
NoStop: A Novel Configuration Optimization Scheme for Spark
Streaming

Qianwen Ye, Wuji Liu, and Chase Wu
New Jersey Institute of Technology

Newark, New Jersey, USA
{qy57,wl87,chase.wu}@njit.edu

ABSTRACT

An increasing number of big data applications in various domains
generate datasets continuously, which must be processed for var-
ious purposes in a timely manner. As one of the most popular
streaming data processing systems, Spark Streaming applies a batch-
based mechanism, which receives real-time input data streams and
divides the data into multiple batches before passing them to Spark
processing engine. As such, inappropriate system configurations
including batch interval and executor count may lead to unsta-
ble states, hence undermining the capability and efficiency of real-
time computing. Hence, determining suitable configurations is cru-
cial to the performance of such systems. Many machine learning-
and search-based algorithms have been proposed to provide con-
figuration recommendations for streaming applications where in-
put data streams are fed at a constant speed, which, however, is
extremely rare in practice. Most real-life streaming applications
process data streams arriving at a time-varying rate and hence re-
quire real-time system monitoring and continuous configuration
adjustment, which still remains largely unexplored. We propose a
novel streaming optimization scheme based on Simultaneous Per-
turbation Stochastic Approximation (SPSA), referred to as NoStop,
which dynamically tunes system configurations to optimize real-
time system performancewith negligible overhead and proved con-
vergence. The performance superiority of NoStop is illustrated by
real-life experiments in comparison with Bayesian Optimization
and Spark Back Pressure solutions. Extensive experimental results
show that NoStop is able to keep track of the changing pattern of
input data in real time and provide optimal configuration settings
to achieve the best system performance. This optimization scheme
could also be applied to other streaming data processing engines
with tunable parameters.

KEYWORDS

Spark Streaming; Performance Optimization; Stochastic Approxi-
mation; Big Data Systems.

ACM Reference Format:

QianwenYe,Wuji Liu, and ChaseWu. 2021. NoStop: ANovel Configuration
Optimization Scheme for Spark Streaming. In 50th International Conference

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPP’21, August 9–12, 2021, Lemont, IL, USA

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9068-2/21/08. . . $15.00
https://doi.org/10.1145/3472456.3472515

on Parallel Processing (ICPP ’21), August 9–12, 2021, Lemont, IL, USA. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3472456.3472515

1 INTRODUCTION

In the past decade, with the widespread deployment of pervasive
services in e-commerce, e-finance, social networking, and many
other fields, there is a rapidly increasing need to process streaming
data in real time for various purposes such as security event detec-
tion, dynamic content delivery, and user profile analysis. To meet
such demands, a plethora of computing engines for streaming data
processing have been developed and used, including Apache Spark
(Spark Streaming) [5], Apache Flink [3], Apache Storm [6], Apache
Samza [9], Apache Apex [8], and Google Cloud Dataflow [15]. In
fact, real-time streaming data processing engines have now be-
come an essential building block in big data ecosystems, especially
in business domains. Taking China as one example, the e-commerce
transaction service ofAlibaba, themost popular search engine from
Baidu, and the social network platform of Tencent, all depend on
Spark-based computing solutions at scale. Particularly, Tencent has
eight hundred million active users generating over 1 PB of data per
day, which is being processed on a cluster consisting of more than
8,000 computing nodes [19].

System stability and processing speed are among the utmost im-
portant performance metrics for streaming data processing. Sys-
tem stability is generally considered as the bottom line for stream-
ing data processing. On the other hand, for a long-running stream-
ing application, if the system fails to process data items as fast as
they arrive, the data may accumulate at the input queue, hence
leading to possible data loss or system failure eventually. In gen-
eral, processing speed is determined by end-to-end latency that de-
notes the duration from the time when the system receives a data
entry to the time when a corresponding output is produced. Ob-
viously, such latency reflects the system’s capability of providing
real-time results for fast user response.

As one of the most popular systems for streaming data process-
ing, Spark Streaming applies a batch-based mechanism, which re-
ceives real-time input data streams and splits the data intomultiple
batches, each of which is processed by Spark engine as a regular
Spark job. As shown in Fig. 1, input data are divided into batches
according to the setting of a batch interval, which defines the size
of the batch in seconds. Typically, a longer batch interval results
in a larger batch size, and hence incurs a longer batch processing
time. Considering the processing dynamics, the stability of the sys-
tem is largely affected by batch interval and batch processing time.
If batch processing time is longer than batch interval, the batch
queue may be overwhelmed by unprocessed batches, resulting in
an unstable state. Hence, a larger batch interval is conducive to

https://doi.org/10.1145/3472456.3472515
https://doi.org/10.1145/3472456.3472515

ICPP’21, August 9–12, 2021, Lemont, IL, USA Ye, Liu, and Wu.

Figure 1: Spark Streaming model.

the stability of the system, but meanwhile may lead to a longer
end-to-end delay. In addition to batch interval, the configuration
of Spark engine, which mainly determines resource allocation, also
has a critical impact on batch processing time. Therefore, it is of
paramount importance to decide an appropriate batch interval and
configure suitable Spark system parameters, especially in practical
applications where data items arrive at a time-varying speed.

Optimizing the performance of streaming data processing is chal-
lenging because the compound effects of the aforementioned fac-
tors are complex and opaque to application users. In general, find-
ing a proper system configuration requires significant domain knowl-
edge and an in-depth understanding of the streaming data process-
ing model adopted in big data systems. Due to the stochastic dy-
namics of streaming data processing in distributed environments
and the lack of accurate performance models, it is extremely diffi-
cult, if not impossible, to analytically derive the best configuration
setting for a given application. Especially, if the input data rate fluc-
tuates without a predictable pattern, performance optimization be-
comes a non-deterministic, intractable problem. Due to the nature
of the problem, misconfigured settings are not uncommon even in
production systems and oftentimes lead to poor performance or
system failure in extreme situations.

