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Abstract—Next-generation scientific applications in various
fields are experiencing a rapid transition from traditional
experiment-based methodologies to large-scale computation-
intensive simulations featuring complex numerical modeling with
a large number of tunable parameters. Such model-based simula-
tions generate colossal amounts of data, which are then processed
and analyzed against experimental or observation data for
parameter calibration and model validation. The sheer volume
and complexity of such data, the large model-parameter space,
and the intensive computation make it practically infeasible for
domain experts to manually configure and tune hyperparameters
for accurate modeling in complex and distributed computing
environments. This calls for an online computational steering
service to enable real-time multi-user interaction and automatic
parameter tuning. Towards this goal, we design and develop a
generic steering framework based on Bayesian Optimization (BO)
and conduct theoretical performance analysis of the steering
service. We present a case study with the Weather Research
and Forecast (WRF) model, which illustrates the performance
superiority of the BO-based tuning over other heuristic methods
and manual settings of domain experts using regret analysis.

Index Terms—Computational steering; parameter tuning;
bayesian optimization; machine learning.

I. INTRODUCTION

The advance in supercomputing technology is expediting the

transition in various basic and applied sciences from traditional

laboratory-controlled experimental methodologies to modern

computational paradigms involving complex numerical mod-

eling and extreme-scale simulations of physical phenomena,

chemical reactions, climatic changes, and biological processes.

These model-based simulations, which have become an essen-

tial component in next-generation scientific applications, typi-

cally generate a large volume of model outputs, which must be

processed and analyzed by domain experts in a timely manner

using various computing techniques for knowledge discov-

ery and scientific innovation. Increasingly, such simulation-

computing processes are represented, executed, managed, and

orchestrated by workflow technologies. Particularly, real-time

user interaction and online cooperative steering of remote

simulation form a closed control loop of the workflow-based

research process. In fact, parameter tuning and data analysis

for model exploration and evaluation constitute a crucial part

of these mission- and time-critical research processes [1]–[4].

One typical scientific application of such types is the

research on the Earth’s weather and climate system, which

involves multiple physical processes acting over a wide range

of scales spanning from microphysics at the level of individual

cloud droplets to cloud systems at regional and global scales

as shown in Fig. 1 [5]. Limited by computational resources

and incomplete physical understanding, most of these models

contain approximate representations of processes that occur

at the spatiotemporal scales smaller than model grid spacing.

Such subgrid parameterizations often contain empirical param-

eters that need to be validated or tuned against measurements.

Depending on the subgrid processes in question, the number of

tunable parameters can range from several up to hundreds, and

the specific values of these parameters likely vary with weather

and cloud regimes. Thus, the process of “objective tuning”

poses a great challenge to the computational communities as

well as the Earth Science community including forecasting of

climate, weather, and renewable energies such as wind and

solar.

Fig. 1. Widely-used multi-scale, multi-physics models for the Earth’s weather
and climate system.

To instantiate our discussion, we shall take one specific

domain of applications - renewable energy as an example.

Renewal energy generation is different from many traditional

energy sources in that its availability highly depends on

time-varying atmospheric phenomena such as solar irradiance,

winds, clouds, and precipitations. For example, a small im-

provement (around 10% - 20% improvement in the mean

absolute error) in wind forecast can lead to millions of dollars

in cost savings. Since the total electric supply and demand
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must always remain in synchronism, a cost-efficient integration

of such renewables in the electric grid ultimately depends on

our ability to accurately forecast related key meteorological

variables - solar irradiance for solar farms and winds for wind

farms - over various time horizons (e.g., minutes, hours, and

days ahead) and at high space-time resolutions. The physical

forecasting model of WRF-Solar is built on the widely used

community Weather Research and Forecast (WRF) model [6]

with an emphasis on forecasting solar and wind energies, and

contains numerous parameterized subgrid processes that affect

model performance, including cloud and aerosol microphysics,

radiative transfer, planetary boundary layer, turbulence, con-

vection, and land surface.

