
Numerically stable coded matrix computations via
circulant and rotation matrix embeddings

Aditya Ramamoorthy and Li Tang
Department of Electrical and Computer Engineering

Iowa State University, Ames, IA 50011
{adityar,litang}@iastate.edu

Abstract—Polynomial based methods have recently been used
in several works for mitigating the effect of stragglers in
distributed matrix computations. However, they suffer from
serious numerical issues owing to the condition number of the
corresponding real Vandermonde-structured recovery matrices.
For a system with n worker nodes where s can be stragglers
the condition number grows exponentially in n. We present a
novel coded computation approach that leverages the properties
of circulant permutation and rotation matrices. Our scheme has
an optimal recovery threshold and an upper bound on the worst
case condition number of our recovery matrices which grows as
≈ O(ns+6); in the practical scenario where s is a constant, this
grows polynomially in n. Our schemes leverage the well-behaved
conditioning of complex Vandermonde matrices with parameters
on the complex unit circle, while still working with computation
over the reals. Exhaustive experimental results demonstrate that
our proposed method has condition numbers that are orders of
magnitude lower than prior work.

I. INTRODUCTION

In recent years, approaches based on coding theory (re-
ferred to as “coded computation”) have been effectively used
for straggler mitigation. Coded computation offers significant
benefits for specific classes of problems such as matrix compu-
tations. There have been several works (see, e.g., [1] [2] [3]),
that have exploited the correspondence of coded computation
with erasure codes (see [4] for a tutorial introduction and
relevant references). The matrix computation is embedded into
the structure of an underlying erasure code and stragglers are
treated as erasures. A scheme is said to have a threshold τ
if the master node can decode the intended result (matrix-
vector or matrix-matrix multiplication) as long as any τ nodes
complete their tasks.

In this work we examine coded computation from the per-
spective of numerical stability. Erasure coding typically works
with operations over finite fields. Solving a linear system of
equation over a finite field only requires the corresponding
system to be full-rank. However, when operating over the real
field, a numerically robust solution can only be obtained if
the condition number (ratio of maximum to minimum singular
value) [5] of the system of the equations is small. It turns out
that several of the well-known coded computation schemes
that work by polynomial evaluation/interpolation have serious

This work was supported in part by the National Science Foundation (NSF)
under Grant CCF-1718470 and Grant CCF-1910840.

numerical stability issues owing to the high condition number
of corresponding real Vandermonde system of equations. In
this work, we present a scheme that leverages the properties
of structured matrices such as circulant permutation matrices
and rotation matrices for coded computation. These matrices
have eigenvalues that lie on the complex unit circle. Our
scheme allows us to exploit the significantly better behaved
conditioning of complex Vandermonde matrices while still
working with computation over the reals. We also present
exhaustive comparisons with existing work.

II. PROBLEM FORMULATION

Consider a scenario where the master node has a large t×r
matrix A ∈ Rt×r and either a t×1 vector x ∈ Rt×1 or a t×w
matrix B ∈ Rt×w. The master node wishes to compute ATx
or ATB in a distributed manner over n worker nodes in the
matrix-vector and matrix-matrix setting respectively. Towards
this end, the master node partitions A (respectively B) into
∆A (respectively ∆B) block-columns. Each worker node is
assigned δA ≤ ∆A and δB ≤ ∆B linearly encoded block-
columns of A0, . . . ,A∆A−1 and B0, . . . ,B∆B−1, so that
δA/∆A ≤ γA and δB/∆B ≤ γB , where γA and γB represent
the storage fraction constraints for A and B respectively.

In the matrix-vector case, the i-th worker is assigned en-
coded submatrices of A and the vector x and computes their
inner product. In the matrix-matrix case it computes pairwise
products of submatrices assigned to it (either all or some
subset thereof). We say that a given scheme has computation
threshold τ if the master node can decode the intended result
as long as any τ out of n worker nodes complete their jobs.

The overall goal is to (i) design schemes that are resilient
to s stragglers (s is a design parameter), while ensuring that
the (ii) desired result can be decoded in a efficient manner,
and (iii) the decoded result is numerically robust even in the
presence of round-off errors and other sources of noise.

Numerical stability is quantified by the condition number
κ(M) = ||M||||M−1|| of a matrix M where ||M|| denotes
the maximum singular value of M. For a system of equations
My = z, where z is known and y is to be determined, if
κ(M) ≈ 10b, then the decoded result loses approximately
b digits of precision [5]. In particular, matrices that are
ill-conditioned lead to significant numerical problems when
solving linear equations.

