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ABSTRACT

We study settings where a set of identical, reusable resources must
be allocated in an online fashion to arriving agents. Each arriving
agent is patient and willing to wait for some period of time to be
matched. When matched, each agent occupies a resource for a cer-
tain amount of time, and then releases it, gaining some utility from
having done so. The goal of the system designer is to maximize over-
all utility given some prior knowledge of the distribution of arriving
agents. We are particularly interested in settings where demand for
the resources far outstrips supply, as is typical in the provision of
social services, for example homelessness resources. We formulate
this problem as online bipartite matching with reusable resources
and patient agents. We develop new, efficient nonmyopic algorithms
for this class of problems, and compare their performance with that
of greedy algorithms in a variety of simulated settings, as well as
in a setting calibrated to real-world data on household demand for
homelessness services. We find substantial overall welfare benefits
to using our nonmyopic algorithms, particularly in more extreme
settings — those where agents are unwilling or unable to wait for
resources, and where the ratio of resource demand to supply is
particularly high.
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1 INTRODUCTION

Several important problems arising from the need for institutions
to allocate scarce societal resources are intrinsically online in na-
ture. For example, when organs from deceased donors become
available, they must be quickly matched with recipients on the
waiting list [4, 14], and when households experience homelessness
(or are at imminent risk of homelessness), they become eligible
to receive community-provided homelessness services [5, 13]. In
such situations, the institution typically has an allocation rule (of-
ten attempting to balance efficiency and equity) that governs who
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gets the resource [9]. In such situations, the resources are scarce
— demand typically far outstrips supply - so it is critical to make
reasonable decisions among many eligible recipients.

We focus on online problems where the institution strives for
efficient allocation of resources among an eligible population. This
defers equity considerations to a prior stage, where eligibility for
the resource is determined, and instead focuses on the problem of
how to allocate available resources among an eligible population
given knowledge of the utility from each match of an agent (e.g.
a household experiencing homelessness) to a resource (e.g. space
in a shelter). We consider a setting in which there are a number
of identical resources. Agents arrive over time; when they arrive,
the system becomes aware of the utility of matching that agent
with any of the available resources, and the maximum period of
time that agents would wait — if that period of time elapses without
them being matched, they leave, and the system attains no utility.
On the other hand, if they are matched with a resource, the system
realizes that utility, and the resource ends up being occupied by
that agent (and hence unavailable to others) for a certain period of
time. The tradeof is then between committing a resource into the
future versus not (immediately) realizing the available utility.

With the above framing, this work extends standard online bi-
partite matching to scenarios in which online agents are patient,
i.e., agents are willing to wait for some period of time to be matched,
and offline resources are reusable, i.e., resources will be released in
some period of time after being allocated. These two considerations
are practical in nature but relatively under-explored in the online
matching literature. Below we summarize our main contributions
towards addressing these questions.

e We formulate the problem of online bipartite matching with
reusable resources and patient agents (henceforth OM-RR-PA).

We analyze the performance of greedy algorithms for OM-RR-PA
and show that greedy algorithms are sub-optimal in situations
where (i) resource scarcity is very high, and (ii) agents are un-
willing or unable to wait for very long.

e We construct linear programs (LP) for OM-RR-PA under known
adversarial distribution [2, 3] that lead to valid upper bounds on
the expected offline optimal. We then propose an online algo-
rithm that achieves a competitive ratio of % — e forany e.

Under the additional assumption that the resource occupation
time and agent waiting time are exponentially distributed, we
formulate OM-RR-PA as a Markov decision process (MDP). When
agents are impatient, we show that the optimal online algorithm
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is tractable; When the agents are patient, we propose to utilize
reinforcement learning to approximate the optimal policy.

o We evaluate the proposed algorithms both on simulated data
and on a real-world dataset that predicts the effects of two dif-
ferent homelessness interventions on future outcomes (return
to homelessness) over several years in a major US metro. The
experimental results demonstrate that our proposed algorithms
perform substantially better than the greedy algorithm and other
baselines, especially in regimes with impatient agents and ex-
treme resource scarcity. In addition, our MDP-based algorithms
outperform the LP-based algorithms when the exponential dis-
tribution assumptions are approximately satisfied.