The development of such models must iterate through

complex parameterization, which, for scientists, is a labor-

intensive, time-consuming process requiring careful consid-

erations of various trade-offs and calibrations with obser-

vations/experiments or domain knowledge. The combination

of high-resolution measurements and high-resolution physical

modeling in dynamic tuning of high-dimensional parameter

space (up to several hundred, depending on the science ques-

tion) with multiple objective functions generates an explosive

growth of data characterized by large volume, variety, velocity,

and veracity, and presents a paramount need for effectively and

efficiently steering the “tuning” of parameters [7], [8]. The

challenges for such steering processes mainly arise from nu-

merous model options, vast parameter spaces, complex inter-

parameter coupling effects, and almost infinite continuous

value ranges. In some sense, the tasks such as selecting the best

model, identifying critical parameters, and setting appropriate

values in the enormous model and parameter space are just as

challenging as looking for a needle in a haystack.

We would also like to point out that many computational

science applications such as supernova and combustion re-

search follow a similar modeling-computing paradigm as in

climate and weather research. The large model-parameter

space in the simulation, the colossal amount of generated

data, the intensive computing needed for data processing and

analysis, the high complexity of user interactions, and the

increasing dynamics of computer and network systems make

it practically infeasible for domain experts to manually deploy

and optimize such scientific workflows for predictive modeling

and computational steering. Especially, many scientists are

isolated from each other in using computing facilities and

accessing simulation or experimental data produced by indi-

vidual modeling processes or scientific instruments, inevitably

leading to high cost and low efficiency in replicating results

and sharing information and resources, which significantly

impede the pace of knowledge discovery and constrain the

productivity of scientists.

In this work, we aim to provide the capability of collab-

orative computational steering (Co2Steer) as a service to

automate and accelerate parameter tuning of scientific sim-

ulations. We develop a Co2Steer framework, which employs

Bayesian Optimization to guide the parameter tuning process

and identify the best parameter values for guaranteed quality

of simulations. Our contributions to the field are summarized

as follows:

• We design a framework of Co2Steer for steering as a

service with generic models of simulations and extensible

Application Programming Interfaces (APIs) to interact

with and guide model-based simulations towards user-

preferred directions.

• We design a data-driven approach using Bayesian Op-

timization to perform incremental parameter tuning and

identify optimal model configurations quickly to acceler-

ate scientific simulations.

• We theoretically analyze the steering performance of

Co2Steer, and test it with real-life climate modeling

workloads to illustrate its performance superiority com-

pared with the default setting provided by domain experts.

The rest of the paper is organized as follows. In Section II,

we define the computational steering objective, conduct a

brief survey of existing work in related fields, and introduce

background knowledge of Bayesian Optimization. The design

of Co2Steer is detailed in Section III. In Section IV, we

conduct theoretical analysis of the proposed steering approach.

In Section V, we present a case study of computational

steering with a real-life scientific application and conduct a

comparative performance evaluation of our framework. We

conclude our work and sketch a research plan in Section VI.

II. PRELIMINARIES

A. Steering Objectives and Effects of Hyperparameters

In scientific simulations, there are three main goals of

computational steering: performance optimization, algorithm

experimentation, and model exploration. In performance opti-

mization, steering is used to improve an application’s perfor-

mance, e.g., by balancing workload in parallel applications. In

algorithm experimentation, it allows the user to adapt program

algorithms at run time, e.g., to experiment with different

numerical solving methods. In this work, we focus on model

exploration, where computational steering is used to explore

parameter spaces and simulation processes to gain additional

insights into the model behaviors.

Without loss of generality, we define the steering objective

of model exploration as

argmin
~x

f(S(~x), obs), (1)

where S is a model of steering with tunable parameters ~x

of interest and f is a user-specified objective function, e.g.,

the Mean Square Error (MSE) between the output (simulation

data) of the steering model and the observation data obs.