1712978-1-5386-8209-8/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
In

fo
rm

at
io

n
Th

eo
ry

 (I
SI

T)
 |

 9
78

-1
-5

38
6-

82
09

-8
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IS

IT
45

17
4.

20
21

.9
51

77
50

Authorized licensed use limited to: Iowa State University. Downloaded on October 12,2021 at 21:57:46 UTC from IEEE Xplore. Restrictions apply.

III. NUMERICALLY STABLE DISTRIBUTED MATRIX
COMPUTATION SCHEMES

Let i =
√
−1 and let [m] denote the set {0, . . . ,m − 1}.

For a matrix M, M(i, j) denotes its (i, j)-th entry, whereas
Mi,j denotes the (i, j)-th block sub-matrix of M. The notation
M1⊗M2 denotes the Kronecker product of M1 and M2 and
the superscript ∗ for a matrix denotes the complex conjugate.

Definition 1. Rotation matrix. The 2× 2 matrix Rθ below is
called a rotation matrix.

Rθ =

[
cos θ − sin θ
sin θ cos θ

]
= QΛQ∗, where (1)

Q =
1√
2

[
i −i
1 1

]
, and Λ =

[
eiθ 0
0 e−iθ

]
. (2)

Definition 2. Circulant Permutation Matrix. Let e be a row
vector of length m with e = [0 1 0 . . . 0]. Let P be
a m × m matrix with e as its first row. The remaining
rows are obtained by cyclicly shifting the first row with the
shift index equal to the row index. Then Pi, i ∈ [m] are
said to be circulant permutation matrices. Let W denote
the m-point Discrete Fourier Transform (DFT) matrix, i.e.,
W(i, j) = 1√

m
ω−ijm for i ∈ [m], j ∈ [m] where ωm = ei 2πm

denotes the m-th root of unity. Then, it can be shown [6] that
P = Wdiag(1, ωm, ω

2
m, . . . , ω

(m−1)
m)W∗.

Rotation matrices and circulant permutation matrices have
the useful property that they are “real” matrices with complex
eigenvalues that lie on the unit circle. We use this property
extensively in the sequel.

Definition 3. Vandermonde Matrix. A m ×m Vandermonde
matrix V with parameters s0, s1, . . . , sm−1 ∈ C is such that
V(i, j) = sij , i ∈ [m], j ∈ [m]. If the si’s are distinct, then V
is nonsingular [7]. In this work, we will also assume that the
si’s are non-zero.

The following facts about κ(V) follow from prior work [8].

• Real Vandermonde matrices. If si ∈ R, i ∈ [m], i.e., if V is
a real Vandermonde matrix, then it is known that its condition
number is exponential in m.
• Complex Vandermonde matrices with parameters “not” on
the unit circle. Suppose that the si’s are complex and let
s+ = maxm−1

i=0 |si|. If s+ > 1 then κ(V) is exponential in
m. Furthermore, if 1/|si| ≥ ν > 1 for at least β ≤ m of the
m parameters, then κ(V) is exponential in β.

Thus, the only scenario where the condition number is some-
what well-behaved is if most or all of the parameters of V are
complex and lie on the unit-circle. In [9], we show the fol-
lowing result which is one of our key technical contributions.

Theorem 1. [9] Consider a m × m Vandermonde matrix
V where m < q (where q is odd) with distinct parameters
{s0, s1, . . . , sm−1} ⊂ {1, ωq, ω2

q , . . . , ω
q−1
q }. Then,

κ(V) ≤ O(qq−m+6).

Remark 1. If q − m is a constant, then κ(V) grows only
polynomially in q. In the subsequent discussion, we will
leverage Theorem 1 extensively.

Illustrative Example: Consider the matrix-vector case where
∆A = 3 and δA = 1. In the polynomial approach, the master
node forms A(z) = A0 + A1z + A2z

2 and evaluates it at
distinct real values z1, . . . , zn. The i-th evaluation is sent to
the i-th worker node which computes AT (zi)x. The decoding
at the master node corresponding to solving a Vandermonde
system of equations; when ∆A is large, the interpolation is
numerically unstable [8].

