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Abstract—Coded matrix computation utilizes concepts from
erasure coding to mitigate the effect of slow worker nodes
(stragglers) in the distributed setting. While this is useful, there
are issues with applying, e.g., MDS codes in a straightforward
manner for this problem. Several practical scenarios involve
sparse matrices. MDS codes typically require dense linear com-
binations of submatrices of the original matrices which destroy
their inherent sparsity; this leads to significantly higher worker
computation times. Moreover, treating slow nodes as erasures
ignores the potentially useful partial computations performed by
them. In this work we present schemes that allow us to leverage
partial computation by stragglers while imposing constraints on
the level of coding that is required in generating the encoded
submatrices. This significantly reduces the worker computation
time as compared to previous approaches and results in improved
numerical stability in the decoding process. Exhaustive numerical
experiments support our findings.

I. INTRODUCTION

Coded computation is an emerging area that uses ideas from
coding theory to make distributed computation resilient to
stragglers (slow or failed workers). In particular, ideas from
MDS codes have been successfully used for distributed matrix
computations [1], [2], [3], [4], [5], [6]. For these systems, we
define a so-called recovery threshold which is the minimum
value of τ , such that the master node can recover the desired
result as long as any τ out of n workers complete their tasks.

While these are interesting ideas, there are certain issues that
are ignored in the majority of prior work (see [7], [8], [9], [10],
[11], [12] for some exceptions). Firstly, several practical cases
of matrix computations involve sparse matrices. Using MDS
coding strategies in a straightforward manner will often destroy
the sparsity of the encoded matrices being processed by the
worker nodes. In fact, this can cause the overall job execution
time to actually go up rather than down [9]. Secondly, in the
distributed computation setting, we observe that it is possible
to leverage partial computations performed by the stragglers.
Thus, a slow worker may not necessarily be a useless worker.

In this work, we propose distributed matrix multiplication
schemes which can exploit slow workers by utilizing their
partially finished tasks. In particular for computing ATB, we
partition matrices A and B into ∆A and ∆B block-columns
which leads to ∆ = ∆A∆B pairwise block-products of the
form AT

i Bj , i ∈ [∆A], j ∈ [∆B ] ([m] denotes {0, . . . ,m−1}).
For any time t, we let wi(t) represent the state of computation
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of the i-th worker node, (0 ≤ wi(t) ≤ `), which represents
the number of tasks that have been processed by worker
node i (where ` is the total number of assigned jobs to that
worker). Thus, our system requirement states that as long as∑n−1

i=0 wi(t) ≥ Q, the master node should be able to determine
ATB, and our objective is to minimize the value of Q/∆. This
formulation (introduced in our prior work [13] for matrix-vector
multiplication) subsumes treating stragglers as non-working
nodes. Furthermore, in several of our schemes we can specify
the number of block-columns of the individual A and B
matrices that are linearly combined to arrive at the encoded
matrices. This can be much lower than competing schemes [3],
[14], [15] and [16]. Thus, our schemes ensure that the encoded
matrices are not much denser than the original matrices. This
is especially useful in the case of sparse matrices that often
appear in practical settings. Owing to space limitations, most
of the proofs appear in the long version of the paper [17].

II. PRELIMINARIES

Suppose that a given worker node is assigned encoded block-
columns Ãi, i ∈ [`A] and B̃j , j ∈ [`B ]. The assignment speci-
fies a top to bottom order to compute ` = `A`B block-products,
ÃT

0 B̃0, Ã
T
0 B̃1, . . . , Ã

T
0 B̃`B−1, Ã

T
1 B̃0, ..., Ã

T
1 B̃`B−1, Ã

T
2 B̃0,

. . . , ÃT
`A−1B̃0, . . . , Ã

T
`A−1B̃`B−1, sequentially.

Definition 1. A scheme for distributed matrix computation is
called a β-level coding scheme if the assigned block-columns
are a linear combination of β products of the submatrices of
A and B. The case with β = 1 represents an uncoded scheme.

Our constructions leverage the properties of combinatorial
structures known as resolvable designs [18].