One naive approach to optimizing system configuration for stream-
ing data processing would be to exhaust all possible settings and
choose the “best" configuration. However, such exhaustive search
or brute force approaches are prohibitively time-consuming when
there is a large value range for the control parameters in the con-
figuration space. This is actually almost always the case in real life,
and thus is impractical especially for applications with variable in-
put data rates.

We propose a NOvel STreaming OPtimization scheme, referred
to as NoStop, based on Simultaneous Perturbation Stochastic Ap-
proximation (SPSA) algorithm to dynamically and adaptively de-
termine themost suitable system configuration. The proposedNoS-
top scheme is implemented and tested in real-life computing envi-
ronments, and extensive experimental results show that it is able
to keep track of the changing pattern of input data and provide

the best configuration in real time to maintain system stability
and minimize end-to-end delay. This optimization scheme could
be used to automatically configure and execute streaming data ap-
plications in complex big data systems.

In sum, the work in this paper makes the following contribu-
tions to the area of big data processing:

• We construct the models for Spark Streaming and investi-
gate the impact of batch interval and batch processing time
on system stability and end-to-end delay. Based on such
models and analyses, we formulate an optimization problem
to minimize end-to-end delay while maintaining system sta-
bility in streaming data processing with variable input data
rates.

• WeproposeNoStop, a streaming data processing performance
optimization scheme based on SPSA algorithm, to quickly
determine themost appropriate configuration setting in real
time in response to time-varying system status with negli-
gible overhead.

• NoStop significantly improves Spark Streaming performance
for different application types in comparison with existing
approaches.

• The proposed SPSA-based performance optimization frame-
work is generic and hence is applicable to other big data
computing systems to systematically and adaptively deter-
mine the most suitable system configuration.

• NoStop tackles hardware heterogeneity in a transparent man-
ner and conducts real-time analytics for big data system per-
formance optimization.

The rest of the paper is organized as follows. In Section 2, we
conduct a survey of related work. In Section 3, we discuss the rela-
tionship between batch interval and batch processing time, analyze
two performance-related factors, and formulate a performance op-
timization problem for streaming data processing. In Section 4, we
detail the design of NoStop. We conduct real-life experiments for
performance evaluation in Section 6. Section 7 concludes our work
and sketches a plan for future research.

NoStop: A Novel Configuration Optimization Scheme for Spark Streaming ICPP’21, August 9–12, 2021, Lemont, IL, USA

2 RELATED WORK

As driven by many emerging business and scientific applications,
performance optimization for streaming data processing has been
extensively studied in the literature and continues to be the focus
of research in the field of big data processing. We conduct a brief
survey of existing work in related areas.

Spark configuration for performance improvement has been in-
vestigated in various contexts. In [11], the effects of parameters
are investigated and a systematic method for parameter tuning is
proposed by Gounaris et al. They created a set of candidate config-
urations off-line through benchmark Spark jobs, and tested these
configurations for Spark jobs to be executed. Petridis et al. identi-
fied the impact of the most important tunable parameters and pro-
posed a trial-and-error methodology for tuning in an arbitrary ap-
plication based on a very small number of experimental runs [21].
In [16], a simulated annealing algorithm is used to dynamically
adjust parameters to obtain optimal Spark configuration. Also a
least squares method is integrated to improve convergence speed.
However, the spark applications are categorized based on job types,
which are too general.

Many machine learning-based approaches have been proposed
to tune Spark parameters. In [14], a binary classification and multi-
classification machine learning model is proposed to accelerate
the tuning of Spark parameters. In [20], Nguyen et al. constructed
application-specific performance influence models based on three
different machine learning models, namely, Artificial Neural Net-
work, SupportVector Regression, andDecision Trees, and employed
a recursive random search algorithm to tune configuration settings
by leveraging the aforementioned models. Since they mainly fo-
cused on configuration recommendation for Spark instead of Spark
Streaming, their suggested configuration may not be adaptive to
changing input data even with the same fed-in data rate. In [13],
Oliverira et al. focused on spark parameter tuning for scientific
workflow. Instead of considering spark parameters solely, they also
took domain-specific parameters into account, including the size
of the DNA sequence. Decision trees were used to extract inter-
pretable rules for parameter tuning guidance. However, it requires
extensive experiments to train decision trees for different scientific
workflows.

There also exist a number of efforts on Spark Streaming per-
formance optimization. In [12], Cheng el al. proposed an adaptive
scheduler that can automatically adjust scheduling parameters to
improve performance and resource efficiency. Their work mainly
targets applications where input data are fed at a constant speed,
which is extremely rare in real life, and such systems are vulner-
able to spikes of input data. So far, limited research efforts have
been made to address varying data rates. In [10], Cheng et al. inte-
grated an expert fuzzy control mechanism to dynamically change
batch size in Spark Streaming to account for input fluctuations,
which, however, requires significant historical data for training.
In [18], Petrov et al. designed an adaptive performance model to
identify the optimal amount of resources for a given Spark Stream-
ing job. However, their work requires an ability to scale up clus-
ter resources on demand, which is almost infeasible for non-cloud
users in practice.

Different from the aforementioned work, we propose a stochas-
tic approximation-based streaming optimization scheme to mini-
mize end-to-end delay while keeping the system robust to varying
input data rates by dynamically allocating computing resources
and adjusting batch intervals. Compared with machine learning-
based approaches, this scheme requires no historical data and in-
curs negligible computing overhead.