The basic idea of our approach to tackle the numerical
stability issue is as follows. We further split each Ai into
two equal sized block-columns. Thus, we now have six block-
columns, indexed as A0, . . . ,A5. Consider the 6 × 2 matrix
defined below; its columns are specified by g0 and g1.

[g0 g1] =

 I
Ri
θ

R2i
θ

 .
The master node forms “two” encoded matrices for the i-
th worker:

∑5
j=0 Ajg0(j) and

∑5
j=0 Ajg1(j) (where gi(l)

denotes the l-th component of the vector gi); γA is still 1
3 .

Worker i computes the inner product of these two encoded
matrices with x and sends the result to the master node.

When any three workers i0, i1, and i2 complete their tasks,
the decodability and numerical stability of recovering ATx
depends on the condition number of the following matrix. I I I

Ri0
θ Ri1

θ Ri2
θ

R2i0
θ R2i1

θ R2i2
θ

 .
Using the eigendecomposition of Rθ (cf. (2)) the above block
matrix can expressed asQ 0 0

0 Q 0
0 0 Q

 I I I
Λi0 Λi1 Λi2

Λ2i0 Λ2i1 Λ2i2

︸ ︷︷ ︸

Σ

Q∗ 0 0
0 Q∗ 0
0 0 Q∗

 ,
As the pre- and post-multiplying matrices are unitary, the
condition number of the above matrix only depends on the
properties of the middle matrix, denoted by Σ. Upon ap-
propriate column and row permutations, Σ can be shown
equivalent to a block diagonal matrix where each of the
blocks is a Vandermonde matrix with parameters on the unit
circle [9]. Thus, the matrix is invertible if the corresponding
parameters are distinct. Furthermore, even though we use “real
computation”, the numerical stability of our scheme depends
on Vandermonde matrices with parameters on the unit circle.
Theorem 1 shows that the condition number of such matrices
is much better behaved.
Encoding schemes: In this work our general strategy will be
to first partition the matrices A and B into ∆A = kA` and
∆B = kB` block-columns respectively. However, we use two
indices to refer to their respective constituent block-columns
as this simplifies our later presentation. To avoid confusion,

1713
Authorized licensed use limited to: Iowa State University. Downloaded on October 12,2021 at 21:57:46 UTC from IEEE Xplore. Restrictions apply.

we use the subscript 〈i, j〉 to refer to the corresponding (i, j)-
th block-columns. In particular A〈i,j〉, i ∈ [kA], j ∈ [`] and
B〈i,j〉, i ∈ [kB], j ∈ [`] refer to the (i, j)-th block column of
A and B respectively, such that

A = [A〈0,0〉 . . . A〈0,`−1〉 | . . . | A〈kA−1,0〉 . . . A〈kA−1,`−1〉],

B = [B〈0,0〉 . . . B〈0,`−1〉 | . . . | A〈kB−1,0〉 . . . A〈kB−1,`−1〉].
(3)

The encoding matrix for A will be specified by a kA`× n`
“generator” matrix G such that

Â〈i,j〉 =
∑

α∈[kA],β∈[`]

G(α`+ β, i`+ j)A〈α,β〉 (4)

for i ∈ [n], j ∈ [`]. A similar rule will apply for B and result
in encoded matrices B̂〈i,j〉. Thus, in the matrix-vector case
worker node i stores Â〈i,j〉 for j ∈ [`] and x, whereas in
the matrix-matrix case it stores Â〈i,j〉 and B̂〈i,j〉, for j ∈ [`].
Therefore, worker i stores γA = `/∆A = 1/kA and γB =
`/∆B = 1/kB fractions of matrices A and B, respectively. In
the matrix-vector case (Section III-A), worker node i computes
ÂT
〈i,j〉x for j ∈ [`] and transmits them to the master node.

In the matrix-matrix case (Section III-B), it computes all `2

pairwise products ÂT
〈i,l1〉B̂〈i,l2〉 for l1 ∈ [`], l2 ∈ [`].

In [9], we also consider the general case when matrices are
block decomposed along both rows and columns.
Decoding Scheme: With the above encoding, the decoding
process corresponds to solving linear equations. We discuss
the matrix-vector case here; the matrix-matrix case is quite
similar. In the matrix-vector case, the master node receives
ÂT
〈i,j〉x of length r/∆A for j ∈ [`] from a certain number of

worker nodes and wants to decode ATx of length r. Based
on our encoding scheme, this can be done by solving a ∆A×
∆A linear system of equations r/∆A times. The structure of
this linear system is inherited from the encoding matrix G.
The decoding complexity is O(∆3

A + r∆A), corresponding to
inversion and solving r/∆A systems of equations; typically
we have r � ∆2

A.

