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Abstract—In this paper, we develop a low-power and area-
efficient hardware implementation for Long Short-Term
Memory (LSTM) networks as a type of Recurrent Neural
Network (RNN). The LSTM network herein employs Resistive
Random-Access Memory (ReRAM) based synapses along with
spin-based non-binary neurons to achieve energy-efficiency
while maintaining comparable accuracy. The proposed neuron
provides a novel activation mechanism with five levels of output
accuracy to mimic the ideal tanh and sigmoid activation
functions. We have examined the performance of an LSTM
network for name prediction purposes utilizing ideal, binary,
and the proposed non-binary neuron. The comparison of the
results shows that our proposed neuron can achieve up to 85%
accuracy and perplexity of 1.56, which attains performance
similar to algorithmic expectations of near-ideal neurons. The
simulations show that our proposed neuron achieves up to 34-
fold improvement in energy efficiency and 2-fold area reduction
compared to the CMOS-based non-binary designs.

Keywords—Long Short-Term Memory, Binary Stochastic
Neuron, Activation functions, Non-Binary Neuron

1. INTRODUCTION

Long Short-Term Memory (LSTM) networks, as a form of
Recurrent Neural Networks (RNNs), have achieved
noticeable recognition due to their ability to process sequential
data and gathering the impacts of the input data over time.
LSTMs have demonstrated high performance in various
sequence prediction problems in applications such as speech
recognition and machine translation. Fig. 1 shows the basic
RNN and LSTM structures. Both networks have a feedback
loop in their recurrent layer to sustain the information over
time. LSTM utilizes additional units including a memory cell
capable of storing information for long periods [1].

There are several research works exploring hardware
implementation of RNNs which employ a non-von-Neumann
architecture, based on the Compute-in-Memory (CiM)
designs to provide highly parallel and efficient models [2, 3].
Most of the previous designs utilize emerging Non-Volatile
Memory (NVM) devices such as Resistive Random-Access
Memory (ReRAM) [4], to implement the Multiplication and
Accumulation (MAC) operation via the intrinsic weighted
summation capability of cross-bar designs based on CiM
architecture. However, these designs require significant power
and area due to the employment of CMOS-based non-linear
sigmoid and tanh neurons, as their main thresholding
functions. The utilized CMOS-based neurons in prior works
[2, 3] require large built-in truth tables with extra clock cycles
that lead to higher area and energy consumption.

In this paper, we implement an LSTM network with
ReRAM-based synaptic crossbar arrays and spin-based non-
binary neurons mimicking the ideal sigmoid and tanh
thresholding functions while maintaining accuracy. To
achieve an area and energy-efficient neuron design, we
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Fig. 1. (a) Basic RNN structure, (b) LSTM

employ probabilistic spin logic devices referred to in the
literature as probabilistic bits (p-bits) [6] to develop a shared
neuron unit in the hidden layer. We investigate the
performance and efficiency of the LSTM network with three
distinct neuron structures.

II. LSTM STRUCTURE

Fig. 1. (a) shows the basic RNN structure. The RNN
output depends on both the current sample (i;) and the
previously calculated network state (w;) as the network input.
Unlike ANN, RNN has a feedback loop which enables it to
store the previous states and make the future decision based
on the previous values. The LSTM network is designed to
overcome the problem of vanishing gradients that occurs
while using the backpropagation technique in RNNs [5]. Fig.
1. (b) indicates an LSTM cell that contains input gate x;,
forget gate f; , and output gate o, . The forget gate decides
which information from the previous cell state must be
preserved or forgotten. This decision is taken using a sigmoid
layer with an output between 0 and 1 [6]. The input gate
decides what values of the new cell must be written to the cell
state. The sigmoid layer determines the input values (a
concatenation of new input values and output values from
previous states), while the tanh layer produces a vector of new
candidate values. The output gate works based on given inputs
and previous state values. The output vector is obtained by
multiplying a new cell state which is normalized to values
between -1 to 1 using tanh activation function and output of
sigmoid layer that decides the output. The dimensions of all
the gates are the same as the dimensions of the hidden state
[7]. The computational equations of LSTM are given below:

x = o(i,U* + we\_,W* + b,) (1)
f=o(i 0" + we W/ + b ) )
o = o(i,U° + w,_W° + b,) 3)
g = tanh (itUg + w,_ W9 + bg) @)
¢ =¢_10f +g0Ox 5)
w; = tanh(c;) O o. (6)
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Fig. 2. (a) The building block of non-binary neuron (p-bit),
and (b) the equivalent read circuit [8].