3 PROBLEM STATEMENT

3.1 Optimization Objectives

Maintaining system stability and minimizing end-to-end delay are
closely related and are reflective of the relationship between batch
interval and batch processing time. We characterize this relation-
ship in the following three scenarios and discuss their respective
effects on system performance:

• When Batch Processing Time > Batch Interval: The unpro-
cessed batches would pile up in the batch queue as the sys-
tem fails to process data items as fast as they arrive. The sys-
tem is therefore unstable and would even crash with long-
running applications.

• When Batch Interval > Batch Processing Time: the system
is stable because batches are retrieved from the batch queue
and are processed immediately. However, computing resources
are underutilized and Spark engine would sit idle waiting
for batches to arrive, hence resulting in an unnecessarily
long end-to-end delay.

• When Batch Interval = Batch Processing Time: This is the
ideal situation, where there is no data accumulation in the
input queue (hence the system is stable), and there is no idle
time for the use of computing resources. However, this situ-
ation rarely happens because of complex system dynamics,
data rate variation, and resource sharing complexity.

In addition to the relationship between batch interval and batch
processing time, their settings also affect end-to-end delay. Mini-
mizing end-to-end delaywhilemaintaining system stability is equiv-
alent to minimizing batch interval under a constraint that batch
interval is no less than batch processing time.

3.2 Parameter Effects

Streaming data processing in distributed environments is a com-
plex process that involves the batch divider as well as Spark com-
puting engine. Although Spark Streaming provides over 150 con-
figurable parameters, not all of them play an equally important
role in system performance, and some of them can only be config-
ured at the beginning of Spark launching and remain unchanged
during job execution. For example, the specification of executors,
memory size, and number of CPU cores cannot be adjusted dy-
namically in response to varying input data rates. In this paper,
we focus on two most influential parameters, namely, number of
executors and batch interval, the latter of which is made tunable
at runtime through system modification.

Batch interval decides the number of records in each batch, and
it directly affects system stability and end-to-end delay. To instan-
tiate our analysis, we collect and present the experimental results
of Streaming Logistic Regression using Spark deployed on a local

ICPP’21, August 9–12, 2021, Lemont, IL, USA Ye, Liu, and Wu.

(a) Batch interval vs. batch processing
time

(b) Batch interval vs. batch schedule de-
lay

Figure 2: Illustration of effects of batch interval on the

performance of streaming logistic regression using Spark

Streaming.

(a) Number of executors vs. batch pro-
cessing time

(b) Number of executors vs. batch
schedule delay

Figure 3: Illustration of effects of executor counts on the

performance of streaming logistic regression using Spark

Streaming.

testbed consisting of ten nodes to illustrate the effect of batch inter-
val. We plot in Fig. 2a the comparison of batch processing time in
response to different batch intervals. From these performancemea-
surements, we observe that the batch processing time increases
slowly as the batch interval grows. A small batch interval results in
a limited number of records in each batch, and hence the overhead
of initializing batch processing would be non-negligible. On the
other hand, with a large batch interval, the time for actual data pro-
cessing dominates the batch processing time. Particularly, when
the batch interval is smaller than 10 seconds, the batch processing
time is greater than the batch interval and hence the system is un-
stable and the processing of the next arriving batch is delayed, as
shown in Fig. 2b. The batch schedule delay is defined as the time
duration a batch must wait before it starts to be processed. For a
batch whose batch processing time is smaller than its batch inter-
val, it is processed immediately once ready, hence resulting in no
batch schedule delay. In this experiment, when the batch interval
is set to be around 10 seconds, the system yields the minimum end-
to-end delay.

Executors are processes running on worker nodes and are re-
sponsible for executing individual tasks in Spark applications. They
are launched with specific memory size and number of CPU cores
at the beginning of a Spark application and run through its whole
lifetime. To illustrate how the number of executors affects system

performance, we compare the batch processing time in response
to different numbers of executors with fixed batch intervals, as
shown in Fig. 3a. These measurements show the same relationship
as our theoretical analysis that a smaller number of executors lead
to a longer processing time due to limited computing power. How-
ever, with an excessively large number of executors, the overhead
of managing all executors and task execution would negatively af-
fect the batch processing time. Also, launching more executors con-
sumes more computing resources. We observe in Fig. 3a that when
the number of executors are 10, 12, 18, and 20, the batch processing
time is smaller than the batch interval, and therefore the system is
stable. Particularly, when the number of executors is around 20,
the batch processing time is the closest to the batch interval while
the system still remains stable with the smallest end-to-end delay.

3.3 Problem Formulation

Based on the above analysis of optimization objectives and param-
eter effects, we define a generic Spark Streaming performance opti-
mization problem, referred to as SSPO, to minimize the end-to-end
delay of a Spark application while maintaining system stability:

Definition 3.1. Spark Streaming performance optimization prob-
lem (SSPO): Given a Spark Streaming application executed in a dis-
tributed computing environment and an input data stream arriving
at a varying speed, we wish to find a proper setting for batch in-
terval and number of executors in real time to achieve minimum
end-to-end delay:

argmin
Batch Interval, Number of Executors

End-to-end Delay, (1)

subject to the following constraint:

Batch Interval ≥ Batch Processing Time, (2)

where the constraint guarantees system stability.

4 DESIGN OF NOSTOP FOR STREAMING
OPTIMIZATION

4.1 The Goals of NoStop Design

The main goal of NoStop is to achieve low end-to-end latency and
maintain system stability. Meanwhile, we also consider the follow-
ing properties of NoStop:

• Noise Tolerance: As shown in Fig. 3a and Fig. 2a, it is well
recognized that randomness exists in the dynamics of stream-
ing data processing in distributed environments, including
network jitters, resource contentions, etc. One salient fea-
ture of NoStop is to explicitly account for such randomness.

• Generality: It is applicable to different types of Spark Stream-
ing applications executed in different computing environ-
ments, e.g., heterogeneous/homogeneous cluster, cloud-based
cluster, etc.