A. Distributed Matrix-Vector Multiplication

1) Rotation Matrix Embedding: Let q be an odd number
such that q ≥ n, θ = 2π/q and ` = 2 (cf. block column
decomposition in (3)). We choose the generator matrix such
that its (i, j)-th block submatrix for i ∈ [kA], j ∈ [n] is given
by

Grot
i,j = Rji

θ (5)

Theorem 2. [9] The threshold for the rotation matrix based
scheme specified above is kA. Furthermore, the worst case
condition number of the recovery matrices is upper bounded
by O(qq−kA+6).

Proof. Follows by generalizing the analysis in the example
discussed previously and using Theorem 1; details are in [9].

2) Circulant Permutation Embedding: Let q̃ be a prime
number which is greater than or equal to n. We set ` = q̃− 1,
so that A is sub-divided into kA(q̃ − 1) block-columns as in
(3). In this embedding we have an additional step. Specifically,
the master node generates the following “precoded” matrices.

A〈i,q̃−1〉 = −
q̃−2∑
j=0

A〈i,j〉, i ∈ [kA]. (6)

In the subsequent discussion, we work with the set of block-
columns A〈i,j〉 for i ∈ [kA], j ∈ [q̃]. The coded submatrices
Â〈i,j〉 for i ∈ [n], j ∈ [q̃] are generated by means of a kAq̃×nq̃
matrix Gcirc as follows.

Â〈i,j〉 =
∑

α∈[kA],β∈[q̃]

Gcirc(αq̃ + β, iq̃ + j)A〈α,β〉, (7)

where the (i, j)-th block of Gcirc can be expressed as

Gcirc
i,j = Pji, for i ∈ [kA], j ∈ [n]. (8)

The matrix P denotes the q̃ × q̃ circulant permutation matrix
introduced in Definition 2. For this scheme the storage fraction
γA = q̃/(kA(q̃ − 1)), i.e., it is slightly higher than 1/kA.

Remark 2. The Â〈i,j〉’s can simply be generated by additions
since Gcirc is a binary matrix.

Theorem 3. [9] The threshold for the circulant permutation
based scheme specified above is kA. Furthermore, the worst
case condition number of the recovery matrices is upper
bounded by O(q̃q̃−kA+6).

The proof is conceptually similar to the proof of Theorem
2 and relies critically on the fact that all eigenvalues of P lie
on the unit circle and that P can be diagonalized by the DFT
matrix W. The circulant permutation embedding admits an
efficient decoding algorithm where the fast Fourier Transform
(FFT) plays a key role (details in [9]).

B. Distributed Matrix-Matrix Multiplication

The matrix-matrix case requires the introduction of newer
ideas within this overall framework. In this case, a given
worker obtains encoded block-columns of both A and B and
representing the underlying computations is somewhat more
involved. Once again we let θ = 2π/q, where q ≥ n (n
is the number of worker nodes) is an odd integer and set
` = 2. Furthermore, let kAkB < n. The (i, j)-th blocks of
the encoding matrices are given by

GA
i,j = Rji

θ , for i ∈ [kA], j ∈ [n], and

GB
i,j = R

(jkA)i
θ , for i ∈ [kB], j ∈ [n].

The master node operates according to the encoding rule
discussed previously (cf. (4)) for both A and B. Thus, each
worker node stores γA = 1/kA and γB = 1/kB fraction of
A and B respectively. The i-th worker node computes the
pairwise product of the matrices ÂT

〈i,l1〉B̂〈i,l2〉 for l1, l2 = 0, 1
and returns the result to the master node. Thus, the master
node needs to recover all pair-wise products of the form

1714
Authorized licensed use limited to: Iowa State University. Downloaded on October 12,2021 at 21:57:46 UTC from IEEE Xplore. Restrictions apply.

GA
l ⊗GB

l =

QQ∗

QΛlQ∗

...
QΛl(kA−1)Q∗

⊗

QQ∗

QΛlkAQ∗

...
QΛlkA(kB−1)Q∗

 =

(IkA ⊗Q)

I

Λl

...
Λl(kA−1)

 [Q∗]
⊗

(IkB ⊗Q)

I

ΛlkA

...
ΛlkA(kB−1)

 [Q∗]
 ,

AT
〈i,α〉B〈j,β〉 for i ∈ [kA], j ∈ [kB] and α, β = 0, 1. Let Z

denote a 1 × 4kAkB block matrix that contains all of these
pair-wise products.

