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SUMMARY

Accurate battery life prediction is a critical part of the business case
for electric vehicles, stationary energy storage, and nascent applica-
tions such as electric aircraft. Existing methods are based on rela-
tively small but well-designed lab datasets and controlled test con-
ditions but incorporating field data is crucial to build a complete
picture of how cells age in real-world situations. This comes with
additional challenges because end-use applications have uncon-
trolled operating conditions, less accurate sensors, data collection
and storage concerns, and infrequent access to validation checks.
We explore a range of techniques for estimating lifetime from lab
and field data and suggest that combining machine learning ap-
proaches with physical models is a promising method, enabling
inference of battery life from noisy data, assessment of second-life
condition, and extrapolation to future usage conditions. This work
highlights the opportunity for insights gained from field data to
reduce battery costs and improve designs.

INTRODUCTION

Batteries are used in a wide variety of applications, from consumer electronics to electric
cars, rail, marine, and grid storage systems. A critical need for consumer acceptance in
electric vehicles is to achieve longer range and lower cost via pack size reduction.’ All of
these objectives depend on accurate state of health (SOH) estimation and predictions of
lifetime under various operating conditions. More accurate lifetime prediction improves
battery technology at all stages of a battery’s life. First, it can shorten the product devel-
opment cycle, for example, by elucidating failure mechanisms, in particular, if models
can be incorporated in a closed loop with experiments.” Second, it can be used to opti-
mize manufacturing protocols. Third, improved lifetime prediction can lead to lower war-
ranty and insurance costs, timely preventative maintenance, lower up-front capital cost
by reduced over-engineering, and better control of charging and discharging that could
prolong life.” Finally, it leads to improved prospects for second-life applications—sup-
porting the creation of a circular economy around battery manufacturing, re-use, and re-
cycling will also be critical as demand is forecast to outpace raw material supply and
refinement over the coming decade.”

The criteria for determining end of life may vary by application, but generally this oc-
curs when the battery can no longer meet the requirements of range, operating time,
or maximum power capability under typical usage profiles. The key parameters that
affect end of life are capacity (available energy) and internal resistance (available po-
wer).® Battery aging depends on intrinsic factors, such as manufacturing variability
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Context & scale

To enable the transition to a clean
economy and ensure confidence
in energy storage technologies,
advances are required in
reliability, safety, and extended
usage of batteries. While
headline-grabbing improvements
have been made in battery
materials, significant advances
may also be achieved in managing
behavior via enhanced modeling
and real-time sensing. These are
often chemistry-agnostic and
hence can be coupled with future
materials and next-generation
chemistries such as lithium metal.

Here, we explore how physics-
based and data-driven modeling
informed by measurements from
end-use devices enables new
battery lifetime models. Although
challenging, this will lead to
reduced costs by reducing the
battery size needed to satisfy
warranties and guarantee
performance. It will also elucidate
degradation mechanisms,
improving safety and reducing
downtime by enabling
appropriate interventions. Finally,
it will inform decisions on second
life, enabling a circular economy
for batteries.
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and pack design, and extrinsic factors, such as temperature and intensity of usage,”*®
and is therefore difficult to predict, particularly outside of the laboratory.” Existing
reviews and perspectives in the literature consider methods for SOH prediction,” " life-
time prediction,”'*"%"” and/or fusion of physics-based and data-driven models,’”"?
but are historically restricted to fairly small datasets under very controlled conditions.
Complementary to existing literature, this perspective examines the unique challenges
of battery lifetime prediction with field data and for second-life applications and reviews
which approaches are most promising for addressing these challenges. This first re-
quires a review of methods using lab data (life prediction from lab data). We then lay
out the challenges and assess promising methods for field data analysis (life prediction
from field data), where we discuss the additional value that field data offers for lifetime
prognostics and the difficulties in obtaining and processing these data. Finally, we
address high-throughput testing for second-life asset evaluation (life prediction for sec-
ond life).

In a lab setting, which is the best understood and most studied in the literature, the
cycling pattern of batteries can be closely controlled and regular reference perfor-
mance tests (RPTs) can be performed to quantify health. However, field data from
real-world applications exhibit irregular cycling patterns, varying operating condi-
tions, and path-dependent degradation mechanisms, making reliable predictions
difficult. This setting is extremely relevant for industrial needs, such as prediction
of the remaining useful life of a customer’s electric vehicle or compliance with war-
ranty conditions for grid storage systems, but prognostics using real-world data re-
mains an open research challenge.

Industry sectors such as automotive manufacturers have narrow profit margins and
comprehensive certification requirements that necessitate extensive laboratory
testing, therefore gathering fleet data may come at an additional cost and effort
that is hard to justify. Since test data are often not available across the wide range
of cells used in packs commercially, a basic set of lab degradation measurements
is beneficial as a starting point for understanding the impact of operating parame-
ters on degradation. Additionally, given that automotive cells are considered
degraded when they reach 80% SOH (i.e., of their initial capacity), there is a need
for capacity and resistance estimation accuracy of at least 5% and ideally 2% to un-
derpin lifetime prediction. Defining the accuracy and confidence levels necessary for

a health-conscious battery management system is still an urgent research goal.°

To build an accurate, general model of battery behavior that covers many usage condi-
tions, a large amount of aggregated data from a population of users is required—it is
insufficient only to do this on an individual end user basis. The information that is gath-
ered from intelligently tracking degradation at the fleet level in the field could be used to
improve user experience for individual battery end users via over-the-air software up-
dates although there may be regulatory barriers inhibiting this. Finally, at the end of
its first life (e.g., in an electric vehicle), a battery may be assessed for possible second-
life application (e.g., grid storage). Estimating health at this point comes with additional
difficulties, such as potential lack of historical data and a change in the future aging
mechanism of the battery due to different operating conditions in second life. Controlled
RPTs are possible and can be designed around screening and techno-economic analysis
of batteries for second life but are time consuming and require equipment and space
that translates to cost, disadvantaging the economics of re-purposed batteries.

