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A B S T R A C T   

Firefighters are often exposed to extensive wayfinding information in various formats owing to the increasing 
complexity of the built environment. Because of the individual differences in processing assorted types of in
formation, a personalized cognition-driven intelligent system is necessary to reduce the cognitive load and 
improve the performance in the wayfinding tasks. However, the mixed and multi-dimensional information 
during the wayfinding tasks bring severe challenges to intelligent systems in detecting and nowcasting the 
attention of users. In this research, a virtual wayfinding experiment is designed to simulate the human response 
when subjects are memorizing or recalling different wayfinding information. Convolutional neural networks 
(CNNs) are designed for automated attention detection based on the power spectrum density of electroen
cephalography (EEG) data collected during the experiment. The performance of the personalized model and the 
generalized model are compared and the result shows a personalized CNN is a powerful classifier in detecting the 
attention of users with high accuracy and efficiency. The study thus will serve a foundation to support the future 
development of personalized cognition-driven intelligent systems.   

1. Introduction 

Firefighters work in extreme situations and perform psychologically- 
demanding tasks [1,2]. According to a report from the National Fire 
Protection Association (NFPA), there were 58,835 firefighter injuries in 
2017, and 42 percent of the incidents occurred at the fire ground [3]. 
The National Institute of Occupational Safety and Health (NIOSH) 
discovered that disorientation is one of the most common causes of 
firefighter fatalities [4]. In an investigation of the disorientation chal
lenge of firefighters in the U.S. from 1979 to 2001, prolonged zero vis
ibility conditions, which is caused by heavy smoke conditions lasting for 
more than 15 minutes, occurred in 100% of the cases [5]. According to 
[6], besides the influence imposed by the heavy smoke on spatial visi
bility, high smoke density could severely reduce the speed of human 
movements and the capability of information processing [7]. In such 
conditions, because of the lack of affordable and reliable indoor locali
zation systems [8], memorized information turns into the main source to 
perform wayfinding tasks. 

However, firefighters have to take in a large amount of information 
in a short time [9], which adds tremendous cognitive load to them. As a 

result, memorization becomes a critical skill for firefighters to navigate 
and even retreat from the fire ground. Additionally, firefighters have 
varying capabilities in dealing with different types of information owing 
to the individual differences in prior knowledge and other intellectual 
skills [10]. Thus, apart from monitoring firefighters’ overall cognitive 
load, it is crucial to identify what kind of information they are memo
rizing or recalling. Such knowledge will lead to effective intervention 
strategies in necessary conditions to help them better focus on pro
cessing demanding information in their preferred format. 

There is limited knowledge on the connection between the format of 
wayfinding information and its influence on the cognitive system of 
individuals despite its importance. The lack of understanding of the 
connection constrains us from identifying what kind of information is 
being memorized or recalled when massive input is given to a fire
fighter. As a result, firefighters might have to process information that 
they are not proficient in, which could further risk their safety and the 
successes of tasks. 

One of the most pressing challenges related to any cognition-driven 
intelligent system is the difficulty of detecting and predicting selective 
attention focus, i.e., what information a person is paying attention to 
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and processing at a certain time point. In a highly dynamic environment, 
information stimuli of different types and formats are usually mixed, 
such as mixed phonological, visual, spatial, and other sensory cues. 
Although physiological measures including eye-tracking are effective in 
detecting what a person is “looking at”, they usually fail to tell what the 
person is “seeing” and “digesting”. In aviation research, researchers use 
a verbalization approach for intent and attention identification, where 
the test subjects are required to verbalize what they are thinking 
[11,12], but it is often done in a controlled laboratory environment and 
lacks efficiency. In addition, self-reporting is yet another cognitive 
process that may interrupt the information processing of the cognitive 
process under investigation. As a result, there is a pressing need for an 
approach to automatically detect the specific information type and 
format a person is processing when information stimuli are mixed and 
thus difficult to separate. 

To bridge the knowledge gaps listed above, this study designs a set of 
virtual wayfinding tasks, including both memorizing period and per
forming period in four scenarios. We use neural activities for automated 
attention detection based on the presumption that the EEG data shows 
identifiable patterns when a person views and processes a certain type of 
information. As a result, the selective attention focus is detectable by 
examining the strength of each representative EEG pattern. Without 
losing the generality of the findings, this paper focuses on different 
wayfinding information types, including landmarks, routes, and survey 
information. Then, we implement the convolutional neural networks 
(CNN) to identify what type of information is being memorized or 
recalled. Particularly, we build a personalized model and a generalized 
model to differentiate which groups of models are more capable of 
detecting the connections between attentions and information. 

