


and the final step, path installation, is issued by the SDN

controller and executed on the SDN switches. Once a cyber-

attack event is detected, we obtain the anomaly states of the

PMU network as the inputs to our scheme (e.g., a list of

compromised PDCs). Note that the detection of various cyber-

attacks in PMU networks is important, but in this paper, we

mainly focus on the self-healing scheme after a successful

detection. The self-healing scheme now generates a list of

disconnected yet working PMUs with the goal of reconnecting

them to the appropriate PDCs and recovering the power system

observability. In this step, we do not have to reconnect all

the lost PMUs due to the measurement redundancy. The path

generation module then creates a hop-by-hop communication

path for each PMU-PDC connection subjecting to specific

communication network and power system constraints. The

paths are converted into per-switch SDN rules, and we then run

the rule compression module to combine multiple overlapping

rules into a single rule to further reduce the recovery time.

Finally, the rules are installed on the SDN switches to realize

the recovery plan and self-heal the PMU network.

We implement the self-healing scheme on an SDN con-

troller and evaluate the prototype system using communication

networks constructed from the IEEE 30-bus and 118-bus

systems. Our scheme successfully recovers the power system

observability for all test cases with fast recovery time. The

total recovery time includes the model computational time and

the recovery path installation time. With 10% of the PDCs

compromised, the model computational time is less than 87.6

ms for the 30-bus cases and 318.5 ms for the 118-bus cases.

we also empirically demonstrate the efficiency of the rule

compression module, which takes only 0.3 ms to 6 ms for

computation and decreases the recovery path installation time

by up to 45.5% for the 30-bus cases and up to 61.7% for the

118-bus cases. The number of rules to install is also reduced

by up to 42.9% of for the 30-bus cases and up to 59.0% for

the 118-bus cases.

The remainder of the paper is organized as follows. Sec-

tion II introduces the related work. Section III shows an SDN-

based resilient PMU network architecture with an illustrative

example. Section IV describes an optimization-based self-

healing scheme including plan generation, path construction,

and rule compression. Section V presents the experimental

setup and performance evaluation results. Section VI summa-

rizes the paper with future works.

II. RELATED WORK

Applying SDN technology to enhance power grid security

and resilience is an emerging research topic [6]–[9]. Recent

works include applications in substation automation [10], [11],

substation risk assessment [12], reliability evaluation [13],

quality-of-service optimization [14], fast failover mechanism

[11], [12], [15], power bot detection [16], and dynamic

resource allocation [17]. Researchers also construct several

SDN-enabled testing platforms including a transmission-level

co-simulation testbed [7] and hardware-in-the-loop testbeds

integrating power system simulator, communication network

emulator, and physical switches [8], [9], [18].

Existing works analyze the cyber resilience and security

of PMU networks [19], [20], but do not focus on designing

mitigation mechanisms by considering the constraints exclu-

sive to PMU networks. A self-healing scheme [3] is designed

using the conventional routing protocols to handle link failures

but not compromised hosts. A recent work [4] focuses on

using SDN to reconnect uncompromised PMU devices to

restore power observability. Another work [5] realizes the

PMU network self-healing through the centralized control

over a distributed routing protocol. They both exploit global

visibility and centralized control offered by SDN to optimize

the self-healing scheme. However, minimizing recovery time

is not the primary goal in their approaches. In this work, we

optimize the path installation and explore the rule compression

to further reduce the recovery time. This is important as many

power system operations are time-critical. Each SDN rule

contains information like source IP address, destination IP

address, port number, and link-layer information. Researchers

explore a general SDN rule compression technique with a

compression ratio between 70% and 99% [21]. In the context

of PMU networks, as a PMU typically connects to one PDC,

we can further reduce the optimization complexity by only

considering compression with destination IP addresses.