• Efficiency: It converges tominimum end-to-end delay promptly
for fluctuating input data with negligible overhead.

• Performance Guarantee: It provides a theoretically proved
performance bound.

NoStop: A Novel Configuration Optimization Scheme for Spark Streaming ICPP’21, August 9–12, 2021, Lemont, IL, USA

4.2 SPSA-Based Optimization Algorithm

To meet the aforementioned goals, we employ Simultaneous Per-
turbation Stochastic Approximation (SPSA) algorithm [22] to de-
termine the optimal parameter setting at runtime.

4.2.1 Rationale of Using SPSA. In Spark Streaming, batch inter-
val is in unit of milliseconds. Therefore, there are at least thou-
sands of combinations of batch interval and number of executors,
which makes it practically infeasible to conduct exhaustive search.
In distributed computing environments, randomness is caused by
network fluctuations, system dynamics, input data rate variations,
etc. Since our work is focused on minimizing end-to-end delay, the
Spark execution workflow could be treated as a “black box", where
the input is the set of control parameters θ and the output is the
objective G(θ). Based on this model, SPSA is suitable for finding
the optimal configuration quickly as it has the following desirable
features:

• It requires only twomeasurements of the objective function,
regardless the dimension of θ in the optimization problem,
which means that we only need to change the configuration
twice in each iteration, hence greatly reducing the overhead
for real-time configuration adjustment.

• It does not require an explicit formula of G(θ), which is es-
sentially unknown, but only its “noise corrupted" measure-
ments y = G(θ) + ξ . Note that the results of y(θ, ξ) can be
measured directly through Spark Streaming API [5].

• It incurs a low time complexity to determine the next opti-
mization step.

• It has a proven convergence property (4.2.4), ensuring that
each optimization step is effective.

4.2.2 Objective Function. Since batch interval is set by NoStop,
to apply SPSA algorithm, we convert the optimization problem in
Eq. 1 to the following:

argmin
θ

(Batch Interval + ρ ·max (p, 0)) , (3)

where θ = {Batch Interval,Number of Executors},p denotes the dif-
ference between batch processing time and batch interval, and ρ is
a penalty coefficient, increasing at a certain interval for each round
of optimization up to a preset limit. This is because in the begin-
ning of the SPSA optimization process, the gain sequence is large,
and a large coefficient ρ may produce a large gradient, making the
step size too large to approach the optimal point. As the SPSA op-
timization progresses with the increase of iteration k , the gain se-
quence becomes smaller, and we can increase the coefficient ρ to
avoid unstable optimization results. However, an excessively large
coefficient ρ would dilute the minimization goal of batch interval,
and should be upper limited according to our empirical study.

4.2.3 SPSA Method. Stochastic Approximation (SA) is a family of
iterativemethodswidely used for optimization problems. They can
approximate extreme values of functions that cannot be computed
directly, but only estimated via noisy observations [2].

In our problem, the goal is to find the optimal control parame-
ters θ∗ that minimize G(θ) within feasible space Θ, θ ∈ Θ. Follow-
ing the standardKiefer-Wolfowitz Stochastic Algorithm (KWSA) [17],

the standard stochastic approximation form is

θ̂k+1 = θ̂k + ak · д̂k

(
θ̂k

)
,

where θ̂k denotes the control parameters θ at the k-th iteration,

Gain Sequence ak is a non-negative scalar, д(θ) = ∂G(θ)
∂θ

is the

gradient of G(θ), and д̂k

(
θ̂k

)
is an approximation of д(θk) with

simultaneous perturbation.
We define a “noise corrupted" measurement of the objective

function as y(θ), θ ∈ Θ, and y(θ) = G(θ) + ξ , where ξ denotes
the random impact of the system at runtime. In general, y(θ) is the
objective value under control parameters θ during a specific time
duration.

The gradient ofG(θ) can be approximated by

д̂k

(
θ̂k

)
=

y
(
θ̂k + ck

)
− y

(
θ̂k − ck

)

2ck
,

where ck > 0. Note that the coefficients ak and ck in the above
equations should satisfy the following conditions to guarantee the
convergence [17]:

lim
k→∞

ak = 0, lim
k→∞

ck = 0,
∞∑

k=1

ak = ∞,

∞∑

k=1

(
ak
ck

)2
< ∞.

Furthermore, to accelerate configuration optimization, we em-
ploy the Simultaneous Perturbation Stochastic Approximation (SPSA)
algorithm [22], which generates the simultaneous perturbation ap-
proximation to the unknown gradient д(θ̂k):

д̂k

(
θ̂k

)
=

y
(
θ̂k + ck∆k

)
− y

(
θ̂k − ck∆k

)

2ck



∆
−1
k1

∆
−1
k2
.
.
.

∆
−1
kp



,

wherep is the dimension ofθ , and∆ki (i = 1, 2, ...,p forp-dimensional
control parameters) is independent and symmetrically distributed

around 0 with finite inverse E
���∆−1

ki

��� , (i = 1, 2, · · · ,p) in the k-th

iteration [22].
In SPSA, the gain sequence is

ak =
a

(A + k + 1)α
, ck =

c

(k + 1)γ
,

where α andγ are oftentimes set to be 0.602 and 0.101, respectively
(practically effective) [22], and k is the number of iterations. We
will discuss the choices of a,A and c in Section 5.6.

4.2.4 Convergenceof SPSA. The convergence of the proposed SPSA-
based NoStop scheme is important as it affects both the quality and
the efficiency of configuration optimization. To explore the appli-
cability of SPSA and investigate its convergence property, we need
to validate the conditions that ensure the convergence of θ∗ in the
context of SSPO.