Definition 2. A resolvable design is a pair (X ,A) where X is
a set of elements (called points) and A is a family of non-empty
subsets of X (called blocks) that have the same cardinality. A
subset P ⊂ A is called a parallel class if ∪{i:Ai∈P}Ai = X
and if Ai ∩ Aj = ∅ for Ai,Aj ∈ P when i 6= j.

The incidence matrix N of a design (X ,A) is a |X | × |A|
binary matrix such that the (i, j)-th entry is a 1 if the i-th
point is a member of the j-th block and zero, otherwise.

In the discussion below we refer to the blocks of a design
as “meta-symbols” (to avoid confusion with block-columns).

Cyclic Assignment: We will use a cyclic assignment of
tasks [13] extensively in our constructions. We illustrate this
by an example for matrix-vector multiplication.
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Fig. 1: Partitioning matrix A into five submatrices and assigning
three uncoded tasks in a cyclic fashion to the workers, which leads
to s = 2 and Q = 10 (for example, at most nine tasks, enclosed in
dotted lines, can be processed without processing any copy of AT

4 x).

Example 1. Consider an example of computing ATx, where
we have n = 5 workers and each worker can process γ =
3/5 fraction of the total job. We partition the matrix A into
∆ = 5 block-columns as A0,A1, . . . ,A4. Now we consider
X = {0, 1, 2, 3, 4}. If we do not incorporate any coding among
the block-columns, then for block length β = 1, we have the
trivial parallel class P = {{0}, {1}, . . . , {4}}. Fig. 1 shows
that we allocate three uncoded submatrices to each worker
in a cyclic fashion according to the indices of three elements
of P . It can be verified that the system is resilient to s = 2
stragglers. In the sequel, our assignment can be coded as well.

Suppose, we have ∆ symbols denoted 0, . . . ,∆− 1, n = ∆
worker nodes and ` symbols to be placed in each worker node
where ` ≤ ∆. The symbols can be, e.g., the product of encoded
block-columns of A and B. A cyclic scheme assigns the set
{j, j+1, . . . , j+`−1} (mod ∆) to worker node Wj ; symbol j
appears at the top and sequentially symbol (j + `− 1) (values
reduced modulo ∆) at the bottom. Wj processes the tasks
specified by the symbols from top to bottom. The position of
a symbol in a node is denoted by an integer between 0 and
`− 1, where 0 denotes the top and `− 1 denotes the bottom.

Lemma 1. [17] The cyclic scheme has the following properties.
• Each symbol appears ` times across n worker nodes.

Furthermore, it appears in each position 0, 1, . . . , ` − 1
exactly once, across all n workers.

• Let αc be the maximum number of symbols that can be
processed across all worker nodes such that a specific
symbol j is processed exactly c times (where 0 ≤ c ≤
`). Then, αc = ∆` − `(`+1)

2 +
∑c−1
i=0 (` − i), which is

independent of j.

Example 1 shows an application of Lemma 1 where a
maximum of α0 = 9 tasks can be processed (as depicted
in Fig. 1) while task AT

4 x is processed zero times. This is true
for any task, so for this uncoded scheme, we have Q = 10.

III. β-LEVEL CODING FOR DISTRIBUTED COMPUTATIONS

For matrix-matrix multiplication, most prior methods [3],
[14], [15], [16] consider γA = 1/kA, γB = 1/kB and create
the encoded matrices by linearly combining kA and kB block-
columns of A and B respectively. This can make the encoded
matrices kA and kB times denser than the input matrices.

In this section, we present our approach where we allow βA
and βB level coding for the input matrices; βA and βB are
user-specified integers and can be much smaller than kA and
kB . Thus, the encoded matrices are at most βA and βB times
denser than the input matrices. Furthermore, our approach can
leverage partial computations by the slower worker nodes.

Consider n worker nodes each of which can store γA =
a1
a2

and γB = b1
b2

fractions of matrices A and B which are
partitioned into ∆A and ∆B block-columns respectively; there
are ∆ = ∆A∆B unknowns of the form AT

i Bj . We allow
βA-level and βB-level coding for matrices A and B, where
γA ≤ 1

βA
and γB ≤ 1

βB
and set ∆A = βAa2,∆B = βBb2.