III. SDN-BASED PMU NETWORK ARCHITECTURE

We design an SDN-enable PMU network architecture, as

shown in Figure 2, to enhance network resilience. Mea-

surements of the underlying electrical system are captured

by PMUs, and then aggregated at PDCs, and eventually

transmitted to the control center through the communication

layer. We integrate the SDN technology into the system by

deploying a set of SDN-enabled switches with direct network

programmability in the communication layer and incorporating

an SDN controller into the existing control center facility.

The SDN controller provides the global network visibility

based on which we develop an optimization-based self-healing

scheme. Upon detection of compromised/faulty devices, the

scheme generates an optimal recovery plan including hop-by-

hop communication paths to reconnect the selected PMUs and

PDCs to restore the power system observability. The dynamic

network flow management capability offered by SDN also

allows us to quickly install the recovery plan to self-heal the

network. Additionally, we explore the SDN rule compression

technique to further reduce the recovery time.

Illustrative Example. We present a self-healing PMU net-

work over the IEEE 14-bus system to illustrate step by step

how the system can efficiently reconnect uncompromised but

disconnected PMUs to restore the power system observability.

Figure 3(a) depicts a communication network consisting of 6

switches, 4 PMUs, and 2 PDCs. PMU 2 and 6 send measure-

ment data to PDC 5, and PMU 7 and 9 send measurement data

to PDC 4. Assume an attacker compromises PDC 5, the PMU

measurements at bus 2 and 6 cannot be transferred to this PDC,

and thus the system observability is reduced at the control
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TABLE I
SUMMARY OF NOTATIONS

Indices and Sets

B Set of buses in the power system
U Set of PMUs in the network

Ud
Set of disconnected yet uncompromised
PMUs

D Set of PDCs in the network
Dc Set of compromised PDCs
S Set of SDN switches
Gt Power transmission network
Gc Communication network
L PMU, switch and PDC connectivity matrix
T Bus and PMU connectivity matrix

Parameters

z
Maximum number of rules allowed on
each switch

O Power system observability

Functions

A : U 7→ P(U)
Function that maps a PMU to its adjacent
PMUs

C : D 7→ Z
+ Function that maps a PDC to its capacity

to connect with PMU

M : L 7→ R
+ Function that maps a communication link

to its bandwidth

R : U 7→ R
+ Function that maps a PMU to its required

bandwidth

W : R 7→ Z
+ Function that maps a switch to its rule

capacity

Decision Variables

xij
Binary variable indication whether PMU i
connects to PDC j or not

yep
Binary variable indication whether edge e
belongs to path p or not

system observability. Our objective is to identify the minimum

number of PMUs to reconnect to PDCs

min
∑

ui∈Ud

∑

dj∈D\Dc

xij (6)

subjecting to the following constraints
∑

dj∈D\Dc

xij + xA(i)j ≥ 1, ∀ui ∈ Ud (7)

∑

ui∈Ud

xij ≤ C(j), ∀dj ∈ D \ Dc (8)

∑

dj∈D\Dc

xij ≤ 1, ∀ui ∈ Ud (9)

Assume that each bus is attached to one PMU, we revise

Equation 3 and obtain Constraint 7, which ensures that each

bus or one of its adjacent bus connects to a PMU. Constraint

8 guarantees that the reconnected PMUs do not exceed the

connection capacity of a PDC. Constraint 9 ensures that each

PMU transmits the measurement data to no more than one

PDC.

B. Communication Path Construction

After solving Equation 6, we obtain the optimal recovery

plan matrix X∗. We can view X∗ as a set of path P = {pij}
between PMU ui and PDC dj if x∗

ij = 1. These paths are still

yet to be solved to generate the minimum number of SDN

rules. For computing the communication paths of the recovery

plan, we define another set of decision variables for e ∈ L and

pij ∈ P

yep =

{

1, if edge e belongs to the path of a recovery plan p

0, otherwise

We also define two auxiliary functions, I(pij , •) and

O(pij , •), which represent the in-degree and out-degree of

device k ∈ U ∪ D ∪ S in the path pij .

