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Abstract. This paper describes an approach to apply the dynamic data-
driven applications systems (DDDAS) paradigm to enhance cyber secu-
rity and resilience of wide-area monitoring systems in electrical grids.
In particular, we explore a DDDAS-aware application to self-heal pha-
sor measurement unit (PMU) networks that monitor the states of power
systems in real-time. The application is built on top of a novel software-
defined networking (SDN) architecture. The main components include
a dynamic data-driven model that efficiently abstracts the PMU net-
work behavior at run time and an optimization-based solution to quickly
reconfigure network connections to restore the power system observabil-
ity. The application also compresses network updates of the recovery plan
to further reduce the recovery time. We develop a prototype system in
a container-based network testbed and evaluate the recovery time of the
self-healing application using the IEEE 30-bus system.

Keywords: Dynamic data driven application systems ·
Software-defined networking · Phasor measurement unit · Smart grid
resilience and security

1 Introduction

Phase measurement units (PMU) have been increasingly and rapidly deployed
in the wide-area monitoring systems to capture the states of electric grids in
real-time. PMUs are time-synchronized by GPS timestamps and measure power
system states, such as magnitudes and phase angles of current and voltage at
each bus, at rates between 30 and 240Hz. The measurements are then aggre-
gated at phasor data concentrators (PDC) and eventually transmitted to the
control center to support state estimation and other critical control and analytic
applications. Recent studies reveal that PMU networks are vulnerable to differ-
ent types of cyber-attacks [1,2], which negatively impact the visualization and
situational awareness of power systems.

To address this challenge, we develop a self-healing PMU network scheme
with the objective of preventing the propagation of the attacks and maintaining
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the complete observability of the power system. We take a DDDAS-based app-
roach to design the self-healing scheme. DDDAS stands for dynamic data-driven
applications systems, which is a paradigm that involves dynamically incorpo-
rating real-time data into computations in order to steer the measurement and
control process of an application system [3]. The DDDAS concept has been
successfully applied to many emerging application areas over decades, such as
smart cities, manufacturing, transportation, health care, critical infrastructures,
and many others [4,5].

Fig. 1. DDDAS-aware PMU network self-healing application design

Figure 1 depicts the design of our DDDAS-aware self-healing PMU network.
The communication network is represented as a dynamic data-driven model that
efficiently abstracts the physical PMU network behavior (e.g., packet forward-
ing) under a dynamic system environment (e.g., network updates caused by
cyber-attacks, recovery plans, and other operations). The graph-based model is
capable of accepting real-time data at execution time as system states evolve.
When the model enters into an abnormal state (e.g., dropped or suspicious traf-
fic from compromised devices), the self-healing scheme is triggered to isolate the
traffic from those PMUs and PDCs. The scheme consists of three steps. First,
it identifies the portion of the network affected by the cyber incident, such as
the list of PMUs to reconnect; Second, it solves an optimization problem to
compute the destination PDC for each PMU in the list as well as the immedi-
ate switches by meeting the specified device and network operation constraints.
Third, it generates an optimal recovery plan to restore power system observ-
ability and translate them into network updates for each affected switch. As
a result, the scheme steers the control and measurement process by installing
network updates on the physical network to self-heal the PMU systems. The
updated measurement data and control events are then fed into the graph-based
model for further processing. An effective feedback loop is thus enabled to steer
the entire self-healing process.

