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Context & scale

To enable the transition to a clean

economy and ensure confidence

in energy storage technologies,

advances are required in

reliability, safety, and extended

usage of batteries. While

headline-grabbing improvements

have been made in battery

materials, significant advances

may also be achieved in managing

behavior via enhanced modeling

and real-time sensing. These are

often chemistry-agnostic and

hence can be coupled with future

materials and next-generation

chemistries such as lithium metal.
SUMMARY

Accurate battery life prediction is a critical part of the business case
for electric vehicles, stationary energy storage, and nascent applica-
tions such as electric aircraft. Existing methods are based on rela-
tively small but well-designed lab datasets and controlled test con-
ditions but incorporating field data is crucial to build a complete
picture of how cells age in real-world situations. This comes with
additional challenges because end-use applications have uncon-
trolled operating conditions, less accurate sensors, data collection
and storage concerns, and infrequent access to validation checks.
We explore a range of techniques for estimating lifetime from lab
and field data and suggest that combining machine learning ap-
proaches with physical models is a promising method, enabling
inference of battery life from noisy data, assessment of second-life
condition, and extrapolation to future usage conditions. This work
highlights the opportunity for insights gained from field data to
reduce battery costs and improve designs.
Here, we explore how physics-

based and data-driven modeling

informed by measurements from

end-use devices enables new

battery lifetime models. Although

challenging, this will lead to

reduced costs by reducing the

battery size needed to satisfy

warranties and guarantee

performance. It will also elucidate

degradation mechanisms,

improving safety and reducing

downtime by enabling

appropriate interventions. Finally,

it will inform decisions on second

life, enabling a circular economy

for batteries.
INTRODUCTION

Batteries are used in a wide variety of applications, from consumer electronics to electric

cars, rail, marine, and grid storage systems. A critical need for consumer acceptance in

electric vehicles is to achieve longer range and lower cost via pack size reduction.1,2 All of

these objectives depend on accurate state of health (SOH) estimation and predictions of

lifetime under various operating conditions. More accurate lifetime prediction improves

battery technology at all stages of a battery’s life. First, it can shorten the product devel-

opment cycle, for example, by elucidating failure mechanisms, in particular, if models

can be incorporated in a closed loop with experiments.3 Second, it can be used to opti-

mizemanufacturingprotocols. Third, improved lifetimeprediction can lead to lowerwar-

ranty and insurance costs, timely preventative maintenance, lower up-front capital cost

by reduced over-engineering, and better control of charging and discharging that could

prolong life.4 Finally, it leads to improved prospects for second-life applications—sup-

porting the creation of a circular economy around battery manufacturing, re-use, and re-

cycling will also be critical as demand is forecast to outpace raw material supply and

refinement over the coming decade.5

The criteria for determining end of life may vary by application, but generally this oc-

curs when the battery can no longer meet the requirements of range, operating time,

or maximum power capability under typical usage profiles. The key parameters that

affect end of life are capacity (available energy) and internal resistance (available po-

wer).6 Battery aging depends on intrinsic factors, such as manufacturing variability
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and pack design, and extrinsic factors, such as temperature and intensity of usage,7,8

and is therefore difficult to predict, particularly outside of the laboratory.2 Existing

reviews and perspectives in the literature consider methods for SOH prediction,9–15 life-

time prediction,9,14,16,17 and/or fusion of physics-based and data-driven models,17–19

but are historically restricted to fairly small datasets under very controlled conditions.

Complementary to existing literature, this perspective examines the unique challenges

of battery lifetime prediction with field data and for second-life applications and reviews

which approaches are most promising for addressing these challenges. This first re-

quires a review of methods using lab data (life prediction from lab data). We then lay

out the challenges and assess promising methods for field data analysis (life prediction

from field data), where we discuss the additional value that field data offers for lifetime

prognostics and the difficulties in obtaining and processing these data. Finally, we

address high-throughput testing for second-life asset evaluation (life prediction for sec-

ond life).

In a lab setting, which is the best understood and most studied in the literature, the

cycling pattern of batteries can be closely controlled and regular reference perfor-

mance tests (RPTs) can be performed to quantify health. However, field data from

real-world applications exhibit irregular cycling patterns, varying operating condi-

tions, and path-dependent degradation mechanisms, making reliable predictions

difficult. This setting is extremely relevant for industrial needs, such as prediction

of the remaining useful life of a customer’s electric vehicle or compliance with war-

ranty conditions for grid storage systems, but prognostics using real-world data re-

mains an open research challenge.

Industry sectors such as automotive manufacturers have narrow profit margins and

comprehensive certification requirements that necessitate extensive laboratory

testing, therefore gathering fleet data may come at an additional cost and effort

that is hard to justify. Since test data are often not available across the wide range

of cells used in packs commercially, a basic set of lab degradation measurements

is beneficial as a starting point for understanding the impact of operating parame-

ters on degradation. Additionally, given that automotive cells are considered

degraded when they reach 80% SOH (i.e., of their initial capacity), there is a need

for capacity and resistance estimation accuracy of at least 5% and ideally 2% to un-

derpin lifetime prediction. Defining the accuracy and confidence levels necessary for

a health-conscious battery management system is still an urgent research goal.20

To build an accurate, general model of battery behavior that covers many usage condi-

tions, a large amount of aggregated data from a population of users is required—it is

insufficient only to do this on an individual end user basis. The information that is gath-

ered from intelligently tracking degradation at the fleet level in the field could be used to

improve user experience for individual battery end users via over-the-air software up-

dates although there may be regulatory barriers inhibiting this. Finally, at the end of

its first life (e.g., in an electric vehicle), a battery may be assessed for possible second-

life application (e.g., grid storage). Estimating health at this point comes with additional

difficulties, such as potential lack of historical data and a change in the future aging

mechanismof the battery due todifferent operating conditions in second life. Controlled

RPTs are possible and can be designed around screening and techno-economic analysis

of batteries for second life but are time consuming and require equipment and space

that translates to cost, disadvantaging the economics of re-purposed batteries.

