 
by sending a small read voltage to MTJ terminals (V+ and V-
) to sense its resistance (RMTJ). The RMTJ and the reference 
resistor R0 are then used to construct a resistive voltage 
divider, with the reference resistor being assigned to the MTJ 
average conductance (𝑅0

−1 = GP + GAP/2) where GAP and
GP are the AP and P state conductance. The voltage from the 
voltage divider is given as input to the CMOS inverters and 
its output voltage (Vout) will stochastically fluctuate between 
“0” and “1”, and the probability of each value is controlled 
by the input charge current. Thus, a p-bit device generates a 
stochastic output which is analogous to the output of a 

sigmoid activation function whose steady-state probability is 
modulated by an input current. For example, if the input 
current is a large positive number, the stochastic output of this 
device will be “0” with a high probability. However, if there 
is no input current, the output will randomly fluctuate 
between “0” and “1” with an equal probability of 0.5. 

B. Binary and Non-Binary Neurons 

As discussed in the previous sections, LSTM networks 
require sigmoid and tanh-based neurons for multiple gating 
purposes. The current-controlled p-bit device shows an 
analogous behavior to the sigmoid function in an average 
time interval. Fig. 2. (a) shows circuit implementation of the 
p-bit device. A sigmoidal behavior can be achieved by 
connecting an inverter to VDD and GND. In Fig. 3. (b), the 
sigmoid function output is indicated by the black dotted 
curve, and the p-bit output average is indicated by the red-
circle curve which is almost the same as the sigmoid output 
curve. In the same way, the nonlinear hyperbolic tangent or 
tanh function can be designed using a sigmoid function as 
tanh(𝑥) = 2𝜎(2𝑥) − 1  whose output values are between 
“+1” and “-1”. This can be achieved by connecting an 
inverter to VDD and -VDD in the p-bit device. In Fig. 3(c), 
the tanh function output is indicated by the black dotted 
curve, the green-circle curve indicates the time-averaged 
output of the modified p-bit device (tanh (Ic)). This figure 
shows that the output of p-bit at each time step depends on 
the input, a zero input gives an output of either “-1” or “+1” 
with equal probability, a positive input Ic gives a high 
probability to output a positive value, and vice versa.  

 Therefore, the time-averaged output of the p-bit device 
can provide both sigmoid and tanh function behaviors via 
slightly different circuit designs. However, for practical 
implementation, the p-bit device gives a binary output of 
either “0” or “1” at a given time. Conversely, ideal sigmoid 
and tanh functions do not have a limited binary state as 
outputs but vary within a limited range based on the input 
value. To utilize a p-bit device as a practical activation 
function to achieve higher accuracy levels there is a need for 
a novel complementary activation circuit and mechanism. In 
any p-bit device, the stochasticity is highest for input current 
values that are near to zero and the stochasticity reduces as 
the input current values reach their highest or lowest levels. 
This behavior of a p-bit can be used to implement a non-
binary neuron. This behavior is extracted in the proposed 
design by running the p-bit device multiple times for the same 
input obtaining a symmetric range of output voltages.  

Fig. 3. Time-averaged behavior of SHE-MTJ based p-bit 
device. (a) magnetazitaion fluctuation. (b) and (c) are the 
implemented sigmoid and tanh behaviors respectively.  

Fig. 2. (a) The building block of non-binary neuron (p-bit), 
and (b) the equivalent read circuit [8]. 
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These output voltages are stored and mapped to a low-
overhead Look-Up Table (LUT) which contains the voltage 
values. This technique maintains the low-power and low-area 
properties of p-bit along and utilizes it to achieve an enhanced 
non-binary state. We improved the p-bit based stochastic 
neuron for hardware implementation by adding two 
components, as shown in Fig. 4. To latch the output voltage 
of the p-bit circuit, a 4-bit buffer is inserted first 
corresponding to the four times of applying the crossbar 
output to the p-bit device. Second, the neuron output is 
formed using a LUT. We synchronized the p-bit device's 
write/read access transistors in order to prevent multiple 
crossbar computations. This method allows the design to 
keep a reliable crossbar output current and applies it to the 
neuron unit as needed. As shown in Fig. 4, we consider two 
complementary signals for wr and rd. The wr signal goes high 
for each sample and based on the crossbar output current the 
p-bit device is programmed. To read out the p-bit resistance 
and produce the output bit, the wr signal goes low and the rd 
signal goes high. The 4-bit buffered data is then given to the 
converter LUT which is prestored with the sampled floating-
point activation values corresponding to output combinations 
in the buffer. For example, if the buffer content is 001, the 
LUT selects -0.4 as the output. This value can be triggered by 
either 0001/0010/0100/1000 p-bit output bitstreams. Such 
non-binary neuron design is applicable in a variety of ANN 
applications needing non-linear and deterministic tanh and 
sigmoid activation functions.  