One key component to support this DDDAS-based PMU network self-healing
application is the underlying software-defined networking (SDN) based commu-
nication infrastructure. SDN is a programmable open-source approach to design-
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ing, building, and managing communication networks [6]. SDN decouples the
network control from the forwarding functions in network devices and offloads
its decision functions to a logically centralized SDN controller. With the increas-
ing size and complexity of the communication networks for wide-area control
and monitoring systems, SDN has been increasingly investigated to improve their
resilience and security [7–9]. The SDN controller provides the global network vis-
ibility that enables us to develop the optimization-based scheme to self-heal the
PMU network connection against cyber-attacks. The communication network is
composed of a set of SDN switches that enable a quick execution of the recov-
ery plan through SDN’s direct network programmability. Moreover, our scheme
also applies a rule compression mechanism that compresses the SDN network
updates of the recovery plan to further reduce the recovery time. Finally, we
develop a proof-of-concept system in a container-based SDN emulation testbed
and conduct performance evaluation using the IEEE 30-bus system. The PMU
network connection is successfully recovered even when half of the PDCs are
compromised, and the recovery time including the plan generation and network
updates installation is all within 850 µs.

The remainder of the paper is organized as follows. Section 2 introduces an
SDN-based architecture design that enables fast self-healing of PMU networks.
Section 3 describes the DDDAS-aware self-healing application including the sys-
tem model, SDN rule compression method, and optimization model formulation.
Section 4 presents the experimental results for performance evaluation. Section 5
concludes the paper with future works.

2 SDN-Based PMU Network Architecture

We present an SDN-based network architecture to automatically self-heal PMU
connections and preserve power system observability. This is useful to handle the
growing cyber-attacks in wide-area monitoring and control systems that com-
prise PMU/PDC devices to drop and manipulate measurement data and control
messages. Figure 2 depicts the architecture design that consists of five layers.
The PMUs measure the states of the underlying power system and the mea-
surements are aggregated at PDCs through the communication network layer,
which is composed of a set of SDN-enabled switches to enable direct network
programmability. The novelty of the design is mainly at the control layer, in
which we integrate an SDN controller to the existing power grid controller. As a
result, we now have global visibility and centralized control over the underlying
communication network including the end-hosts (i.e., PMU and PDC) and the
networking devices (e.g., switches, routers, gateways, and other middle boxes).
Within the SDN controller, we develop an optimization-based self-healing scheme
to reconfigure the PMU network against compromised or faulty devices. Upon
detection of compromised devices, the scheme quickly generates a recovery plan
that contains optimal communication path updates to reconnected lost PMUs
to PDCs. The scheme also employs a compression module to reduce the number
of SDN rules to be installed to further reduce the recovery time.
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Fig. 2. An SDN-based self-healing PMU network architecture

3 System Modeling and Problem Formulation

3.1 System Model and Power System Observability

The power transmission network is represented by a graph GT = <B ∪U, TU>,
where B is the set of buses, U is the set of PMUs, and TU is a |B|× |U | connec-
tivity matrix.

tU [i, j] =

{
1, bi uj are connected
0, otherwise

(1)

The communication network is represented by another graph GC = <U ∪
D ∪ S,L>, where each PMU connects to a bus; D is the set of PDCs; and S is
the set of SDN switches. L is a connectivity matrix merged via common columns
from a |U | × |S| matrix, a |S| × |S|, and a |D| × |S| matrix.

l[i, j] =

{
1, (ui and sj) or (si and sj) or (di and sj) are connected
0, otherwise

(2)

We represent the recovery plan as the following binary variable matrix X

xij =

{
1, ui connects to dj
0, otherwise

(3)

A bus is observable if it can be measured by a PMU or estimated by the
PMU located on an adjacent bus. Also, measurement data by the PMU has to
be reported to a PDC. The power system is observable if all buses are observable.
For each bus i, let A(i) denote a set of its adjacent buses and the bus i itself.
We define the power system observability as follows.