1.1 Related Work

Online bipartite matching has been extensively studied in the lit-
erature, and one promising direction is to formulate the problem
using linear programs (LP) and design algorithms accordingly. This
approach has been adopted to solve problems in various application
domains, including online ad auctions [6, 7], task assignment in
crowdsourcing markets [10, 11], and organ transplantation [14]. In
these works, online arriving agents are often assumed to be impa-
tient and need to matched upon arrival, and the offline resources
are assumed to be disposable (gone when used). However, in many
real-world applications, resources might be re-usable and agents
might be patient and willing to wait to be matched. Our work dif-
fers from the above works by considering these two practical but
under-explored aspects in online matching.

One relevant work in this line of research is by Dickerson et al.
[8], who consider reusable resource settings for online bipartite
matching. They formulate a linear program with novel constraints
that generate feasible probabilities of assigning edges at every time
step. They develop Monte-Carlo simulation-based online algorithms
that use the optimal solution of the proposed linear program. How-
ever, in their work, online agents are still assumed to be impatient
and need to be matched upon arrival. Our LP-based approaches
extend their work to incorporate patient agents.

Since online matching is essentially a sequential decision-making
problem, formulating the problem as a Markov decision process
(MDP) [17] and solving the optimal policy for online matching is
another natural approach. When the environment is complex and
exactly solving for the optimal policy is hard, reinforcement learn-
ing (RL) [12] is commonly used to approximate the optimal policy.
Our MDP-based approaches explore the usage of this approach
under certain distributional assumptions. Our formulation shares
similarities with work on trade execution problems[15, 16], which
formulates the problem as an MDP, with the action space being the
limit order prices at which to reposition all remaining inventory,
and the state being represented by various statistics of order books.
Our formulation is similar in that the wait list in our problem plays
a similar role to the order book in the trade execution problem. In
the domain of online bipartite matching, Stein et al. [18] apply re-
inforcement learning approaches to design a matching mechanism
that is strategyproof and individually rational for online bipartite
matching with reusable resources and impatient agents.
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2 SETTING AND PRELIMINARIES

We first formalize the problem of online matching with reusable
resources and patient agents (OM-RR-PA). In OM-RR-PA, the policy
designer is given as input a bipartite graph G = (U, V, E), where U
and V respectively represent the set of offline reusable resources
and the set of online agents in the matching system. For each edge
e = (u,0) € E, we define weight w, to denote the utility that could
be obtained by matching v and u. We use N = |U| to denote the
number of resources and T = |V| to denote the number of arriving
agents. At each time step, an agent v from V arrives. A patient
agent will wait for D, time steps and leave if not matched. When
reusable resource u is allocated to agent v, it will be released after
Ke (e = (u,0)) time steps. We assume that both {D,} and {K,} are
bounded. Below we discuss the additional assumptions we make in
this paper.

Distributional Assumptions on {D,} and {K,}. In this paper,
we first discuss the general setting that D, and K, can follow any
known distributions and propose LP-based methods (Section 3)
for this setting. We then consider the scenario in which both the
resource occupation time K, and agent waiting time D, are expo-
nentially distributed. More formally, K, and D, are assumed to be
realizations of i.i.d. random variables drawn from exponential distri-
butions with parameters A; and A4 respectively. This corresponds
to a natural scenario in which an agent who occupies a resource
keeps the resource with a fixed probability every round, and an
agent who is waiting for resources keeps waiting with a fixed prob-
ability every round. We discuss how we can utilize MDP-based
approaches with this assumption (Section 4).

Known Adversarial Distribution (KAD) for Agents. In our set-
ting, the agent distribution is characterized by the utilities {we }.
We assume the choice of the distribution could be adversarial but
the agents’ arrival sequence is stochastic and drawn from the dis-
tribution. We denote the PDF and CDF of the utility distribution
as f and F. We also assume the distribution is known to the policy
designer. This knowledge assumption might be (approximately)
satisfied in practice if the designer has access to historical data.
KAD is introduced in prior works[2, 3, 8] and is also known as
Prophet Inequality matching. For OM-RR-PA with T rounds and
an input graph G = (U, V,E), at each time t € T, an agentv € V is
sampled from a known distribution {p,,;} such that )} cy pos < 1.
Moreover, once we set py ;s = ﬁ, the KAD model is equivalent to
a KIID (Known IID) input model.