2. Literature review/background 

2.1. Wayfinding information 

Literature shows that spatial knowledge determines individuals’ 
wayfinding behaviors and strategies [13]. Spatial knowledge can be 
categorized into three main stages, landmark knowledge, route knowl
edge, and survey knowledge [14]. Landmark knowledge is the knowl
edge of a specific location in an environment which is identified and 
memorized based on its shape, size, color, and contextual information 
[15]. Route knowledge is the knowledge of memorizing a fixed sequence 
of locations that will be experienced during the journey [16]. Survey 
knowledge corresponds to the information which integrates sequences 
and knowledge from different experiences [14]. In [13], landmark 
knowledge, route knowledge, and survey knowledge are illustrated as 
the knowledge about a point in space, the knowledge about a sequence 
of points, and the knowledge about an area respectively. Cognitive sci
ence literature has discovered the relationship between spatial knowl
edge acquisition strategies and spatial memory development 
effectiveness in navigation tasks [17–22]. 

With the development of virtual reality technologies, more and more 
researchers started to use an VR-based environment to investigate in
dividuals’ wayfinding behavior and have confirmed its efficacy 
[6,23,24]. They found that VR technology can provide a fidelitous vir
tual environment to arouse an individual’s mental process and evoke 
their behavioral responses to the simulated virtual emergencies with 
high ecological validity [24–26]. For example, [25] explored the influ
ence of repeated exposures and mental stress on human wayfinding 
performance using virtual reality. They found that the simulated fire 
emergency scenarios negatively affected participants’ wayfinding per
formance, but the repeated exposure diminished the negative impact of 
the simulated fire emergency scenarios. In addition, [27] used another 
VR-based virtual environment to investigate the influence of crowd flow 
on human evacuation behavior during building fire emergencies. They 
created a virtual metro station and a number of characters (NPC) to 
simulate the fire emergency scenario. The experiment was conducted in 

Beijing, Los Angeles, and London. They confirmed that a VR-based 
experiment is an effective method for studying human evacuation 
behavior. They also found that the uneven splits of crowd flow moti
vated participants to follow the majority of the crowd during indoor 
evacuation and participants from different have similar evacuation 
behavior. [28] also confirmed the effectiveness of the VR-based envi
ronment in earthquake drills. They developed an immersive earthquake 
emergency scenario in a hospital and used the Verbal Protocol Analysis 
(VPA) to investigate an individual’s decision-making process. They 
found that participants tended to be influenced by other people and 
wanted to accompany with other people during the evacuation. In 
summary, the previous studies revealed that VR can provide an effective 
environment to investigate an individual’s evacuation and wayfinding 
behavior in the indoor building environment. In addition to the LRS 
model, some researchers have started to investigate the role of attention 
in human wayfinding decision-making process. [29] found that eye 
movement is associated with the forward motion and turning during the 
navigation. The eye movement may represent an individual’s decision- 
making process during wayfinding. [30] also found that an in
dividual’s review attention has correlated with final wayfinding and 
task performance during building inspections. However, previous 
studies have done little to investigate how brain activities affected visual 
attention related to wayfinding performance. Therefore, we used the 
VR-based environment integrated with an EEG device to address this 
knowledge gap. 

2.2. EEG and deep learning based analysis 

Electroencephalography (EEG) is a widely used neuroimaging tech
nique that measures the summation of electric fields produced by py
ramidal neurons in the cortical layers of the brain [31]. EEG has an 
outstanding time-domain resolution for the rapid propagation speed of 
electric fields, especially in imaging large scale brain activity [32]. 
However, the propagation of electric fields from the source to the sensor 
is influenced by the tissues, which results in the fact that the signal of 
EEG channels is often highly spatially correlated and at a low signal-to- 
noise ratio [31]. Despite the drawbacks of EEG, it has many applications 
in neuroscience and psychology, including measuring the level of fatigue 
[33], mental workload [34,35], and emotions [36]. Additionally, EEG is 
widely used as a sensor to collect brain activity as the input of brain- 
computer-interfaces (BCI)[37]. 

Processing EEG data has been a difficult task. In recent years, deep 
learning methods have been extended to the existing EEG processing 
methods, especially in the field of classification of EEG data. Among all 
the methods, convolutional neural networks (CNN) have been the choice 
of the algorithm in most EEG research since 2015 [31]. The choice is not 
only driven by its success in other fields such as computer vision [38], 
but also by its capabilities in learning without any prior feature selec
tions and exploiting hierarchical structure from the data [39]. For 
example, in [40], a pyramidal one-dimensional CNN is proposed for 
automated epilepsy detection with an accuracy of around 99.1%. In 
[41], CNN is used as a feature extraction tool and proven to outperform 
other feature extraction neural networks such as artificial neural net
works and recurrent neural networks in recognizing Schizophrenia. To 
predict driver’s cognitive states, a channel-wise convolutional neural 
network is designed and achieved robust and improved performance 
over conventional methods [42]. Additionally, CNN is used in [43] to 
deal with the mental workload level classification problem. 