O = ∧∀i∈B,∀j∈A(i)((∨∀k∈U tU [j, k]) ∧ (∨∀l∈Dxk,l)) (4)
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3.2 Optimization Model and Formulation

We assume the power system is observable before a cyber attack. The attack
event compromises a set of PDCs, Dc ⊆ D, and triggers the detection system.
We then further identify a set of disconnected PMUs, Ud ⊆ U , which reduces
the power system observability. Observability redundancy exists in the power
system because a bus may be monitored by multiple PMUs or estimated through
measurements from other related PMUs. Therefore, reconnecting a subset of
PMUs in Ud can restore the complete observability. The self-healing scheme
computes a recovery plan in the form of a set of updated communication paths
p = {p1, p2, ..., pn}, where p1 ∈ Ud and pn ∈ D\Dc, and each tuple (pi, pi+1) ∈ L
is a communication link segment. The SDN controller can directly program the
switches and install updated rules to realize these paths. Certain paths in the
recovery plan may involve a common switch, and it is likely that those paths
re-routes different PMUs to the same destination PDC. Hence, we consider using
wildcards in the source field of the corresponding SDN rules to further reduce
the number of network updates.

We expand xi,j to a new binary decision variable ys,i,j,k defined as follows:

ys,i,j,k =

{
1, ui reconnects to dj through port k of switch s

0, otherwise
(5)

where s is the switch, i is the source PMU, j is the destination PDC, and k is
the switch out-port. For simplicity, we assume that every switch has the same
number of out-ports. Based on switch s and port k, we define a function, n(s, k),
to map the next hop of p(i) in communication path p is p(i+ 1).

We assume the SDN controller can install rules on switches in parallel. Let
the auxiliary variable Z indicate the maximum number of rules to install on each
switch. The objective is to minimize Z with the following constraints.

min : Z
s.t. ∀s ∈ S : Z ≥

∑
j∈D\Dc

∑
k

∪iys,i,j,k (6)

Constraint of Power System Observability. Assume that each bus is attached to
one PMU, we revise Eq. 4 and obtain the following constraint.

∀i ∈ Ud :
∑

i∈N(i)

∑

j∈D\Dc

∨s ∨k ys,i,j,k ≥ 1 (7)

where N(i) denotes a set of PMUs including PMU i and all its neighboring
PMUs.

Constraint of Switch Forwarding. For each switch s, it takes at most one port to
forward the measurement data from PMU i. Note that each PMU can connect
up to one PDC.

∀s ∈ S,∀i ∈ Ud, :
∑

j∈D\Dc

∑

k

ys,i,j,k ≤ 1 (8)
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Constraints of Communication Path. Assume that a source PMU i connects to
switch α(i) and its destination PDC j connects to switch α(j). For switch α(i),
the difference in the number of output flows and input flows is

∀i ∈ Ud :
∑

k

∑

j∈D\Dc

yα(i),i,j,k −
∑

u

∑

v

∑

n(s,k)=α(i)

ys,u,v,k =
∑

j∈D\Dc

∨s ∨k ys,i,j,k

(9)

For switch α(j), the difference in the number of output flows and input flows is

∀j ∈ D \Dc :
∑

u

∑

v

∑

n(s,k)=α(j)

ys,u,v,k −
∑

i

∑

k

yα(j),i,j,k =
∑

i

∨s ∨k ys,i,j,k

(10)
For all other switches in the communication path, the number of output flows is
equal to the number of input flows.

∀p /∈ {α(i)} ∧ p /∈ {α(j)},∀i ∈ Ud,∀j ∈ D \Dc :
∑

i

∑

j

∑

k

yp,i,j,k −
∑

i

∑

j

∑

n(s,k)=p

ys,i,j,k = 0 (11)

4 Evaluation

4.1 Experimental Setup

We develop a prototype system in an SDN emulation testbed, and place our
self-healing scheme as an application in the SDN controller. We use the GNU
Linear Programming Kit (GLPK) solver for the ILP problem formulated in
Sect. 3.2. To conduct evaluation experiments, we generate a PMU network based
on the IEEE 30-bus system. We place one PMU on each bus, and then get
the neighboring PMU list according to the adjacent matrix of each bus in the
transmission system. We now apply the minimum set cover problem to obtain
the least number of PMU sets. We also place one PDC in each set and connect
the PDC to PMUs through a switch. All the switches are connected using a ring
topology. The original power transmission system is shown in Fig. 3(a), and the
constructed PMU network is shown in Fig. 3(b), which is composed of 30 PMUs,
10 PDCs, and 10 switches.