To specify the scheme, we choose two separate resolvable
designs with block sizes βA and βB , as (XA,A) where XA =
{0, 1, . . . ,∆A−1}, and (XB,B) where XB = {0, 1, . . . ,∆B−
1}. Let PA0 ,PA1 , . . . and PB0 ,PB1 , . . . denote distinct parallel
classes of these designs, respectively. We assume that the
number of workers n = c× a2b2 where c is a positive integer.

The overall idea is to partition the set of n worker nodes
into c disjoint groups denoted G0, . . . ,Gc−1, each of which
consists of n

c = a2b2 workers. For each group Gi, we pick
parallel classes PAi and PBi ; these parallel classes can also
be the same for the different groups. The scheme operates by
placing cyclically shifted meta-symbols from PAi with `A meta-
symbols in each worker for the first ∆A/βA = a2 workers.
For these workers, the assignment of `B meta-symbols from
PBi is the same. For the next set of a2 workers, the assignment
of meta-symbols from PAi repeats; however, now we employ
a cyclic shift for the assignment of meta-symbols from PBi .
For each assigned meta-symbol, we generate a coded block-
column by choosing a random linear combination of the βA
(respectively βB) block-columns within it. Thus, the product
of two assigned coded block-columns within a worker consists
of a random linear combination of β = βAβB unknowns and
each worker computes ` submatrix products sequentially. The
complete algorithm is specified in Alg. 1.

Example 2. Fig. 2 depicts an example with n = 36, γA =
γB = 1

3 and βA = βB = 2 so that ∆A = ∆B = 6. We
use the same parallel class, {{0, 1}, {2, 3}, {4, 5}} for both A
and B for all four groups. We use random vectors of length
βA = βB = 2 to obtain the encoded matrices, e.g., W0 will first
compute (x0A

T
0 +x1A

T
1 )(y0B0 +y1B1) where x0, x1, y0 and

y1 are chosen i.i.d. at random from a continuous distribution.
In contrast, the works in [3], [14], [15], [16] require linearly

combining three block-columns of A and B, respectively.

Let NA and NB denote the corresponding incidence matrices
of two parallel classes PA and PB . Consider the matrix NAB
formed by considering all pair-wise Kronecker products of
columns from NA and NB . Then the rows of NAB correspond
to unknowns of the form AT

i Bj and the columns correspond
to the support of the random linear equations that are formed
by considering the pairwise products. We will refer to the
meta-symbols of NAB as product meta-symbols and denote
it by PAB . It can be shown that NAB also forms a parallel
class of size ∆×∆/β, where ∆ = ∆A∆B and β = βAβB .
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{4, 5}

{0, 1}
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{0, 1}

{4, 5}

{0, 1}

Fig. 2: Job assignment for worker group G0 for β-level matrix-
matrix multiplication scheme with n = 36 with γA = γB = 1

3
and

∆A = ∆B = 6 using a single parallel class with βA = βB = 2.
The indices {i, j} on top and bottom parts indicate random linear
combinations of the submatrices of A and B, respectively. Here
β = βAβB = 4, and groups G1, G2 and G3 are assigned the same
symbols as workers W0−W8, but with different random coefficients.

Algorithm 1: β-level coding scheme for distributed
matrix-matrix multiplication
Input : Matrices A and B, storage fractions of the

workers γA = a1
a2
γB = b1

b2
, βA, βB-coding

level for A and B, respectively, and number
of worker nodes, n = c× a2b2, where c ∈ Z+.

