2021 IEEE International Symposium on Information Theory (ISIT) | 978-1-5386-8209-8/21/$31.00 ©2021 IEEE | DOI: 10.1109/1SIT45174.2021.9518108

Efficient and Robust Distributed Matrix
Computations via Convolutional Coding

Anindya Bijoy Das, Aditya Ramamoorthy and Namrata Vaswani
Electrical and Computer Engineering, lowa State University, Ames, IA 50011 USA
{abd14 9,adityar, namrata}@iastate .edu

Abstract—Distributed matrix computations are well-
recognized to suffer from the problem of stragglers (slow
or failed worker nodes). The majority of prior work in this area
has presented straggler mitigation strategies that are (i) either
sub-optimal in terms of their straggler resilience, or (ii) suffer
from numerical problems, i.e., there is a blow-up of round-off
errors in the decoded result owing to the high condition
numbers of the corresponding decoding matrices. This work
introduces a novel solution framework, based on embedding the
computations into the structure of a convolutional code, that
removes these limitations. Our approach is provably optimal
in terms of its straggler resilience, and has excellent numerical
robustness which can be theoretically quantified by deriving a
computable upper bound on the worst case condition number
over all possible decoding matrices. All above claims are backed
up by extensive experiments done on the AWS cloud platform.

I. INTRODUCTION

Distributed computing clusters are heavily used in domains
such as machine learning where datasets are often so large that
they cannot be stored in a single computer. The widespread us-
age of such clusters presents several advantages over traditional
computing paradigms. However, large scale clusters, being
heterogeneous in nature, suffer from the issue of stragglers
(slow or failed workers). Coded computation introduced in [1]
is a technique for structuring distributed computations where
the overall job can be resilient to a certain number of stragglers.

The central problem within coded distributed matrix com-
putation can be explained as follows. Suppose that we have
large matrices A € R?" B € R*“ and a vector x € R?. The
goal is to either compute A7x (matrix-vector multiplication)
or ATB (matrix-matrix multiplication) in a distributed fashion
using n worker nodes while being resistant to any s stragglers.
Redundancy is introduced in the computation by coding across
the submatrices of A and B and assigning the worker nodes
appropriate computation responsibilities. Several works [1],
[2], [3], [4], [5], [6], [7], [8] operate by embedding distributed
matrix computations into the structure of erasure codes, where
the failed nodes play the role of erasures. A scheme is said to
have threshold 7 if the desired result can be decoded as long
as any 7 worker nodes return their results to the master node.

While the threshold is somewhat well understood, the issue
of numerical stability has received much less attention. While
decoding a real system of equations, errors in the input can
get amplified by the condition number (ratio of maximum and

This work is supported in part by the National Science Foundation (NSF)
under Grants CCF-1718470 and CCF-1910840.

minimum singular values) of the associated decoding matrix;
hence, a low condition number is critical. For example, the
work in [4] uses real Vandermonde matrices for encoding which
have very high condition numbers (that are exponential in their
size [9]). Some recent works [10], [11], [12] have highlighted
the issue of numerical stability in this context.

In this paper we present an efficient and robust scheme for
coded matrix computations that is inspired by convolutional
codes. Unlike the majority of convolutional codes [13], our
codes operate over the reals, and exploit the Vandermonde
property of the recovery matrices, where the matrices are
defined over a different field (formal Laurent series over R).
This naturally allows for simple encoding and decoding in
addition to ensuring the threshold properties. We present two
classes of codes in this work.

o Our first approach can be decoded with a peeling decoder
using only add/subtract operations and has excellent numerical
performance when the storage capacity of the nodes is slightly
higher than the fundamental lower bound.

« While operating very close to the storage capacity lower
bound, we propose an alternative strategy that can provide
a “computable” upper bound on the worst case condition
number of the recovery matrices. Our work draws novel
connections with this problem and the asymptotic analysis
of large block Toeplitz matrices [14]. Results in Section IV
show that the underlying structure of our codes consistently
results in significantly lower worst case condition numbers
than [10] and [12].

Owing to space limitations, most of the proofs appear in the
longer version of the paper [15].