The input to the neural network varies and there is no consensus 
which input can achieve the best results in understanding the cognitive 
load using EEG data. Researches have achieved promising results using 
the raw EEG data as the input [44,45]. However, feature extraction is 
still an effective way to deal with the non-stationarity, low signal-to- 
noise ratio, and non-linearity of raw EEG signals [43]. Additionally, 
the power spectrum density (PSD) of classical frequency bands are 
widely adopted by the EEG community as one of the most important 
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features of EEG data [31]. Thus, the time-frequency domain obtained via 
a short-time Fourier transform (STFT) is often used as input to neural 
networks [43,46,47]. 

In summary, current literature has provided limited knowledge on 
the connection between the stimuli of wayfinding information and the 
reaction of the human brain. Also, there is a knowledge gap in choosing 
the proper input to the CNN model to classify the attention of the sub
ject. To address these issues, we selected CNN as the classifier with the 
PSD acquired by STFT as the input. Multiple CNN models are built to 
explore a good CNN structure with decent accuracy and high training 
speed. 

The rest of the paper is arranged as follows. In Section 3, the way
finding experiment is proposed and data from 20 subjects are collected. 
The data is analyzed in Section 4 to validate the importance of building a 
personalized model for the identification of the kind of information and 
whether it is being memorized or recalled. Two groups of CNN models 
are built and the test results are presented in Section 5. The result is 
further be discussed in Section 6 along with the limitation of this 
research and future work. 

3. Experiment 

3.1. Participants 

Twenty subjects aging from 20 to 28 (mean = 24.6) were recruited 
for this study. The participants included 5 females and 15 males. All of 
them were reported to have sufficient literacy levels in English and no 
health issues related to computer gaming. 7 out of 20 have some VR 
experiences before and 13 of them play video games with an average of 
5.63 h per week. Each participant was informed of the purpose and 
procedures of the experiment before the experiment started. 

3.2. Tasks 

The experiment contains four scenarios based on the wayfinding 
literature: a control group, a landmark group, a route group, and a 
survey group. And the spatial information provided to the groups except 
the control one is shown in Fig. 1. 

In the control group, subjects are asked to find targets without any 
prior given spatial information. In the landmark group, a sequence of 
landmarks is presented to participants in the format of both images and 
texts. The route group represents a series of relative directions. In the 
survey group, the map of the maze is provided with the information on 
their initial point, initial direction, and the location of three targets. 
Information of different groups was given before participants entering 
the maze, and they had three minutes to memorize the information. The 
maze was built in Unity software® and the texture is set to be under
ground as Fig. 2. 

In every scenario, subjects were asked to start from a start point with 
a mark on the ground to find three targets sequentially in the maze with 
one type of information. We developed a virtual maze workflow to 
randomly generate maze models using the external library [48] and 
Software Development Kit (SDK) in Unity 3D. To ensure the same dif
ficulty of the maze models, several algorithms were used in this work
flow. First, we created several maze components as the predefined 
prefabs in the maze generation pool including different types of rooms, 
start room, end room, and different types of corridors. Then, the system 
randomly picks each maze component without repeating between the 
mazes. Second, we used the Bowyer-Watson algorithm to perform 
Delaunay Triangulation for all the picked maze components. The pur
pose is to fully connect all the picked maze components. Third, we uti
lized a Prim Algorithm to calculate the minimum spanning tree for the 
fully connected maze components. Forth, we applied a 15% possibility 
to connect the leaf for the minimum spanning tree and then we used the 
A* algorithm to find the shortest path from the start room to the end 
room. At last, the system fully connects all the maze components with 

the corridor components. Before each maze generation, we could define 
the shortest distance from the start room to the end room to ensure that 
each maze model maintains the same level of difficulty. 

3.3. Procedure 

The procedure of the experiment contained six parts. First, after 
reading and signing the informed consent, participants were asked to 
answer a background questionnaire about their genders, ages, occupa
tions, and experiences on video games and virtual reality. The partici
pants also reported their abilities in understanding various kinds of 
spatial knowledge in the questionnaire. Then, cube comparison test and 
shape memory test [49] were taken to measure participants’ capabilities 
in maintaining spatial orientation and their ability in memorizing shape, 
location, and orientation in provided materials. Third, subjects were 
instructed with their tasks in the maze and the control of the game. 
Because the EEG device used in this experiment is sensitive to body 
movement, despite the wide application of virtual reality in the way
finding research area [25,50], in this experiment, a monitor was selected 
as the display of the environment, and mouse and keyboard were chosen 

Fig. 1. Example of spatial information.  