2.1 Analysis of the Greedy Algorithm

We first analyze the performance of the (myopic) greedy algorithm
which assigns any available resource to the agent who gains the
most immediate utility, without taking into account future arrivals.
Such greedy allocation is common. For example, when a space in
a homeless shelter becomes available, the agency may offer it to
the household ranked as being in the highest need; when deceased
donor livers become available, they are offered first to those who are
medically matched and with the highest MELD scores, a measure
of need.

THEOREM 2.1. In OM-RR-PA with N identical resources, when D,
and K, are constant such that D, = d, K, = k, and w, is bounded
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within the range [L, U], under the worst case agent arrival, the asymp-
totic competitive ratio of the myopic (greedy) algorithm CRGyeedy
can be characterized as follows:

1 k<N
CRGreedy =91 d—o o

U

i k>2N+d

The theorem implies that when we have an abundant amount of
resources (i.e., the occupation time k for each resource is smaller
than the number of resources N, since arrivals are fixed to one
per unit time), greedy performs optimally since every agent is
getting resources. When agents are patient and are willing to wait
for a long period of time (i.e., d is large), greedy also works well.
However, when neither of these are true (i.e., we do not have enough
resources, and agents can only be allocated resources within a short
time frame after arrival), the performance of the greedy algorithm
could degrade significantly compared with offline optimal, and thus
designing non-myopic online allocation algorithms could bring
benefits.

2.2 Overview of Our Approaches

In this paper, we design non-myopic online allocation algorithms.
In Section 3, we first extend online bipartite matching problem to
settings that combines reusable resources and patient agents. We
assume the resource occupation time and agent waiting time are
known but can follow any distribution. We formulate the problem
as linear programs and develop algorithms accordingly. In Section 4,
we consider settings in which the resource occupation time and
patient waiting time are exponential distributed. With this assump-
tion, we can formulate the problem as a Markov decision process
(MDP) due to the memorylessness property of the exponential dis-
tribution. We also discuss the design of online matching algorithms
with this formulation.

3 LP-BASED ALGORITHMS FOR OM-RR-PA

In this section, we formulate the linear programming (LP) formu-
lations for OM-RR-PA and discuss the design of online matching
algorithms when both resource occupation time and agent waiting
time can follow any known distributions. While the focus of this
paper is on settings with identical resources, since LP formulations
can naturally handle the situation with non-identical resources,
in the following discussion, we first discuss the formulation with
non-identical resources (denoted by LP-NID) in Section 3.1 and then
demonstrate how to design more efficient algorithms for the formu-
lation with identical resources (denoted by LP-ID) in Section 3.2.

3.1 OM-RR-PA with Non-Identical Resources

LP-NID Formulation. Let a bipartite graph G = (U, V, E) be the
input to OM-RR-PA with N non-identical resources. Suppose that
the online matching problem has a horizon of T, and {D,} is upper
bounded by d. In this formulation, both D, and K, are random
variables with known distribution, and E, (E,) denotes the set of
edges incident to agent vertex v (resource vertex u). For a potential
assignment e = (u,v), we use variable x. s, to denote the assign-
ment decision, where x, ; » represents the probability that (agent) v
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arrives at time ¢ and is assigned to (resource) u at n steps after the
arrival. For notation simplicity, we set De = Dy, if e = (u,v), since
we assume the waiting time of online agent is irrelevant to offline
resources. LP-NID can then be formulated as follows. Note that our
formulation of LP-NID and the corresponding algorithm design
introduced later is an extension of the work by Dickerson et al.
[8] to include the consideration of patient agents while they only
consider impatient agents.

d
max Z Z Z Pr(De >n)xXe t.n We

e€E teT n=0
d
s.t. Z er,t,n < por V(t,0) @)
ecEy n=0
min(d,t—t/)
’
Z Z Z %, o Pr(De=n)Pr(Ke 2t—t —n) <1 Y(t,u) (3)
t’gt ecEy n=0
0 <xXern <1 V(e t,u) (4)

COROLLARY 3.1. The optimal value of LP-NID provides an upper
bound on the expected overall utility of OM-RR-PA with non-identical
resources.