Three main operation types can be observed from the above
equations: nonlinear functions (sigmoid ¢ and hyperbolic
tangent tanh), matrix-vector multiplication (e.g., w,_;W?*
and i;U”), and element-wise multiplication (e.g., g © x ).

III. NEURON DESIGN
A. Probabilistic Spintronics

The spintronic device used herein is derived from
Magnetic Tunnel Junction (MTJ) which has a probabilistic
behavior with a design of 1-Transistor-with-1- MTJ structure
called an embedded probabilistic bit (p-bit) [8]. Due to the
very low energy barrier of the free layer, the p-bit
stochastically switches between its Parallel (P) and Anti-
Parallel (AP) states. The mean retention time for an MTJ (7)
is given by (7).

T = toexp(A/kT) N
where k is Boltzmann’s constant, 7, is a material-dependent
parameter called the attempt time, and T is temperature [§].

Fig. 2(a) shows the structure of the p-bit device which
consists of a Spin Hall Effect Magnetic Tunnel Junction
(SHE-MTJ) with a circular unstable (low energy barrier)
nanomagnet (A<40kT) [8], to which two CMOS inverters
are connected to amplify the output. The MTJ in the device is
unstable with two ferromagnetic layers as a pinned layer and
the free layer, separated by a thin oxide barrier on top of a
Heavy Metal (HM) nanowire [9]. The pinned layer has a
fixed orientation while the free layer can be oriented as
parallel (P) and antiparallel (AP). As shown in Fig. 2(a), the
charge current (/) injected to HM in the +x (/—x) direction
affects the resistance levels [10]. This charge current will
produce a spin current (/) and a Spin-Orbit Torque (SOT) in
+y (/-y) direction as oppositely directed spin vectors are
accumulated on each surface of the HM. The direction of the
charge current affects the spin current which further changes
the magnetization configuration of the free layer in the +z
direction [11]. Sigmoidal function can be derived by taking a
long-time average of magnetization fluctuations of the low
energy barrier nanomagnet driven by spin-current, as shown
in Fig 3(a). In Fig. 2(b) an equivalent read circuit of a SHE-
MT]J based p-bit is given in which reading operation is done
by sending a small read voltage to MTJ terminals (V+ and V-
) to sense its resistance (Rury). The Ryry and the reference
resistor RO are then used to construct a resistive voltage
divider, with the reference resistor being assigned to the MTJ
average conductance (R; 1 = GP + GAP/2) where GAP and
GP are the AP and P state conductance. The voltage from the
voltage divider is given as input to the CMOS inverters and
its output voltage (Vou) will stochastically fluctuate between
“0” and “1”, and the probability of each value is controlled
by the input charge current. Thus, a p-bit device generates a
stochastic output which is analogous to the output of a
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Fig. 3. Time-averaged behavior of SHE-MTJ based p-bit
device. (a) magnetazitaion fluctuation. (b) and (c) are the

implemented sigmoid and tanh behaviors respectively.

sigmoid activation function whose steady-state probability is
modulated by an input current. For example, if the input
current is a large positive number, the stochastic output of this
device will be “0” with a high probability. However, if there
is no input current, the output will randomly fluctuate
between “0” and “1” with an equal probability of 0.5.

B. Binary and Non-Binary Neurons

As discussed in the previous sections, LSTM networks
require sigmoid and tanh-based neurons for multiple gating
purposes. The current-controlled p-bit device shows an
analogous behavior to the sigmoid function in an average
time interval. Fig. 2. (a) shows circuit implementation of the
p-bit device. A sigmoidal behavior can be achieved by
connecting an inverter to VDD and GND. In Fig. 3. (b), the
sigmoid function output is indicated by the black dotted
curve, and the p-bit output average is indicated by the red-
circle curve which is almost the same as the sigmoid output
curve. In the same way, the nonlinear hyperbolic tangent or
tanh function can be designed using a sigmoid function as
tanh(x) = 20(2x) — 1 whose output values are between
“+1” and “-1”. This can be achieved by connecting an
inverter to VDD and -VDD in the p-bit device. In Fig. 3(¢c),
the tanh function output is indicated by the black dotted
curve, the green-circle curve indicates the time-averaged
output of the modified p-bit device (tanh (I.)). This figure
shows that the output of p-bit at each time step depends on
the input, a zero input gives an output of either “-1” or “+1”
with equal probability, a positive input /. gives a high
probability to output a positive value, and vice versa.