To address the challenge of lifetime prediction, three general approaches exist—

empirical aging maps, data-driven models, and physics-based models—and later
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in this paper, we also introduce a fourth technique that combines physics-based and

data-driven models. Empirical aging maps model capacity fade explicitly as a func-

tion of time or charge throughput, parametrized by operating conditions such as

temperature, C-rate, and depth of discharge.7,21–25 In the purely data-driven

approach, very few assumptions are made about the underlying principles govern-

ing the behavior of the battery, and machine learning models are trained using raw

input signals (current, voltage, and temperature).26–36 Another type of data-driven

method uses preprocessed features from the voltage, current, temperature, imped-

ance, or power curves as inputs tomachine learningmodels.36–54 Finally, in the phys-

ics-based approach, models are constructed from first principles, with tuning param-

eters found using a relatively small number of experiments. Such models include

differential voltage analysis models,55–60 equivalent circuit models (ECMs),7,61–63

and first-principles degradation models based on porous-electrode theory.8,64–70

Unfortunately, neither the data-driven nor physics-based methods alone can solve

the challenge of battery lifetime prognostics from field data. The challenges facing

physics-based modeling have been well documented, such as a large number of

coupled and nonlinear degradation mechanisms,8 which evolve nearly unobservably

from the electrical measurements and are difficult to parametrize. As a result, not all

researchers agree on which degradation mechanisms to model and how to imple-

ment them, since many different mechanisms and formulations can explain similarly

observed degradation behavior.8 We note that mechanical71 or acoustic72 measure-

ments have been proposed as a means to address the lack of observability, but such

measurements are not yet widely used.

Meanwhile, data-driven approaches suffer from the ‘‘curse of dimensionality,’’ where the

amount of data needed to capture all combinations of operating conditions grows

quickly with the number of conditions being investigated. This is compounded by the

relatively slow rate at which battery lifetime data can be acquired, taking several months

or years of experiments for each change in chemistry (e.g., electrolyte additive), form-

factor, or manufacturing process. Furthermore, trade secrecy limits how much data

are available to individual researchers. The inherently nonlinear, path-dependent nature

of battery degradation further exacerbates this problem.59,73–76

Here, we start by introducing different approaches for life prediction in lab settings

(life prediction from lab data). The advantages and disadvantages of each method in

terms of computational complexity, data requirements, and accuracy are also dis-

cussed. Then, the challenges and opportunities of applying life prediction methods

to field data are presented (life prediction from field data), and we suggest that

hybrid methods that combine physics-based and data-driven approaches show

promise for this because they combine accuracy, robustness to limited or low-quality

data, and generality (life prediction from field data). Finally, in life prediction for sec-

ond life, we discuss the challenges of lifetime estimation for second-life applications.

These include assessing viability of batteries without having historical data available,

in particular determining whether or not the battery has degraded beyond the knee

point (i.e., the point beyond which degradation may accelerate toward end of life)

and understanding the cost-benefit between testing re-purposed batteries versus

the increased revenue from more accurately knowing their SOH.
LIFE PREDICTION FROM LAB DATA

In a laboratory, battery cycling can be repeated consistently, and conditions such as

current and temperature can be closely controlled (Figure 1). Measurements of
1936 Joule 5, 1934–1955, August 18, 2021



Figure 1. Prognostics using lab data

Summary of approaches for prognostics using lab data. A variety of use cases can be tested and health models trained using data-driven, physics-

based, or hybrid paradigms. These models are typically developed to underpin warranties but are not validated beyond the warranty period or in other

usage scenarios.
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‘‘ground truth’’ battery health—capacity and resistance—can easily be taken with

regular RPTs as required, and batteries can be cycled continuously until end of

life, which is often specified as the point where measured capacity reaches 80% of

the pristine cell capacity.77

This means that laboratory tests are useful to buildmodels that explore how different

operating conditions affect cycle life, and hence determine warranties, maintenance

schedules, and system sizing. The operating conditions used in laboratory tests

include driving patterns and schedules tailored to very specific applications, such

as a specific electric vehicle model. Laboratory tests can also be used to guide the

development of new battery chemistries, optimize battery design, and improve

manufacturing processes, for example, by investigating the effect of parameters

such as humidity or formation cycles on performance.

Battery degradation testing is a lengthy process, therefore extreme operating con-

ditions, such as high C-rates or elevated temperatures, are often used to accelerate

aging. Even with accelerated aging, it can be slow to assess the degradation impact

of individual manufacturing parameters such as materials and processing choices,

design factors such as cell size, number of layers and electrode thicknesses, and for-

mation protocols. Additionally, since different manufacturing parameters interact

non-linearly, varying each parameter individually may not tell the full story. There-

fore domain-knowledge is required to ensure that testing efforts are as effective

as possible.

Significant research has been undertaken on modeling lab battery test data, and it

can broadly be divided into four categories, summarized in Figure 2: empirical aging

models, pure data-driven methods, feature-based data-driven methods, and phys-

ics-based methods. In this section, we review state-of-the-art approaches within

each of these categories.
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Figure 2. Different approaches to battery lifetime estimation

Empirical, purely data-driven, feature-based data-driven, and physics-based approaches to battery lifetime prediction.

ll
Perspective
Empirical aging models

A typical measure of battery degradation is the capacity fade curve, which describes

how the capacity changes as a function of charge throughput, equivalent cycle num-

ber, or time. Therefore, the simplest approach for lifetime prediction is to build an

empirical model of the capacity fade parametrized by operating conditions. This

may depend on a number of factors including time and charge throughput. As first

proposed by Bloom et al.,21 such empirical models usually have a square-root-of-

time dependence, due to diffusion-limited solid electrolyte interphase (SEI) forma-

tion, and Arrhenius kinetics for the temperature dependence.7,21–25 Further refine-

ments include accounting for C-rate,22–24 average state of charge (SOC),23,24

depth-of-discharge range,7,24 and voltage.7,25 Furthermore, recent models sepa-

rate capacity fade into calendar aging, which depends on time, and cycle aging,

which depends on charge throughput.7,23,24

This approach is simple and easy to implement, making it common in industry for

developing maps of lifetime from lab data. However, it has a few limitations. First,

very large amounts of data are required to interpolate over all operating conditions.