Fig. 2. Underground maze environment.  
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for subjects to control the direction of sight and the movement on the 
screen. Thirty minutes were provided for each individual to get familiar 
with the control and the environment of the game in a training scenario 
that has the same texture but different maze layout with other scenarios 
used for experiments. After the training, four wayfinding tasks were 
performed and the EEG signals are collected by the Enobio 32 from 
Neuroelectrics® with the frequency at 500 Hz during the procedure. The 
environment and setup of the experiment are shown in Fig. 3. 

In every wayfinding task, a one-minute baseline will be recorded, 
three minutes will be given for them to memorize the certain type of 
information, and six minutes will be provided for subjects to move in the 
maze and find targets in sequence with the help of the memory of given 
information. NASA Task Load Index (NASA-TLX) questionnaire is taken 
as an objective measurement of the mental demand, physical demand, 
temporal demand, overall performance, effort, and frustration level on 
users after each task. The Control group will be taken as the first group 
and the sequence of the rest of tasks will be shuffled randomly before the 
experiment. After the four tasks, subjects will be interviewed about their 
used strategies and opinions about the experiment, such as how they 
memorize information, how much information they can memorize in 
each task, and what type of information helps them in the task. 

3.4. Pre-processing on EEG 

Because brain activity signal is often buried by noises from envi
ronment and body activities in raw EEG signals, which are called ”ar
tifacts” [31], pre-processing methods are ought to be used to acquire the 
clean brain activity signal from the raw EEG signal. 

We used EEGLAB, an open-source toolbox for Matlab [51], to pre- 
process the raw EEG signal. First, the EEG data were downsampled 
from 500 Hz to 250 Hz. Then, a bandpass filter with low cut-off fre
quency at 1 Hz and the high cut-off frequency at 120 Hz was applied to 
remove the potential impact on the further process from high-frequency 
noise [43]. PREP-pipeline [52] was used to detrend the signal. At last, 
independent component analysis (ICA) [53] and ADJUST [54] were 
utilized in collaboration to separate and reject artifacts automatically, 
especially noises generated by muscles and eye movements. 

After acquiring the clean EEG data, short-time Fourier transform 
(STFT) using the Hanning window with the length at 250 samples and 
overlapping length at 50 samples was implemented on EEG data to get 
the power spectrum density (PSD) of the brain activity. The frequency 
domain energy data was further separated into eight sub-bands, delta 
(1–4 Hz), theta (4–7 Hz), lower alpha (8–10 Hz), upper alpha (10–12 
Hz), lower beta (13–15 Hz), upper beta (14–30 Hz), lower gamma 
(30–45 Hz), and upper gamma (65–120 Hz) [55,56]. 

4. Data analysis 

PSD data which include 32 channels and, for each individual chan
nel, 8 sub-bands ranging from 1 Hz to 120 Hz are visualized using violin 
plots for individuals to investigate into different brain activities exposed 
to different types of information and tasks from different subjects in this 
section. In violin plots, only the data in the first three minutes of the 
performing period is chosen to ensure the balance of the data set size 
between the performing period and the memorizing period. The y-axis 
represents decibels of the amplitude relative to that in the baseline, and 
the x-axis shows the performing period and memorizing period in four 
different groups. Subject 2 and subject 21 are selected as examples to 
demonstrate the differences between individuals. The PSD of channels in 
the prefrontal, and parietal cortex, which are understood to be related to 
attention and working memory [57] are compared in the rest of this 
section. 

AmplitudedB = 20⋅log10

(
|Amplitude|

|AmplitudeBase|

)

(1) 

According to [58], an increase in the theta-band energy in the fronto- 
parietal network is related to memory encoding and retrieving perfor
mance. Similar results could also be observed in the prefrontal and 
temporal-parietal regions [59]. It is reported that the right part has a 
higher theta amplitude than the left part in encoding visual information 
[59]. C3 and C4 are selected as two representative channels in the areas 
mentioned above. Fig. 4 shows the theta-band energy in the C3 channel 
which is on the left region mentioned above. Also, the theta-band energy 
on the right part could be represented by the C4 channel is plotted in 
Fig. 5. 