CrLAamm 3.2. Linear program for online matching with reusable
resources and impatient agents (as discussed in Dickerson et al. [8]) is
a special case of LP-NID by setting the upper bound d to be 0.

Let us interpret the above linear program. First of all, for the
objective, let Q, ; be the event that assignment e = (v, u) gets as-
signed and agent v arrives at time ¢. The conditional probability
of Q¢ under the condition that the occupation time is D, can
be computed as: Pr(Qe¢|De) = ZZI:O Xe,t.nl(n < De), where I(x)
is the indicator function. Let fp(*) be the PDF of random vari-
able De, then we get the unconditional probability of Q. ; such
that Pr(Qe;) = f ZZ:O Xetnl(n < D¢)fp(De) dDe. Therefore,
Pr(Qey) = ZZ:O Pr(De = n)xe,t n, leading to the expected match-
ing utility as computed in the objective. Constraint (2) guarantees
the probability of assigning o arrives at time ¢ be no larger than the
the probability that v arrives at ¢ in all cases. Constraint (3) guaran-
tees the probability that resource u is used up at time ¢ to be smaller
than 1. The formulation extends the one in previous work [8] by
incorporating patient agents. In particular, we use the law of total
expectation to incorporate patient agents in the objective as well
as constraints that generate feasible probabilities of the potential
assignments.

LP-Based Online Algorithm. We design online adaptive algo-
rithm, Algorithm 1: OAA-NID(¢), using optimal solutions {xj , ,}
of LP-NID and Monte-Carlo simulations. Let . ; be the probabil-
ity that assignment e is available at time ¢. As discussed in prior
work [1, 8], ae,+ could be approximated with arbitrarily small error.
Under the condition that v arrives at time ¢ with a waiting time of
Dy and e is available at t € X, where X C {t,t+1,..,t+ Dy}, the con-
ditional probability that OAA-NID(¢) assigns edge e = (u,v) at time
Xetn

ity of @ enpot | Gt I(n < Do) fip (Do) dDy =2, , Pr(De >

t+n € X is I(n<Dy,), leading to an unconditional probabil-
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n). As an extension to the prior result [8], OAA-NID(¢) achieves a
competitive ratio of ¢ once ¢ < e for any e and ¢.

Algorithm 1 OAA-NID(¢): Online Adaptive Algorithm for Non-
Identical Resources

1: For each time ¢, let v and PAD denote the agent arriving at time
t and a set of previous allocation decisions.
2: Choose n and e = (u,0) such that n < D, and n € ¥ with
$xern

= , and add allocation decision (e, t + n) into
et+nPo,t

probability
PAD.

3. for allocation decision (e’,t’) in PAD do
4: if ¢’ is free at time t and ¢’ = ¢ then
5 Match e’ at time ¢

6: end if

7: end for

TuEOREM 3.3. In OM-RR-PA with non-identical resources, OAA-
NID(¢) achieves a competitive ratio of% — € foranye > 0.

3.2 OM-RR-PA with Identical Resources

We now discuss the setting with identical resources. While LP-NID
and the corresponding algorithms can still be applied, we can adjust
LP-NID to a more efficient linear program (LP-ID) for OM-RR-PA
with identical resources.

LP-ID Formulation and Corresponding Online Algorithm.
We use variable x,p to denote the assignment decision, i.e., it
represent the probability that agent v arriving at time ¢ is matched
n time steps after the arrival (since the resources are identical, we do
not need to index the resources.) The corresponding linear program
is formulated as LP-ID. Compared with LP-NID, LP-ID has less
variables and constraints and is therefore more computationally
efficient. As previously discussed, we could design Algorithm 2
OAA-ID(¢) based on simulation results and optimal solution of
LP-ID. In OAA-ID(¢), a; represents the probability that there are
free resources at time ¢, and ¢ is still required to be smaller than ;.