As pointed out by Spall in [23] (pp. 161), the conditions for con-
vergence can hardly be all verified in real-life problems sinceG(θ)
is practically unknown. We provide the following arguments to
justify the use of SPSA in our problem.

ICPP’21, August 9–12, 2021, Lemont, IL, USA Ye, Liu, and Wu.

According to Theorem 7.1 in [23] (pp. 186), if Conditions B.1′′−
B.6′′ hold and θ∗ is a unique minimum ofG(θ), then for SPSA, θk
almost surely converges to θ∗ as k → ∞.

Conditions B.1′′, B.4′′, and B.6′′ are the most relevant since
we govern the gains sequences ak and ck and the random pertur-

bation ∆k .
∑∞
k=0

a2
k

c2
k

< ∞ in Condition B.1′′ balances the decay

of ak against the decay of ck . Specifically, it prevents ck from go-
ing to zero too quickly, thereby preventing the gradient estimate
from becoming too wild and overpowering the decay associated
with ak . Conditions B.1

′′ can be easily validated by the coefficient
sequences ak and ck we choose and the symmetric Bernoulli ±1
distribution we follow to generate the simultaneous perturbations
{∆ki }.

Conditions B.4′′ to B.6′′ on the perturbation distribution and
smoothness of L guarantee that the gradient estimate д̂k (θ̂k) is an
unbiased estimate of д̂(θ̂k) within error O(c2

k
).

The simultaneous perturbations {∆ki } we generate ensure that
∆ki is amutually independent sequence, symmetrically distributed
around zero and uniformly bounded in magnitude for all k, i , and
is independent of θ̂1, θ̂2, · · · , θ̂k . Hence, Condition B.6′′ holds.

The noise in Spark streaming applications is mainly caused by
the dynamics and randomness of distributed computing systems
and network devices, and is essentially unpredictable. Since the
loss measurements y(·) are corrupted by both positive noise and
negative noise, the long-term conditional expectation of the ob-
served noise can be considered as zero, i.e., for allk ,E[ε+

k
−ε−

k
|{θ̂1, θ̂2, · · · , θ̂k },∆k] =

0. As {∆ki } is generated following the symmetric Bernoulli ±1 dis-
tribution with a probability of 0.5 for each outcome of either +1
or −1, E[∆−1

ki
] is uniformly bounded. In addition, the loss measure-

ments y(θ̂k ± ck∆k) are bounded by the feasible regions of con-
trolling parameters, so the ratio of measurement to perturbation
E[y(θ̂k ± ck∆k)∆ki] is uniformly bounded over i and k . Therefore,
Condition B.4′′ holds.

B.5′′ asksG(θ) to be three-times continuously differentiable and
bounded by Rp . As the feasible regions of the control parameters
are finite and the computing resources are limited, the end-to-end
delay is obviously bounded. However, the smoothness and differ-
entiability ofG(θ) is very difficult to verify due to the lack of knowl-
edge onG(θ). For this optimization problem, we assume thatG(θ)
meets this condition.

Conditions B.2′′ and B.3′′ impose the requirement that θ̂k (in-
cluding the initial condition) is close enough to θ∗ so that there
is a natural tendency for an analogous deterministic algorithm to
converge to θ∗ . These two conditions are intuitively satisfied in our

optimization scenario because: i) supk≥0

θ̂k

 < ∞ can be satisfied

since the control parameter values (batch interval and number of
executors) are both finite positive integer numbers; ii) since the fea-
sible regions of the control parameters in Spark application execu-
tion are finite and mapped to a limited range of iterative variables,
θ̂k (including the starting point) is sufficiently close to θ∗ ; iii) in
Spark streaming processing environments, due to the system dy-
namics and randomness, different runs with identical parameter
settings may yield different end-to-end delay, which makes θ∗ be
not a single point but an “acceptable area” in order to tackle this
optimization problem.

Configuration Listener

HDFS

Database

...

Kafka Broker

HDFS

...

NoStop

Spark Streaming

Timing Configuration Report Status

Figure 4: NoStop architecture.

With all conditions B.1′′ − B.6′′ satisfied in SSPO, the SPSA-
based NoStop scheme is able to converge to the minimum end-to-
end delay.

4.3 System Architecture

The NoStop architecture is shown in Fig. 4, where Spark Streaming
receives input data streams from multiple channels for processing,
and output data to HadoopDistributed File System (HDFS) for stor-
age or other Databases for management. We design Spark Stream-

ing Listener to report real-time system status to NoStop in JSON
format. Based on each newly updated performance vector, NoStop
computes the next-step configuration parameters andmakes a real-
time adjustment to the system configuration. NoStop is capable of
optimizing system configurations online without rebooting the en-
tire cluster, hence greatly reducing operational cost and computing
overhead.

Note that in the current NoStop scheme, we focus on two tun-
able system parameters, i.e., the number of executors and batch
interval, as explained in Section 3.2.

5 IMPLEMENTATION OF NOSTOP

NoStop is implemented in Java and integrated into Spark engine.
We present the implementation details of NoStop in this section.

5.1 Determine Configuration Range

According to the cluster capacity and the resources allocated to
each executor, we determine the range for the number of execu-
tors:

MinExecutors <= θExecutors <= MaxExecutors .

Similarly, we determine the range for batch interval according to
the application requirement:

MinBatch Interval <= θBatch Interval <= MaxBatch Interval .

For convenience, we use θ = {θExecutors ,θBatch Interval } to
denote the configuration vector. We apply a scale function (e.g.,
min-max normalization) to normalize parameters into the same
range.

5.2 Set SPSA Parameters

We choose an either fixed or random starting point θinitial within
the configuration space, and set nonnegative coefficients a, c,A,α ,

NoStop: A Novel Configuration Optimization Scheme for Spark Streaming ICPP’21, August 9–12, 2021, Lemont, IL, USA

and γ in the SPSA gain sequence ak =
a

(k+1+A)α and ck =
c

(k+1)γ .