Second, this approach cannot easily account for cell-to-cell variations due to

manufacturing or heterogeneous current and temperature distributions within a

pack. Third, separate maps are usually developed for cycle and calendar aging,
1938 Joule 5, 1934–1955, August 18, 2021
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which misses the interactions between these,73 whereas the methods that we will re-

view below can incorporate these interactions as long as appropriate data are

included in the training sets. Finally, empirical aging maps may fail to capture

knee points in the capacity fade curve.7,24 Knee points are a change in the degrada-

tion rate likely caused by a change in the underlying mechanism78 (e.g., SEI growth

later leading to lithium plating66), and they are a particular challenge for prediction,

especially with simple empirical models.

To overcome these limitations, prognostics can be improved by also taking into ac-

count the individual raw time series data (such as voltage) of the cells during cycling,

instead of just the capacity obtained during the RPTs.

Purely data-driven models

This approach consists of using measurements such as the current and voltage

directly as inputs to a machine learning model in order to learn the remaining useful

life as the output. While several studies have shown promise in estimating the pre-

sent SOH of the battery,26–32,35,79 there is limited application to date of these

methods to prognostics, with one example being Zhang et al.,33 who use raw elec-

trochemical impedance spectroscopy data to predict remaining useful life (RUL).

This may be due to the lack of available data: while each cell has hundreds of cycles

to use as training data for SOH estimation, its cycle life is just a single data point

per cell.

Another possible approach is to train a machine learning model for ‘‘forward simu-

lation,’’ where themodel learns howmuch capacity fade occurs during short intervals

based on the existing capacity, current, or temperature during the interval.34–36

Then the RUL can be predicted by adding together the capacity fade from all the in-

tervals under typical usage conditions and seeing where the resulting trajectory

crosses 80%.

Feature-based data-driven models

In this approach, there is a preprocessing step in which features are extracted from

the voltage and current, informed by physical understanding of the cell’s behavior.

These features are then used as the inputs to machine learning algorithms. Similarly

to pure data-driven methods, much of the literature focuses on present SOH estima-

tion rather than prediction of future SOH.36–44,46 However, since the models that

take features as inputs are less complex than those that take raw data as input,

they require less training data than pure data-driven approaches and are more

readily applicable to lifetime estimation. For example, Chinomona et al.47 use

various statistical features from the voltage, current, and temperature, while Yun

et al.48 and Greenbank and Howey49 use as features the time spent within certain

voltage, current, power, and temperature ranges.

While those studies use features from the current or voltage within a single cycle,

Severson et al.52 showed that using features generated from changes between

different cycles can give very accurate predictions of lifetime, even using a simple

regularized linear regression model. Fermı́n-Cueto et al.53 improved the accuracy

of this method (lower prediction error with fewer cycles) by using more features

and a more advanced machine learning algorithm. In a previous paper,54 we applied

this method to a different dataset for NMC/graphite cells, achieving an accurate pre-

diction of battery lifetime, and showed that these features are closely correlated with

loss of lithium inventory in the cells, demonstrating the importance of a physical

basis for the features.
Joule 5, 1934–1955, August 18, 2021 1939
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Accurate data-driven prediction of the knee point in the capacity fade curve using

feature-based data-driven models has recently been demonstrated,49,53,80 despite

the fact that data-driven methods may fail to extrapolate correctly under changing

usage conditions due to path-dependence59 and may not even correlate with aging

unless a certain depth of discharge is reached during usage.54

Finally, some feature-based ‘‘forward simulation’’ approaches have also been pro-

posed, using physics-informed features as inputs to Gaussian processes to predict

incremental capacity fade and, hence, RUL under typical operating

conditions.45,50,51

Physics-based models

This broad category includes atomistic models, continuum approaches based on

porous-electrode theory, through to ECMs. We include ECMs here as ‘‘lumped’’

physics models using electrical engineering components to capture the electro-

chemical behavior.63,81 In terms of degradation, circuit models can be used to esti-

mate and track parameters empirically as cells age.7 Examples of lifetime prediction

using circuit models are Zhang et al.61 and Chu et al.62 who employ observers to

identify the internal states of an ECM and then fit an empirical aging map to find

future changes in capacity. A challenge with these approaches is that careful tuning

is required to achieve robust performance. To address this, Aitio and Howey82 show

that applying Gaussian process regression to identify functional dependencies of

model parameters can give smoother and more dependable results when using

drive-cycle data. ECMs are popular since they are easy to implement and parame-

trize, although recent work has shown that similar computational efficiency can be

achieved with models based on porous-electrode theory.83–85

The other relevant category of physics-based models is those derived from first prin-

ciples—typically continuum approaches using porous-electrode theory. These may

be extended to capture the underlying degradation mechanisms that cause capacity

fade, such as SEI layer growth,8,65–70,86–88 lithium plating,8,65–67,89,90 and particle

swelling and cracking.8,91 These models can be used to directly simulate the entire

life of the cell under certain operating conditions.8,64–70 In theory, suchmodels could

be used for prognostics by parametrizing themwith early-life data for a particular cell

and then simulating the remaining life of the cell and seeing where 80% capacity is

reached. An advantage of this approach is that it also provides the predicted cause

of failure, enabling remediation strategies before end of life such as tightening of

safety limits in the battery management system.