II. CONVOLUTIONAL CODING FOR MATRIX COMPUTATION

We explain our key idea by means of the following example.
Consider two row vectors in R, ug = [ugo uo1 ... Ug(g—1))
and u; = [u1 u11 ... Ui(g—1)], Which can also be represented
as polynomials in the indeterminate D, u;(D) = Z?;é u;j D
for i = 0, 1. These polynomials can be treated as elements in
the ring of formal Laurent series in D [16]. It can be shown that
this ring is in fact a field, i.e., each element has a corresponding
inverse. Consider the following encoding of [ug(D) uy(D)].

[co(D) c1(D) c2(D) e3(D)]

— @ wo] |y] -
G (D)

978-1-5386-8209-8/21/$31.00 ©2021 IEEE 1724
Authorized licensed use limited to: lowa State University. Downloaded on October 12,2021 at 21:49:47 UTC from IEEE Xplore. Restrictions apply.

It is not too hard to see that the polynomials ug(D)
and u; (D) (equivalently the vectors up,u;) can be recov-
ered (or “decoded”) from any two entries of the vector
[co(D) c1(D) co(D) c3(D)]. For instance, suppose that we
only receive co(D) and c3(D). Notice that

q—1
CQ(D) = Z(UO]‘ +U1j)Dj and
7=0
q—2
c3(D) = oo+ Y (uo(41) +ury) D7 +uy(g-1) DY
j=0

Starting with ugo from the constant term of c3(D), one can
iteratively recover each of the coefficients of ug(D) and u; (D),
with only one new variable to recover in each iteration. A
similar argument is equally applicable if we consider a different
set of two entries from [co(D) ¢1(D) ca(D) c3(D)]. We refer
to such a decoding scheme as a “peeling decoder”.

A. Proposed matrix-vector multiplication scheme

The above idea can naturally be adapted to the distributed
matrix-vector multiplication setting. Consider a system with
n workers, s stragglers and threshold £ = n — s. Suppose
that matrix A is partitioned into A4 = kq block-columns
(the choice of ¢ will be discussed shortly). In our work, the
presentation follows more naturally if we index the block-
columns of A using two indices, as A(; jy,i € [k],j € [q]
(where [m] denotes the set {0,...,m — 1}). Let y be the
storage fraction each worker node, thus each worker stores at
most yr columns of matrix A, each having length-¢.

Let Uy(D) = YIZ)AL DI for 0 < i < k— 1.
Furthermore, let Yy s denote a k x s matrix whose (7,7)-
th element is (Y s)i; = (D7), for i € [k],j € [s], i.e., Y5
has the Vandermonde structure. We define

va(D) = [Ik Yk,s(D)] . (D
Consider the encoding
[Co(D) Ci(D) C,-1(D)]
=[Uo(D) Ui(D) Up—1(D)] G (D).

To arrive at the distributed matrix-vector multiplication
scheme, we simply interpret the coefficients of the powers
of D in C;(D) as the encoded submatrices assigned to worker
1. With this assignment, worker 7 computes the inner product
of its assigned matrices and x. The following result shows that
G0 (D) is MDS; (the proof appears at the Appendix in [15])
which implies that ATx can be recovered as long as any k
workers complete their tasks.

q submatrices A; jy,7 = 0,1,...,¢q — 1, each of which is a
matrix of size t X /(kq). The rest of the s parity workers will
receive > ¢ such submatrices. The highest exponent of D in the
generator matrix G,,,,,(D) is (s—1)(k—1). Thus, the maximum
storage needed by a worker is ¢ + (s — 1)(k — 1) submatrices.
Thus assuming a bound of on the storage capacity fraction
of any worker, we need [¢ + (s — 1)(k — 1)]g; < ~r which
indicates that

(s —1)(k—1)

TSR D

For instance, if we consider n = 4 and s = 2 and 7 is set to
%, then we can set ¢ = 4.

2

B. Proposed matrix-matrix multiplication scheme

The matrix-matrix multiplication case requires the general-
ization of the above ideas. Let @ = [ag a1 ... a,_1] and b=
[bo b1 ... bg—1] be vectors of non-negative integers such that
0<gg<a1 < --<as—p1and 0 < by < by <--- < bp_1.
Let Y; ;(D) denote a k x s matrix whose (i, j)-th entry is
given by

[Y5.4(D))i; = (D%)". 3)
Using this matrix, define a generalization of G, (D) as
G(D)=[1x | Y.(D)].)