4.2 Performance Evaluation of PMU Network Self-healing Scheme

Model Computational Time is the time spent on the optimization model
execution to produce the recovery plan of reconnecting the necessary PMUs to
restore power system observability. We vary the number of compromised PDCs
from 1 to 5, and run 30 experiments for each case. The means and standard
deviations are plotted in Fig. 4(a). We can observe that the PMU network is
successfully recovered for all the experiments, even when for the cases when half
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Fig. 3. PMU network construction from the original transmission network (a) IEEE
30-bus system, to (b) PMU network

of the PDC (i.e., 5 out of 10) are compromised. The average computational time
is fast, from 265.6 ms to 643.4 ms, with the standard deviation around 20%. With
the growing number of compromised PDCs, the computational time increases at
first because the generated recovery paths become more complex. However, when
the computational time does not keep increasing as more compromised PDCs
do not always result in more PMUs to recover.

Fig. 4. Recovery plan: (a) computational time, and (b) installation time

Rule Installation Time is the time spent on realizing the recovery plan in
the PMU network, including the rule generation at the SDN controller, the rule
transmission from the controller to the switches, and the actual rule installation
on the switches. We again vary the number of compromised PDCs from 1 to
5, and run 30 experiments for each case. The results are plotted in Fig. 4(b).
We observe that it takes 75.1 ms to 113.4 ms on average to install the recovery
plan. The standard deviation is within 10%. The installation time increases as
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the number of compromised PDCs grows. Compared with the computational
time, the installation time is much faster in general. The total time to generate
and install the recovery plan is quick in general as all the experiments complete
within 850 µs.

5 Conclusion and Future Works

We apply the DDDAS paradigm to protect PMU networks and restore the power
system observability. Our DDDAS-aware network self-healing application con-
siders both the power system and communication network characteristics with
the help of an SDN-based cyber-infrastructure. The current version focuses on
PMUs in the power transmission systems and we will extend it to micro PMUs
on the distribution systems and microgrids.

Acknowledgment. This work is partly sponsored by the Air Force Office of Scientific
Research (AFOSR) under Grant YIP FA9550-17-1-0240, the National Science Founda-
tion (NSF) under Grant CNS-1618631, and the Maryland Procurement Office under
Contract No. H98230-18-D-0007.

References

1. Khan, R., Maynard, P., Mclaughlin, K., Laverty, D., Sezer, S.: Threat analysis of
blackenergy malware for synchrophasor based real-time control and monitoring in
smart grid. In: Proceedings of the 4th International Symposium for ICS and SCADA
Cyber Security Research (2016)

2. Liu, X., Li, Z.: False data attacks against AC state estimation with incomplete
network information. IEEE Trans. Smart Grid 8(5), 2239–2248 (2017)

3. Darema, F.: Dynamic data driven applications systems: a new paradigm for appli-
cation simulations and measurements. In: Bubak, M., van Albada, G.D., Sloot,
P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3038, pp. 662–669. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24688-6 86

4. Blasch, E., Ravela, S., Aved, A. (eds.): Handbook of Dynamic Data Driven Appli-
cations Systems. Springer, Cham (2018)

5. Fujimoto, R., et al.: Dynamic data driven application systems: research chal-
lenges and opportunities. In: Proceedings of the 2018 Winter Simulation Conference
(WSC), pp. 664–678 (2018)

6. McKeown, N., et al.: Openflow: enabling innovation in campus networks. ACM
SIGCOMM Comput. Commun. Rev. 38(2), 69–74 (2008)

7. Lin, H., et al.: Self-healing attack-resilient PMU network for power system operation.
IEEE Trans. Smart Grid 9(3), 1551–1565 (2018)