The choices of A, a and c are discussed in Section 5.6.

5.3 Optimize Configuration

5.3.1 Generate Random Perturbation Vector. We generate a two-
dimensional random perturbation vector ∆k , where each compo-
nent of ∆k is independently generated from a zero-mean symmet-
ric Bernoulli ±1 distribution with probability of 1

2 for each ±1 out-
come.

5.3.2 Collect Two PerformanceObservations. We run two perturbed
executions and collect two corresponding performance observa-
tions:

y(θ+
k
) = y(θ̂k + ck∆k),

y(θ−k) = y(θ̂k − ck∆k).

5.3.3 Approximate Gradient. We generate the simultaneous per-

turbation approximation to the unknown gradient д̂k

(
θ̂k

)
:

д̂k

(
θ̂k

)
=

y(θ+
k
) − y(θ−

k
)

2ck∆k
.

5.3.4 Update θ Estimate. We use the standard SA form θ̂k+1 =

θ̂k − akд̂k

(
θ̂k

)
to update θ̂k to a new value θ̂k+1 .

5.3.5 Continue or Pause Optimization. The above process is re-
peated with the increasing iteration number k until a pause con-
dition is met. Once NoStop reaches the optimal configuration, it
halts the optimization process until the system becomes unstable
(e.g., there is an abrupt change in the input data rate). We employ
impeded progress rules to guarantee optimization halt with satis-
factory performance: if the standard deviation of the end-to-end
delay resulted from N best configurations is smaller than a thresh-
old S , we pause the optimization process.

5.4 Collect System Metrics

According to the features of Spark Streaming, we consider the fol-
lowing rules for system metrics collection:

• The first processed batch after changing configurations is
not considered, because after each configuration adjustment,
Spark Streaming performs a series of initialization tasks in-
cluding sending application jar to the newly added execu-
tors, which lead to a longer processing time.

• Systemmetrics are collected for a certain number of batches,
and the average processing time is calculated and recorded.
To enhance the robustness of NoStop with varying input
data rates, we follow an additive-increase rule to gradually
relax on the number of batches for performance calculation:
if the system is in the optimal state based on the current mea-
surements, for each newly completed batch, we increase the
number of collected batches by one. Also, we prevent in-
sensitivity to system status change by setting a maximum
number of batches allowed to be collected. This method can
prevent the system from starting the next round of optimiza-
tion due to the system’s temporary unstable state.

5.5 Handle Different Input Data Rates

In real-life streaming applications, the arriving speed of input data
always varies over time. If the fluctuation range of the input data
rate is relatively small, SPSA treats this fluctuation as noise, which
is explicitly accounted for. However, in some scenarios, there may
be surges in traffic (e.g., E-commerce promotion, spike activities,
etc.). After going through a large number of iterations, SPSA may
generate a small step size, resulting in a tardy process of configu-
ration optimization. To prevent this, we set a threshold for input
data speed variation thresholdspeed . If the standard deviation of
the recent input data speed is greater than this threshold, it trig-
gers NoStop to reset the coefficients and restart the optimization
process.

5.6 Choose Gain Sequences A, ak , and ck
The choices of the gain sequences A, ak , and ck are critical to
the performance of SPSA (as in all stochastic optimization algo-
rithms) [22]. In our implementation, we set A, a, and c before run-
ning NoStop, as guided by the following rules based on the sugges-
tions in [22].

• A is much less than (usually 10% or less of) the maximum
number of iterations expected. Our empirical study recom-
mends setting A = 1.

• a, which determines the step size generated after each iter-
ation, is recommended to be set as half of the configuration
range.

• c is set to be approximately the standard deviation of mea-
surement y(θ).

The pseudocode of NoStop is provided in Algorithms 1 and 2,
and the functions are described in Table 1.

Algorithm 1: NoStop

Input: A,a, c, θinitial
Initialize α = 0.602,γ = 0.101,k = 0, ρ = 1;

N = дetDimension(θinitial);

x = θinitial ;

while True do

if needResetCoefficient() then

resetCoefficient();

k + +;

ak = a ÷ (k + 1.0 +A)α ;

ck = c ÷ (k + 1.0)γ ;

∆ = дetDelta(N);

θ+ = checkBound(x + ck × ∆);

θ− = checkBound(x − ck × ∆);

дrad =
ad just (θ+ ,ρ)−ad just (θ−,ρ)

2∆ck
;

ρ = ρ + 0.1;

ρ = min (ρ, 2);

x = checkBound(x − ak × дrad);

end

ICPP’21, August 9–12, 2021, Lemont, IL, USA Ye, Liu, and Wu.

Table 1: Descriptions of functions used in NoStop.

Function Description Return
getDimension(θ) Return the dimension of vector θ Integer
needResetCoefficient() If the input speed changes significantly, reset the coefficient Boolean
resetCoefficient() Reset k = 0,x = θinitial Void
getDelta(n) Return n-dimensional random perturbation Vector
checkBound(θ) Return θ within the configuration range Vector
changeConfigurations(θ) Dynamically adjust the configuration of Spark Streaming Void
getSystemStatus Return the real-time system status Object
satisfyPauseCondition(status) Check whether the current state satisfies the pause condition Boolean

Algorithm 2: Adjust Function

Input: θ , ρ
Output: Objective function value
chanдeCon f iдurations(θ);

batchInterval = θBatchInterval ;

while True do

(batchProcessinдTime,status) = дetSystemStatus();

if satisfyPauseCondition(status) then

/* Prevent fetch data frequently. */

sleep(10 seconds);

else

break;

end

end

/* Objective function. */

G = batchInterval + ρ ·max(0,batchProcessinдTime −

batchInterval);

returnG;

6 PERFORMANCE EVALUATION

In this section, we conduct a set of Spark Streaming data process-
ing experiments on different types of workloads to examine the
optimization evolution process and evaluate the performance of
NoStop.