To address the challenge of lifetime prediction, three general approaches exist—
empirical aging maps, data-driven models, and physics-based models—and later
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in this paper, we also introduce a fourth technique that combines physics-based and
data-driven models. Empirical aging maps model capacity fade explicitly as a func-
tion of time or charge throughput, parametrized by operating conditions such as
temperature, C-rate, and depth of discharge.””'** In the purely data-driven
approach, very few assumptions are made about the underlying principles govern-
ing the behavior of the battery, and machine learning models are trained using raw
input signals (current, voltage, and temperature).Zé”36 Another type of data-driven
method uses preprocessed features from the voltage, current, temperature, imped-
ance, or power curves as inputs to machine learning models.**>* Finally, in the phys-
ics-based approach, models are constructed from first principles, with tuning param-
eters found using a relatively small number of experiments. Such models include

55-60 7,61-63

differential voltage analysis models, equivalent circuit models (ECMs),

and first-principles degradation models based on porous-electrode theory.®¢*7°

Unfortunately, neither the data-driven nor physics-based methods alone can solve
the challenge of battery lifetime prognostics from field data. The challenges facing
physics-based modeling have been well documented, such as a large number of
coupled and nonlinear degradation mechanisms,® which evolve nearly unobservably
from the electrical measurements and are difficult to parametrize. As a result, not all
researchers agree on which degradation mechanisms to model and how to imple-
ment them, since many different mechanisms and formulations can explain similarly
observed degradation behavior.® We note that mechanical’’ or acoustic’? measure-
ments have been proposed as a means to address the lack of observability, but such
measurements are not yet widely used.

Meanwhile, data-driven approaches suffer from the “curse of dimensionality,” where the
amount of data needed to capture all combinations of operating conditions grows
quickly with the number of conditions being investigated. This is compounded by the
relatively slow rate at which battery lifetime data can be acquired, taking several months
or years of experiments for each change in chemistry (e.g., electrolyte additive), form-
factor, or manufacturing process. Furthermore, trade secrecy limits how much data
are available to individual researchers. The inherently nonlinear, path-dependent nature

of battery degradation further exacerbates this problem.>”/*~7¢

Here, we start by introducing different approaches for life prediction in lab settings
(life prediction from lab data). The advantages and disadvantages of each method in
terms of computational complexity, data requirements, and accuracy are also dis-
cussed. Then, the challenges and opportunities of applying life prediction methods
to field data are presented (life prediction from field data), and we suggest that
hybrid methods that combine physics-based and data-driven approaches show
promise for this because they combine accuracy, robustness to limited or low-quality
data, and generality (life prediction from field data). Finally, in life prediction for sec-
ond life, we discuss the challenges of lifetime estimation for second-life applications.
These include assessing viability of batteries without having historical data available,
in particular determining whether or not the battery has degraded beyond the knee
point (i.e., the point beyond which degradation may accelerate toward end of life)
and understanding the cost-benefit between testing re-purposed batteries versus
the increased revenue from more accurately knowing their SOH.

LIFE PREDICTION FROM LAB DATA

In a laboratory, battery cycling can be repeated consistently, and conditions such as
current and temperature can be closely controlled (Figure 1). Measurements of
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Figure 1. Prognostics using lab data

Summary of approaches for prognostics using lab data. A variety of use cases can be tested and health models trained using data-driven, physics-
based, or hybrid paradigms. These models are typically developed to underpin warranties but are not validated beyond the warranty period or in other

usage scenarios.

“ground truth” battery health—capacity and resistance—can easily be taken with
regular RPTs as required, and batteries can be cycled continuously until end of
life, which is often specified as the point where measured capacity reaches 80% of
the pristine cell capacity.”’

This means that laboratory tests are useful to build models that explore how different
operating conditions affect cycle life, and hence determine warranties, maintenance
schedules, and system sizing. The operating conditions used in laboratory tests
include driving patterns and schedules tailored to very specific applications, such
as a specific electric vehicle model. Laboratory tests can also be used to guide the
development of new battery chemistries, optimize battery design, and improve
manufacturing processes, for example, by investigating the effect of parameters
such as humidity or formation cycles on performance.

Battery degradation testing is a lengthy process, therefore extreme operating con-
ditions, such as high C-rates or elevated temperatures, are often used to accelerate
aging. Even with accelerated aging, it can be slow to assess the degradation impact
of individual manufacturing parameters such as materials and processing choices,
design factors such as cell size, number of layers and electrode thicknesses, and for-
mation protocols. Additionally, since different manufacturing parameters interact
non-linearly, varying each parameter individually may not tell the full story. There-
fore domain-knowledge is required to ensure that testing efforts are as effective
as possible.

Significant research has been undertaken on modeling lab battery test data, and it
can broadly be divided into four categories, summarized in Figure 2: empirical aging
models, pure data-driven methods, feature-based data-driven methods, and phys-
ics-based methods. In this section, we review state-of-the-art approaches within
each of these categories.
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Figure 2. Different approaches to battery lifetime estimation

Empirical, purely data-driven, feature-based data-driven, and physics-based approaches to battery lifetime prediction.