Observing the violin plots of the two channels, for both subjects, 
theta-band energy in C3 and C4 channels has increased in average in the 
performing period of the control group comparing to the baseline. 
Subject 2 has a slight increase in average theta-band energy in both 
channels from the baseline when the subject is handling the landmark 
memorizing, landmark performing, route performing, and survey per
forming tasks. Also, subject 21 is reported to have a higher theta 
amplitude in the landmark and route information memorizing stage in 
two channels. This shows that when subjects were trying to memorize or 
recall information in these two tasks the cognitive load increased in most 
of the cases. Additionally, comparing C3 and C4 of subject 21, it could be 
found that the theta amplitude in the right region is higher than that in 
the left region when the subject is performing in the landmark, route, 
and survey group according to the result of Wilcoxon signed-rank test. It 
indicates that the subject 21 was encoding visual information during the 
performing period and does not fully rely on the information provided. 
However, apart from the coherence of the literature mentioned above, 
violin plots also show a slight decrease in theta amplitude in average in 
C3 and C4 when the subject 2 was memorizing route and survey 
knowledge according to the baseline. A similar decrease could be 
observed when the subject 21 was performing in the landmark group in 
C3 and survey group in both channels. This shows that some kind of 
information does not stimulate much cognitive load in C3 and C4 
channels for some subjects. 

In [60], the cognitively demanding task activates the central- 
executive network which includes the dorsolateral prefrontal cortex, 
and posterior parietal cortex. The posterior parietal cortex has a complex 

Fig. 3. Experiment environment with EEG.  Fig. 4. C3 channel theta band of subject 2 (left) and subject 21 (right).  
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ability to perceive and react to stimuli in the visual field [61]. In other 
words, it coordinates both eye-gazing point and hand movement in 
space to accomplish the interaction to the real world. 

P3 channel is selected to be the representative of the posterior pa
rietal cortex and the violin plot shows the theta band of P3 in Fig. 6. 
According to the literature, P3 is expected to have higher theta-band 
energy during the performing period than the baseline and memo
rizing period because of the activation of the posterior parietal cortex. 
For both subjects, participants in the control group and the landmark 
group showed higher theta-band energy than that in the baseline. 
Additionally, the performing period given the survey knowledge acti
vates the posterior parietal cortex more than the baseline and memo
rizing period. However, a similar pattern could not be observed in the 
landmark group and the route group of two subjects. 

Dorsolateral prefrontal cortex is another crucial component of the 
central-executive network [60] which plays a maintenance role in 
working memory, especially under high loads [62]. Because channel F3 
is located in the dorsolateral prefrontal cortex, the theta-band energy is 
plotted in Fig. 7. 

According to the figures, it could be observed that for both subjects, 
the dorsolateral prefrontal cortex is activated during all circumstances 
except the memorizing period of the route knowledge for subject 2 in 
average. 

In summary, according to the analysis above, the theta energy 
measured during the performing part in the control group is slightly 
above the baseline for two subjects in all visualized channels in the 
prefrontal, and parietal cortex. Additionally, among all the memorizing 
periods in three groups of subject 2, there is more theta energy in the 
prefrontal and parietal cortex given landmark information than that in 
other groups. It shows that memorizing landmark information brings 
more mental workload for subject 2 than other groups. A similar 
conclusion could be made among performing periods of subject 2. 
Moreover, except for the right side of the prefrontal and temporal- 
parietal region, the landmark information brings the most mental 
workload to subject 2. Also, we find that on average the route group 
information brings the least amount of mental workload both in 
memorizing and performing. However, for subject 21, route information 
brings more mental workload in the left prefrontal and temporal- 
parietal region than that in the posterior parietal cortex, and the 
dorsolateral prefrontal cortex. Comparing the theta energy between 
memorizing and performing, it could be found that, in the left prefrontal 
and temporal-parietal region, the performing period stimulated more 
theta frequency energy in subject 2, but it brought less theta-band en
ergy in subject 21. The PSD of the remaining 18 subjects are included in 
Fig. S.1. Comparing the mental workload stimulated by the same task on 
four brain regions in subjects, individual differences become a factor 

that could not be ignored in analyzing the mental workload introduced 
by various types of information. Thus, as a result, it is necessary to try 
the individual-level model in classifying what kind of information is 
influencing the subject and if the subject is encoding or decoding the 
information. Moreover, to deal with the existence of the large variance 
and poor separation, neural networks are selected to be the classification 
method in further analysis. 

5. Convolutional neural network 

As what has been discussed in the Section 2.2, CNN is selected as the 
classifier of the PSD data acquired from EEG signals. 

5.1. Major components of CNN 

5.1.1. Convolutional layer 
Convolutional (Conv) layer plays an essential feature learning role in 

the CNN architecture. Each Conv layer consists of one set of learnable 
kernels with a receptive kernel field smaller than the input size in width 
and height but equal in depth. During the forward pass, each kernel 
convolves along the width and the height of the input signal. In other 
words, it calculates the dot product between the kernel and the local 
region input at all positions and adds a bias. After the kernel slides over 
the width and the height, a 2-D activation map will be produced. The 
output of the Conv layer is derived by stacking every activation map 
generated by kernels in the Conv layer along with the depth. As is shown 
in Fig. 8. 