1 Partition A into ∆A = βAa2 block-columns and
partition B into ∆B = βBb2 block-columns;

2 ∆ = ∆A∆B , `A = ∆AγA, `B = ∆BγB , β = βAβB ;
3 Assume XA = {0, 1, 2, . . . ,∆A − 1} and find parallel

classes PAi having block size βA, i = 0, 1, . . . , c− 1;
4 Assume XB = {0, 1, 2, . . . ,∆B − 1} and find parallel

classes PBi having block size βB , i = 0, 1, . . . , c− 1;
5 for i← 0 to c− 1 do
6 Denote PAi = {pA0

, pA1
, . . . , pAa2−1

};
7 Denote PBi = {pB0

, pB1
, . . . , pBb2−1

};
8 for j ← 0 to ∆

β − 1 do
9 Assign sets pAj

, pAj+1
, . . . , pAj+`A−1

from top
to bottom (indices mod a2) to worker ∆

β i+ j;
10 k ← b ja2 c, and assign sets pBk

, pBk+1
, . . . ,

pBk+`B−1
(indices reduced modulo b2) from

top to bottom to worker ∆
β i+ j;

11 Choose random linear combinations of the
constituent block-columns of meta-symbols of
PAi and PBi of length βA and βB respectively;

12 end
13 end

Output : Distributed matrix-matrix multiplication
scheme having β-level coding.

Theorem 1. If we use a single parallel class PA for A and a
single parallel class PB for B across all c worker groups, then
the scheme described in Alg. 1 will be resilient to s = c`− β
stragglers and will have, Q = n` − c`(`+1)

2 + `(β − 1) + 1,
where ` = `A`B and β = βAβB ≤ c.

Proof. It can be shown that any product meta-symbol will
appear in ` distinct workers in each of c worker groups [17].
Thus there are a total of c` appearances of that product meta-

symbol across all the worker nodes. Furthermore, each such
product meta-symbol corresponds to a product of random linear
combination of β = βAβB corresponding unknowns (block-
columns). As the choice of these random coefficients is made
i.i.d. from a continuous distribution, as long as any β product
meta-symbols are processed across all the worker nodes, the
constituent unknowns will be decodable with probability 1.
Thus, the scheme is resilient to any c`− β stragglers.

For the second claim, suppose that there exists a product
meta-symbol ? that is processed at most β − 1 times when
n`− c`(`+1)

2 + `(β − 1) + 1 product meta-symbols have been
processed. For each worker group, ? appears in all the positions
0, . . . , `−1. Suppose that ? appears i times in ηi worker groups
for i = 1, . . . , y. Thus,

∑y
i=1 iηi ≤ β − 1 and the maximum

number of product meta-symbols that can be processed is,
Q′ =

∑y
i=1 ηiαi + (c−

∑y
i=1 ηi)α0 where α0 = ∆

β `−
`(`+1)

2

and αi = α0 +
∑i−1
j=0(`− i) = α0 + i`− i(i−1)

2 as specified in
Lemma 1 (by setting the number of symbols to ∆/β). Thus,

Q
′

= cα0 + `
y∑
i=1

iηi −
y∑
i=1

ηi
i(i−1)

2 ≤ cα0 + `(β − 1) (1)

since we have
∑y
i=1 iηi ≤ β − 1. Equality holds in (1) if we

have y = 1 and η1 = β − 1. In the worst case therefore, we
can process α1 symbols from β − 1 groups and α0 symbols
from the remaining groups. This gives a total of

(β − 1)α1 + (c− β + 1)α0 = n`− c`(`+ 1)

2
+ `(β − 1)

symbols, same as the bound in (1). Thus if Q ≥ n`− c`(`+1)
2 +

`(β−1)+1, we are guaranteed that every product meta-symbol
is processed at least β times. This concludes the proof. �

Extensions of this result when β > c can be found in [17].

Remark 1. It can be verified that the distributed scheme shown
in Fig. 2 is resilient to s = c`−β = 4× 4− 4 = 12 stragglers
and has Q = 117. On the other hand, the works of [3], [14]
and [15] will be resilient to 27 stragglers. However, the worker
node computation time for their approaches can be much higher,
e.g., 2.5 times, for 98% sparsity (see Table I).

It should be noted that the parallel class structure within
the resolvable design ensures that there is no repetition of any
unknown within any particular worker. Moreover, a judicious
choice of different parallel classes in different groups can lead
the scheme to be resilient to more stragglers with a smaller
Q/∆, as discussed in details in [17].