6.1 Cluster Setup and Streaming Workloads

In our experiments, we consider a heterogeneous cluster of five
nodes, one master node and four worker nodes, as detailed in Ta-
ble 2. All of these nodes have CentOS8 installed as well as Apache
Hadoop 3.2.1 [7], Apache Spark 3.0.0 [5] compiled with NoStop,
Apache Kafka 2.5.0 [4] and OpenJDK 1.8. We deploy Spark Stream-
ing in the standalone mode and deploy Kafka Broker on each node.
To prevent performance bottlenecks in Kafka, we set the number
of Kafka partitions to be larger than the number of cores owned
by the entire cluster.

Furthermore, we deploy a streaming data generator outside the
cluster, which sends data to Kafka Brokers at varying data rates.
The data are sent to each Kafka Broker uniformly to avoid data
skew. We set up and execute four computing workloads: Logistic

Table 2: List of cluster nodes.

Node ID CPU Disk Type
1 I5-9400 2.9GHz SSD Master
2 I5-9400 2.9GHz SSD Worker
3 Xeon Bronze 3204 1.9GHz HHD Worker
4 I5-10400 2.9GHz HHD Worker
5 I5-10400 2.9GHz HHD Worker

Regression, Linear Regression, WordCount, and Page Analyze. Lo-
gistic Regression and Linear Regression belong to machine learn-
ing algorithms, which requiremultiple iterations of processing.Word-
Count is a CPU-intensive application. Log Analyze simulates the
common scenarios in industry, receiving Nginx [1] log from Kafka,
washing and analyzing data, and writing results back into HDFS.

6.2 Experimental Settings

6.2.1 Parameter Se�ings. In our experiments, we allocate one CPU
core and 1GB ofmemory to each executor. According to our cluster
capacity, we set the parameter range of NoStop as follows:

1 <= NumExecutor <= 20,

1 <= Batch Interval <= 40.

Then, we scale two parameters into the same range ([1, 20]) to
produce better results. Following the guidelines in Section 5.6, we
set coefficients A = 1, a = 10, c = 2, and the initial point in the
middle of the parameter range, θinitial = {10, 10}. For the pause
condition, we set the number of consecutive optimization rounds
N = 10, and the standard deviation S = 1.

6.2.2 Variation in Input Data Rates. The data generation process
in real-life applications is affected by different factors, such as the
nature of the data source, the tool used for data collection, etc.,
hence oftentimes resulting in varying data rates. To evaluate the
robustness of NoStop in handling such situations, we trigger the
data generator to send data items at a random rate within a certain
range:

MinRate <= Rate <= MaxRate .

This range is typically determined based on the application sce-
nario being considered. In practice, the input data rate could also
be restricted in the streaming data processing system to avoid in-
stantaneous surge rates (e.g., by controlling the Kafka producing
rate).

NoStop: A Novel Configuration Optimization Scheme for Spark Streaming ICPP’21, August 9–12, 2021, Lemont, IL, USA

(a) Logistic Regression (b) Linear Regression

(c) WordCount (d) Page Analyze

Figure 5: Performancemeasurements in response to varying

data arriving speeds with four different types of workloads.

(a) Logistic Regression (b) Linear Regression

(c) WordCount (d) Page Analyze

Figure 6: Optimization evolution process with four different

types of computing workloads.

As shown in Fig. 5, in our experiments, we vary the arriving
speed of data items within the range of [7000, 13000] for Logistic
Regression, [80000, 120000] for Linear Regression, [110000, 190000]
for WordCount, and [170000, 230000] for Page Analyze.

6.3 Improvement Over Default Configuration

We collect and plot in Fig. 6 the performance measurements and
batch interval as the optimization process proceeds. With the ma-
chine learning workloads, the optimization process appears more
dynamic than the others. It shows that even the data input speed

Figure 7: Performance improvement over initial configura-

tions set by default.

(a) Comparison of steps (b) Comparison of end-to-end delay

Figure 8: Comparison between SPSA and Bayesian optimiza-

tion.

changes overtime, and the batch interval can keep decreasingwhile
maintaining the stability of the system. This is because in machine
learning algorithms, the processing time of each batch is not iden-
tical, and the batch processing time of an unfitted model usually
takes longer than that of a fittedmodel. Different random data may
have different number of iterations. WordCount is a simple work-
load as it only requires twomapping/reducing operations and has a
fixed processing flow. Hence, its processing time is the most stable
than the other workloads. In Log Analyze, we use several Transfor-
mations and Actions to perform various analysis. Although the op-
erations are complex, the processing time for each batch remains
nearly the same, and hence it carries out a relatively stable opti-
mization process.

Considering the randomness in the streaming optimization pro-
cess, we repeat NoStop optimization experiments five times for
each workload and plot the average performance measurement
with the standard deviation for each workload in Fig. 7. These re-
sults illustrate that NoStop significantly reduces end-to-end delay
in comparison with the system’s default configurations.

6.4 Comparison with Random Search

Similar to Stochastic Approximation, Random Search does not re-
quire an explicit analytical form for optimization. Bayesian Opti-
mization is among themost commonly used algorithms in Random
Search, and has beenwidely employed for hyper-parameter tuning
in machine learning.

Again, we repeat each experiment five times and compute the
average measurement and standard deviation. As shown in Fig. 8,

ICPP’21, August 9–12, 2021, Lemont, IL, USA Ye, Liu, and Wu.

the final optimization results are comparable, but the search time
and configure steps of SPSA are less than that of Bayesian Opti-
mization, which clearly illustrates the run-time efficiency of NoS-
top.