max Z Z i Pr(Dy > n)xy 1.0 Wo

)
veV teT n=0
d
sit. ) Xotn < por V(£0) ©)
n=0
min(d,t—t,)
Z Z Z %,/ o Pr(Do2n) Pr(Ky 2t—t —n) <N Vit (7)
t <t V€V n=0
0<xppn <1 ®)

When agents are impatient, the linear program is a special case
of LP-ID with d = 0, thus variables x, ; , degenerate to x ¢, and all
Pr(Dy 2 n)=1. In the corresponding online algorithm, we do not
need to consider the set of previous allocation decisions, and the
¢x:,t

conditional probability that v gets assigned is Tper
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Algorithm 2 OAA-ID(¢): Online Adaptive Algorithm for Identical
Resources

For each time ¢, let v and PAD denote the agent arriving at time
t and a set of previous allocation decisions.

¢xz,t,n
AtnPort’

2: Choose n such that n <D, and n€X with probability
and add allocation decision (v, t + n) into PAD.
for allocation decision (v, t’) in PAD do
4 if There are free resources and ¢’ = t then
Match o’ with an arbitrary free resource at time ¢
6: end if
end for

MDP-BASED ALGORITHMS FOR OM-RR-PA
UNDER EXPONENTIAL ASSUMPTION

So far we have introduced LP-based methods in settings where we
do not make distributional assumptions about agent waiting time
and resource occupation time. In this section, we explore settings
where we assume these are exponentially distributed and introduce
MDP-based algorithms. Recall that under these assumptions, agent
waiting time Dy, and resource occupation time Ky are exponentially
distributed such that D, ~ Expo(d4) and Ky ~ Expo(Ay). These
assumptions align well with many applications, as we demonstrate
in analyzing our real-world dataset in Section 5.

4.1 Online Matching with Impatient Agents

We first address a simpler scenario in which agents are impatient
and need to be matched immediately upon arrival. To design an
MDP-based policy, we need to decide on the state representation
of the online matching system and action space in which the pol-
icy designer searches for the optimal matching policy. We also
need to formulate the corresponding reward and state transition
functions.

e State s = (n, t): Each state s can be represented by a pair (n, ),
where n € {0, 1,..., N} is the number of resources that are occu-
pied and t € {1,...,T] is the time round. The initial state of the
system is s1 = (n1,¢1) = (0, 1).

Action space: We consider an action to be represented by choos-
ing a threshold, i.e., an agent is assigned a resource if and only if
the utility for obtaining the resource is higher than the threshold.
We denote the threshold space as ©, the continuous input space
of the known matching utility distribution.

Rewards R((n, t), a): The immediate reward the system obtains
by taking action a at state (n, t). Recall that f is the PDF of the util-
ity distribution. Therefore, we have R((n, t),a) = / “ x f(x) dx.

a

State transition T((n’, t")|(n, t), a): The probability of transition-
ing to state (n’,t’) by taking action a in state (n, t). Note that ¢
is increasing by 1 after each action. Therefore, we can focus on
the transition on n. For notational simplicity, let B(n, n”) denote
the probability that, out of n resources, n” of them are still oc-
cupied at the next time step. Since resource occupation follows
an exponential distribution, B(n, n’) is easy to compute. We also
let B(n,n’) = 0 for invalid choices of (n,n’): they are invalid
when n’ > n or when n,n” ¢ {0,..,N}. Recall that F is the
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CDF of the utility distribution. Therefore F(a) is the probabil-
ity that an arriving agent is not allocated a resource when the
threshold is a. The probability of transitioning to a state with n’
is the sum of the probability of allocation and n’ still occupied
(i.e, (1 — F(a))B(n + 1,n’)) and the probability of not allocating
and having n’ resources still occupied (i.e., F(a)B(n,n’)), thus
T((n’,t)|(n,t),a) is

F(a)B(n,n’) + (1-F(a))B(n+1,n’) n<N-1,t'=t+1
B(n,n’) n=N,t'=t+1

0 otherwise

The goal of the system designer is to find a policy 7(n, t) that de-
termines a threshold for each state that maximizes the total expected
reward over T rounds. Let s; be the state at time ¢ assuming the sys-
tem follows policy 7. The system’s reward for following the policy
7 starting at state s; can be written as U(r, s1) = Zthl R(sy, m(sp)).