The main weakness of these models is their lack of flexibility and parametrization dif-

ficulty. While excellent agreement with the available data can be achieved, it is not

possible for a mechanistic model to account for every single eventuality. For

example, even when a large number of degradation sub-models are included,

some aspects of the experimental dataset still cannot be fitted accurately.8

In the following section, we suggest ways in which physics-based models can be

made more flexible (and hence model a wider range of degradation of mechanisms)

by augmenting them with methods from machine learning.

Accurate parametrization of continuum physics-based models for a fresh cell is chal-

lenging, requiring cell teardown and specialized testing equipment92,93 to deter-

mine a wide range of parameters such as reaction rate constants, conductivities, dif-

fusivities, particle sizes, etc. Determining the degradation parameters, such as SEI
1940 Joule 5, 1934–1955, August 18, 2021
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kinetic parameters, by inversemodeling is evenmore challenging due to the compu-

tational time required to simulate the entire lifetime (e.g., 15min with Ouyang et al.’s

relatively simplemodel,64 compared withmicroseconds for an empirical agingmap).

For physics-based models to become more widely adopted for lifetime estimation,

this computational time needs to be reduced, either through the development of

reduced-order models83 or numerical methods. Advancing efficient physics-based

models is one of the goals of open-source battery modeling framework PyBaMM.94

Physical understanding can also be used to definemore specific degradationmetrics

than capacity or resistance. For example ‘‘degradation modes,’’ such as loss of active

material and loss of lithium inventory, may be estimated from data or models and

linked to different underlying mechanisms, such as SEI growth or lithium plating.60

These can be identified using differential voltage analysis55–59 and used for predic-

tion. For example, Hui et al.95 use differential voltage analysis to identify degrada-

tionmodes, then predict future change in these degradationmodes—achieving bet-

ter accuracy than empirical aging maps.
LIFE PREDICTION FROM FIELD DATA

Lab battery testing is limited in the number of test channels available and the time avail-

able for tests. Ultimately, whatmatters is battery performance in real applications. If field

data from batteries in end-use applications could supplement lab performance and life-

time tests, thiswould significantly increase the amount of data available, acceleratingour

understanding and closing the gap between lab and end-use. It would also ensure that

lifetime prediction algorithms are relevant to industry applications. Figure 3 summarizes

the aims and impacts of lifetime prediction from field data.
Field data versus representative drive-cycle testing in the lab

One existing approach to bridge the gap between standard lab tests and field data

is to test batteries using representative loading patterns in the lab. To this end, many

researchers have characterized ‘‘typical’’ user driving patterns.2,96,97 The advantage

of this approach is that it can be performed in the lab with high-accuracy equipment,

controlled conditions, and frequent characterizations. However, complementing

this with field data is still very valuable for a number of reasons. First, there are never

enough testing channels in the lab, and they are never available for long enough to

test all combinations of conditions necessary—whose number grows factorially with

the number of aging parameters. In contrast, field data may be available at relatively

low cost since the cells are already being cycled, and (by definition) the entire range

of operating conditions is covered.

Second, lab testing is contrived and different to real-world usage. Due to constraints

of both time and testing equipment availability, lab tests usually impose extreme

conditions and short rest periods between cycles. This can lead to under-prediction

of battery lifetime, and hence over-engineering of pack design. Accelerated aging

experiments often stress the battery more intensively than standard cycling in the

field. This is accounted for by experimentally developed maps between accelerated

experiments and real usage scenarios. However, these maps take a long time to

obtain, because they require replicating real usage scenarios in the lab, and even

then it is difficult to perfectly relate lab tests to field data. For example, it has

been shown that rest periods between cycles can be beneficial for the overall life

of the battery,73 but lab experiments cannot always incorporate long resting periods

due to testing time constraints. For extension of model validity from lab accelerated

aging tests to real-world usage, it is important to standardize methods to interpret
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Figure 3. Prognostics using field data

Summary of the aims, processes, and impacts of state of health prediction from field data. Challenges include noisy and missing data, uncontrolled

partial cycling conditions, lack of regular validation tests, and uncertainty over future usage.
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not just accelerated cycle aging data but also accelerated calendar aging and mixed

cycle plus calendar aging scenarios. For both lab-accelerated-aging and field-data-

aging research, it is important to rigorously understand the impact of cycles-per-day

and rest-time conditions on lifetime.

Third, there could be exogenous factors in the field that are not accounted for in the

lab, such as seasonal temperature variations or mechanical vibrations causing fail-

ure. Fourth, from the point of view of understanding battery lifetime, which depends

on both intrinsic (manufacturing variability) and extrinsic (usage) factors, more data

are always valuable because it increases the statistical confidence with which we can

build lifetime and performance models.

Challenges and opportunities of field data

Three main issues arise in this context: the wide variety of uncontrolled usage sce-

narios, data quality issues, and lack of clear validation data. First, unlike lab-based

prognostics where operating conditions are held constant or at least controllable,

in the real world, operating conditions can vary throughout a cell’s life. Examples

for electric vehicle batteries include temperature differences due to seasonality,

cell-to-cell variations within a battery pack, or varying SOC windows associated

with trip distances. Depending on driving conditions, charging and discharging cur-

rent/power levels can affect battery degradation to a greater or lesser extent. Recent

studies have shown that battery degradation may also depend on the order of the

operating conditions, a phenomenon known as ‘‘path- dependence’’ in the litera-

ture.59,73–76 Another source of uncertainty in lifetime predictions arises because

future operating conditions themselves are uncertain.
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Table 1. Summary of existing state of health estimation papers using real-world pack-level battery data

Ref Dataset Used Aim Method

Song et al.99 700 B/HEVs, Shanghai SOH estimation neural network

Wang et al.100 8,032 EVs, Beijing evolution of cell variability ECMs and regression

She et al.101 18 EVs, Foshan SOH estimation ICA and neural network

Huo et al.,102 16 EVs, Beijing SOH estimation empirical model & Bayesian network
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Second, field datasets are difficult to work with, for several reasons. Cell-to-cell var-

iations within a pack or modules, less accurate sensors, noise, extreme C-rates,

smaller coverage of the available range of conditions (e.g. microcycling of SOC),

missing or false data, and rapidly varying currents make it very challenging to extract

features or fit parameters.54,98 There may also be long periods of missing data, for

example, temperature data while the battery is at rest (and hence not recording).