Observe that we obtain G, (D) by setting a; = j and
b; = i, which corresponds to Yy (D). We will design
an encoding scheme for matrix-matrix multiplication whose
equivalent generator matrix is of the form in (4). Before we
explain the design, we show that this matrix also satisfies the
MDS property (the proof appears at the Appendix in [15]).

Theorem 1. Any k X k submatrix of the generator matrix
G(D) defined in (4) is non-singular.

While non-singularity by itself does not reveal information
about the corresponding condition numbers, Theorem 1 pro-
vides a class of schemes with a specific structure that have
excellent numerical stability (see Fig. 3 “All Ones” curve) and
can be modified and analyzed for condition number using the
techniques discussed in Theorem 2 within Section III. The
structure of G(D) in (4) also allows for an efficient peeling
decoder; requires only add/subtract operations for decoding.

In the matrix-matrix case, we design generator matrices
G4 (D) of size ka x n and Gg(D) of size kg x n such that
s = n — kakp. Each worker stores fractions v4 and g of
matrices A and B respectively. Let z be a large enough positive
integer and let

qa—1
Corollary 1 (Corollary of upcoming Theorem 1 given in UAD) = Z A%’; i D# i € [ka], and (5)
Section II-B). Any k x k submatrix of G,,,(D) has a j=0
determinant which is a non-zero polynomial in D, i.e., it qs—1
is non-singular. UP(D)= Y By,D’,ic kg (6)
Analogous to convolutional coding, we call the first & /=0
workers the message workers and the last s workers the Furthermore, we let U4(D) = [U§(D) ... Uy, _,(D)]
parity workers. Each of the first & message workers receives and UP(D) = [UF(D) ... Uf _(D)]. The final goal
1725

Authorized licensed use limited to: lowa State University. Downloaded on October 12,2021 at 21:49:47 UTC from IEEE Xplore. Restrictions apply.

of the master node is to recover all products of the form
liv iy Blingoy for i1 € [kal,j1 € [qal,i2 € [kB],j2 € [g5].

Once again by forming
[Ci(D) C{(D) ... CA_
[cE(p) cB(p) ... CE

/(D)) = UA(D)GA(D), and
{(D)] = UP(D)G (D),

we can represent the assignment of coded submatrices of A
and B to worker node i by the coefficients of C(D) and
CJB(D) respectively. Following this step, each worker node
computes the pairwise product of each coded submatrix of A
and coded submatrix of B assigned to it.

The matrices G 4(D) and Gp(D) will be picked in such a
way so that the pairwise product of each coefficient of C;“(D)
and each coefficient of CB (D) appears in C#(D) x CZ(D),

i.e., each worker node equivalently computes C:*(D) x CZ(D).

Now using the properties of the Khatri-Rao product, we have
[CH'(D) ... Chi(D)]@[CF(D) ... CFy(D)]
[U4(D)Ga(D)] © [UP(D)Gp(D)]

= [U4(D) @ UP(D)] [Ga(D)® Gp(D)]. (7)
where ©® and ® denotes the Khatri-Rao product [17] and
Kronecker Product, respectively.

The key idea at this point is to ensure that G 4(D)©Gg(D)

has the structure of a matrix as in (4). Towards this end, we
choose ka

1,, 0 ... 0
0 1, ... 0
Gap) = | 0 0 0 | Y09,
0o o 1h,
ka
Gp(D) = [Iy I, Ly | Yigs(D)],

where 1, is an all-ones row vector of length kp, and the
total number of rows in G 4(D) and Gp(D) are k4 and kg
respectively. This implies that

Ga(D)©Gp(D) =Lk | Yi,s(D*)© Yigs,s(D)] (8)

where k = kakp. Lemma 1 (proof appears in [15]) shows that
the RHS of (8) has the structure of the matrix in (4).

Lemma 1. The Khatri-Rao product Yy, s(D?) © Yi,.s(D)

is a matrix in the form of (3), when z > ¢+ (s—1)(kp—1).