Empirical aging models

A typical measure of battery degradation is the capacity fade curve, which describes

how the capacity changes as a function of charge throughput, equivalent cycle num-
ber, or time. Therefore, the simplest approach for lifetime prediction is to build an
empirical model of the capacity fade parametrized by operating conditions. This
may depend on a number of factors including time and charge throughput. As first

proposed by Bloom et al.,”" such empirical models usually have a square-root-of-

time dependence, due to diffusion-limited solid electrolyte interphase (SEl) forma-
tion, and Arrhenius kinetics for the temperature dependence.’”?'~?° Further refine-

ments include accounting for C-rate,

7,24

depth-of-discharge range,

average state of charge (SOC),****

and voltage.”?> Furthermore, recent models sepa-

rate capacity fade into calendar aging, which depends on time, and cycle aging,

which depends on charge throughput.

7,23,24

This approach is simple and easy to implement, making it common in industry for

developing maps of lifetime from lab data. However, it has a few limitations. First,

very large amounts of data are required to interpolate over all operating conditions.

Second, this approach cannot easily account for cell-to-cell variations due to

manufacturing or heterogeneous current and temperature distributions within a
pack. Third, separate maps are usually developed for cycle and calendar aging,
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which misses the interactions between these,’” whereas the methods that we will re-
view below can incorporate these interactions as long as appropriate data are
included in the training sets. Finally, empirical aging maps may fail to capture
knee points in the capacity fade curve.”** Knee points are a change in the degrada-
tion rate likely caused by a change in the underlying mechanism’® (e.g., SEl growth
later leading to lithium plating®®), and they are a particular challenge for prediction,
especially with simple empirical models.

To overcome these limitations, prognostics can be improved by also taking into ac-
count the individual raw time series data (such as voltage) of the cells during cycling,
instead of just the capacity obtained during the RPTs.

Purely data-driven models

This approach consists of using measurements such as the current and voltage
directly as inputs to a machine learning model in order to learn the remaining useful
life as the output. While several studies have shown promise in estimating the pre-
sent SOH of the battery,”*~*#>’? there is limited application to date of these
methods to prognostics, with one example being Zhang et al.,** who use raw elec-
trochemical impedance spectroscopy data to predict remaining useful life (RUL).
This may be due to the lack of available data: while each cell has hundreds of cycles
to use as training data for SOH estimation, its cycle life is just a single data point
per cell.

Another possible approach is to train a machine learning model for “forward simu-
lation,” where the model learns how much capacity fade occurs during shortintervals
based on the existing capacity, current, or temperature during the interval. >3
Then the RUL can be predicted by adding together the capacity fade from all the in-
tervals under typical usage conditions and seeing where the resulting trajectory

crosses 80%.

Feature-based data-driven models

In this approach, there is a preprocessing step in which features are extracted from
the voltage and current, informed by physical understanding of the cell’s behavior.
These features are then used as the inputs to machine learning algorithms. Similarly
to pure data-driven methods, much of the literature focuses on present SOH estima-
tion rather than prediction of future SOH.?*"**“¢ However, since the models that
take features as inputs are less complex than those that take raw data as input,
they require less training data than pure data-driven approaches and are more

readily applicable to lifetime estimation. For example, Chinomona et al.’ u

se
various statistical features from the voltage, current, and temperature, while Yun
et al.*® and Greenbank and Howey*” use as features the time spent within certain

voltage, current, power, and temperature ranges.

While those studies use features from the current or voltage within a single cycle,
Severson et al.>” showed that using features generated from changes between
different cycles can give very accurate predictions of lifetime, even using a simple
regularized linear regression model. Fermin-Cueto et al.>® improved the accuracy
of this method (lower prediction error with fewer cycles) by using more features
and a more advanced machine learning algorithm. In a previous paper,” we applied
this method to a different dataset for NMC/graphite cells, achieving an accurate pre-
diction of battery lifetime, and showed that these features are closely correlated with
loss of lithium inventory in the cells, demonstrating the importance of a physical
basis for the features.
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Accurate data-driven prediction of the knee point in the capacity fade curve using
feature-based data-driven models has recently been demonstrated,*”°*%° despite
the fact that data-driven methods may fail to extrapolate correctly under changing
usage conditions due to path-dependence®” and may not even correlate with aging
unless a certain depth of discharge is reached during usage.”

Finally, some feature-based “forward simulation” approaches have also been pro-
posed, using physics-informed features as inputs to Gaussian processes to predict
incremental capacity fade and, hence, RUL under typical operating
conditions. ">

Physics-based models

This broad category includes atomistic models, continuum approaches based on
porous-electrode theory, through to ECMs. We include ECMs here as “lumped”
physics models using electrical engineering components to capture the electro-
chemical behavior.®*®" In terms of degradation, circuit models can be used to esti-
mate and track parameters empirically as cells age.” Examples of lifetime prediction
using circuit models are Zhang et al.®’ and Chu et al.” who employ observers to
identify the internal states of an ECM and then fit an empirical aging map to find
future changes in capacity. A challenge with these approaches is that careful tuning
is required to achieve robust performance. To address this, Aitio and Howey® show
that applying Gaussian process regression to identify functional dependencies of
model parameters can give smoother and more dependable results when using
drive-cycle data. ECMs are popular since they are easy to implement and parame-
trize, although recent work has shown that similar computational efficiency can be

achieved with models based on porous-electrode theory.?*%°

The other relevant category of physics-based models is those derived from first prin-
ciples—typically continuum approaches using porous-electrode theory. These may
be extended to capture the underlying degradation mechanisms that cause capacity
fade, such as SEI layer growth,®¢>7%85"88 |ithium plating,®¢>¢"*??% and particle
swelling and cracking.®?" These models can be used to directly simulate the entire
life of the cell under certain operating conditions.®**~’% In theory, such models could
be used for prognostics by parametrizing them with early-life data for a particular cell
and then simulating the remaining life of the cell and seeing where 80% capacity is
reached. An advantage of this approach is that it also provides the predicted cause
of failure, enabling remediation strategies before end of life such as tightening of
safety limits in the battery management system.