I(pij , k) =











∑

e∈{lmk=1|∀m∈U∪S}

yepij
, ∀k ∈ S

∑

e∈{lmk=1|∀m∈S}

yepij
, ∀k ∈ D

O(pij , k) =











∑

e∈{lkm=1|∀m∈S}

yepij
, ∀k ∈ U

∑

e∈{lkm=1|∀m∈D∪S}

yepij
, ∀k ∈ S

We assume the SDN controller can distribute rules in

parallel to the network and each switch sequentially installs its

rules. The objective of the communication path construction

formulation is to minimize the installation time of SDN rules,

which can be formulated as the following min-max problem

min
∀pij∈P

max
∀sk∈S

{I(pij , sk)} (10)

subjecting to the following constraints

0 ≤ I(pij , sk), O(pij , sk) ≤ 1, ∀sk ∈ S, ∀pij ∈ P (11)

I(pij , dj) = 1, ∀pij ∈ P (12)

O(pij , ui) = 1, ∀pij ∈ P (13)
∑

dj∈D

I(pij , dj) = 1, ∀pij ∈ P (14)

∑

ui∈U

O(pij , ui) = 1, ∀pij ∈ P (15)

∑

∀pij∈X

yepij
×R(ui) ≤M(e), ∀e ∈ L (16)

∑

∀pij∈X

I(pij , sk) ≤W (sk), ∀sk ∈ S (17)

We can introduce an auxiliary variable z and add the

following constraint to solve the min-max problem:

z ≥ max
∀sj∈S

I(pij , j) (18)

Constraints 11 to 15 ensure that a path exists between a

PMU and a PDC. Constraint 11 ensures the path is loop-

freedom. Moreover, Constraint 12 and 13 ensure that the PMU

(source) and the PDC (destination) are included in the path.

For each path, Constraint 14 means the out-degree of PMU is 1

and Constraint 15 means the in-degree of PDC is 1. Constraint

16 guarantees that the PMU data traffic does not exceed the

link bandwidth. Finally, Constraint 17 ensures that the number

of SDN rules to install do not exceed the switch capacity.
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C. SDN Rule Compression

After solving Equation 10, we get the list of PMUs to

reconnect with the detailed communication paths. The SDN

controller now generates a set of OpenFlow rules based on

these paths and then distributes them to the switches. Here, we

explore an OpenFlow rule compression technique to reduce the

rule installation time. Let a triplet (s, t, k) denotes a routing

rule, where s, t, and k indicate the source IP, destination IP,

and switch out-port of this flow. Given a default rule r(s, t, k),
we can use wildcards to merge those overlapping rules by

source g(s, ∗, k), by destination g(∗, t, k), or by both source

and destination g(∗, ∗, k). The binary decision variables are

r(s, t, k), g(s, ∗, k), g(∗, t, k), and g(∗, ∗, k). Each variable is

1 if selected and 0 otherwise. The objective function of the

rule compression problem is defined as follows:

min
∑

∀s,t,k

r(s, t, k) + g(∗, t, k) + g(s, ∗, k) + g(∗, ∗, k) (19)

In this work, we do not need to consider the case of g(s, ∗, k)
(i.e,. compression by source) since each PMU reconnects

to only one PDC. We also do not use g(∗, ∗, k) as it may

unintentionally make the attack flows spread over the network.