Therefore, the time-averaged output of the p-bit device
can provide both sigmoid and tanh function behaviors via
slightly different circuit designs. However, for practical
implementation, the p-bit device gives a binary output of
either “0” or “1” at a given time. Conversely, ideal sigmoid
and tanh functions do not have a limited binary state as
outputs but vary within a limited range based on the input
value. To utilize a p-bit device as a practical activation
function to achieve higher accuracy levels there is a need for
a novel complementary activation circuit and mechanism. In
any p-bit device, the stochasticity is highest for input current
values that are near to zero and the stochasticity reduces as
the input current values reach their highest or lowest levels.
This behavior of a p-bit can be used to implement a non-
binary neuron. This behavior is extracted in the proposed
design by running the p-bit device multiple times for the same
input obtaining a symmetric range of output voltages.
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Fig. 4. The proposed spin-based LSTM network with
non-binary neurons.

These output voltages are stored and mapped to a low-
overhead Look-Up Table (LUT) which contains the voltage
values. This technique maintains the low-power and low-area
properties of p-bit along and utilizes it to achieve an enhanced
non-binary state. We improved the p-bit based stochastic
neuron for hardware implementation by adding two
components, as shown in Fig. 4. To latch the output voltage
of the p-bit circuit, a 4-bit buffer is inserted first
corresponding to the four times of applying the crossbar
output to the p-bit device. Second, the neuron output is
formed using a LUT. We synchronized the p-bit device's
write/read access transistors in order to prevent multiple
crossbar computations. This method allows the design to
keep a reliable crossbar output current and applies it to the
neuron unit as needed. As shown in Fig. 4, we consider two
complementary signals for wr and rd. The wr signal goes high
for each sample and based on the crossbar output current the
p-bit device is programmed. To read out the p-bit resistance
and produce the output bit, the wr signal goes low and the rd
signal goes high. The 4-bit buffered data is then given to the
converter LUT which is prestored with the sampled floating-
point activation values corresponding to output combinations
in the buffer. For example, if the buffer content is 001, the
LUT selects -0.4 as the output. This value can be triggered by
either 0001/0010/0100/1000 p-bit output bitstreams. Such
non-binary neuron design is applicable in a variety of ANN
applications needing non-linear and deterministic tanh and
sigmoid activation functions.

IV. RESULTS

We evaluate the proposed LSTM design performance
starting with device-level modeling of memristive synapse
and p-bit based neuron components. We utilized the SPICE
model for memristors with the Ag-Si memristor device
parameters from [12]. The SHE-MTJ model is developed in
Verilog-A, incorporating the Landau Lifshitz—Gilbert (LLG)
equation to model the free layer magnetization dynamics and
nonequilibrium Green’s function (NEGF) to estimate the
resistance range (RP, RAP). We then combine the SPICE
models of CMOS transistors and memristors under the 14nm

Table I: The comparison of proposed non-binary neuron
with CMOS-based designs.

32x32 128x128
xbar
Siee | [121| [13] | Here | [12] | [13] | Here
xbar # 68 68 68 5 5 5
Area |17 1 0.07 | 0.06 | 0.06 | 0.02 | 0.02
(mm?)
Energy | \yaA | 404 | 014 | nva | 1.03 | 0.03
(ud)

PTM-MG library [13]. At the circuit level, we developed
crossbar arrays under two sizes (32x32, 128x128) with p-bit
neurons in HSPICE. We implemented all peripheral circuits
including row address decoders, array controller, etc. in
Synopsys Design Compiler. As application-level analysis, we
built three distinct name predictor LSTM networks via ideal,
binary, and the proposed non-binary neuron, employing the
popular names dataset available as national data [14].