These factors also restrict the identifiability of both mechanistic and data-driven

models. For physics-based models, the input signal is not rich enough for parame-

trization and, therefore, simplifications of the model are required. On the other

hand, performance of purely data-driven methods is limited by the extent that the

training data covers the possible space of inputs, since extrapolation outside of

the observed data comes with significant uncertainty. The third difficulty for real-

world prognostics is the challenge of verification or validation, i.e., in field data there

is typically a lack of ground truth against which to compare predictions. This is due to

the lack of controlled RPTs, which makes capacity and end of life difficult to validate,

and the fact that not all cells are cycled to end of life, reducing dramatically the data

fidelity and availability. A related issue is how often to retrain a prognostic model,

where a balance needs to be struck between having sufficiently rich data versus

capturing gradual changes in usage and operating conditions.

In the remainder of this section, we review existing studies on this topic, then sug-

gest approaches that can be used to overcome the issues and address the challenge

of prognostics in the field. We separate these again into ‘‘data-driven’’ and ‘‘physics-

based’’ methods, though most of these methods are hybrid in nature. The chal-

lenges in this section represent an exciting new frontier for battery system develop-

ment and demonstrates real-world application of hybrid data-driven techniques. We

finally discuss two practical aspects of implementation, namely data management

and uncertainty.

Existing studies using field data

In comparison to studies based on lab generated data, existing literature using field

data for life modeling is sparse and is mainly focused on diagnostics rather than life-

time prediction. However, some large databases of electric vehicle usage data have

been collected and analyzed, as summarized in Table 1. These existing works focus

on data-drivenmethods to estimate SOH. For example, Song et al.99 used operating

data from 700 electric vehicles to fit a feed-forward neural network using features

calculated from usage history as inputs to estimate capacity, where the target output

itself was estimated from partial charging curves. Alternatively, Wang et al.100 used a

larger dataset from 8,032 electric taxis to track cell-to-cell variability at the pack level

over time. The same data source was used by She et al.101 to estimate capacity loss in

18 electric city buses by fitting a neural network with inputs consisting of usage fea-

tures and the output of the peak value in the incremental capacity curve during

charging. A different approach was proposed by Huo et al.,102 who installed data

collectors on 16 electric taxis and performed periodic capacity calibration tests to

obtain validation data for probabilistic SOH estimates obtained through a Bayesian

network with an empirical degradation model. These works give a glimpse of what is
Joule 5, 1934–1955, August 18, 2021 1943
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possible using large datasets, and they also encounter the challenges mentioned in

this perspective, such as missing or noisy data and lack of validation. These papers

do not make their data and code available for others to download, so it is not

possible to reproduce their results. The lack of availability of large publicly acces-

sible datasets, including validation data and real-world operating conditions, re-

mains a severe limitation for model development and performance quantification.

Future studies on field data should strive to make their data and methods openly

available103 where possible to enable comprehensive quantitative comparison of

algorithms.

Feature-based data-driven approaches

Data-driven approaches informed by physics show promise for use in field applica-

tions, particularly methods that have been demonstrated to work with relatively

short bursts of data, data from controlled charging, and feature selection ap-

proaches that can handle varying operating conditions.

For SOH estimation, the Gaussian process method proposed by Richardson et al.44

gives good results with only 10s of constant-current data. Similarly, methods that

rely on features from partial SOC windows47–49 are more likely to work with field

data since conditions are more variable. Approaches that are based on extracting

features from the battery charging phase (either the constant-current37,42 or con-

stant-voltage phase37–39,42) are of interest for field applications, since in some cases,

such as electric vehicles, the charging phase can usually be closely controlled while

the discharge phase depends on the power demands of the user. However, these

methods still require the charge to begin from a small enough SOC for the features

to exist, which may not be the case when microcycling (for example, regular short

commutes in an electric vehicle). In this case internal resistance may be a more reli-

able health indicator than capacity.

For prognostics, methods based on incremental updates of capacity

fade35,36,45,50,51 may work well with field data since they are able to handle rapidly

varying operating conditions, usually using some form of averaging.

To be effective with field data, feature-based data-driven methods should demon-

strate that extracted features are independent of instantaneous operating condi-

tions such as C-rate, temperature, or SOC. If this is not the case, then the prognostics

algorithm must account for such variations, which requires large amounts of training

data. For example, if the map from ‘‘time-between-voltages’’ to RUL depends on the

C-rate, then enough tests need to be run to capture this dependency and the num-

ber of tests required grows exponentially with the number of such dependencies. In

contrast, physics-basedmodels directly encode these dependencies into themodel.

We now explore how such models can be used for life prediction in the field.

Hybrid physics-based/data-driven models

As mentioned previously, physics-based degradation modeling aims to simulate the

physical mechanisms that cause the battery to age. In an ideal world, we could

perfectly model each of these mechanisms and, hence, construct a digital twin of

a battery which would tell us exactly how it will age in future.