Therefore, we simplify the objective function and define the

recovery rule compression problem as follows:

min
∑

∀s,t,k

r(s, t, k) + g(∗, t, k) (20)

subjecting to the following constraints
∑

∀k

g(∗, t, k) ≤ 1 (21)

r(s, t, k) + g(∗, t, k) ≥ 1, ∀(s, t, k) (22)

r(s, t, k) ∈ {0, 1}, ∀(s, t, k) (23)

g(∗, t, k) ∈ {0, 1}, ∀(t, k) (24)

The objective function in Equation 20 is to minimize the

total number of rules. Constraint 21 ensures only one wildcard

rule on each switch. Constraint 22 ensures to include every

rule. The binary variables r(s, t, k) and g(∗, t, k) are included

in Constraint 23 and 24. Using rule compression optimizes

the memory space utilization and saves the rule installation

time. However, it may takes extra computational time. We thus

propose a heuristic algorithm to compress rules as described

in Algorithm 1 with time complexity of O(n). In order not

to affect the original traffic flows, we always set the updated

rules containing wildcards with a low priority.

V. EVALUATION

We develop a prototype system in Mininet [22], a container-

based SDN emulator, and conduct extensive evaluation exper-

iments in terms of system observability restoration, recovery

time at different stages, and rule compression. The optimiza-

tion model described in Section IV is developed in POX, a

python-based SDN controller [23]. We use the GLPK package

[24] to solve the ILP problem.

Algorithm 1: Rule Compression

Input: Set of rules R
Output: Compressed rules Rc

initialize Rc, Hashtable H < (t, k), (s, t, k) >
for ∀(s, t, k) ∈ R do

if H.containsKey((t, k)) then
H.update((t, k), (∗, t, k))

end

else
H.insert((t, k), (s, t, k))

end

end

for ∀(t, k) ∈ H.keys() do
(s, t, k)← H.get((t, k))
add (s, t, k) to Rc

end

A. Experimental Setup

We evaluate the self-healing scheme using PMU networks

constructed from the IEEE 30-bus and 118-bus systems. One

PMU was attached to each bus in the transmission system.

Each PMU had an adjacent PMU set, which was determined

by the adjacent matrix of the transmission system. We applied

the minimum set cover problem and output the least number

of sets. PDCs and switches were then placed for each set.

Finally, we connected switches using a ring topology so that

each switch had a redundant link. We varied the number of

compromised PDCs ranging from 10% to 80%, and repeated

20 runs for each experiment.

B. Performance Evaluation

1) Plan Generation and Path Construction: We evaluate

the effectiveness of the generated recovery plan in two aspects:

(1) to what degree the power system observability is restored,

and (2) the cost of model computational time.

Power System Observability is represented as the percent-

age of observable buses in a power system. Figure 4 shows

the results collected on the IEEE 30-bus system and the IEEE

118-bus system. We observe that our self-healing scheme is

able to recover the full power system observability for all

cases. Without the self-healing scheme, the power system

observability keeps decreasing as the number of compromised

PDCs grows. The mean values of power system observability

can drop to 15.3% in the IEEE 30-bus system and 12.0% in

the IEEE 118-bus system with 80% compromised PDCs.

Model Computational Time is the time to solve the ILP

model including the plan generation and path construction

stages. Figure 5 shows the average computational times with

standard deviations for both the IEEE 30-bus and 118-bus

systems. In the 30-bus cases, the average computational time

ranges from 24.4 ms to 26.5 ms to generate a recovery

plan and ranges from 61.18 ms to 92.0 ms to construct

the communication paths. In the 118-bus cases, the average

computational time ranges from 52.5 ms to 106.1 ms to
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(a) IEEE 30-bus system

(b) IEEE 118-bus system

Fig. 4. Power system observability with/without the self-healing scheme

(a) IEEE 30-bus system

(b) IEEE 118-bus system

Fig. 5. Computational time for plan generation and path construction

generate a recovery plan and ranges from 266.0 ms to 1280.9

ms to construct paths. With 10% of the PDCs compromised,

the total computational time is less than 87.6 ms for the 30-bus

cases and 318.5 ms for the 118-bus cases. Even with 80% of

the PDCs compromised, the total computational time is still

less than 116.7 ms for the 30-bus cases and 1351.5 ms for the

118-bus cases.