5.1.2. ReLU layer 
To increase the nonlinearity of the network and without affecting the 

receptive field of the convolutional layer, an activation function is 
usually implemented after a Conv layer. There are many commonly used 
activation functions, for example, the sigmoid function σ(x) =

(1 + e−x)
−1, the hyperbolic tangent f(x) = tanh(x), and the rectified 

linear unit (ReLU) f(x) = max(0, x). In this paper, the ReLU is selected to 
be the activation function in the neural network for its speed and min
imum penalty on accuracy. 

Fig. 5. C4 Channel theta band of subject 2 (left) and subject 21 (right).  

Fig. 6. P3 Channel theta band of subject 2 (left) and subject 21 (right).  

Fig. 7. F3 Channel theta band of subject 2 (left) and subject 21 (right).  

Fig. 8. Convolutional layer, two grey cuboids represent input and output ten
sors of the convolutional layer, and the blue cuboid is the kernel corresponding 
to one layer of activation map. 
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5.1.3. Pooling layer 
To reduce the spatial size of output from the Conv layer to reduce the 

computational load, and to avoid overfitting at the same time, a pooling 
layer is placed periodically among a set of Conv layers. The pooling layer 
separates every slice of the input into rectangles with the same shape 
and no overlaps, and output the maximum or the average, depending on 
the pooling layer function selection. The output of this layer will have a 
lower size in height and width but keep the depth unchanged. 

5.1.4. Fully-connected layer 
In a fully-connected layer, each neuron is connected to all of the 

elements in the output from the previous layer. Thus, the calculation in 
this layer could be considered as multiplying the input by a weight 
matrix and adding a bias vector. It is used as the final part of CNN to 
connect features extracted through the Conv layer, ReLU layer, and 
pooling layer to the target output. 

5.1.5. Input and labels 
Because the PSD for every second contains energy amplitude of 32 

channels and 8 sub-bands, it could be viewed as a digitized one-channel 
image in the shape of 32 × 8 pixels as shown in Fig. 9. 

After acquiring the energy of 8 sub-bands in 32 channels using STFT 
for every second, the PSD is formatted into an 1 × 32 × 8 tensor and 
further stacked as a time series with a label of the task the participant 
was working on. As shown in the illustration of tasks in Section 3, the 
EEG data could be labeled into seven categories of tasks, the performing 
part in four groups, and the memorizing part in the landmark group, 

route group, and survey group. 

5.2. Personalized model 

Due to the individual differences of activated brain regions among 
participants, we first designed a personalized model that is coherent 
with the idea of a personalized information system. The purpose of this 
model is to build a personalized CNN based on each individual’s own 
EEG data, and, as a result, the model could neglect the effect of indi
vidual differences and deal with personalized behavior.10-fold cross- 
validation is applied to compare personalized CNN models. Among the 
6,300 samples acquired for each individual, there are 900 PSDs for each 
category of task. The CNN is trained by 5,670 samples in each iteration, 
and the rest 630 samples are saved for evaluating the accuracy of the 
model. 

In order to find the optimal structure of neural network for the 
wayfinding task classification problem, two candidate convolutional 
neural networks (CNN1 and CNN2) are proposed and the structural 
parameters of neural networks are provided in Table 1. In the table, 
Conv1 represents the convolutional layer with 1 input channel and 8 
output channels. Its kernel size is selected to be 5 and the stride is 1. And 
the Conv2 represents the convolutional layer with 8 input channels and 
16 output channels. Zero paddings for Conv1 and Conv2 are set to 2 to 
ensure the size of the output to be suitable input for the next layer. All 
convolutional layers use ReLU as the activation function for introducing 
nonlinearity to the neural network, and batch normalization is applied 
after each convolutional layer to improve the stability of the neural 
network. The Pool 2 × 2 is the 2D max pooling layer with kernel size as 
2 × 2, strides for the height and width as 2, and no padding applied. The 
number in the FC Layer column means the output size of a fully- 
connected layer. The loss function is the cross-entropy loss and the 
optimizer is selected to be the Adam optimizer [63] with the learning 
rate at 0.01. 

Taking CNN2 as an example, the structure of the neural network is 
designed as Fig. 10. In the figure, the input to the network is a 1 × 32 × 8 
tensor acquired from the result of STFT. After the first convolutional 
layer Conv1, the second convolutional layer Conv2 was added, followed 
by a pooling layer for down-sampling to reduce the number of param
eters and computational load. Then, fully-connected layers are added for 
feature extraction and the output is an array with 7 elements. The matrix 
is further processed by the soft-max function which determines proba
bilities for all classes and outputs the corresponding digit of the label 
with the highest probability. 