Note that with this finite-horizon MDP formulation, the opti-
mal policy is efficiently solvable using a standard backprojection
algorithm, as introduced next.

Backprojection Algorithm. This MDP can be solved exactly us-
ing backprojection, a dynamic-programming algorithm. Let A, ;
denote the maximum expected total utility when n resources are oc-
cupied at time ¢, and a,,; denote the corresponding optimal thresh-
old to choose as the action. Below we describe how to derive the
optimal policy by setting these two values in a backward manner.

First consider the boundary condition in the last round (ie.,
t =T). When there are remaining resources (i.e., n < N), we can
set ap,s = 0 (assign resources without conditions) and A, ; = (N—
n) fow xf(x) dx. When there is no available resource (i.e., n=N),
we set ap,; = oo (no resource to allocate) and A, ; = 0.

For round ¢ < T, given the knowledge of Ay, s+1 and ay 41 for all
n, we can calculate Ay, ; and ap s using standard dynamic program-
ming approaches. We can then obtain the optimal policy through
backpropagation from t = T to 0.

4.2 Online Matching with Patient Agents

We now consider the more general, complex online matching in
which agents might be willing to wait for some number of rounds.
In this scenario, the system’s decision could depend on the waitlist,
i.e., the list of agents who are waiting to be allocated resources,
in addition to the number of resources. Therefore, the state rep-
resentation needs to take the waitlist into account. Since agents
are heterogeneous (obtaining different utility when being allocated
resources), the state representation is more complicated. As such,
we develop a reinforcement learning algorithm to approximate the
optimal threshold policy.

e State s = (wi..wn, T, t): wi,..wy are the largest N matching
utilities in the waiting list such that w; > wy.. >> wy. When
the size of the waiting list (denoted as h) is smaller than N, the
last N — h of these values are set to be 0; r is the number of
used resources and t is the current time step. The agent waiting
times D, are exponentially distributed, thus only the largest N
matching utilities in the waiting list should influence the selection
of threshold due to the memorylessness of the distribution.
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e Action space: We again adopt the threshold policy, i.e., the ac-
tion is to select a threshold to match agents in the waiting list
whose utility is larger than the selected threshold. In our pro-
posed algorithm, we use a discrete threshold space of size M.
When the matching utility distribution has an upper bound
H, and a lower bound Hj, the discrete threshold space can be
formulated as {H1+i_71(Hu —H))|i=0,1,2..M — 1}. When the
matching utility is unbounded, suppose F(x) is the CDF of the
utility distribution, then the threshold space is formulated as
{(F1(5hli=0,1,2.M - 1}.

The reward and the state transition can then be written down
accordingly based on the above state and action representations.
Note that given the large state space, this MDP is challenging to
solve exactly. Therefore, we propose BQL: Backprojected Q-values
Learning Algorithm, which utilizes reinforcement learning to ap-
proximate the Q-values for all states, which in turn provides an
approximately optimal policy. The BQL algorithm follows a similar
scheme to the RL algorithm for optimal trade execution of Nevmy-
vaka et al. [15]. In particular, we first conduct N simulations where
the actions are randomly selected to get N training waiting list
sequences. We then train the deep Q network based on N waiting
list samples at each time round ¢ (from T to 0). The returned Q
values can then be used as a representation of the (approximately)
optimal policy.

Algorithm 3 BQL: Backprojected Q-values Learning Algorithm

fort=Tto0do
Current waiting list — wy...wn
3 forr=0 tomdo
State s = (w1...wWn, T, t)
fori=0to M-1do
6: Compute thresholds: a=H;+ % (Hy-Hy)
Compute reward r based on a and s
Simulate state transition s — s
9: if t =T then
Update q value for (s, a): r(s, a)
else
Update q value for (s,a): r + max(q(sl))
end if
end for
end for
Fit deep neural network ¢
end for

15:

5 EXPERIMENTS

In this section, we evaluate the effectiveness of the proposed LP-
based algorithms and MDP-based algorithms in online matching
problems on both simulations and a real-world dataset. In these
experiments, the arrival model is set as KIID (Known-IID), and
resources are set to be identical. All experimental results are based
on 10,000 evaluation runs.