The path construction time increases with the number of

compromised PDCs because of the increasing number of com-

munication paths to reconnect. However, the plan generation

time is not greatly impacted by the number of compromised

PDCs, because the redundancy of PMU placement (i.e., we

only have to recover a subset of the PMUs to restore the full

power system observability).

(a) IEEE 30-bus system

(b) IEEE 118-bus system

Fig. 6. Total numbers of rules installed on switches with/without compression

2) Rule Compression: We evaluate the performance of rule

compression in terms of the total number of rules to install on

the switches and the rule installation time.

Total Number of Rules to install on the SDN switches were

measured before and after applying the compression technique,

and the results are shown in Figure 6. We observe that the

compression rate can reach up to 42.9% for the 30-bus cases

and up to 59.0% for the 118-bus cases. As the number of

compromised PDC grows, the total number of rules increases

from 67 to 240 without compression, and from 67 to 98

with compression. The compression module greatly reduces

the number of rules that the SDN controller needs to handle,

especially when the number of compromised PDCs increases.

In our experiments, we set up a relatively large number of

switches to form a ring topology, and therefore, the number

of paths to install on the same switch is considered small.

The rule compression technique can perform even better in

the scenarios where switches handle more traffic flows from

PMUs.

Rule Installation Time reflects how fast the self-healing

scheme realizes the recovery paths. The total time consists

of the time that the SDN controller generates and distributes

the rules and the time that the switches install the rules onto

the flow-entry tables. We repeated 20 experiments for every

recovery path with the same compromised PDC. The results

are plotted in Figure 7.

Without applying the rule compression, the rule installation

completes in about 8.4 ms to 12.6 ms for the 30-bus cases

and about 54.1 ms to 187.3 ms for the 118-bus cases, which

is about one order of magnitude faster compared with the

recovery plan generation and path construction time. The rule

compression module further reduces the time, e.g., 6.8 ms

for the 30-bus cases with 80% PDCs compromised. For the

118-bus cases, compression can save even more time, e.g.,

71.8 ms with 80% PDCs compromised, which saves 61.7%
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(a) IEEE 30-bus system

(b) IEEE 118-bus system

Fig. 7. Rule installation time with/without compression

of the installation time when compression is not used. The

computational time (i.e., overhead) of the rule compression

algorithm only takes up to 538.6 µs for 30-bus cases and up

to 6.4 ms for 118-bus cases, thus it is beneficial to apply the

rule compression for most cases.

In addition, we also plot the maximum number of rules

to install on one switch, which is the objective function of

the path construction model, in Figure 7. The results show a

strong positive correlation to the rule installation time, which

is the desired behavior as designed by the path construction

ILP model.

VI. CONCLUSION AND FUTURE WORKS

We develop and evaluate a PMU network self-healing

scheme built on top of an SDN-based network architecture.

In the future, we will consider the interdependencies be-

tween communication networks and power systems into the

self-healing scheme. We also plan to extend the self-healing

scheme to micro PMU networks for distribution systems and

microgrids.
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menting self-adaptive routing in autonomic networks: A case study. In
John C. Strassner and Yacine M. Ghamri-Doudane, editors, Proceedings

of Modelling Autonomic Communications Environments, pages 72–85,
Berlin, Heidelberg, 2009. Springer.

[4] H. Lin, C. Chen, J. Wang, J. Qi, D. Jin, Z. T. Kalbarczyk, and R. K. Iyer.
Self-healing attack-resilient pmu network for power system operation.
IEEE Transactions on Smart Grid, 9(3):1551–1565, 2018.

[5] Y. Qu, X. Liu, D. Jin, Y. Hong, and C. Chen. Enabling a resilient
and self-healing PMU infrastructure using centralized network control.
In Proceedings of the 2018 ACM International Workshop on Security

in Software Defined Networks & Network Function Virtualization, page
13–18, 2018.

[6] N. Dorsch, F. Kurtz, H. Georg, C. Hägerling, and C. Wietfeld. Software-
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