5.3. Generalized model 

To further investigate the possibility of a generalized model, con
volutional neural networks have been trained by the data collected from 
19 subjects. 10-fold cross-validation is also applied in quantifying the 
accuracy of the generalized model. In the training procedure, 119,700 
samples from 19 subjects are separated into a training set that includes 
90% of data. The trained CNN is further tested by the remaining 10% 
data in evaluating the performance. The 6,300 PSDs from the remaining 
subject is saved to test if the generalized model could still accurately 
classify the data set. Three candidate convolutional neural networks are 
proposed and the structural parameters of neural networks are provided 
in Table 2. In which, CNN1 and CNN2 are the same in personalized 
model Section 5.2, and, in CNN3, Conv3 is the convolutional layer with 

Fig. 9. Image of PSD.  

Table 1 
Structural parameters of personalized neural networks.  

Model No. of Conv Conv Layer Pooling Layer FC Layer 

CNN1 1 Conv1 Pool 2 × 2  128 
CNN2 2 Conv1  256   

Conv2 Pool 2 × 2  64  
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16 input channels and 32 output channels which is added between the 
Conv2 and the pooling layer. 

5.4. Results 

All the models were written in Python 3.7 and PyTorch 1.2.0 and run 
on a PC with the Intel(R) Core(TM) i7-7700 K CPU @ 4.20 GHz, 32 GB 
Memory, and NVIDIA GeForce GTX 1080. Two metrics are introduced in 
the following analysis, accuracy and training time. Accuracy is defined 
as the percentage of the accurately classified data in the test set, and the 
training time measures the time consumption for the neural network to 
be trained. In the following results, the accuracy and training time are 
calculated by averaging the results from the 10-fold cross validation. We 
are interested in comparing the ML training speed because, in practice, 
before entering the fire ground, the previously trained model needs to be 
updated by new data sets to ensure that it fits the current situation of the 
firefighter. Thus, the training and implementation of the proposed 
model can occur simultaneously, i.e., online learning. However, because 
of some limitations, offline learning is used in this article. In our model, 
the accuracy and training speed are the metrics in comparing different 
structures of CNNs. The rationale for using offline learning is further 
discussed in Section 7. 

First, the performance of the two personalized models are compared. 
According to the training time in Fig. 11, the CNN1 model takes 2.61 

s less per iteration to train because of the smaller number of convolu
tional layers in the structure. The mean accuracy of CNN1 and CNN2 is 
94.41% and 94.15%, respectively. Additionally, according to the 
ANOVA test (F-value: 0.069, p-value: 0.742), the overall accuracy shows 
no significant differences between CNN1 and CNN2 in Fig. 12. The 
confusion matrices of the testing result in Figs. 13 and 14 provide 
detailed information about the classification result given by two 
personalized models. The classification accuracy of two CNNs are high 
and less than 5% of samples are unable to be classified between 
memorizing and performing with the same type of information. Thus, 
both convolutional neural networks suffice the needs to build a 
personalized model and classify brain states during the wayfinding task. 

However, CNN1 is sufficient for the target and more economical in time 
and memory requirements. 

We used two data sets to test the generalized model. The first one is 
the 10% remaining data from all the 19 subjects and the remaining one 
subject is the second data set for testing. As is shown in Fig. 15, the 
training time for CNN2 is 5.82 s longer than CNN1 on average and the 
ANOVA test shows that the difference in training time for CNN1 and 
CNN2 is significant (F-value: 6.36, p-value:0.015). The average training 
time for CNN3 equals to 293.49 s. It is much longer than the other two 
networks because of the Conv3 layer. The test on the first data set shows 
that CNN1 and CNN2 have good results with the average at 69.12% and 

Fig. 10. Personalized CNN.  

Table 2 
Structural parameters of generalized neural networks.  

Model No. of Conv Conv Layer Pooling Layer FC Layer 

CNN1 1 Conv1 Pool 2 × 2  128 
CNN2 2 Conv1  256   

Conv2 Pool 2 × 2  64 
CNN3 3 Conv1     

Conv2  256   
Conv3 Pool 2 × 2  64  

Fig. 11. Personalized neural network training time.  

Fig. 12. Personalized neural network overall accuracy.  

Fig. 13. Confusion matrix of the classification result of CNN1.  
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81.22% separately in Fig. 16. Despite relatively high accuracy in some 
cases, the variance from CNN3 is much higher than those from CNN1 
and CNN2. Additionally, none of the convolutional neural networks 
provided satisfying accuracy on the second data set. 