Theorem 4. The threshold for the rotation matrix based
matrix-matrix multiplication scheme is kAkB . The worst case
condition number is bounded by O(qq−kAkB+6).

Proof. Let τ = kAkB and suppose that the workers indexed
by i0, . . . , iτ−1 complete their tasks. Let GA

l denote the l-
th block column of GA (with similar notation for GB). For
k1, k2 ∈ {0, 1} the l-th worker node computes ÂT

〈l,k1〉B̂〈l,k2〉
which can be written as ∑

α∈[kA],β∈{0,1}

GA(2α+ β, 2l + k1)AT
〈α,β〉

×

 ∑
α∈[kB],β∈{0,1}

GB(2α+ β, 2l + k2)B〈α,β〉

≡ Z · (GA(:, 2l + k1)⊗GB(:, 2l + k2)),

using the properties of the Kronecker product. Based on this,
it can be observed that the decodability of Z at the master
node is equivalent to checking whether the following matrix
is full-rank.

G̃ = [GA
i0 ⊗GB

i0 |G
A
i1 ⊗GB

i1 | . . . |G
A
iτ−1
⊗GB

iτ−1
].

To analyze G̃, consider the decomposition of GA
l ⊗GB

l , for
l ∈ [n] at the top of the page where the first equality uses the
eigenvalue decomposition of Rθ. Applying the properties of
Kronecker products, this can be simplified as

Q̃1

I
Λl

...
Λl(kA−1)

⊗

I
ΛlkA

...
ΛlkA(kB−1)

︸ ︷︷ ︸
Xl

Q̃2

where Q̃1 = (IkA ⊗ Q) ⊗ (IkB ⊗ Q) and Q̃2 =
[
Q∗
]⊗2

.
Therefore, we can express

[GA
i0 ⊗GB

i0 |G
A
i1 ⊗GB

i1 | . . . |G
A
iτ−1

⊗GB
iτ−1

]

= Q̃1[Xi0 |Xi1 | . . . |Xiτ−1]

Q̃2 0 . . . 0

0 Q̃2 . . . 0
...

...
. . .

...
0 0 . . . Q̃2

 .
Once again, we can conclude that the invertibility and the

condition number of G̃ only depends on [Xi0 |Xi1 | . . . |Xiτ−1]
as the matrices pre- and post- multiplying it are both unitary.

The invertibility of [Xi0 |Xi1 | . . . |Xiτ−1
] essentially follows

from polynomial interpolation; a detailed argument appears
in [9]. The argument in [9] also shows that upon appropriate
permutation, the matrix [Xi0 |Xi1 | . . . |Xiτ−1] can be expressed
as a block-diagonal matrix with four blocks each of size
τ × τ . Each of these blocks is a Vandermonde matrix with
parameters from the set {1, ωq, ω2

q , . . . , ω
q−1
q }. Therefore,

[Xi0 |Xi1 | . . . |Xiτ−1
] is non-singular and it follows that the

threshold of our scheme is kAkB . An application of Theorem
1 implies that the worst case condition number is at most
O(qq−τ+6).

IV. COMPARISONS AND NUMERICAL EXPERIMENTS

As discussed previously, the scheme of [2] has condition
numbers that are exponential in the recovery threshold τ ,
whereas our method has a worst case condition number (over
the recovery worker node set) that is at most O(qq−τ+6) where
q can be chosen to be n if n is odd. This is corroborated by
our numerical experiments as well. In Section VII of [13],
the authors propose a finite field embedding approach as a
potential solution to the numerical issues encountered when
operating over the reals. For this purpose the real entries will
need to multiplied by appropriate scaling constants and then
quantized so that each entry lies with 0 and p − 1 for a
large enough prime p. Following this all computations will be
performed within the finite field of order p, i.e., by reducing
the computations modulo-p, the product will also be recovered
within the finite field and then rescaled to obtain the final
real matrix estimate. This technique requires that each AT

i Bj

needs to have all its entries within 0 to p− 1, otherwise there
will be errors in the computation. Let α be an upper bound
on the absolute value of matrix entries in A and B. Then, this
means that the following dynamic range constraint (DRC),

α2t ≤ p− 1

needs to be satisfied. Otherwise, the modulo-p operation will
cause arbitrarily large errors.