Lemma 1 explains why Theorem 1 is applicable to the
coding scheme used for matrix-matrix multiplication. Thus,
this lemma, along with Theorem 1 implies that the proposed
convolutional code based matrix-matrix multiplication scheme
is MDS. Next, using an approach similar to (2), we can derive

—1)(ka—1 —1)(kp —1

P (7S | RN € L 1}
ka(va— ;) ke(ve — ;)

Example 1. Consider the computation of A”B over n = 6

workers and s = 2 stragglers. Assume that each worker can
store/process y4 = 5/8 fraction of matrix A and v = 2/3

P09 @

Aoy |[Awo) | [Awo) ||[Awo) | |Awo +Axo A0.0)
Ay |[Aoy |[Acy |[[Aay | |Awy T Ay || Ay +Awo)
A |[Awn2) |[Ac |[Aaz | |Aw T A ||Aw2) + Ay
A |[Aws) | [Aws) |[Aws) | |Aws T Aws) || Aws) + A
* * * * * A3
Bo.oy || Beroy [[Beo.oy || Biroy | [Booy +Bioy Bo.0)
By By [| By [|Bay | | By +Bay||Boy +Buo
Bog) B [| B2 || B | | B2 +Bag | [Boz + By
* * * * * B,
Fig. 1. Matrix-matrix multiplication with n = 6 workers and s = 2

stragglers with y4 = % and vp = %

fraction of matrix B. We set k4 = kg = 2, so that g4 = 4
and gp = 3. Setting z = gg + (s — 1)(kp — 1) = 4, we obtain

ZA y DY, fori=0,1;

and UZ(D :ZBMDJ‘, fori=0,1.
§=0
Furthermore,
1100 1 1
Ga(D) = [0 01 11 D4] and
101 01 1
GB(D)_[O 1011 D]
The assignment of jobs to all the workers can

be obtained from [UA(D)
(UG (D)

U4 (D)]Ga(D) and
UZ(D)] Gp(D). This is shown in Fig. 1.

Remark 1. Our proposed encoding process is very simple and
involves only additions at the master node.

C. Effect of q: storage fraction, imbalance in task assignment

Our presented scheme thus far is provably MDS, efficiently
decodable and has excellent numerical stability in experiments.
Note that our schemes require lower bounds on the value of ¢
which have an inverse dependence on v — 1/k. Thus, if one
wants to reduce the imbalance between the task assignments
to the message nodes and the parity nodes, then g needs to
be chosen large enough. It turns out that for large values of g,
the worst case condition number of our scheme can be quite
large. We present a theoretical treatment of this phenomenon
in Section III and discuss techniques for mitigating this effect.

III. NUMERICAL STABILITY ANALYSIS

To understand numerical stability, we first introduce a modi-
fied encoding scheme and then discuss the matrix representation
of the coding ideas described above.

1726
Authorized licensed use limited to: lowa State University. Downloaded on October 12,2021 at 21:49:47 UTC from IEEE Xplore. Restrictions apply.

Definition 1 (Randomly scaled generator matrix). Let R be a
k x s matrix of real numbers. Consider the generator matrix
G(D) defined in (4). Replace Y3 ;(D) by Ro Yy (D). Here,
o denotes the Hadamard product (.* operation in MATLAB).

Note that if we set all entries of the matrix R to 1, we recover
the old generator matrix G (D) (the “All-Ones” case) mentioned
in (4). It is not hard to see that the matrix representation of
the transformation induced by the k& x n generator polynomial
matrix G(D) from Definition 1 can be understood as right
multiplying a kg-length row vector of input data by the
following matrix.

Definition 2 (G: matrix representation of G(D)). We first
define a ¢ x (¢ + h) shift matrix that takes a g-length row
vector and returns a g+ h-length row vector, where the original
vector is shifted to the right by j components. This is the matrix
Dhii & [04x; I, Ogx(n—j)]. The (i, £)-th block matrix of
Gfor¢=0,1,....k—1landi=0,1,...,k—1is

(Glig=1, if i=¢; and (G)ip=0gxq if i#L;

and for { =k+j,7=0,1,...(s—1),

(Gie = Tijbajbkfﬁajbi.

s—1
Thus, G is a kg x (ng + 6) matrix where § = br_1 », aj.
j=0
With the above definition, decoding can be understood as
inverting the specific k£ x k block submatrix of G, denoted
GI where 7 is the set of indices of the k workers that have
returned their jobs. Now, since all computing devices are finite
precision, matrix multiplications will frequently result in bit
overflow/underflow and hence round-off errors. The decoding
process amplifies the round-off error by a factor that can at
most be as large as the condition number of the decoding matrix
[15]. Thus, the numerical stability of our scheme is quantified
by the largest condition number over all block submatrices
GI, i.e., by

H(GI).