5.1 Simulations: Impatient Agents

Experimental Setting: We first examine algorithms for OM-RR-
PA with impatient agents using simulations. We set the matching
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Figure 1: OM-RR-PA with identical resources and impatient agents: Performance comparison of proposed algorithms: LP-
based algorithm (LP-ID-I), MDP-based algorithm (Back-ALG), greedy baselines and other state-of-art LP-based algorithms

(ALG-SC-LP, ALG-LP)

utility to be uniformly distributed between 0 and 1. We conduct the
experiments in settings with different number of resources N and
average resource occupation time Ag. Inspired by the experimental
setup in prior work [8, 19], we test the following six algorithms.
(1) Back-ALG is an MDP-based algorithm with the backprojection
approach proposed in subsection 4.1; (2) LP-ID-I is the LP-based
algorithm for impatient agents in subsection 3.2. We make the
small modification that an agent v that arrives at ¢ is matched
s

Pos
t. 1 (3) The MDP approach formulates an infinite-horizon MDP
with the same state formulation, reward and transition function as
subsection 4.1, then solves the MDP to get the assignment rule for
each state and applies it in the online version. (4) ALG-SC-LP and
ALG-LP are LP-based algorithms in [8]. (5) The greedy algorithm
assigns available resources to agents who gain the most immediate
utility. (6) E(opt) is a valid upper bound on the expected overall
utility (see subsection 3.2).

when there are free resources at time

with a probability of

Results: Figure 1 shows that the proposed threshold-based algo-
rithm Back-ALG significantly outperforms other algorithms in all
settings where agents are impatient. In addition, the improvement
over the greedy algorithm is more substantial when the resource is
scarce (comparing the middle graph and the left graph in Figure 1)
and the resource occupation time is relatively longer (comparing
the middle graph and the right graph in Figure 1). These observa-
tions are consistent with Theorem 2.1. In addition, when agents
are impatient, our proposed LP-based algorithm LP-ID-I always
beats the greedy algorithm and outperforms other state-of-the-art
LP-based algorithms (ALG-LP,ALG-SC-LP).

5.2 Simulations: Patient Agents

Experimental Setting: Now we evaluate the performance of the
proposed algorithms in OM-RR-PA with patient agents. The aver-
age resource occupation time is set to be 20 (i.e., Ax = 20), and the
average agent waiting time Ay is selected from the set {1, 2, 4, 8}. %
reflects the ratio of resource demand to supply. The matching utility
distribution is selected from the Beta distribution family. We test
four algorithms: (1) LP-ID-P is the LP-based algorithm for patient

! This modification is for computational efficiency. In practice, the results are similar
without this modification, observed in both our own experiments and prior work [8]
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agents in subsection 3.2. We use the modification as LP-ID-I, thus
the allocation decision that agent v arrives at time ¢ is matched
’;;;-: I(n< Dy), where
I() is the indicator function. In addition, we assume that the upper
bound of waiting time is 15 (d = 15), since the exponential distri-
bution is unbounded and setting maximum potential waiting time
d to be T makes solving LP-ID time-consuming. (2) The optimal
solution of LP-ID. Base on the above assumption, the optimal value
of LP-ID is also an approximated value. (3) The BQL algorithm
that first performs exploration under the random assignment rule
and collects samples (sequences of length N), then trains a deep Q

network as in Algorithm 3. (4) The greedy algorithm.

after n time steps is sampled with probability

Results: Figures 2 and 3 demonstrate that BQL always outperforms
the greedy algorithm. Moreover, Figure 3 shows that the relative im-
provement of BQL over greedy is more substantial when resources
are scarce and the ratio of resource demand to supply is high. This
again aligns with our theoretical analysis indicating that these are
the most difficult conditions for greedy, and therefore our algorithm
has more room to improve.

In addition, Figure 2 show that BQL attains higher average over-
all utilities than LP-ID-P (e.g. SubGraph4 and SubGraph7) in most
settings. Though the LP-based algorithm LP-ID-P does not use in-
formation from the distribution of occupation time and of waiting
time, it nevertheless improves substantially over the greedy algo-
rithm. In addition, there are occasions when LP-ID-P beats BQL
(e.g. SubGraphl). Since the LP-based algorithms are more compu-
tationally efficient and could be applied in more general settings,
they could have great potential in real-world applications.