7 CONCLUSION AND FUTURE WORK

As data volumes continue to grow in many domains, the impor-
tance of streaming data processing has been increasingly recog-
nized in both system research and application communities. We
proposed an SPSA-based NoStop scheme to dynamically tune Spark
Streaming configurations to optimize the performance of Spark-
based data processing. Our analysis shows that SPSA is a good
choice for parameter optimization and extensive experiments il-
lustrate the efficacy of the proposed scheme in processing different
types of computing workloads.

Wewill improve the performance and applicability of our stream-
ing optimization scheme in multiple directions. For example, the
SPSA algorithm is able to optimize multiple parameters simultane-
ously without additional overhead. In our current design of NoS-
top, we consider only two parameters for tuning. Also, it is still
a challenging task for end users, who are primarily domain ex-
perts, to choose appropriate gain sequences. We plan to incorpo-
rate more system parameters in the optimization framework to
reap the full benefits of SPSA. It is also of our future interest to
design intelligent approaches to determine gain sequences system-
atically based on some user-level knowledge such as cluster capac-
ity and throughput estimate.

ACKNOWLEDGMENT

This research is sponsored by U.S. National Science Foundation
under Grant No. CNS-1828123 with New Jersey Institute of Tech-
nology.

REFERENCES
[1] [n.d.]. Nginx. http://nginx.org/
[2] [n.d.]. Wikipedia stochastic approximation.

https://en.wikipedia.org/wiki/Stochastic_approximation
[3] Apache. 2011. Flink. https://flink.apache.org/.
[4] Apache. 2011. Flink. http://kafka.apache.org/.
[5] Apache. 2016. Spark. http://spark.apache.org.
[6] Apache. 2016. Storm. http://storm.apache.org.
[7] Apache. 2016. Hadoop. http://hadoop.apache.org.
[8] Apache. 2018. Apex. http://apex.apache.org/.
[9] Apache. 2019. Samza. http://samza.apache.org/.
[10] Dazhao Cheng, Xiaobo Zhou, Yu Wang, and Changjun Jiang. 2018. Adaptive

scheduling parallel jobs with dynamic batching in spark streaming. IEEE Trans-
actions on Parallel and Distributed Systems 29, 12 (2018), 2672–2685.

[11] A. Counaris and J. Torres. 2018. A methodology for spark parameter tuning. Big
data research 11 (2018), 22–32.

[12] Y. Chen D. Cheng and etc. 2017. Adaptive scheduling of parallel jobs in spark
streaming. In IEEE Conference on Computer Communications (INFOCOM 2017).
Atlanta, GA, USA.

[13] C. Boeres D. Oliveira, F. Porto and etc. 2020. Towards optimizing the execution of
spark scientific workflows using machine learningâĂŘbased parameter tuning.
Concurrency and Computation Practice and Experience 33, 5 (2020).

[14] B. He etc. G. Wang, J. Xu. 2016. A Novel Method for Tuning Configuration
Parameters of Spark Based on Machine Learning. In 2016 IEEE 18th Intl. Conf. on
HPC and Communications. Sydney, NSW, Australia.

[15] Google. 2015. Google Cloud Dataflow. https://cloud.google.com/dataflow.
[16] W. Chen H. Du, P. Han and etc. 2018. Otterman: A Novel Approach of Spark

Auto-tuning by a Hybrid Strategy. In 2018 5th International Conference on Sys-
tems and Informatics (ICSAI). Nanjing, China, 831–836.

[17] J. Wolfowitz J. Kiefer. 1952. Stochastic Estimation of the Maximum of a Regres-
sion Function. Ann. Math. Statist 23, 3 (1952), 462–466.

[18] D. Nasonov M. Petrov, N. Butakov and etc. 2018. Adaptive performance model
for dynamic scaling Apache Spark Streaming. Procedia Computer Science 136 (01
2018), 109–117.

[19] P. Wendell M. Zaharia, R.S. Xin and etc. 2016. Apache Spark: a unified engine
for big data processing. Commun. ACM 59, 11 (2016), 56–65.

[20] M. Khan N. Nguyen and K. Wang. 2018. Towards Automatic Tuning of Apache
Spark Configuration. In 2018 IEEE 11th Intl. Conf. on Cloud Computing (CLOUD).
San Francisco, CA, USA.

[21] P. Petridis1 and A. Gounaris1. 2016. Spark Parameter Tuning via Trial-and-Error.
Advances in Intelligent Systems and Computing 529 (2016), 226–237.

[22] James C. Spall. 1998. Implementation of the simultaneous perturbation algo-
rithm for stochastic optimization. IEEE Trans. Aerospace Electron. Systems 34
(July 1998), 817 – 823.

[23] JamesC. Spall. 2005. Introduction to stochastic search and optimization: estimation,
simulation, and control. John Wiley & Sons.

http://nginx.org/
https://en.wikipedia.org/wiki/Stochastic_approximation

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Statement
	3.1 Optimization Objectives
	3.2 Parameter Effects
	3.3 Problem Formulation

	4 Design of NoStop for Streaming Optimization
	4.1 The Goals of NoStop Design
	4.2 SPSA-Based Optimization Algorithm
	4.3 System Architecture

	5 Implementation of NoStop
	5.1 Determine Configuration Range
	5.2 Set SPSA Parameters
	5.3 Optimize Configuration
	5.4 Collect System Metrics
	5.5 Handle Different Input Data Rates
	5.6 Choose Gain Sequences A, ak, and ck

	6 Performance Evaluation
	6.1 Cluster Setup and Streaming Workloads
	6.2 Experimental Settings
	6.3 Improvement Over Default Configuration
	6.4 Comparison with Random Search

	7 Conclusion and Future work
	References