The main weakness of these models is their lack of flexibility and parametrization dif-
ficulty. While excellent agreement with the available data can be achieved, it is not
possible for a mechanistic model to account for every single eventuality. For
example, even when a large number of degradation sub-models are included,
some aspects of the experimental dataset still cannot be fitted accurately.’

In the following section, we suggest ways in which physics-based models can be
made more flexible (and hence model a wider range of degradation of mechanisms)
by augmenting them with methods from machine learning.

Accurate parametrization of continuum physics-based models for a fresh cell is chal-

7293 to deter-

lenging, requiring cell teardown and specialized testing equipment
mine a wide range of parameters such as reaction rate constants, conductivities, dif-

fusivities, particle sizes, etc. Determining the degradation parameters, such as SEl
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kinetic parameters, by inverse modeling is even more challenging due to the compu-
tational time required to simulate the entire lifetime (e.g., 15 min with Ouyang etal.’s
relatively simple model,** compared with microseconds for an empirical aging map).
For physics-based models to become more widely adopted for lifetime estimation,
this computational time needs to be reduced, either through the development of
reduced-order models®® or numerical methods. Advancing efficient physics-based
models is one of the goals of open-source battery modeling framework PyBaMM.”*

Physical understanding can also be used to define more specific degradation metrics
than capacity or resistance. For example “degradation modes,"” such as loss of active
material and loss of lithium inventory, may be estimated from data or models and
linked to different underlying mechanisms, such as SEI growth or lithium plating.®®

These can be identified using differential voltage analysis®>>?

and used for predic-
tion. For example, Hui et al.”® use differential voltage analysis to identify degrada-
tion modes, then predict future change in these degradation modes—achieving bet-

ter accuracy than empirical aging maps.

LIFE PREDICTION FROM FIELD DATA

Lab battery testing is limited in the number of test channels available and the time avail-
able for tests. Ultimately, what matters is battery performance in real applications. If field
data from batteries in end-use applications could supplement lab performance and life-
time tests, this would significantly increase the amount of data available, accelerating our
understanding and closing the gap between lab and end-use. It would also ensure that
lifetime prediction algorithms are relevant to industry applications. Figure 3 summarizes
the aims and impacts of lifetime prediction from field data.

Field data versus representative drive-cycle testing in the lab

One existing approach to bridge the gap between standard lab tests and field data
is to test batteries using representative loading patterns in the lab. To this end, many
researchers have characterized “typical” user driving patterns.”?*?” The advantage
of this approach is that it can be performed in the lab with high-accuracy equipment,
controlled conditions, and frequent characterizations. However, complementing
this with field data is still very valuable for a number of reasons. First, there are never
enough testing channels in the lab, and they are never available for long enough to
test all combinations of conditions necessary—whose number grows factorially with
the number of aging parameters. In contrast, field data may be available at relatively
low cost since the cells are already being cycled, and (by definition) the entire range
of operating conditions is covered.

Second, lab testing is contrived and different to real-world usage. Due to constraints
of both time and testing equipment availability, lab tests usually impose extreme
conditions and short rest periods between cycles. This can lead to under-prediction
of battery lifetime, and hence over-engineering of pack design. Accelerated aging
experiments often stress the battery more intensively than standard cycling in the
field. This is accounted for by experimentally developed maps between accelerated
experiments and real usage scenarios. However, these maps take a long time to
obtain, because they require replicating real usage scenarios in the lab, and even
then it is difficult to perfectly relate lab tests to field data. For example, it has
been shown that rest periods between cycles can be beneficial for the overall life
of the battery,”” but lab experiments cannot always incorporate long resting periods
due to testing time constraints. For extension of model validity from lab accelerated
aging tests to real-world usage, it is important to standardize methods to interpret
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Figure 3. Prognostics using field data

Summary of the aims, processes, and impacts of state of health prediction from field data. Challenges include noisy and missing data, uncontrolled

partial cycling conditions, lack of regular validation tests, and uncertainty over future usage.

not just accelerated cycle aging data but also accelerated calendar aging and mixed
cycle plus calendar aging scenarios. For both lab-accelerated-aging and field-data-
aging research, itis important to rigorously understand the impact of cycles-per-day
and rest-time conditions on lifetime.

Third, there could be exogenous factors in the field that are not accounted for in the
lab, such as seasonal temperature variations or mechanical vibrations causing fail-
ure. Fourth, from the point of view of understanding battery lifetime, which depends
on both intrinsic (manufacturing variability) and extrinsic (usage) factors, more data
are always valuable because it increases the statistical confidence with which we can
build lifetime and performance models.

Challenges and opportunities of field data

Three main issues arise in this context: the wide variety of uncontrolled usage sce-
narios, data quality issues, and lack of clear validation data. First, unlike lab-based
prognostics where operating conditions are held constant or at least controllable,
in the real world, operating conditions can vary throughout a cell’s life. Examples
for electric vehicle batteries include temperature differences due to seasonality,
cell-to-cell variations within a battery pack, or varying SOC windows associated
with trip distances. Depending on driving conditions, charging and discharging cur-
rent/power levels can affect battery degradation to a greater or lesser extent. Recent
studies have shown that battery degradation may also depend on the order of the
operating conditions, a phenomenon known as “path- dependence” in the litera-
ture.>”’377¢ Another source of uncertainty in lifetime predictions arises because
future operating conditions themselves are uncertain.
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Table 1. Summary of existing state of health estimation papers using real-world pack-level battery data

Ref Dataset Used Aim Method

Song et al.”” 700 B/HEVs, Shanghai SOH estimation neural network

Wang et al."® 8,032 EVs, Beijing evolution of cell variability ECMs and regression