5.3 Real-World Dataset Experiment

Finally, we evaluate the LP-based algorithm LP-ID-P and the MDP-
based algorithm BQL on a real-world dataset for homelessness
services. This dataset includes estimated re-entry probabilities for
four different interventions that could be given to homeless house-
holds in a major US metro [13]. These were all households that were
eligible to receive services, but received different levels of interven-
tions. We focus on two of the interventions, transitional housing
(the most intensive one) and emergency shelter, with the idea being
that transitional housing is the scarce resource, and agents who do
not receive it can potentially wait in emergency shelters.
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Figure 2: OM-RR-PA with identical reusable resources and patient agents: Performance comparison of proposed LP-based
algorithm (LP-ID-P), proposed MDP-based algorithm (BQL) and greedy baseline
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Figure 3: OM-RR-PA with identical reusable resources and patient agents: Relative performance improvement of BQL algo-
rithm over greedy algorithm under different settings

Experimental Setting: Our experiment setting is calibrated using
the real dataset. We use the difference in estimated re-entry proba-
bilities between the two as our measure of utility (that is, the utility
is the decrease in the probability that a household would become
homeless again in the next two years if they were given transitional
housing instead of emergency shelter). We also calibrate the mean
time spent in transitional housing using the real dataset. Transi-
tional housing (TH) is relatively scarce in the data, with less than
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20% of households receiving that intervention. The objective is to
maximize the utility over a half year (i.e. T = 180).

In addition to greedy and offline optimal, below we describe the
algorithms used in the experiments. (1) In BQL, we use a truncated
gamma distribution Gamma(1.0,0.2) to simulate the matching utility
during the training phase, while the occupation times for resources
are generated by an exponential distribution whose mean is the
same as the average over time spent in TH. Figure 4 measures
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Figure 5: Real-world homelessness dataset evaluation: Comparison of proposed LP-based algorithm (LP-ID-P), proposed MDP-
based algorithm (BQL) and the greedy baseline as a function of the agent patience parameter

the performance of these simulators. In the testing period, both
matching utilities and resource occupation times are sampled from
the dataset. (2) In LP-ID-P, the edge weights w, of the input graph
G = (V,U, E) and resource occupation time are sampled from the
dataset. We assume the bound on agent waiting time is 20.

Results: Figure 5 shows our main results. First, in the left graph
(SubGraph1) and middle graph (Subgraph2), we compare LP-ID-P
and BQL with the greedy algorithm in significantly different set-
tings. Both LP-ID-P and BQL substantially outperform the greedy
algorithm. In addition, Subgraph 2 shows that the performance of
LP-ID-P is competitive compared with the RL algorithm BQL in
some settings. The fact that LP-based algorithms are more compu-
tationally efficient, combined with the exponential distribution as-
sumption being approximately satisfied in many real-world settings,
make the case that LP-ID-P could be quite powerful in real-world
applications.

Second, the right graph (SubGraph3) presents the relative per-
formance improvement of BQL over greedy as a function of agent
patience for 3 different possible values of the number of resources
available. It demonstrates BQL clearly outperforming the greedy
algorithm, bringing up to 35% more benefit, especially in the regime
when agents are impatient.
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6 CONCLUSION

We study online bipartite matching problems with reusable re-
sources and patient agents. We theoretically characterize regimes
where greedy allocation mechanisms may not be efficient - typically
when agents in the allocation system are impatient and resource
scarcity is high. We develop online algorithms for performance
improvement using two different techniques - formulating the
problems as linear programs and as Markov decision processes
(MDPs). In the former, we extend prior work to the case of online
patient agents and propose LP-based algorithms with theoretical
performance guarantees. In the latter, with additional distributional
assumptions about resource occupation time and agent waiting
time, we develop an MDP formulation and algorithms for solving
the policy for online matching. Experimental results, based on a
variety of simulated settings as well as a setting calibrated to real-
world data, demonstrate that our algorithms outperform baseline
methods and significantly improve upon the greedy algorithm in
regimes with impatient agents and scarce resources.
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