In practice, most physics-based degradation models that have been proposed are

only validated against data from a single operating condition, and studies that

attempt validation using several operating conditions indicate that it is difficult to

generalize.8 This suggests that degradation models could be enhanced with data-
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driven methods in order to accurately predict a wide range of possible aging mech-

anisms and cell-to-cell variability.104 To this end, promising frameworks exist,

including the field inversion and machine learning paradigm,105 physics-informed

neural networks,106–108 neural ordinary differential equations,109 universal differen-

tial equations,110 and neural differential equations.111 A key advantage of these

methods, as demonstrated for modeling the spread of COVID-19 by Dandekar

et al.,112 is that they extrapolate beyond the training data much more accurately

than pure data-driven methods. This suggests that these methods could be partic-

ularly well suited for battery lifetime estimation. Such hybrid methods have been

applied to battery models by Bills et al.,113 who add unknown degradation terms

to the model and then learn these terms using neural networks, and by Tait

et al.114 who use latent forcing functions to improve the accuracy of a simple electro-

chemical model. For a further in-depth review of these hybrid physics-based/ma-

chine- learning frameworks, we point the reader to Aykol et al.17

Hybrid models outside of these frameworks are also possible. For example, Zhang

et al.61 use an equivalent circuit model to infer capacity from non-constant-current

data, then use this to parametrize a capacity fade curve. Aitio and Howey82 use a

Gaussian process to accurately infer the SOC dependency of resistance from syn-

thetic drive-cycle data.

These studies demonstrate promising early results, with further research needed in

this direction. A key issue, however, is lack of openly available field data. While

hybrid methods will be most useful when applied to field data, they should also

be demonstrated using lab data where results can be more easily validated.

Data management

We have demonstrated that collecting and analyzing data from the field can be

beneficial but doing so requires investment. In our view, the costs and benefits of

extensive data collection will vary depending on the application and stakeholder.

For safety, lithium-ion systems already have extensive voltage, current, and temper-

ature monitoring; recording this data and/or uploading it to a server comes at an

additional cost, and while small relative to the battery cost, this may still be prohib-

itive depending on the application business case. However, for those who choose to

do this, there could be significant benefits in future (e.g., cell supplier selection, life-

time modeling, improved designs, and second-life use). In many applications, data

are already collected and stored on a server, especially for warranty compliance of

grid storage systems that have a lifetime of 10–25 years and may represent substan-

tial ($10M’s) investments. There are indications from industry that more detailed

field data collection is very valuable, especially for cell manufacturers. For example,

Northvolt has a desire to collect extensive battery data from manufacturing through

to end of life,115 including cell-level data from batteries deployed in real products.

This is a lofty goal, but detailed cell level field data are obviously viewed as valuable

for improving cell design and manufacturing. Off-grid energy suppliers are also

interested in detailed data collection because their systems are often in rural areas

that are difficult to reach, and therefore logistics and preventative maintenance

(e.g., battery replacement) planning requires detailed remote monitoring and bat-

tery health prediction. Even if the benefit of collecting field data is not immediately

clear (due to lack of existing methods to analyze it), historical data are invaluable for

the validation of new algorithms.

Managing large volumes of data is an important aspect of dealing with battery field

data as the number of cells grows from tens to millions. Significant computational
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Table 2. Size of data to be uploaded to the cloud

Method Data uploaded to cloud Data per cycle per cell

Empirical aging map aggregated C-rate, temperature, SOC
window

bytes

Pure data-driven time series data kilobytes

Feature-based data-driven features bytes

Physics-based (offline
processing)

time series data kilobytes

Physics-based (online
processing)

degradation parameters bytes

Some methods require high computing power and can only be performed in the cloud, so all of the time

series data need to be uploaded. For other methods, some aggregation can be performed by the battery

management system, and only the aggregated data uploaded. The type of aggregation depends on the

method.
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resources are required to store, process, and retrieve data: over the course of its life-

time, a single cell may produce on the order of 100 MB (assuming a thousand cycles

of 1C/1C cycling while recording time, current, voltage, and temperature at a fre-

quency of 1 Hz, and 4 bytes per single-precision data point) of time series data.

This processing must be performed automatically and requires close collaboration

between battery engineers and software engineers. Furthermore, battery data can

come from a wide variety of sources: design, manufacturing, lab testing, field use,

and second-life use. To maximize the information that can be gleaned from the

data, it is important to integrate all the data from this battery supply and operation

chain onto the same platform. In particular, manufacturing metadata including ma-

terials and processing information is of equal importance to time series performance

data and can be invaluable when trying to understand variations between different

cells and modules. It may be that not every single product needs to be monitored in

this way, just a sub-sample from which population behavior can be inferred.

Once the raw data has been recorded, these can be processed and aggregated in

various ways by the battery management system itself before uploading to the

cloud/server. Typically, time series data are recorded for each group of cells in par-

allel (a ‘‘brick’’), and amodule consists of several bricks in series with several modules

together making a pack. Data can then be aggregated between these groups. There

are two levels of aggregation: compression of time series data and aggregation be-

tween bricks. For the first type, depending on the algorithm, it may not be necessary

to upload all of the raw data to the cloud/server, and for each cycle kilobytes of time

series data may be reduced to just a few bytes of aggregated data (Table 2), for

example, by extracting key features. Feature calculation is usually cheap and can

be performed by the battery management system, then only the features need be

uploaded to the cloud/server. Alternatively, if physics-based (or hybrid) models

are simple enough to be run and fitted online, then only key internal aging parame-

ters need to be recorded at each cycle. In other cases, all the raw data must be up-

loaded to the cloud/server for processing, but once this has been done it can be

archived or, in some cases, discarded.