She et al.'”" 18 EVs, Foshan SOH estimation ICA and neural network

Huo et al.,'%? 16 EVs, Beijing SOH estimation empirical model & Bayesian network

Second, field datasets are difficult to work with, for several reasons. Cell-to-cell var-
iations within a pack or modules, less accurate sensors, noise, extreme C-rates,
smaller coverage of the available range of conditions (e.g. microcycling of SOC),
missing or false data, and rapidly varying currents make it very challenging to extract
features or fit parameters.”*?® There may also be long periods of missing data, for
example, temperature data while the battery is at rest (and hence not recording).
These factors also restrict the identifiability of both mechanistic and data-driven
models. For physics-based models, the input signal is not rich enough for parame-
trization and, therefore, simplifications of the model are required. On the other
hand, performance of purely data-driven methods is limited by the extent that the
training data covers the possible space of inputs, since extrapolation outside of
the observed data comes with significant uncertainty. The third difficulty for real-
world prognostics is the challenge of verification or validation, i.e., in field data there
is typically a lack of ground truth against which to compare predictions. This is due to
the lack of controlled RPTs, which makes capacity and end of life difficult to validate,
and the fact that not all cells are cycled to end of life, reducing dramatically the data
fidelity and availability. A related issue is how often to retrain a prognostic model,
where a balance needs to be struck between having sufficiently rich data versus
capturing gradual changes in usage and operating conditions.

In the remainder of this section, we review existing studies on this topic, then sug-
gest approaches that can be used to overcome the issues and address the challenge
of prognostics in the field. We separate these again into “data-driven” and “physics-
based” methods, though most of these methods are hybrid in nature. The chal-
lenges in this section represent an exciting new frontier for battery system develop-
ment and demonstrates real-world application of hybrid data-driven techniques. We
finally discuss two practical aspects of implementation, namely data management
and uncertainty.

Existing studies using field data

In comparison to studies based on lab generated data, existing literature using field
data for life modeling is sparse and is mainly focused on diagnostics rather than life-
time prediction. However, some large databases of electric vehicle usage data have
been collected and analyzed, as summarized in Table 1. These existing works focus
on data-driven methods to estimate SOH. For example, Song et al.”” used operating
data from 700 electric vehicles to fit a feed-forward neural network using features
calculated from usage history as inputs to estimate capacity, where the target output

1.7 used a

itself was estimated from partial charging curves. Alternatively, Wang et a
larger dataset from 8,032 electric taxis to track cell-to-cell variability at the pack level
overtime. The same data source was used by She et al.’®" to estimate capacity loss in
18 electric city buses by fitting a neural network with inputs consisting of usage fea-
tures and the output of the peak value in the incremental capacity curve during
charging. A different approach was proposed by Huo et al.,'°? who installed data
collectors on 16 electric taxis and performed periodic capacity calibration tests to
obtain validation data for probabilistic SOH estimates obtained through a Bayesian

network with an empirical degradation model. These works give a glimpse of what is
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possible using large datasets, and they also encounter the challenges mentioned in
this perspective, such as missing or noisy data and lack of validation. These papers
do not make their data and code available for others to download, so it is not
possible to reproduce their results. The lack of availability of large publicly acces-
sible datasets, including validation data and real-world operating conditions, re-
mains a severe limitation for model development and performance quantification.
Future studies on field data should strive to make their data and methods openly
available'®® where possible to enable comprehensive quantitative comparison of
algorithms.

Feature-based data-driven approaches

Data-driven approaches informed by physics show promise for use in field applica-
tions, particularly methods that have been demonstrated to work with relatively
short bursts of data, data from controlled charging, and feature selection ap-
proaches that can handle varying operating conditions.

For SOH estimation, the Gaussian process method proposed by Richardson et al.**
gives good results with only 10s of constant-current data. Similarly, methods that

47-49

rely on features from partial SOC windows are more likely to work with field

data since conditions are more variable. Approaches that are based on extracting
features from the battery charging phase (either the constant-current®”-*?

stant-voltage phase®’ %% are of interest for field applications, since in some cases,

or con-

such as electric vehicles, the charging phase can usually be closely controlled while
the discharge phase depends on the power demands of the user. However, these
methods still require the charge to begin from a small enough SOC for the features
to exist, which may not be the case when microcycling (for example, regular short
commutes in an electric vehicle). In this case internal resistance may be a more reli-
able health indicator than capacity.

For prognostics, methods based on incremental updates of capacity
fade™>:3645:20>1 may work well with field data since they are able to handle rapidly
varying operating conditions, usually using some form of averaging.

To be effective with field data, feature-based data-driven methods should demon-
strate that extracted features are independent of instantaneous operating condi-
tions such as C-rate, temperature, or SOC. If this is not the case, then the prognostics
algorithm must account for such variations, which requires large amounts of training
data. For example, if the map from “time-between-voltages” to RUL depends on the
C-rate, then enough tests need to be run to capture this dependency and the num-
ber of tests required grows exponentially with the number of such dependencies. In
contrast, physics-based models directly encode these dependencies into the model.
We now explore how such models can be used for life prediction in the field.

Hybrid physics-based/data-driven models

As mentioned previously, physics-based degradation modeling aims to simulate the
physical mechanisms that cause the battery to age. In an ideal world, we could
perfectly model each of these mechanisms and, hence, construct a digital twin of
a battery which would tell us exactly how it will age in future.