Remark 2. For β > 1 the Q/∆ ratio can be reduced
significantly as compared to the uncoded (β = 1) case. To see
this consider, n = ca2b2 where γA = a1

a2
, γB = b1

b2
and c ≥ β.

For the uncoded case with β = 1, we have ∆unc = a2b2,
and Qunc = n` − c`(`+1)

2 + 1 where ` = a1b1. On the
other hand for β-level coding, we have ∆β = βa2b2, and
Qβ = n`− c`(`+1)

2 + `(β − 1) + 1 where ` = βa1b1. Thus

Qunc
∆unc

− Qβ
∆β

= (β − 1)

[
γ

(
ca1b1

2
− 1

)
+

1

βa2b2

]
> 0.
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Algorithm 2: Sparsely coded straggler (SCS) optimal
scheme for distributed matrix-matrix multiplication
Input : Matrices A and B, n-number of worker

nodes, storage fractions γA = 1
kA

, γB = 1
kB

.
1 Set ∆A = LCM(n, kA) and ∆B = kB , ∆ = ∆A∆B ;
2 Partition A and B into ∆A and ∆B block-columns;
3 Number of coded submatrices of A in each worker

node, `c = ∆A

kA
− ∆

n ;
4 for i← 0 to n− 1 do
5 u← i× ∆A

n , and define
T =

{
u, u+ 1, . . . , u+ ∆

n − 1
}

(modulo ∆A);
6 Assign all Am’s sequentially from top to bottom to

worker node i, where m ∈ T ;
7 Assign `c different random linear combinations of

Am’s for m /∈ T ;
8 Assign a single random linear combination of all

block-columns of B;
9 end

Output : 〈n, γA, γB〉 SCS optimal scheme.

IV. SPARSELY CODED STRAGGLER OPTIMAL MATRIX
COMPUTATIONS

In the previous section, we demonstrated βA and βB level
coding techniques that ensure that the encoded matrices are
not too dense. However, this comes at a corresponding penalty
in the straggler-resilience of the scheme. In this section we
propose a sparsely coded straggler (SCS) optimal scheme in
Alg. 2, which is suitable for sparse matrices and enjoys the
optimal threshold kAkB [3] when γA = 1/kA, γB = 1/kB .
Moreover, unlike previous “dense” coded approaches [3], [14],
[15], our scheme can utilize the partial computations of the
slow workers and can provide significantly small Q/∆. As
before, we split A and B into ∆A and ∆B block-columns. We
set ∆B = kB and place only one random linear combination
of the block-columns of B in each worker so that γB = 1/kB .
On the other hand, each worker receives a carefully chosen
number (`u) of uncoded block-columns of A, followed by
`c random linear combinations of block-columns of A, such
that γA = 1/kA = (`u + `c)/∆A. The uncoded assignment
follows a block-cyclic shift across the workers (see Fig. 3 for
an example).

Theorem 2. [17] Alg. 2 proposes a distributed matrix-matrix
multiplication scheme which is resilient to s = n − kAkB
stragglers and has Q = ∆ + (kB − 1)`c.

Proof. The proof of straggler resilience appears in [17]. We dis-
cuss the calculation of Q here. Let u(`,j) for j = 0, 1, . . . , `c−1
denote the j-th random encoding vector for A in worker node
W` and v(`) the corresponding random encoding vector for B,
for ` = 0, 1, . . . , n−1. Once Q block-products are received, we
will demonstrate that there exists a system of ∆ equations (out
of those Q) that corresponds to decoding the AT

i Bj’s which
is nonsingular with probability 1, for i = 0, 1, . . . ,∆A− 1 and
j = 0, 1, . . . ,∆B − 1. Let ei denote the i-th unit vector of

length ∆A. For a given Ai, suppose that it appears uncoded in
the worker nodes of Ji where |Ji| ≤ kB (A simple counting
argument applied to Alg. 2 shows that any uncoded block-
column of A appears exactly kB times over all n workers).
We obtain certain equations from the uncoded part which
correspond to ei ⊗ v(`) (⊗ denotes the Kronecker product) for
` ∈ Ji; we refer to these as uncoded-coded block products.
Thus, if |Ji| < kB then we need to use the coded-coded
products for decoding the unknowns corresponding to Ai.