8. Sarailoo, M., Wu, N.E.: An algorithm for resilient sensor network upgrade with
fewest PMUs. In: Proceedings of the 2017 Resilience Week (RWS), pp. 77–82 (2017)

9. Qu, Y., Liu, X., Jin, D., Hong, Y., Chen, C.: Enabling a resilient and self-healing
PMU infrastructure using centralized network control. In: Proceedings of the 2018
ACM International Workshop on Security in Software Defined Networks & Network
Function Virtualization, pp. 13–18 (2018)

https://doi.org/10.1007/978-3-540-24688-6_86

	Preface
	Organization
	Contents
	Keynotes
	Predictive Digital Twins: Where Dynamic Data-Driven Learning Meets Physics-Based Modeling
	1 Key Elements of Our Mathematical Representation of a Digital Twin
	Reference

	Dynamic Data-Driven Application Systems for NASA’s Science Mission Directorate
	1 Introduction
	1.1 Sensor Web Simulator
	1.2 DDDAS Implemented for the Namibia Flood Pilot
	1.3 Ocean Worlds and DDDAS

	References

	Revisiting the Top Ten Ways that DDDAS Can Save the World with an Update in the BioInfoSciences Area and on the Energy Bridge
	1 Introduction
	2 DDDAS Applications in Upstream, Midstream and Downstream
	2.1 Upstream
	2.2 Midstream
	2.3 Downstream

	3 Conclusion
	References

	Using Dynamic Data Driven Cyberinfrastructure for Next Generation Disaster Intelligence
	1 Systems for AI-Integrated Dynamic Data-Driven Applications
	2 WIFIRE: Composable AI-Integrated Services for Dynamic Data Driven Workflows at the Digital Continuum
	3 Conclusions
	References

	Intelligent Contingency Management for Urban Air Mobility
	1 Introduction to Urban Air Mobility
	2 Approach to Intelligent Contingency Management
	References

	Plenary Presentations - Section 1: Digital Twins
	A Dynamic Data Driven Applications Systems (DDDAS)-Based Digital Twin IoT Framework
	1 Introduction
	2 Approach
	2.1 DDDAS-Based Digital Twin IoT System Framework
	2.2 DDDAS-Based Digital Twin IoT Computational Framework

	3 Results
	4 Conclusion
	References

	A Hardware Testbed for Dynamic Data-Driven Aerospace Digital Twins
	1 Introduction
	2 Hardware Testbed
	2.1 Overview
	2.2 Structural Design
	2.3 Flight Test: Validation and Initial Data Collection

	3 Development and Testing of DDDAS Sensing Architecture
	3.1 Experimental Setup and Sensor Technology
	3.2 Proof-of-Concept Results

	4 Conclusion
	References

	Plenary Presentations - Section 2: Environment Cognizant Adaptive-Planning Systems
	A DDDAS Protocol for Real-Time Large-Scale UAS Flight Coordination
	1 Introduction
	1.1 Lane-Based UTM
	1.2 Contingencies

	2 Real-Time Tactical Deconfliction
	2.1 Approximate Global Deconfliction Using CPAD

	3 Experiments
	4 Conclusions and Future Work
	References

	Data-Driven State Awareness for Fly-by-Feel Aerial Vehicles via Adaptive Time Series and Gaussian Process Regression Models
	1 Introduction
	2 Bayesian Learning via Gaussian Process Regression
	2.1 Homoscedastic Gaussian Process Regression
	2.2 Heteroscedastic Gaussian Process Regression
	2.3 GPRM-based Flight Awareness Results

	3 Adaptive Modeling via Time-Dependent AR Models
	3.1 Adaptive TAR-Based Flight Awareness Results

	4 Conclusions
	References

	Integrated Planning, Decision-Making, and Weather Modeling for UAS Navigating Complex Weather
	1 Introduction
	2 Probabilistic Planning
	3 Trajectory Assignment for Exploration
	4 Environment Model
	5 Simulations
	6 Results
	7 Conclusions
	References