In practice, most physics-based degradation models that have been proposed are
only validated against data from a single operating condition, and studies that
attempt validation using several operating conditions indicate that it is difficult to
generalize.® This suggests that degradation models could be enhanced with data-
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driven methods in order to accurately predict a wide range of possible aging mech-
anisms and cell-to-cell variability."”* To this end, promising frameworks exist,
including the field inversion and machine learning paradigm,’®® physics-informed

106-108 197 universal differen-

neural networks, neural ordinary differential equations,
tial equations,’' and neural differential equations.”" A key advantage of these
methods, as demonstrated for modeling the spread of COVID-19 by Dandekar

et al,'"?

is that they extrapolate beyond the training data much more accurately
than pure data-driven methods. This suggests that these methods could be partic-
ularly well suited for battery lifetime estimation. Such hybrid methods have been
applied to battery models by Bills et al.,""® who add unknown degradation terms
to the model and then learn these terms using neural networks, and by Tait

etal."™

who use latent forcing functions to improve the accuracy of a simple electro-
chemical model. For a further in-depth review of these hybrid physics-based/ma-

chine- learning frameworks, we point the reader to Aykol et al."’

Hybrid models outside of these frameworks are also possible. For example, Zhang

et al.’!

use an equivalent circuit model to infer capacity from non-constant-current
data, then use this to parametrize a capacity fade curve. Aitio and Howey®” use a
Gaussian process to accurately infer the SOC dependency of resistance from syn-

thetic drive-cycle data.

These studies demonstrate promising early results, with further research needed in
this direction. A key issue, however, is lack of openly available field data. While
hybrid methods will be most useful when applied to field data, they should also
be demonstrated using lab data where results can be more easily validated.

Data management

We have demonstrated that collecting and analyzing data from the field can be
beneficial but doing so requires investment. In our view, the costs and benefits of
extensive data collection will vary depending on the application and stakeholder.
For safety, lithium-ion systems already have extensive voltage, current, and temper-
ature monitoring; recording this data and/or uploading it to a server comes at an
additional cost, and while small relative to the battery cost, this may still be prohib-
itive depending on the application business case. However, for those who choose to
do this, there could be significant benefits in future (e.g., cell supplier selection, life-
time modeling, improved designs, and second-life use). In many applications, data
are already collected and stored on a server, especially for warranty compliance of
grid storage systems that have a lifetime of 10-25 years and may represent substan-
tial ($10M’s) investments. There are indications from industry that more detailed
field data collection is very valuable, especially for cell manufacturers. For example,
Northvolt has a desire to collect extensive battery data from manufacturing through
to end of life,"® including cell-level data from batteries deployed in real products.
This is a lofty goal, but detailed cell level field data are obviously viewed as valuable
for improving cell design and manufacturing. Off-grid energy suppliers are also
interested in detailed data collection because their systems are often in rural areas
that are difficult to reach, and therefore logistics and preventative maintenance
(e.g., battery replacement) planning requires detailed remote monitoring and bat-
tery health prediction. Even if the benefit of collecting field data is not immediately
clear (due to lack of existing methods to analyze it), historical data are invaluable for
the validation of new algorithms.

Managing large volumes of data is an important aspect of dealing with battery field
data as the number of cells grows from tens to millions. Significant computational

¢? CellPress
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Table 2. Size of data to be uploaded to the cloud

Method Data uploaded to cloud Data per cycle per cell
Empirical aging map aggregated C-rate, temperature, SOC bytes

window
Pure data-driven time series data kilobytes
Feature-based data-driven features bytes
Physics-based (offline time series data kilobytes

processing)

Physics-based (online degradation parameters bytes
processing)

Some methods require high computing power and can only be performed in the cloud, so all of the time
series data need to be uploaded. For other methods, some aggregation can be performed by the battery
management system, and only the aggregated data uploaded. The type of aggregation depends on the
method.

resources are required to store, process, and retrieve data: over the course of its life-
time, a single cell may produce on the order of 100 MB (assuming a thousand cycles
of 1C/1C cycling while recording time, current, voltage, and temperature at a fre-
quency of 1 Hz, and 4 bytes per single-precision data point) of time series data.
This processing must be performed automatically and requires close collaboration
between battery engineers and software engineers. Furthermore, battery data can
come from a wide variety of sources: design, manufacturing, lab testing, field use,
and second-life use. To maximize the information that can be gleaned from the
data, it is important to integrate all the data from this battery supply and operation
chain onto the same platform. In particular, manufacturing metadata including ma-
terials and processing information is of equal importance to time series performance
data and can be invaluable when trying to understand variations between different
cells and modules. It may be that not every single product needs to be monitored in
this way, just a sub-sample from which population behavior can be inferred.

Once the raw data has been recorded, these can be processed and aggregated in
various ways by the battery management system itself before uploading to the
cloud/server. Typically, time series data are recorded for each group of cells in par-
allel (a "brick”), and a module consists of several bricks in series with several modules
together making a pack. Data can then be aggregated between these groups. There
are two levels of aggregation: compression of time series data and aggregation be-
tween bricks. For the first type, depending on the algorithm, it may not be necessary
to upload all of the raw data to the cloud/server, and for each cycle kilobytes of time
series data may be reduced to just a few bytes of aggregated data (Table 2), for
example, by extracting key features. Feature calculation is usually cheap and can
be performed by the battery management system, then only the features need be
uploaded to the cloud/server. Alternatively, if physics-based (or hybrid) models
are simple enough to be run and fitted online, then only key internal aging parame-
ters need to be recorded at each cycle. In other cases, all the raw data must be up-
loaded to the cloud/server for processing, but once this has been done it can be
archived or, in some cases, discarded.

Aggregation between cells can take several forms. The simplest approach would be
to record data at the module level (i.e., a number of cell bricks in series) instead of the
brick (i.e., parallel cell block) level, which does not take into account any heteroge-
neity in the module. Fast sampling at the module level or even polling"® cell level
data for individual cell level SOC and SOH estimation requires fast convergence
that can only be achieved with the right excitation, potentially during charging.'"”