When working over 64-bit integers, the largest integer is ≈
1019. Thus, even if t < 105, the finite-field embedding method
can only support α ≤ 107. Thus, the range is rather limited.
Furthermore, considering matrices of limited dynamic range
is not a valid assumption. In machine learning scenarios such
as deep neural networks, matrix multiplications are applied
repeatedly, and the output of one stage serves as the input
for the other. Thus, over several iterations the dynamic range
of the matrix entries will grow. Consequently, applying this
technique will necessarily incur quantization error.

1715
Authorized licensed use limited to: Iowa State University. Downloaded on October 12,2021 at 21:57:46 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Comparison for ATB matrix-matrix multiplication case with n = 31, kA = 4, kB = 7. A has size 8000× 14000,
B has size 8400× 14000.

Scheme γA γB τ Avg. Cond. Num. Max. Cond. Num. Avg. Worker Comp. Time (s) Dec. Time (s)
Real Vand. 1/4 1/7 28 4.9× 1012 2.3× 1013 2.132 0.407

Complex Vand. 1/4 1/7 28 27 404 8.421 1.321
Rot. Mat. Embed. 1/4 1/7 28 27 404 2.121 0.408

[10] 1/4 1/7 28 1449 8.3× 104 2.263 0.412
[11] 1/4 1/7 28 255 5.6× 104 2.198 0.406

Random Conv. [12] 1/3 1/6 28 - ≤ 3.4× 104 - -

The most serious limitation of the method comes from the
fact that the error in the computation (owing to quantization) is
strongly dependent on the actual entries of the A and B matri-
ces. In fact, we can generate structured integer matrices A and
B such that the normalized MSE of their approach is exactly
1.0. Towards this end we first pick the prime p = 2147483647
(which is much larger than their publicly available code) so
that their method can support higher dynamic range. Next let
r = w = t = 2000. This implies that α has to be ≤ 1000 by
the dynamic range constraint. For kA = kB = 2, the matrices
have the following block decomposition.

A =

[
A0,0 A0,1

A1,0 A1,1

]
, and

B =

[
B0,0 B0,1

B1,0 B1,1

]
.

Each Ai,j and Bi,j is a matrix of size 1000 × 1000, with
entries chosen from the following distributions. A0,0, A0,1

are distributed Unif(0, . . . , 9999) and A1,0, A1,1 distributed
Unif(0, . . . , 9). Next, B0,0, B0,1 are distributed Unif(0, . . . , 9)
and B1,0,B1,1 distributed Unif(0, . . . , 9999). In this scenario,
the DRC requires us to multiply each matrix by 0.1 and quan-
tize each entry between 0 and 999. Note that this implies that
A1,0,A1,1,B0,0,B0,1 are all quantized into zero submatrices
since the entry in these four submatrices is less than 10. We
label the quantized matrices by the superscript ·̃. We emphasize
that the finite field embedding technique only recovers the
product of these quantized matrices. However, this product
is

ÃT B̃ =

[
Ã0,0 Ã0,1

0 0

]T [
0 0

B̃1,0 Ã1,1

]
= 0.

Thus, the final estimate of the original product ATB, de-
noted as ÂTB is the all-zeros matrix. This implies that the
normalized MSE of their scheme (||A

TB−ÂTB||F
||ATB||F) is exactly

1.0. We note here that even if we consider other quantization
schemes or larger 64-bit primes, one can arrive at adversarial
examples such as the ones shown above. For these examples,
our methods have a normalized MSE of at most 10−27.

The work of [10] demonstrates an upper bound of
O(q2(q−τ)) on the worst case condition number; this grows
much faster than our upper bound in the parameter q − τ . In
numerical experiments, our worst case condition numbers are
much smaller than the work of [10]. Both our scheme and [10]
have the optimal threshold when A and B are only divided
into block-columns (cf. Section III)). The comparison when

80 85 90 95 100 105 110 115 120

SNR (dB)

10-12

10-10

10-8

10-6

10-4

10-2

N
or

m
al

iz
ed

 M
SE

 (w
or

st
 c

as
e)

Complex Vand.
Rot. Mat. Embed.
(Fahim & Cadambe, 2019)
(Subramaniam et al., 2019)

Fig. 1: System with n = 31,kA = 4, kB = 7, A of size
8000× 14000 and B of 8400× 14000.

matrices are split across both rows and columns is treated in
[9].