[I>

Raworst max
IC[n),|Z|=k

A. Upper bounding K.,orst

Observe that the matrix G, and consequently the decoding
submatrix Gz with |Z| = k, has a very specific structure.
Because of this, it is possible to show that the matrix GI(}%
is a k x k block matrix with Toeplitz blocks of size ¢ X ¢
(see Appendix in [15]). Now, the asymptotics of)\max(ézég)
and)\min((}zé;{) when ¢ is large have been studied in [18].
In particular, Theorem 3 of [18] shows that using Fourier
transform ideas, one can bound the eigenvalues of such matrices
by computing the minimum (and maximum) of the smallest
(and largest) eigenvalues of a much smaller k£ x k& matrix that
is a function of a scalar parameter w which lies in [—, 7].

With some abuse of notation, let Gz(e“) represent the
matrix obtained by extracting Gz(D) (from G(D) in (4)) and
then substituting D = €l (where i = \/—1). By adapting the
results of [18] (see Appendix in [15] for a detailed description),
we have the following theorem.

Theorem 2. For Z C {0,...,n — 1} such that |Z| = k,
lim Amin(GzG3%) = min])\min[(GI(ei“))(GI(ei‘“))*];

q—00 we[—m,m
im Apax(GzG%) = max Amax[(Gz(e“))(Gz(e))*].
q—00 wE[—m,m]

Moreover, for any ¢

Amax(GzG7T) < werfla;(ﬂ Amax[(Gz(e“))(Gz(e™))™];

Amin(GzG7T) > Lo Amin[(Gz(e"))(Gz(e))"].

Theorem 2 shows that we can find an upper bound on the
condition number of G based on a scalar optimization over
w € [—m,w]. When R is chosen to be the all-ones matrix, the
characterization of Theorem 2 allows us to conclude that when
s > 1, there exist choices of Z C {0,1,...,n —1},|Z| = k
such that GIG} has a minimum eigenvalue that will go to
zero as ¢ — oo. In particular, the corresponding Gz (e)
has repeated columns for w = 0 (see [15] for an example).
Therefore considering a nontrivial scaling of the parity part
with a matrix R is essential for well-conditioned behavior
when ¢ is large.

B. Randomly-weighted convolutional coding

Now we show that choosing the matrix R randomly in
Definition 1 results in better numerical stability than the
“All-Ones” scheme in the regime of large g. The following
result shows that the MDS property continues to hold with
probability 1 when the entries are chosen i.i.d. from a
continuous distribution. The proof is an easy consequence
of Theorem 1 and appears at the Appendix in [15].

Corollary 2. If the entries of the matrix R are chosen i.i.d.
from any continuous-valued probability distribution, then, any
k x k submatrix of the generator matrix mentioned in Definition
1 is non-singular with probability one.

We now demonstrate that choosing the matrix R randomly
allows us to upper bound the worst case condition number
(over the recovery matrices) even when ¢ — oo. In the matrix-
vector scenario, Theorem 2 suggests the following algorithm
for choosing R. Let Z C {0,...,n — 1},|Z| = k and let
Q= {O,i%,i%,...,ﬂ:w7ﬂ:ﬂ} for a large positive
integer N denote a fine enough grid of the interval [—, 7).
Let kg be defined as

max)\Inax[(GI(eiw)) (GI(eiw))*]

we

max 2 . .
7c{0,...,n—1}, min Apin[(Gz (%)) (Gz(e))*]
|Z|=k weN

for any randomly chosen R. Thus kg indicates the maximum
condition number of Gz(e'*) over all (}) choices of Z; this
is an upper bound on the maximum condition number of G.
The algorithm repeatedly generates choices of R and retains
the choice that has the lowest value of xg; this is denoted by
R*. The matrix-matrix case is similar, except that we obtain
two random matrices R% and R, to minimize the worst case
condition number of the appropriate submatrices of (8).

1727
Authorized licensed use limited to: lowa State University. Downloaded on October 12,2021 at 21:49:47 UTC from IEEE Xplore. Restrictions apply.

=+ Predicted Upper Bound for n =12, s =3
«e« Actual Condition Number for n = 12, s = 3
81,500 | == Predicted Upper Bound for n =13, s =3 | |
g -m: Actual Condition Number for n =13, s = 3
Z 1,200 E
g -
= 900 :
:é".'.
s} L "]
O 600 varenres g aus T IO IO IO UIUUT
"lo-ooo-o.o-oo—oo—o-o.ono
a® _eoo®®
300 r-:,o" 1
ad Il Il Il Il
800 1,600 2,400 3,200 4,000
kq
Fig. 2. Kworst for random convolutional code for different n and s.