6. Discussion 

In this study, a wayfinding experiment was designed to collect the 
brain activities of subjects when they were memorizing and using 
different types of information for the wayfinding tasks in an under
ground maze. After visualizing the PSD of EEG, we implemented 

convolutional neural networks to classify human cognitive responses in 
different wayfinding periods based on the EEG data. The study discov
ered three findings that greatly contribute to the research on way
finding. First, according to the analysis of individuals in Section 4, the 
cognitive response of one subject in learning and recall of different types 
of information shows differences in Figs. 4–7. The result indicates that 
the wayfinding experiment proposed in Section 3 stimulated diverse 
PSD distributions in the brain of the subject, which aligns with the 
change of capabilities of individuals in dealing with various kinds of 
information in [10]. It further approves the adequacy of the experiment 
designed in this study to be the stimuli of the mental workload in the 
wayfinding tasks. 

Second, as discussed in Section 4, even the same information intro
duced different amounts of mental workload in the same brain region. 
The observation is coherent with the finding that the same information 
stimulates different cognitive loads to different people in [10]. Such 
variation is probably caused by the differences in prior knowledge and 
intellectual skills. For example, in the control group, some participants 
follow the right-hand rule. When memorizing the route information, 
some remembered the first letters of the words, and some encoded the 
sequence into a rhythm. The finding indicates that the individual dif
ference can be a vital factor that should be considered in building the 
classification model for EEG signals. Thus, personalized modeling is 
needed to account for and control the effect brought by individual dif
ferences. The need is further validated by the superior classification 
results of the personalized model comparing generalized models. 
Additionally, the individual difference is probably introduced by prior 
knowledge and intellectual skills, and therefore we need robust and 
efficient (i.e., requiring less data) individual models for trained 
firefighters. 

Third, the personalized classifier based on the PSD and CNN pro
posed in Section 5.2 has achieved promising performance in detecting 
the attention of a subject. According to the test result, CNN is proven to 
be capable of identifying what kind of information the subject is 
memorizing or recall at high accuracy and a low training time con
sumption. This neural network structure aligns with the design of CNN 
in [43,46,47]. Additionally, the success of the CNN1 with the PSD ac
quired from STFT as the input indicates its potential in identifying the 
attention of subjects based on the EEG data. It further reveals that the 
PSD of the EEG signal contains the feature to classify what kind of in
formation the subject is using and whether the subject is memorizing or 
recall the information. The good performance of CNN1 shows potential 
applications of CNN as an attention classifier in building the wayfinding 
information system for firefighters, and in identifying the concentration 
of subjects and if the subject is encoding or decoding information in the 
future. 

7. Limitations and future work 

The study discovered some important findings that can serve as 
building blocks for future research. We identify the following limitations 
and point out a few future directions that are worth exploring. First, this 
study only focused on the PSD of EEG. Other data sets, including the 
result of the cube comparison test and shape memory test, NASA-TLX 
questionnaires, the human performance measurements, and other EEG 
features, such as event-related potentials in [64], have been suggested to 
provide complementary insights and additional dimensions into un
derstand and quantify cognitive load stimulated by spatial information 
during the wayfinding experiment. Second, data from more subjects can 
be collected to test our model, especially provide more insights into the 
feasibility and validity of generalized models. It is, however, worth 
noting that there are abundant literature advocates individual differ
ences in capabilities in information processing [10,65,66]. Third, in 
practice, CNN is required to be updated regularly and before entering 
the fire ground to eliminate the impact from the changes in prior 
knowledge and intellectual skills on individuals over time. However, in 

Fig. 14. Confusion matrix of the classification result of CNN2.  

Fig. 15. Generalized neural network training time.  

Fig. 16. Generalized neural network overall accuracy.  
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this study, we are focusing on finding a proper structure of CNN in 
capturing the mental workload pattern in different scenarios. We will 
need larger data sets from individuals in multiple experiments over a 
long period of time to support and validate online learning models. As a 
result, offline learning is used in this article and the online learning CNN 
will be implemented in future studies. Fourth, the selection of CNNs and 
parameters in the models are based on previous research. In [67], 
multiple machine learning algorithms have given relatively high accu
racy for the multi-class classification based on the PSD of EEG data 
collected in the shape-analogous letter perception experiment. Future 
studies should test the feasibility of these models as well. 

8. Conclusion 

Disorientation has been a severe threat to firefighters’ safety and 
lives. Although the advance in information and sensing technologies 
promises improved wayfinding performances, they can overwhelm 
firefighters with excessive and varying types of information. The un
certainty of new technologies calls for a better understanding of the 
connection between the types and format of wayfinding information and 
its influence on the cognitive load of individuals. This study takes one of 
the first steps to examine such a connection between stimuli of infor
mation and brain activities in wayfinding tasks. Our findings show that 
memorizing and recall of different types of information stimulate 
different brain activities. Therefore, personalized models are needed to 
capture individual brain activity patterns. Our CNN models also indicate 
that personalized, rather than generalized, models can function as the 
appropriate attention classifier and thus can serve as the foundation for 
building the wayfinding systems for firefighters in the future. 
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