A. Numerical Experiments

We consider a system with n = 31 worker nodes and
kA = 4 and kB = 7 so that the threshold τ = kAkB = 28.
Table I shows that the worst case condition number (over
worker nodes) of the Rotation Matrix Embedding is about
eleven orders of magnitude lower than the Real Vandermonde
case. Furthermore, the schemes of [10] and [11] have a worst
case condition numbers that are three orders of magnitude
and two orders of magnitude higher than our scheme. For
both [11] and [12] schemes we performed 200 random trials
and picked the scheme with the lowest worst case condition
number. For [12], we only report the upper bound on the
worst case condition number. Finding the actual worst case
recovery set takes a long time. We also include a row cor-
responding to a complex Vandermonde scheme that operates
by using evaluations on the unit-circle. While this gives good
numerical performance it results in much higher worker node
computation times as shown in the last column of Table I. The
normalized MSE simulation [14] was performed by adding
white Gaussian noise (of different SNRs) to the encoded
matrices. As shown in Figure 1, the normalized MSE of our
Rotation Matrix Embedding scheme is much about five orders
of magnitude lower than the scheme of [10] and four orders of
magnitude better than [11]. The normalized MSE of the Real
Vandermonde case is very large so we do not plot it. Since
we did not determine the worst case recovery set for [12], we
have not included the data and corresponding curves for it.

1716
Authorized licensed use limited to: Iowa State University. Downloaded on October 12,2021 at 21:57:46 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.
on Inf. Theory, vol. 64, no. 3, pp. 1514–1529, 2018.

[2] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Polynomial codes:
an optimal design for high-dimensional coded matrix multiplication,” in
Proc. of Adv. in Neural Inf. Proc. Sys. (NIPS), 2017, pp. 4403–4413.

[3] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and
P. Grover, “On the optimal recovery threshold of coded matrix mul-
tiplication,” IEEE Trans. on Inf. Theory, vol. 66, no. 1, pp. 278–301,
2019.

[4] A. Ramamoorthy, A. B. Das, and L. Tang, “Straggler-resistant distributed
matrix computation via coding theory: Removing a bottleneck in large-
scale data processing,” vol. 37, no. 3, pp. 136–145, 2020.

[5] N. J. Higham, Accuracy and Stability of Numerical Algorithms.
SIAM:Society for Industrial and Applied Mathematics, 2002.

[6] R. M. Gray, “Toeplitz and circulant matrices: A review,” Foundations
and Trends® in Communications and Information Theory, vol. 2, no. 3,
pp. 155–239, 2006.

[7] R. A. Horn and C. R. Johnson, Topics in matrix analysis. Cambridge
University Press, 1991.

[8] V. Pan, “How Bad Are Vandermonde Matrices?” SIAM Journal on
Matrix Analysis and Applications, vol. 37, no. 2, pp. 676–694, 2016.

[9] A. Ramamoorthy and L. Tang, “Numerically stable coded matrix com-
putations via circulant and rotation matrix embeddings,” preprint, 2019,
[Online] Available: https://arxiv.org/abs/1910.06515.

[10] M. Fahim and V. R. Cadambe, “Numerically stable polynomially coded
computing,” [Online] Available at: https://arxiv.org/abs/1903.08326,
2019.

[11] A. M. Subramaniam, A. Heidarzadeh, and K. R. Narayanan, “Random
Khatri-Rao-Product Codes for Numerically-Stable Distributed Matrix
Multiplication,” in 57th Annual Allerton Conference on Communication,
Control, and Computing, 2019, pp. 253–259.

[12] A. B. Das, A. Ramamoorthy, and N. Vaswani, “Efficient and Robust
Distributed Matrix Computations via Convolutional Coding,” [Online]
Available at: https://arxiv.org/abs/1907.08064, 2019.

[13] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation
in distributed matrix multiplication: Fundamental limits and optimal
coding,” IEEE Trans. on Inf. Theory, vol. 66, no. 3, pp. 1920–1933,
2020.

[14] “Repository of numerically stable coded matrix computations via circu-
lant and rotation matrix embeddings,” [Online] Available: https://github.
com/litangsky/stableCodedComputing.

1717
Authorized licensed use limited to: Iowa State University. Downloaded on October 12,2021 at 21:57:46 UTC from IEEE Xplore. Restrictions apply.