TABLE I
COMPARISON OF Kqyorst FORT = 18 AND s = 3

METHODS Ruworst
POLYNOMIAL CODE [4] 4.031 x 107
ORTHO-POLY CODE [10] 2.506 x 10*
RANDOM KHATRI-RAO CODE[12] 5329.3
CIRCULANT AND ROTATION MATRIX [11] 102
PROPOSED ALL-ONES CONV CODE 4417.8
PROPOSED RANDOM CONV CODE 1829.4

Example 2. For systems withn =12,s =3 and n =13,s =
3, we conducted 50 random trials each to find the corresponding
R* for matrix vector multiplication. Our algorithm also returns
the asymptotic upper bound on x(R*). By sweeping over
values of g, we can compute the actual worst-case condition
number (Kyorst) for each particular chosen value of ¢. Fig. 2
depicts the upper bound and £,-s¢ for different n and s.

IV. COMPARISONS AND NUMERICAL EXPERIMENTS

We compare our approaches with [4], [10], [11], [12] by
numerical experiments which are performed over a cluster in
AWS (Amazon Web Services); a more exhaustive comparison
appears in [15]. A t2.2x1large machine is used as the master
node and t2.small machines as the slave nodes. Software
code for recreating these experiments can be found at [19].

Comparing x.,,s; and MSE: We choose a system with
n = 18 workers and s = 3 stragglers, and set y4 = % and

'yB:%withkA:5andk3:3,sok:kAkB:nfs:15.

Table I reports a comparison of the worst-case condition
numbers for different approaches in the literature. It can be
observed that the work of [4] has much higher condition
numbers than both of our proposed schemes (All-ones and
Random). Our approaches are also better than the work of [10]
and [12] in terms of worst case condition number (K. orst) -

Next in AWS, we choose matrices A and B of sizes
15,000 x 10080 and 15, 000 x 12000, respectively. We simulate
errors in the worker node computations by adding white
Gaussian noise to the calculated submatrix products obtained

from the worker nodes and sweeping the range of SNRs.

We compare the normalized mean-squared error (MSE) of
the different matrix-matrix multiplication methods for their
respective worst case scenarios. The corresponding results

1019 Polynomial Code [4] (1.61sec) |
g v+ Ortho Poly Code[10] (1.60sec)
S 1015 «»+ Random KR Code [12] (0.29sec) 1
s == Circulant and Rotation Matrix [11] (1.61sec)
= 10 =B+ Proposed All Ones Conv Codes (0.34sec) ||
g == Proposed Random ConvCodes (0.57sec)
S 107
2 0
= 10
o
Ny
= 10
E 105
s 10~
Z
1077

50 60 70 80 90 100 110 120 130 140 150
SNR (in dB)

Fig. 3. Comparison of normalized MSE for different approaches (with
the corresponding decoding time in the legend).

11 Orthogonal Polynomial Approach [10]
107-{I"Random Khatri-Rao Product Codes [12] |
liProposed Random Convolutional Codes

Worst case condition number

s=3

s=4 s=15

Fig. 4. Comparison of K orst for matrix-vector multiplication among [10],
[12] and our proposed rand. conv. code approach for n = 20 with s = 3,4
and 5, where for the proposed method, we used v = respectively.

15 14> 15°
appear in Fig. 3 (for additive Gaussian noise) where we observe
that even at SNR = 70 dB, our approach is around 9, 4 and
2 orders of magnitude better than [4], [10] and [12]. The
corresponding decoding time is also reported in the legend
which shows that the decoding time for our approaches compare
quite well with other approaches.

The numerical performance of [11] is better than ours but our
scheme has the advantage of much more efficient decoding. The
decoding process in [11] requires solving a system of equations
whose complexity can be cubic in the size of the unknowns,
whereas our proposed ‘all-ones’ approach can recover the
unknowns using a very low-complexity peeling decoder.