The block system of equations under consideration corre-
sponds to a ∆AkB×∆AkB square matrix with random entries.
For Ai such that |Ji| = kB the matrix consists of a kB × kB
block on the diagonal with kB distinct vectors v(`). This block
is nonsingular with probability-1 owing to the random choice
of the v(`)’s. For the other Ai’s where |Ji| < kB we will
demonstrate a setting of the u(`,j)’s such that the entire matrix
is a block diagonal matrix with kB×kB blocks of distinct v(`)

vectors. This demonstrates that there exists a choice of random
coefficients for which the system of equations is nonsingular.
Following this, the result holds with probability-1 when the
choice is made at random from a continuous distribution.

Towards this end, suppose that the pattern of obtained
products is such that we get ∆− λ uncoded-coded products
and λ + (kB − 1)`c coded-coded products. Without loss of
generality we assume that we need to decode the products that
involve A0,A1, . . . ,Aδ−1 using the coded-coded products.
Furthermore we suppose that Ai appears kB − ηi times within
the uncoded products, so that η0 + η1 + · · ·+ ηδ−1 = λ.

Under this setting, there are at least (kB−1)`c+λ− (kB−
η0)`c = (η0 − 1)`c + λ coded-coded products that can be
obtained from worker nodes that do “not contain” an uncoded
copy of A0. Furthermore, these are spread out in at least η0

distinct worker nodes. Next, we pick η0 encoding vectors for
A from η0 distinct workers and set them all to e0. With this
setting we obtain a kB × kB block (corresponding to decoding
AT

0 Bj , j = 0, . . . ,∆B−1) that consists of distinct v(`) vectors
that are nonsingular with probability 1.

At this point we are left with (kB − 1)`c + λ− η0 coded-
coded products. The argument can be repeated for A1 since
there are at least (η1 − 1)`c + λ − η0 coded-coded products
that can be obtained from workers where A1 does not appear,
which in turn correspond to at least η1 distinct workers. In this
case we will set the η1 encoding vectors to e1. The process
can be continued in this way until the coded-coded products
are assigned to each of A0,A1, . . . ,Aδ−1.

At the end of the process we can claim that we have a block
diagonal matrix where each block is a kB × kB square matrix
with distinct v(`) vectors. Thus each block and consequently
the entire system of equations is nonsingular. Finally, as there
exists a choice of random values that makes the system of
equations nonsingular, it continues to be nonsingular with
probability 1 under a random choice. �

Example 3. Consider an example in Fig. 3 with n = 5 and
kA = kB = 2, so we have s = 1. We set ∆A = LCM(n, kA) =
10 and ∆B = kB = 2. Thus, Q = 21, and Q/∆ = 1.05.
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TABLE I: Comparison of number of stragglers, Q values, worker computation time (in seconds) and worst case condition number (κworst)

for matrix-matrix multiplication for n = 18 and γA = γB = 1
3

(*for convolutional code, kA = kB = 4).

METHODS STRAGGLERS Q
∆

VALUE
WORKER COMPUTATION TIME

κworstSPARSITY 98% SPARSITY 95%

POLYNOMIAL CODE [3] 9 N/A 2.58 10.16 7.33× 106

ORTHO-POLY CODE [14] 9 N/A 2.51 10.08 1.33× 107

RANDOM KR CODE[15] 9 N/A 2.63 10.23 2.15× 105

CONVOLUTIONAL CODE* [16] 2 N/A 2.44 10.19 1.82× 103

PROPOSED UNCODED (βA = βB = 1) 1 17/9 0.69 1.96 1.41
PROPOSED β-LEVEL CODING (βA = βB = 2) 4 16/9 1.02 3.68 8.89× 103

W0 W1 W2 W3 W4

A0

A1

A2

A3

CA
0

CB
0

A2

A3

A4

A5

CA
1

CB
1

A4

A5

A6

A7

CA
2

CB
2

A6

A7

A8

A9

CA
3

CB
3

A8
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Fig. 3: Matrix-matrix multiplication with n = 5 and s = 1 with γA =
γB = 1

2
. CA

i and CB
i are the coded submatrices assigned to worker

Wi, given by
∑9

j=0 R
(i,j)
A Ai and

∑1
j=0 R

(i,j)
B Bi, respectively.