A. Circuit-Level Analysis

Figure 5 shows the SPICE simulation waveforms of the
p-bit based non-binary neuron, verifying its functionality.
Here we evaluate the neuron output two times (p-bit 1 to p-
bit 2) under five input currents for four clock cycles. Here,
Isum denotes the weighted summation of input currents
realized by the resistive sub-array, ranging from -50pA to
+50uA, flowing into the p-bit device. When the Igm is -50puA
or +50pA, the output of both p-bit devices for the entire four
clock cycles are “1” and “0”, respectively, indicating the
deterministic behavior of the neuron based on these charge
currents. These outputs will later denote 0.8V and -0.8V, via
the LUT. When the Iam is -5pA, we observe different outputs
for each p-bit device. However, both outputs will later be
mapped to a shared value (-0.4V).

Additionally, we compared the area and energy
consumption of the proposed design with [15] and [16]
CMOS-based designs, under two distinct sub-array sizes as
tabulated in Table I. The simulations show that our proposed
neuron achieves up to 34x improvement in energy efficiency
and 2x area reduction compared to the CMOS-based non-
binary designs. The energy consumption results for [15]
could not be appropriately reported.

B. Experimental Results

Figure 6 shows the experimental results for three distinct
neuron designs including loss, perplexity, and accuracy
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Fig. 5. The transient simulation result of the neuron based
on the crossbar SL current.

1
i
H 1
50 HP\I -5 pA

] lDIlODOD

o

poitt lun A ClK

Rl L B

T
1
" 11
1

o4t
[e]

|
h h [&)] h
o ~0 O 2,0 O 00 O =




Loss Graph Loss Graph Loss Graph

B
R

"

Loss (Avg of 30 batches)
SR IBRESN
B
Loss (Avg of 30 batches)
=

momomowmo B

b, = 20( | n | | %
N < ra WY iy, 15 .,
Mttt | B 16| gy 10! e s
0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 ‘150 200 250
x
g Perplexity Graph T Perplexity Graph 3 Perplexity Graph
Y 35 £
3 12 a7 2 1
8 1 8 8 2
k-] 8 B 5 B 8
2 2 | g
£ 6 = ‘JHMWW‘J b < 6
£ 4]\ z Pl Y, | Z a4l
3 2| e 33 W sy T
£ 0 50 100 150 200 250 E O 5 100 150 200 250 & O 50 100 150 200 250
X
= Accuracy Graph w Accuracy Graph = Aocuracy Graph
£ og0f Mt gg-ég_ £ 080 Pr————
30151 £ WH B N
3 J 2 086/ M H‘WM 5 J
5 0] 5 064/ LT gomy f
'
|

2 oes| f Sose|y
2 % 060|

Zoes| f
& 0601
L] g

g o5 g 0s8l | ) gossl| i
< 0 50 100 150 200 250 O30 0 0520 20 B A0S0 120 250

(a) (b) (c)
Fig. 6. The experimental results of the LSTM network with
(a) ideal, (b) binary and (c) proposed non-binary neuron.

Accuracy

fluctuations for all cases. Unlike accuracy, for loss and
perplexity parameters, lower values are preferred. The plotted
data is an average of 30 training sample batch sets. The
accuracy indicates the performance of the neural network
while the perplexity graph evaluates the currently
implemented network regarding the sample data modeling. In
Fig. 6. (a), the ideal sigmoid neuron displays the limits on
possibility with an approximation for all plots. In the binary
neuron case shown in Fig. 6. (b), there is a sharp rise in
accuracy in the first sets of batches. However, it initially does
not reach the performance of the ideal sigmoidal model (Fig.
6. (a)). Consequently, the results of the binary case have a
long tail that starts around set number 50, in which the system
gradually improves as it progresses towards the end of the
batches. Additionally, the perplexity graph shows that
disturbance from discontinuity of the binary activation causes
the training algorithm to struggle in modeling the samples
using the network. After 8,000 training samples, the network
with the binary neuron shows 58% degradation at modeling
the data compared to the ideal sigmoid neuron.

Utilizing the proposed non-binary neuron, the results are
very close to the ideal case as shown in Fig. 6. (c). The
enhanced activation mechanism allows it to mimic the ideal
sigmoidal system. This is reflected in the perplexity graphs
converging to similar values, with the proposed non-binary
neuron with only 7% degradation compared to the sigmoidal
system. However, the proposed neuron, also starts with a
slightly slower training speed, as the binary activation
function. But this tail is much shorter, lasting over the course
of approximately 1,050 training samples.