Aggregation between cells can take several forms. The simplest approach would be

to record data at themodule level (i.e., a number of cell bricks in series) instead of the

brick (i.e., parallel cell block) level, which does not take into account any heteroge-

neity in the module. Fast sampling at the module level or even polling116 cell level

data for individual cell level SOC and SOH estimation requires fast convergence

that can only be achieved with the right excitation, potentially during charging.117

At the other extreme, the data from every brick can be uploaded to the cloud, but
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Figure 4. Quantifying uncertainty

A key challenge in life prediction using field data is managing uncertainty. Controlled conditions

and precise measurements in lab conditions cannot be replicated in real-world operating

environments. This results in less accurate and lower precision estimates of model parameters, q
^
,

which have to be accounted for at the prognostic stage. Plots generated with PyMC3.121
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this may introduce a lot of redundant data. A good compromise, already done by

some manufacturers, is to store only max/min/average brick voltages, as well as

module level data, in order to capture the heterogeneity in themodule. This requires

measuring the data for every brick, which is usually already done for safety reasons.

However, storing and transmitting this information to a central server may require

firmware changes at the local level and may require hardware changes too (depend-

ing on how the battery management system is configured). Although health estima-

tion and lifetime prediction algorithms may be applied at either the cell, module, or

pack level, accuracy will likely be lower if only system level data are available.118

Finally, data processing and storage should take into account privacy issues—for

example, an individual’s daily routine could potentially be inferred from the power usage

of their electric vehicle. Methods to anonymize and aggregate data without losing in-

sights for lifetime prediction should be developed in order to address these issues.
Dealing with uncertainty

Regardless of the chosen method, a key requirement in model fitting and prediction

with field data is the rigorous propagation of uncertainty through the estimation al-

gorithms. Due to the constraints imposed by the data, the variance of model param-

eters in real-world scenarios is inherently large. Illustrated in Figure 4, the uncertainty

of health estimates is carried forward to lifetime predictions, where the compound-

ing of uncertainty over future behavior is complex due to nonlinear dependencies on

model parameters, path-dependence, and unknown operating conditions. To this

end, Bayesian methods for parameter estimation and prediction show promise

because they enable principled inclusion of model and observation uncertainty.

With these approaches, full parameter posterior probability distributions obtained

either by analytical approximation119 or using Monte Carlo techniques120 may be

used to construct battery performance estimates with realistic confidence bounds.
LIFE PREDICTION FOR SECOND LIFE

When a battery can no longer meet the capacity or power requirements for its pri-

mary application, it can sometimes be re-purposed into a different ‘‘second-life’’

application. This is environmentally beneficial and economically viable, especially

with the growing market for lithium-ion batteries for electric vehicles, which can

then later be re-purposed for grid or stationary storage applications.122
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Thechallengehere is topredict theRULof thebatteryunder its intendednewapplication,

which is likely very different to the previous use, in order to decide whether such new us-

age is viableand informwarrantydecisions. There are twoparticular issues: first, historical

data to audit first life usagemay beunavailable, for example, due to commercial secrecy,

and if available, it may not be of the required reliability or fidelity—although initiatives

such as the Battery Passport123 are being implemented to promote reliable sharing of

data. In some cases, time series data from first life and manufacturing metadata are

sold with the battery at a premium. Second, operating conditions can vary significantly

fromfirst life to second life, for example,gridapplicationswill typically havedifferent ther-

mal management systems and reduced SOC windows and C-rates compared with EVs,

so a model of performance from first life may not be valid for second life. However, it is

possible to perform controlled cycles at the re-purposing stage, such as slow deep dis-

charges to determine capacity, pulse tests to determine internal resistance, or electro-

chemical impedance spectroscopy to determine the internal parameters of a model.

The RUL estimation must account for the fact that the usage patterns in the second life

will be different (usually, less intensive) than they were in the first life. Therefore, even if

historical usage information is available, prognostics algorithmsmust bemore advanced

than simply extrapolating aging patterns and models from the first life.

Assessing state of health for second life

At its simplest, assessing the second-life viability of a particular battery pack consists

of measuring its SOH, for example, capacity under constant-current discharge at

various C-rates. However, this may not tell the full story about the second-life

viability of the pack, due to the intrinsic variability and path-dependence of capacity

fade.73 Cells that have the same SOH at a point in time may degrade at different

rates in the future even under the same operating conditions. In particular, Marti-

nez-Laserna et al.124 show that it is crucial to determine whether or not the battery

has passed the knee point in the capacity fade curve, since degradation does not

slow down after this, even under less intensive usage conditions. If historical data

are unavailable, it is not at the moment clear how to determine whether the cell is

past the knee point. This is an interesting challenge problem for the community.

To address this, advanced RPTs may be possible to estimate parameters of a phys-

ics-based model at a level of detail that goes beyond just estimating capacity and

resistance. It may be the case that some parameters of a physics-based model corre-

late well with whether or not the battery is past the knee point. Finding such param-

eters, and ways to easily identify them, would be extremely useful for assessing the

second-life viability of individual batteries. In this context, for porous-electrode

models, Park et al.125 suggest a framework for devising current excitation profiles

that maximizes the observability of the underlying model parameters, using a sensi-

tivity analysis and Fisher information matrix. Alternatively, electrochemical imped-

ance spectroscopy may be used to estimate parameters of a physics-based

model,126 although without a reference electrode there may be ambiguity in attrib-

uting parameters to one or the other electrode. Differential voltage analysis is also a

particularly promising framework here, since performing deep low C-rate charges or

discharges is possible, and the degradation modes that are identified by differential

voltage analysis have been shown to correlate well with knee points.59,127 A chal-

lenge with all of these techniques is that they are usually undertaken on individual

cells—implementation at pack level is an open issue.