TABLE II: Comparison of Q values, worker computation time (in
seconds) and worst case condition number (κworst) for matrix-matrix
multiplication for n = 24, γA = 1

4
and γB = 1

5
(*for convolutional

code, we assume γA = 2
5

and γB = 1
3

) for 95% and 98% sparsity.

METHODS Q
∆

COMP. TIME (S)
κworst98% 95%

POLY CODE [3] N/A 3.11 8.29 2.40× 1010

ORTHO-POLY [14] N/A 3.08 8.16 1.96× 106

RKRP CODE[15] N/A 3.15 8.22 2.83× 105

CONV CODE* [16] N/A 5.16 10.92 2.65× 104

SCS OPTIMAL APPR. 7/6 1.93 4.76 4.93× 106

V. NUMERICAL EXPERIMENTS AND COMPARISONS

We performed numerical experiments over a Amazon Web
Services (AWS) to compare the different approaches. We chose
a t2.2xlarge machine is used as the master node and
t2.small machines as the worker nodes.

A. Comparison with the proposed β-level coding scheme

First we chose a system with n = 18 and γA = γB = 1/3,
where A and B are sparse matrices of dimensions 12000 ×
13680 and 12000× 10260, respectively. The sparsity level of
A and B can be 98% (or 95%), which indicates that randomly
chosen 2% (or 5%) entries of matrices A and B are non-zero.

Table I shows the comparison for different approaches in
terms of different metrices. The dense coded approaches [3],
[14], [15] and [16] are MDS but they do not consider the
partial computations of the slower workers1. On the other hand,
our proposed approaches are capable of utilizing the partial
computations of the stragglers which are quantified by the Q/∆
values. We can see that the β-level coding approaches, with
βA = βB = 2 , have smaller Q/∆ values than the uncoded
approach where β = 1. A larger value of β would provide
smaller value of Q/∆.

Next, we note that the worker node computation times for
other methods are 2 ∼ 4 times higher than our schemes; this
is because our schemes are able to preserve the sparsity of the
encoded matrices better than other methods. A more optimized
sparse matrix-multiplication scheme in Python could result
in bigger multiplicative gaps between these approaches. Lastly,
the numerical stability of our schemes is also much better
than [3], [14] and [15], which is verified by the smaller worst
case condition number (κworst) over all choices of stragglers.
A reason behind a smaller κworst may be that even in the
worst case, the decoding of some β unknowns depends on a
β× β system matrix whose entries are chosen randomly. Thus
a smaller choice of β may lead to a smaller κworst.

B. Comparison with the proposed SCS optimal approach

In this experiment, we compare the dense coded approaches
with our proposed sparsely coded straggler (SCS) optimal
approach in terms of Q/∆ values, worker computation time
and κworst values. For this construction we work with random
sparse matrices A and B of dimensions 12000× 15000 and
12000× 13500. The system has n = 24 workers, with γA = 1

4
and γB = 1

5 so that the optimal threshold is 20. As shown in
Table II, our worker node computation times are significantly
lower than other prior works. Next, although all schemes have
the same threshold (20), our proposed SCS optimal scheme can
leverage the partial computations done by the slower workers
and provides a significantly small Q/∆ value. Moreover, it
can be observed that the worst case condition number of our
scheme also much lower than [3] and comparable with the
other schemes.

1In principle one can extend [3] for partial computation with Q/∆ = 1
by placing multiple polynomial evaluations within a worker. However, this is
impractical owing to numerical instability and higher computation times [17]
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