IV. RESULTS

We evaluate the proposed LSTM design performance 
starting with device-level modeling of memristive synapse 
and p-bit based neuron components. We utilized the SPICE 
model for memristors with the Ag-Si memristor device 
parameters from [12]. The SHE-MTJ model is developed in 
Verilog-A, incorporating the Landau Lifshitz–Gilbert (LLG) 
equation to model the free layer magnetization dynamics and 
nonequilibrium Green’s function (NEGF) to estimate the 
resistance range (RP, RAP). We then combine the SPICE 
models of CMOS transistors and memristors under the 14nm 

PTM-MG library [13]. At the circuit level, we developed 
crossbar arrays under two sizes (32×32, 128×128) with p-bit 
neurons in HSPICE. We implemented all peripheral circuits 
including row address decoders, array controller, etc. in 
Synopsys Design Compiler. As application-level analysis, we 
built three distinct name predictor LSTM networks via ideal, 
binary, and the proposed non-binary neuron, employing the 
popular names dataset available as national data [14].  

A. Circuit-Level Analysis 

Figure 5 shows the SPICE simulation waveforms of the 
p-bit based non-binary neuron, verifying its functionality. 
Here we evaluate the neuron output two times (p-bit 1 to p-
bit 2) under five input currents for four clock cycles. Here, 
Isum denotes the weighted summation of input currents 
realized by the resistive sub-array, ranging from -50μA to 
+50μA, flowing into the p-bit device. When the Isum is -50μA 
or +50μA, the output of both p-bit devices for the entire four 
clock cycles are “1” and “0”, respectively, indicating the 
deterministic behavior of the neuron based on these charge 
currents. These outputs will later denote 0.8V and -0.8V, via 
the LUT. When the Isum is -5μA, we observe different outputs 
for each p-bit device. However, both outputs will later be 
mapped to a shared value (-0.4V).  

Additionally, we compared the area and energy 
consumption of the proposed design with [15] and [16] 
CMOS-based designs, under two distinct sub-array sizes as 
tabulated in Table I. The simulations show that our proposed 
neuron achieves up to 34× improvement in energy efficiency 
and 2× area reduction compared to the CMOS-based non-
binary designs. The energy consumption results for [15] 
could not be appropriately reported.    

B. Experimental Results 

Figure 6 shows the experimental results for three distinct 
neuron designs including loss, perplexity, and accuracy 

Table I: The comparison of proposed non-binary neuron 
with CMOS-based designs.  

32x32 128x128 

xbar 
Size 

[12] [13] Here [12] [13] Here 

xbar # 68 68 68 5 5 5 

Area 
(mm2) 

0.17 0.07 0.06 0.06 0.02 0.02 

Energy 
(uJ) 

N/A 4.04 0.14 N/A 1.03 0.03 

Fig. 4. The proposed spin-based LSTM network with 
non-binary neurons. 

Fig. 5. The transient simulation result of the neuron based 
on the crossbar SL current. 
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fluctuations for all cases. Unlike accuracy, for loss and 
perplexity parameters, lower values are preferred. The plotted 
data is an average of 30 training sample batch sets. The 
accuracy indicates the performance of the neural network 
while the perplexity graph evaluates the currently 
implemented network regarding the sample data modeling. In 
Fig. 6. (a), the ideal sigmoid neuron displays the limits on 
possibility with an approximation for all plots. In the binary 
neuron case shown in Fig. 6. (b), there is a sharp rise in 
accuracy in the first sets of batches.  However, it initially does 
not reach the performance of the ideal sigmoidal model (Fig. 
6. (a)).  Consequently, the results of the binary case have a
long tail that starts around set number 50, in which the system 
gradually improves as it progresses towards the end of the 
batches. Additionally, the perplexity graph shows that 
disturbance from discontinuity of the binary activation causes 
the training algorithm to struggle in modeling the samples 
using the network. After 8,000 training samples, the network 
with the binary neuron shows 58% degradation at modeling 
the data compared to the ideal sigmoid neuron.  

Utilizing the proposed non-binary neuron, the results are 
very close to the ideal case as shown in Fig. 6. (c).  The 
enhanced activation mechanism allows it to mimic the ideal 
sigmoidal system.  This is reflected in the perplexity graphs 
converging to similar values, with the proposed non-binary 
neuron with only 7% degradation compared to the sigmoidal 
system. However, the proposed neuron, also starts with a 
slightly slower training speed, as the binary activation 
function. But this tail is much shorter, lasting over the course 
of approximately 1,050 training samples. 

V. CONCLUSION 

Hardware implementation of an ideal low-power neuron 
with a small area overhead is a key research challenge for 
ANNs. In this paper, we developed energy and area-efficient 
hardware implementation for LSTM networks via novel spin-
based non-binary neurons. The LSTM network herein 
employs ReRAM based crossbar arrays to achieve energy-
efficiency while maintaining comparable accuracy. The 
proposed neuron provides a novel activation mechanism 
mimicking the ideal tanh and sigmoid activation functions. 

The performance evaluation of an LSTM network for name 
prediction purposes utilizing ideal, binary, and the proposed 
non-binary neuron shows that the proposed neuron can 
achieve up to 85% accuracy and perplexity of 1.56, similar to 
algorithmic expectations of near-ideal neurons. The circuit-
level simulations show that our proposed neuron achieves up 
to 34× improvement in energy efficiency and 2× area 
reduction compared to the CMOS-based non-binary designs. 
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