To illustrate the effects of hyperparameters on the steering

objective f , we simulate the WRF-Solar model with various

hyperparameter settings, and then fit the simulation trails and

plot the response surface of MSE using Gaussian Regression

Model.

As shown in Fig 2, the response surface of f is significantly

affected by the intricate interplay of tunable parameters such as

relative dispersion and condensation rate. Although one ideal

985



Fig. 2. Response surface of Mean Squared Error fitted by Gaussian regression.

approach would be to check all possible parameter settings,

it is practically infeasible to do so because the number of

possible parameter settings in a given model-based simulation

typically grows exponentially with the number of parameters.

For example, if a simulation involves the interaction of n

binary parameters (that is, each has one of the two states), this

leads to checking and understanding 2n possible parameter

settings with respect to the underlying goal [9]–[11]. An

additional level of complexity arises from the underlying

model that dictates how these parameters contribute to the

goal. In reality, most parameters are continuous and represent

an even much larger number of states or values than binary

ones.

B. Existing Computational Steering Systems

Computational steering enables users to interact online with

simulations or computing procedures, and its importance has

been well recognized by the research community [12]–[21].

There exist a plethora of systems and frameworks that sup-

port computational steering. Examples include SCIRun [22],

CUMULVS [23], VIPER [24], ParaView Catalyst Live [25],

GRASPARC [26], Cactus [27], RealityGrid [28], RICSA [29],

and many others [16]–[18], [30], [31]. Similar to our approach,

these systems also require code instrumentation through li-

braries or API calls, as commonly adopted in computational

sciences [13], [32]. However, most of them may suffer from

a high learning curve and require the installation of various

software packages such as Globus, SOAP, PVM [33] and,

AVS [34] on the user end to realize their full benefits,

which often places an undue burden on end users, who are

typically domain experts, to spend a significant amount of

time in configuring and learning a new system. Furthermore,

some of them are platform dependent and hence are not

universally supported in diverse environments. Also, to the

best of our knowledge, these systems currently do not perform

the tracking of steering actions.

There also exist several application-specific steering solu-

tions, for example, in the oil and gas industry [35] and in the

study of computational fluid dynamics [36]. One representative

system is BSIT [37], which is tailored for seismic applications

to support adaptations in parameters, programs, and datasets.

The steering capability in such systems is built upon a fixed

scheme and is generally not adaptable or extendable to other

applications.

In addition to steering commonly applied to computations,

some workflow management systems (WMS) also provide

such capability to computing modules, including [18]–[21],

[38]. Pegasus [38] is a widely used WMS that provides a

database with execution data for debugging. As an extension

to Pegasus, Lee et al. [18] enabled adaptive execution of

scientific workflows through the analysis of this database.

OpenMole [19] is another WMS that allows users to replace

programs in the workflow at runtime. FireWorks WMS [20]

uses a DBMS-driven workflow engine and takes a JSON-based

approach for state management and workflow execution mon-

itoring, but it does not support other steering actions. Coper-

nicus WMS [21] also allows for dynamic workflow steering

via parameter tuning to steer exploration towards undiscovered

regions of a solution space. WorkWays [15], which uses

Nimrod/K, an extension of the Kepler workflow system [39],

as its workflow engine, enables users to dynamically adapt the

workflow by reducing the range of some parameters. However,

these WMS do not consider the dynamics caused by various

steering actions in job scheduling and resource allocation in

big data systems deployed on clouds.

Different from the aforementioned work, we propose Steer-

ing as a Service that provides the capability of automatic

parameter tuning based on machine learning techniques.

C. Bayesian Optimization for Computational Steering

Bayesian Optimization (BO) is a powerful data-driven

technique for solving hyperparameter optimization problems

and has been extensively studied in the field of automated

machine learning [40], [41]. Under the standard settings of

BO, the steering objective y is denoted as a function f of

a vector of hyperparameters ~x, i.e., y = f(~x). The steering

problem is then transformed into an optimization problem,

i.e., argminx f(~x).