Cost-benefit analysis for second-life testing

When considering what tests should be performed to assess second-life viability,

there is a cost versus accuracy trade-off, and the level of accuracy required for
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second-life assessment depends on the intended usage. A very simple assessment

could consist of a binary go/no-go classification of whether a battery will be usable

for the desired second-life application and duration, in which case relatively low-test

accuracy is sufficient. A more complex test could also identify the operating condi-

tions that will maximize the battery lifetime in second life, such as SOC window and

C-rate, but such tests will require higher accuracy and longer duration. If pack-to-

module balancing is planned, very accurate tests are required in order to identify

the strongest and weakest packs.128 In each case, the cost of testing should be no

greater than the additional revenue generated by improved test accuracy. While

the cost of testing is relatively easy to quantify, calculating the revenue resulting

from improved control is an open research question.4

Finally, an important question to consider in second-life testing is cell-to-cell vari-

ability within a pack. It has been shown that the labor involved in opening up a

pack is more expensive than the benefit from testing and screening the individual

cells.129 Therefore, second-life testing strategies should aim to predict the life and

identify the performance variability of the cells within a pack without having to test

each cell independently. Since most packs measure voltage for every cell brick,

this is in principle possible, but would require every single cell voltage to be re-

corded in a database—at present this is not necessarily the case.
SUMMARY AND OUTLOOK

Battery costs and customer confidence must be improved if we are to improve

renewable energy integration by expanding grid storage and rapidly replace com-

bustion engine vehicles with electric vehicles as part of the solution to maintain

climate warming within 2
�
C of pre-industrial levels. To address this, there is a signif-

icant need to estimate battery health accurately, diagnose degradation, predict life-

time in different usage scenarios, and detect failures. Combining data-driven and

physics-based models will outperform pure data-driven or pure physics-based ap-

proaches by allowing robust extrapolation of future behavior from available data.

Different approaches are suited to different use cases. For warranty design and cer-

tification of performance, consistent lab test data are used to inform empirical

models for life prediction and may also be used for data-driven or physics-based

modeling. On the other hand, in most real-world cases where data are less regular,

the development of new hybrid models that combine the strengths of physics-based

and data-driven methods is essential. Such models are claimed to require less

training data than purely data-driven methods, have been shown to extrapolate

more accurately,112 and are more flexible and generalizable than purely physics-

based methods. Finally, ensembles of different models could also be considered,130

since they can outperform the best individual models.

Fleetdatacanalsobeusedbycompanies toadjust theirmodelsdevelopedwith labdata.

Developing and training predictivemodels for battery lifetime requires large amounts of

data covering thewhole range of operating conditions. Due to time and equipment con-

straints and the wide variety of operating conditions, lab data cannot completely cover

the required range with realistic (non-accelerated) operating conditions. We believe

thatfleetdata fromdevices inuseaugments labdata, leading touse-case-specificbattery

lifetime prediction models and improved designs.

Additionally, deeper characterization can be performed on cells that have reached

the end of their life in order to determine their true SOH and cycle life, and hence
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build up a database for supervised learning. Individual cells that exhibit particularly

interesting behavior can be selected for teardown experiments to reveal how these

cells aged and hence verify predictions from physics-basedmodels. This can then be

used to improve the models for cells that are still in operation. Building and main-

taining large databases of field data is a challenging undertaking but is a worthwhile

endeavor to prepare for a time when algorithms to analyze it will be available and will

require training data. For example, a field data collection effort could begin with col-

lecting data from taxis and buses or vehicles used by company employees. Even

data obtained during charging could be extremely useful to update lab-based

models. This is already being done in some cities, as noted in life prediction from

field data. Open sharing of such data and analysis software between researchers

would greatly accelerate efforts to improve algorithms for lifetime modeling. How-

ever, collection and curation of this type of data is challenging due to trade secrets

and industry competition concerns. A large cross-institutional research project

involving national laboratories, universities, and others could facilitate widespread

data collection and appropriate anonymization. Companies may also be willing to

release small subsets of data openly, for example, through competitions to assist

in recruitment and marketing.

To enable these exciting opportunities, further research in several areas is required,

as well as enhanced collaboration between disciplines.131We highlight the following

items as particularly necessary:

(1) Development of consistent, large-scale open-source databases for battery

performance and lifetime data and to train and validate algorithms for lifetime

prediction. Ideally, these should encompass lab data and field data and share

common standards for data and metadata.103

(2) Fast and accurate physics-based models, with a particular focus on under-

standing what are the key degradation sub-models that are important, and

how to estimate and track key parameters. Traditionally, such complex

models have required very high levels of expertise to implement, but this is

becoming more accessible through open-source modeling packages such

as PyBaMM.94

(3) Scalable algorithms for combining data-driven methods with physics-based

models. Some promising pathways for this are the field inversion andmachine

learning paradigm,105 neural differential equations,111 Gaussian process

state space models,132 and universal differential equations.110

(4) Methods to diagnose whether a cell has aged beyond the knee point, without

requiring historical data, to assess whether the cell can be used in second-life

applications.

(5) Quantification of value (e.g., additional revenue) resulting from improved

SOH estimation and life prediction, for example, for second life.

(6) Solutions for data privacy issues—anonymization and intelligent aggregation

of individual user data without loss of insights for diagnostics and prognos-

tics.

There are many areas of battery research where modeling and data-driven tech-

niques can add value, including materials discovery, battery design, and fast

charging algorithms.133 Achieving breakthroughs in battery lifetime prediction in

real applications will require new experimental approaches for lab tests that

massively reduce the time required to understand degradation processes in batte-

ries. It will also require new methods to map from accelerated aging tests to real-

world conditions—informed by a large amount of field data together with scalable
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modeling approaches that also account for uncertainty in sensors andmodels. There

is a significant opportunity through this to reduce costs by reducing pack sizing and

stretching the usage envelope, in order to accelerate the roll-out of batteries, under-

pinning the rapid transition to clean energy and transport.
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