	Plenary Presentations - Section 3: Energy Systems
	Microgrid Operational Planning Using Deviation Clustering Within a DDDAS Framework
	1 Introduction
	2 Microgrid Framework Design
	2.1 Rule-Based Policy
	2.2 Deviation Clustering Algorithm

	3 Numerical Analysis
	3.1 Deviation Clustering Tradeoff
	3.2 Utility of Deviation Clustering

	4 Conclusion
	References

	Dynamic Data-Driven Self-healing Application for Phasor Measurement Unit Networks
	1 Introduction
	2 SDN-Based PMU Network Architecture
	3 System Modeling and Problem Formulation
	3.1 System Model and Power System Observability
	3.2 Optimization Model and Formulation

	4 Evaluation
	4.1 Experimental Setup
	4.2 Performance Evaluation of PMU Network Self-healing Scheme

	5 Conclusion and Future Works
	References

	Interpretable Deep Attention Model for Multivariate Time Series Prediction in Building Energy Systems
	1 Introduction
	2 Model
	2.1 Notations and Problem Formulation
	2.2 Spatiotemporal Attention (ST-Att) Model

	3 Experiments
	3.1 Dataset
	3.2 Baseline Models and Results

	4 Conclusion
	References

	Overcoming Stealthy Adversarial Attacks on Power Grid Load Predictions Through Dynamic Data Repair
	1 Introduction
	2 Methodology
	2.1 Model of Stealthy Adversarial Attacks
	2.2 Resilient Detection and Reconstruction
	2.3 Iterative Dynamic Repair

	3 Empirical Validation of the Claims
	3.1 Power System Setting
	3.2 Evaluating Reconstruction and Repair

	4 Conclusion
	References

	Plenary Presentations - Section 4: Materials Systems
	Uncertainty Analysis of Self-healed Composites with Machine Learning as Part of DDDAS
	1 Introduction
	2 Analytical Solution for Cohesive Layer of DCB Model
	3 DCB Model Description
	4 Uncertainty Quantification Using Latin Hypercube Sampling Technique
	5 Deep Artificial Neural Network
	6 Conclusions
	References

	Active Search Methods to Predict Material Failure Under Intermittent Loading in the Serebrinksy-Ortiz Fatigue Model
	1 Introduction
	2 Analytical Method for Deterministic Load
	2.1 Serebrinsky-Ortiz Model
	2.2 Comparison to Palmgren-Miner Rule

	3 Output-Weighted Optimal Experimental Design
	3.1 Overview
	3.2 J-Spike Model
	3.3 Problem Setup
	3.4 Results

	4 Conclusion
	References

	Dynamic Data-Driven Distribution Tracking of Nanoparticle Morphology
	1 Introduction
	2 Distribution Tracking of Nanoparticles
	2.1 Shape Distribution Tracking
	2.2 Size Distribution Tracking

	3 Conclusion
	References

	Plenary Presentations - Section 5: Physics-Based Systems Analysis
	Machine Learning Algorithms for Improved Thermospheric Density Modeling
	1 Introduction
	2 Methodology
	2.1 Dimensionality Reduction
	2.2 Prediction
	2.3 Density Data

	3 Results
	3.1 Dimensionality Reduction
	3.2 Prediction

	4 Discussion and Conclusions
	References

	Dynamic Transfer Learning from Physics-Based Simulated SAR Imagery for Automatic Target Recognition
	1 Introduction
	2 EM Modeling and Simulation
	3 Multi-resolution Stacked Denoising Auto-Encoder (MSDAE)
	3.1 Training and Evaluation