At the other extreme, the data from every brick can be uploaded to the cloud, but
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Figure 4. Quantifying uncertainty

A key challenge in life prediction using field data is managing uncertainty. Controlled conditions
and precise measurements in lab conditions cannot be replicated in real-world operating
environments. This results in less accurate and lower precision estimates of model parameters, @,
which have to be accounted for at the prognostic stage. Plots generated with PyMC3.'?"

this may introduce a lot of redundant data. A good compromise, already done by
some manufacturers, is to store only max/min/average brick voltages, as well as
module level data, in order to capture the heterogeneity in the module. This requires
measuring the data for every brick, which is usually already done for safety reasons.
However, storing and transmitting this information to a central server may require
firmware changes at the local level and may require hardware changes too (depend-
ing on how the battery management system is configured). Although health estima-
tion and lifetime prediction algorithms may be applied at either the cell, module, or

pack level, accuracy will likely be lower if only system level data are available.”"®

Finally, data processing and storage should take into account privacy issues—for
example, an individual’s daily routine could potentially be inferred from the power usage
of their electric vehicle. Methods to anonymize and aggregate data without losing in-
sights for lifetime prediction should be developed in order to address these issues.

Dealing with uncertainty

Regardless of the chosen method, a key requirement in model fitting and prediction
with field data is the rigorous propagation of uncertainty through the estimation al-
gorithms. Due to the constraints imposed by the data, the variance of model param-
etersin real-world scenarios is inherently large. lllustrated in Figure 4, the uncertainty
of health estimates is carried forward to lifetime predictions, where the compound-
ing of uncertainty over future behavior is complex due to nonlinear dependencies on
model parameters, path-dependence, and unknown operating conditions. To this
end, Bayesian methods for parameter estimation and prediction show promise
because they enable principled inclusion of model and observation uncertainty.
With these approaches, full parameter posterior probability distributions obtained
either by analytical approximation''? or using Monte Carlo techniques'?® may be
used to construct battery performance estimates with realistic confidence bounds.

LIFE PREDICTION FOR SECOND LIFE

When a battery can no longer meet the capacity or power requirements for its pri-
mary application, it can sometimes be re-purposed into a different “second-life”
application. This is environmentally beneficial and economically viable, especially
with the growing market for lithium-ion batteries for electric vehicles, which can

then later be re-purposed for grid or stationary storage applications.’??
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The challenge hereis to predict the RUL of the battery under its intended new application,
which is likely very different to the previous use, in order to decide whether such new us-
age s viable and inform warranty decisions. There are two particular issues: first, historical
data to audit first life usage may be unavailable, for example, due to commercial secrecy,
and if available, it may not be of the required reliability or fidelity—although initiatives
such as the Battery Passport'*? are being implemented to promote reliable sharing of
data. In some cases, time series data from first life and manufacturing metadata are
sold with the battery at a premium. Second, operating conditions can vary significantly
from first life to second life, for example, grid applications will typically have different ther-
mal management systems and reduced SOC windows and C-rates compared with EVs,
so a model of performance from first life may not be valid for second life. However, it is
possible to perform controlled cycles at the re-purposing stage, such as slow deep dis-
charges to determine capacity, pulse tests to determine internal resistance, or electro-
chemical impedance spectroscopy to determine the internal parameters of a model.
The RUL estimation must account for the fact that the usage patterns in the second life
will be different (usually, less intensive) than they were in the first life. Therefore, even if
historical usage information is available, prognostics algorithms must be more advanced
than simply extrapolating aging patterns and models from the first life.

Assessing state of health for second life

Atits simplest, assessing the second-life viability of a particular battery pack consists
of measuring its SOH, for example, capacity under constant-current discharge at
various C-rates. However, this may not tell the full story about the second-life
viability of the pack, due to the intrinsic variability and path-dependence of capacity
fade.”® Cells that have the same SOH at a point in time may degrade at different
rates in the future even under the same operating conditions. In particular, Marti-
nez-Laserna et al.’®* show that it is crucial to determine whether or not the battery
has passed the knee point in the capacity fade curve, since degradation does not
slow down after this, even under less intensive usage conditions. If historical data
are unavailable, it is not at the moment clear how to determine whether the cell is
past the knee point. This is an interesting challenge problem for the community.

To address this, advanced RPTs may be possible to estimate parameters of a phys-
ics-based model at a level of detail that goes beyond just estimating capacity and
resistance. It may be the case that some parameters of a physics-based model corre-
late well with whether or not the battery is past the knee point. Finding such param-
eters, and ways to easily identify them, would be extremely useful for assessing the
second-life viability of individual batteries. In this context, for porous-electrode
models, Park et al.'?®> suggest a framework for devising current excitation profiles
that maximizes the observability of the underlying model parameters, using a sensi-
tivity analysis and Fisher information matrix. Alternatively, electrochemical imped-
ance spectroscopy may be used to estimate parameters of a physics-based
model,'?® although without a reference electrode there may be ambiguity in attrib-
uting parameters to one or the other electrode. Differential voltage analysis is also a
particularly promising framework here, since performing deep low C-rate charges or
discharges is possible, and the degradation modes that are identified by differential
voltage analysis have been shown to correlate well with knee points.>”'?” A chal-
lenge with all of these techniques is that they are usually undertaken on individual

cells—implementation at pack level is an open issue.
Cost-benefit analysis for second-life testing

When considering what tests should be performed to assess second-life viability,
there is a cost versus accuracy trade-off, and the level of accuracy required for
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second-life assessment depends on the intended usage. A very simple assessment
could consist of a binary go/no-go classification of whether a battery will be usable
for the desired second-life application and duration, in which case relatively low-test
accuracy is sufficient. A more complex test could also identify the operating condi-
tions that will maximize the battery lifetime in second life, such as SOC window and
C-rate, but such tests will require higher accuracy and longer duration. If pack-to-
module balancing is planned, very accurate tests are required in order to identify
the strongest and weakest packs.'?® In each case, the cost of testing should be no
greater than the additional revenue generated by improved test accuracy. While
the cost of testing is relatively easy to quantify, calculating the revenue resulting
from improved control is an open research question.”