Comparing [10], [12] and our approach The RKRP
approach in [12] can be considered as specific instance of
our random scaling method where the scaling is applied to a
trivial all-ones parity matrix, instead of a carefully designed
Y; (D). As both approaches are random and pick the best
choices, we conducted an experiment where we ran 100 trials
for both methods (with n = 20 and s = 3,4, 5) and picked the
respective best choices (see Fig. 4 for corresponding Kqorst)- It
is clear that the structure imposed in our construction improves
the condition number as compared to [12]. Moreover, Fig. 4
also demonstrates the superiority of our approach to [10].

1728
Authorized licensed use limited to: lowa State University. Downloaded on October 12,2021 at 21:49:47 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[11 K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans. on
Info. Th., vol. 64, no. 3, pp. 1514-1529, 2018.

[2] K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix
multiplication,” in IEEE Intl. Symposium on Info. Th., 2017, pp. 2418—
2422.

[3] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation in
distributed matrix multiplication: Fundamental limits and optimal coding,”
IEEE Trans. on Info. Th., vol. 66, no. 3, pp. 1920-1933, 2020.

[4] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an optimal
design for high-dimensional coded matrix multiplication,” in Proc. of
Adv. in Neur. Inf. Proc. Syst. (NIPS), 2017, pp. 4403-4413.

[5] S. Dutta, V. Cadambe, and P. Grover, “Short-dot: Computing large linear
transforms distributedly using coded short dot products,” in Proc. of Adv.
in Neur. Inf. Proc. Syst. (NIPS), 2016, pp. 2100-2108.

[6] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and P. Grover,

“On the optimal recovery threshold of coded matrix multiplication,” IEEE

Trans. on Info. Th., vol. 66, no. 1, pp. 278-301, 2019.

A. Mallick, M. Chaudhari, U. Sheth, G. Palanikumar, and G. Joshi,

“Rateless codes for near-perfect load balancing in distributed matrix-

vector multiplication,” Proceedings of the ACM on Meas. and Analysis

of Comp. Syst., vol. 3, no. 3, pp. 1-40, 2019.

S. Wang, J. Liu, and N. Shroff, “Coded sparse matrix multiplication,” in

Proc. of Intl. Conf. on Machine Learning (ICML), 2018.

[9] V. Pan, “How Bad Are Vandermonde Matrices?”” SIAM Journal on Matrix
Analysis and Applications, vol. 37, no. 2, pp. 676-694, 2016.

[10] M. Fahim and V. R. Cadambe, “Numerically stable polynomially coded
computing,” in J[EEE Intl. Symposium on Info. Th., July 2019, pp. 3017—
3021.

[11] A. Ramamoorthy and L. Tang, “Numerically stable coded matrix
computations via circulant and rotation matrix embeddings,” preprint,
2019, [Online] Available: https://arxiv.org/abs/1910.06515.

[12] A. M. Subramaniam, A. Heidarzadeh, and K. R. Narayanan, “Random
Khatri-Rao-Product Codes for Numerically-Stable Distributed Matrix
Multiplication,” in 57th Annual Conf. on Comm., Control, and Computing
(Allerton), Sep. 2019, pp. 253-259.

[13] S. Lin and D. J. Costello, Error Control Coding, 2nd Ed. Prentice Hall,
2004.

[14] R. M. Gray, “Toeplitz and circulant matrices: A review,” Foundations
and Trends® in Comm. and Inf. Th., vol. 2, no. 3, pp. 155-239, 2006.

[15] A. B. Das, A. Ramamoorthy, and N. Vaswani, “Efficient and robust
distributed matrix computations via convolutional coding,” preprint, 2020,
[Online] Available: https://arxiv.org/abs/1907.08064.

[16] I. Niven, “Formal power series,” The American Mathematical Monthly,
vol. 76, no. 8, pp. 871-889, 1969.

[17] X.-D. Zhang, Matrix Analysis and Applications. Cambridge University
Press, 2017.

[18] H. Gazzah, P. A. Regalia, and J.-P. Delmas, “Asymptotic eigenvalue
distribution of block Toeplitz matrices and application to blind SIMO
channel identification,” IEEE Trans. on Info. Th., vol. 47, no. 3, pp.
1243-1251, 2001.

[19] Straggler Mitigation Codes. [Online]. Available: https://github.com/
anindyabijoydas/StragglerMitigateConvCodes

[7

—

[8

=

1729
Authorized licensed use limited to: lowa State University. Downloaded on October 12,2021 at 21:49:47 UTC from IEEE Xplore. Restrictions apply.