V. CONCLUSION

Hardware implementation of an ideal low-power neuron
with a small area overhead is a key research challenge for
ANN:E. In this paper, we developed energy and area-efficient
hardware implementation for LSTM networks via novel spin-
based non-binary neurons. The LSTM network herein
employs ReRAM based crossbar arrays to achieve energy-
efficiency while maintaining comparable accuracy. The
proposed neuron provides a novel activation mechanism
mimicking the ideal tanh and sigmoid activation functions.

The performance evaluation of an LSTM network for name
prediction purposes utilizing ideal, binary, and the proposed
non-binary neuron shows that the proposed neuron can
achieve up to 85% accuracy and perplexity of 1.56, similar to
algorithmic expectations of near-ideal neurons. The circuit-
level simulations show that our proposed neuron achieves up
to 34x improvement in energy efficiency and 2x area
reduction compared to the CMOS-based non-binary designs.
ACKNOWLEDGMENT

This work was supported in part by the Center for Probabilistic
Spin Logic for Low-Energy Boolean and Non-Boolean Computing
(CAPSL), one of the Nanoelectronic Computing Research (nCORE)
Centers as task 2759.006, a Semiconductor Research Corporation
(SRC) program sponsored by the NSF through CCF 1739635.

REFERENCES
[1] S. Hochreiter and J. Schmidhuber, "Long short-term
memory," Neural computation, vol. 9, no. 8, pp. 1735-
1780, 1997.
2] Y. Long, et al, "Reram crossbar based recurrent neural

network for human activity detection," in 2016 IJCNN,
2016, pp. 939-946: IEEE.

[3] Y. Long, et al, "ReRAM-based processing-in-memory
architecture for recurrent neural network acceleration,"
IEEE Transactions on VLSI, vol. 26, no. 12, pp. 2781-

2794, 2018.

[4] H.-S. P. Wong et al., "Metal-oxide RRAM," Proceedings
of the IEEE, vol. 100, no. 6, pp. 1951-1970, 2012.

[5] K. Greff, et al, "LSTM: A search space odyssey," I[EEE
transactions on neural networks, vol. 28, no. 10, pp. 2222-
2232,2016.

[6] K. Smagulova, et al, "A memristor-based long short term

memory circuit," Analog Integrated Circuits Signal
Processing, vol. 95, no. 3, pp. 467-472, 2018.

[7] X. Zhu, et al, "Long short-term memory over recursive
structures," in International Conference on Machine
Learning, 2015, pp. 1604-1612: PMLR.

[8] K. Y. Camsari, et al, "Stochastic p-bits for invertible
logic," Physical Review X, vol. 7,no. 3, p. 031014, 2017.
[9] L. Liu, et al, "Spin-torque ferromagnetic resonance

induced by the spin Hall effect," Physical review letters,
vol. 106, no. 3, p. 036601, 2011.

[10] S. Sheikhfaal and R. F. Demara, "Short-Term Long-Term
Compute-in-Memory Architecture: A Hybrid
Spin/CMOS Approach Supporting Intrinsic
Consolidation," IEEE Journal on Exploratory Solid-State
Computational Devices Circuits, vol. 6, no. 1, pp. 62-70,
2020.

[11] A. Roohi, R. Zand, D. Fan, and R. F. DeMara, "Voltage-
based concatenatable full adder using spin hall effect
switching," TCAD, vol. 36, no. 12, pp. 2134-2138, 2017.

[12] L. Gao, et al, "Analog-input analog-weight dot-product
operation with Ag/a-Si/Pt memristive devices," in 2012
IEEE/IFIP 20th VLSI-SoC, 2012, pp. 88-93: IEEE.

[13] PTM. Available: http://ptm.asu.edu/

[14] Beyond  the Top 1000  Names  Available:
https://www.ssa.gov/oact/babynames/limits.html

[15] M. N. Bojnordi and E. Ipek, "Memristive boltzmann
machine: A hardware accelerator for combinatorial
optimization and deep learning," in 2016 IEEE HPCA,
2016, pp. 1-13: IEEE.

[16] A. Ardakani, et al, "VLSI implementation of deep neural
network using integral stochastic computing," [EEE
TVLSI, vol. 25, no. 10, pp. 2688-2699, 2017.