	4 Target Classification
	4.1 Elevation Angle Dynamic Data Simulation
	4.2 Azimuth Angle Dynamic Data Simulation

	5 Multi-output Classification
	6 Conclusion
	References

	Plenary Presentations - Section 6: Imaging Methods and Systems
	Uncertainty Estimation for Semantic Segmentation of Hyperspectral Imagery
	1 Introduction
	2 Related Works
	3 Estimating Uncertainty
	3.1 Types of Uncertainties
	3.2 Network Review
	3.3 Deep Ensembles (DE)
	3.4 MC-Dropout (MCD)
	3.5 Batch Ensembles (BE)

	4 Experiments and Results
	4.1 Hyperparameters
	4.2 Results

	5 Conclusion
	References

	Spectral Super Resolution with DCT Decomposition and Deep Residual Learning
	1 Introduction
	2 Related Works
	3 Proposed Method
	4 Experiments and Results
	4.1 Experimental Setup
	4.2 Performance Evaluation

	5 Conclusion and Future Work
	References

	Active Scene Classification via Dynamically Learning Prototypical Views
	1 Introduction
	1.1 Motivation
	1.2 Overview of Approach and Contributions

	2 Related Work
	2.1 Active Learning, Active Perception, Informative/Information-Theoretic Planning/Perception/Learning, and Dynamic Data-Driven Applications Systems for Scene Understanding
	2.2 Prototype Learning

	3 Problem Setup/Data
	4 Methodology
	5 Experimental Results
	6 Conclusions and Future Work
	References

	Plenary Presentations - Section 7: Learning Systems
	Informative Ensemble Kalman Learning for Neural Structure
	1 Introduction
	2 Related Work
	3 Ensemble Kalman Learning
	4 DDDAS: Informative Structure Learning
	5 Conclusions
	References

	Reachability Analysis Based Tracking: Applications to Non-cooperative Space Object Tracking
	1 Introduction
	2 Problem Formulation
	3 Methodology
	4 Numerical Simulations
	5 Conclusions
	References

	Sparse Regression and Adaptive Feature Generation for the Discovery of Dynamical Systems
	1 Introduction and Overview
	1.1 General Methodology

	2 Regression Over Fixed Feature Space
	3 Regression Over a Dynamic Data Driven Feature Space
	4 Results
	4.1 Lorenz 63 System
	4.2 Marine Ecosystem Model

	5 Conclusions and Future Work
	References

	Improving Prediction Confidence in Learning-Enabled Autonomous Systems
	1 Introduction
	2 Triplet-Based ICP
	3 Feedback-Loop for Querying the Sensors
	4 Evaluation
	5 Conclusions
	References

	Posters Session-1
	Physics-Based SAR Modeling and Simulation for Large-Scale Data Generation of Multi-platform Vehicles for Deep Learning-Based ATR
	1 Introduction
	2 EM Modeling and Simulation
	3 IRIS Electromagnetic Modeling and Simulation
	3.1 Radar Imaging Scheme
	3.2 Salient Subspace Reflection Extraction
	3.3 Noise Augmentation and Shadow Formation

	4 Performance Evaluation
	5 DDDAS Implication
	6 Conclusion
	References

	Towards Provably Correct Probabilistic Flight Systems
	1 Introduction
	2 Signal Energy Safety Envelopes as Parameterized Statements
	2.1 Data Consistency with Model Using z-Predictability
	2.2 Stall Detection Using Statistical Inference
	2.3 Safety Envelopes as -Confident Classifications on z-Predictable Measurements

	3 Formalization and Sentinel Generation
	4 Related Work
	5 Conclusion
	References

	Dynamic Data-Driven Formal Progress Envelopes for Distributed Algorithms
	1 Introduction
	2 Formal Progress Envelopes
	3 Augmenting DDDAS with Formal Methods
	4 Proof Library for High-Level Statistical Inference
	5 A Sample Application of Our Proof Library
	6 Related Work
	7 Conclusion
	References