Finally, an important question to consider in second-life testing is cell-to-cell vari-
ability within a pack. It has been shown that the labor involved in opening up a
pack is more expensive than the benefit from testing and screening the individual
cells.'?” Therefore, second-life testing strategies should aim to predict the life and
identify the performance variability of the cells within a pack without having to test
each cell independently. Since most packs measure voltage for every cell brick,
this is in principle possible, but would require every single cell voltage to be re-
corded in a database—at present this is not necessarily the case.

SUMMARY AND OUTLOOK

Battery costs and customer confidence must be improved if we are to improve
renewable energy integration by expanding grid storage and rapidly replace com-
bustion engine vehicles with electric vehicles as part of the solution to maintain
climate warming within 2°C of pre-industrial levels. To address this, there is a signif-
icant need to estimate battery health accurately, diagnose degradation, predict life-
time in different usage scenarios, and detect failures. Combining data-driven and
physics-based models will outperform pure data-driven or pure physics-based ap-
proaches by allowing robust extrapolation of future behavior from available data.

Different approaches are suited to different use cases. For warranty design and cer-
tification of performance, consistent lab test data are used to inform empirical
models for life prediction and may also be used for data-driven or physics-based
modeling. On the other hand, in most real-world cases where data are less regular,
the development of new hybrid models that combine the strengths of physics-based
and data-driven methods is essential. Such models are claimed to require less
training data than purely data-driven methods, have been shown to extrapolate
more accurately,''” and are more flexible and generalizable than purely physics-
based methods. Finally, ensembles of different models could also be considered,'*°

since they can outperform the best individual models.

Fleet data can also be used by companies to adjust their models developed with lab data.
Developing and training predictive models for battery lifetime requires large amounts of
data covering the whole range of operating conditions. Due to time and equipment con-
straints and the wide variety of operating conditions, lab data cannot completely cover
the required range with realistic (non-accelerated) operating conditions. We believe
thatfleet data from devices in use augments lab data, leading to use-case-specific battery
lifetime prediction models and improved designs.

Additionally, deeper characterization can be performed on cells that have reached
the end of their life in order to determine their true SOH and cycle life, and hence
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build up a database for supervised learning. Individual cells that exhibit particularly
interesting behavior can be selected for teardown experiments to reveal how these
cells aged and hence verify predictions from physics-based models. This can then be
used to improve the models for cells that are still in operation. Building and main-
taining large databases of field data is a challenging undertaking but is a worthwhile
endeavor to prepare for a time when algorithms to analyze it will be available and will
require training data. For example, a field data collection effort could begin with col-
lecting data from taxis and buses or vehicles used by company employees. Even
data obtained during charging could be extremely useful to update lab-based
models. This is already being done in some cities, as noted in life prediction from
field data. Open sharing of such data and analysis software between researchers
would greatly accelerate efforts to improve algorithms for lifetime modeling. How-
ever, collection and curation of this type of data is challenging due to trade secrets
and industry competition concerns. A large cross-institutional research project
involving national laboratories, universities, and others could facilitate widespread
data collection and appropriate anonymization. Companies may also be willing to
release small subsets of data openly, for example, through competitions to assist
in recruitment and marketing.

To enable these exciting opportunities, further research in several areas is required,
as well as enhanced collaboration between disciplines.'*' We highlight the following
items as particularly necessary:

(1) Development of consistent, large-scale open-source databases for battery
performance and lifetime data and to train and validate algorithms for lifetime
prediction. Ideally, these should encompass lab data and field data and share
common standards for data and metadata.'®*

(2) Fast and accurate physics-based models, with a particular focus on under-
standing what are the key degradation sub-models that are important, and
how to estimate and track key parameters. Traditionally, such complex
models have required very high levels of expertise to implement, but this is
becoming more accessible through open-source modeling packages such
as PyBaMM.”*

Scalable algorithms for combining data-driven methods with physics-based

—
@

models. Some promising pathways for this are the field inversion and machine

111

learning paradigm,’® neural differential equations,’’’ Gaussian process

state space models,'?” and universal differential equations.""°

(4) Methods to diagnose whether a cell has aged beyond the knee point, without
requiring historical data, to assess whether the cell can be used in second-life
applications.

(5) Quantification of value (e.g., additional revenue) resulting from improved
SOH estimation and life prediction, for example, for second life.

(6) Solutions for data privacy issues—anonymization and intelligent aggregation
of individual user data without loss of insights for diagnostics and prognos-
tics.

There are many areas of battery research where modeling and data-driven tech-
niques can add value, including materials discovery, battery design, and fast
charging algorithms."*? Achieving breakthroughs in battery lifetime prediction in
real applications will require new experimental approaches for lab tests that
massively reduce the time required to understand degradation processes in batte-
ries. It will also require new methods to map from accelerated aging tests to real-
world conditions—informed by a large amount of field data together with scalable
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modeling approaches that also account for uncertainty in sensors and models. There
is a significant opportunity through this to reduce costs by reducing pack sizing and
stretching the usage envelope, in order to accelerate the roll-out of batteries, under-
pinning the rapid transition to clean energy and transport.
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