	Dynamic Sensor Processing for Securing Unmanned Vehicles
	1 Introduction
	2 Motivating Examples: Data Poisoning in UVs
	2.1 Attacking MAVLink in Drones
	2.2 Attacking ROS in the Ground Vehicle

	3 Detecting Attacks
	4 Conclusions
	References

	A Scalable Mixture Model Based Defense Against Data Poisoning Attacks on Classifiers
	1 Introduction
	2 Threat Model of Data Poisoning Attack
	2.1 Notation
	2.2 Threat Model

	3 Mixture Model Based Defense Against Data Poisoning Attack
	3.1 Mixture Modeling
	3.2 Parsimonious Mixture Model (PMM) Framework

	4 Experiments
	4.1 Experiment Setup and Evaluation Criterion
	4.2 ``Pure-Positive'' Poisoning Attack
	4.3 Mixture Model Based Defense

	5 Conclusions and Future Work
	References

	Resilient Machine Learning (rML) Ensemble Against Adversarial Machine Learning Attacks
	1 Introduction
	2 Related Work
	2.1 DDDAS and Machine Learning
	2.2 Adversarial ML Attacks

	3 Resilient Machine Learning Ensemble (rML)
	3.1 Resilient DDDAS Development Environment

	4 Implementation and Experimental Results
	4.1 Conclusion

	References

	Data-Based Defense-in-Depth of Critical Systems
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 System Modeling
	3.2 Mitigation of a Cyber-Attack

	4 Algorithm and Preliminary Results
	5 Conclusions and Future Work
	References

	Posters Session-2
	Physics-Driven Machine Learning for Time-Optimal Path Planning in Stochastic Dynamic Flows
	1 Introduction
	1.1 Problem Statement

	2 Modelling Framework
	3 Physics-Driven Model-Based Q-Learning
	4 Applications
	5 Conclusions and Future Work
	References

	Discovering Laws from Observations: A Data-Driven Approach
	1 Introduction
	2 Data-Driven Approach for Analyzing Anomalous Diffusion
	2.1 Space-Time Fractional Diffusion Equation
	2.2 Fractional Derivatives
	2.3 Parameter Estimation

	3 Experiments
	4 Conclusion
	References

	An On-Demand Weather Avoidance System for Small Aircraft Flight Path Routing
	1 Introduction
	2 Background
	3 Dynamic Data Driven System for Urban Air Mobility and Weather
	3.1 Flight Handling
	3.2 Obstacle Handling
	3.3 Flight Path Planning
	3.4 Multi-cloud Resource Management

	4 Conclusions
	References

	Dynamic, Data-Driven Hyperspectral Image Classification on Resource-Constrained Platforms
	1 Introduction
	2 Related Work
	3 Approach
	4 Experiments
	5 Conclusion
	References

	Semi-supervised Visual Tracking Based on Variational Siamese Network
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Fully Convolutional Variational Siamese Network
	3.2 Object as Distribution
	3.3 Wasserstein Distance Between Two Gaussian Distributions
	3.4 Variational Autoencoder for Semi-supervised Training

	4 Experiments
	4.1 Implementation Details
	4.2 Evaluation for Visual Object Tracking
	4.3 With or Without Unsupervised Learning

	5 Conclusion
	References

	Occlusion Detection for Dynamic Adaptation
	1 Introduction
	2 Related Work
	3 On-the-Fly Adaptations
	3.1 Tackling Atmospheric Changes
	3.2 Dynamic Scene Reconstruction

	4 Results
	5 Conclusion
	References

	PNEUMON: A DDDAS Framework to Detect Fatigue and Dyspnea in COPD
	1 Introduction
	2 Sensor Suit
	3 The PNEUMON Framework
	4 Experimental Protocol
	5 Conclusion
	References

	Panels
	Impact of DDDAS/InfoSymbiotics in the Industrial Sector
	AI/ML Applications for Aerospace and Defense
	Future Direction of DDDAS/InfoSymbiotics and Collaborations with Related Initiatives
	Author Index