BO first makes an assumption of f with an approximate

function/model M, i.e., M(~x) ≈ f(~x), and then solves this

problem in an iterative way: in each iteration, it queries f using

the contemporary decision x̃ by optimizing an acquisition

function derived from the surrogate model M and maintains a

dataset D consisting of query pairs {~x, f(~x)}. It then updates

M using the updated historical dataset D.

In the view of Bayesian, given a dataset of n steering trails

D = {(~xi, yi)|i = 1, ..., n}, the posterior probability of the as-

sumption f is calculated as: P (f |D) = P (D|f)P (f)
P (D) . As P (D)

is irrelevant to f , the posterior is proportional to the likelihood

of steering trails D, i.e., P (f |D) ∝ P (D|f)P (f). Placing a

Gaussian Process (GP) prior [42] on f , the distribution of f is

assumed to be a GP, i.e., f(~x) ∼ GP (µ(~x), k(~x, ~x′)), where

µ(·) and k(·) are the mean function and kernel function of GP,
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respectively. In each iteration of GP-based BO, the posterior

of f for a new configuration setting ~x′ is described as:

P (f(~x′)|D,~x′) = N (µ(~x′), σ2(~x′)), (2)

where

µ(~x′) = kT K−1Y, (3)

σ2(~x′) = k(~x′, ~x′)− kT K−1k, (4)

where

K =







k(~x1, ~x1) · · · k(~x1, ~xn)
...

. . .
...

k(~xn, ~x1) · · · k(~xn, ~xn)






, (5)

k = [k(~x′, ~x1) k(~x′, ~x2) · · · k(~x′, ~xn)], (6)

and Y is the vector representation of {yi}ni=1.

Eqs. 3 and 4 are then plugged into an acquisition function

to generate the next query point that yields the extremum.

One of the widely used acquisition functions is the expected

improvement (EI) function, i.e.,

EI(x̃) =

{

(µ(~x′)− f(~x+))Φ(Z) + σ(~x)φ(Z), if σ(~x) > 0

0, otherwise

(7)

where

Z =
µ(~x)− f(~x+)

σ(~x)
, (8)

where f(~x+) is the contemporary extremum in D, and φ(·)
and Φ(·) are the PDF and CDF of the normal distribution,

respectively.

III. A MACHINE LEARNING-ASSISTED FRAMEWORK TO

OPTIMIZE STEERING-DRIVEN SCIENTIFIC SIMULATION

To bring optimization-guided autonomy to the generic steer-

ing process in various scientific applications, we propose a

framework of Bayesian Optimization-assisted Steering as a

Service for collaborative computational steering, Co2Steer,

in support of large-scale simulation-based computational sci-

ences.

As shown in Fig. 3, the overarching framework of Co2Steer

integrates the following technical components: i) transport

method for steering, ii) machine learning-based automatic

parameter tuning, iii) front-end dashboard, and vi) provenance

tracking. The web-based dashboard provides a user interface

through a web browser for users to access Co2Steer, which

is hosted as a service. A scientific workflow that constitutes a

model-based simulation process and various post-data process-

ing jobs are executed in a specific computing system desig-

nated by the user. The interactions between the steering engine

and the scientific workflow are carried out over a unified

communication channel that enables the delivery of various

steering commands from multiple users to different simulation

processes being executed concurrently. The output data are

analyzed for model validation with visual feedback provided

to the user through the dashboard. The entire steering process,

and model validation are managed, tracked and recorded in a

provenance database.

A. Steering with Bayesian Optimization

Scientific simulations often encompass a large parameter

space that constitutes various of computation-intensive pro-

cesses. The computational steering problem is to determine

a specific configuration of model parameters to produce a

desired output with a limited number of trails.

Our approach consists of two steps: i) build a prior belief

model (i.e., a Gaussian regression model M) to describe

the relationship between the parameters ~x and the steering

objective y using existing historical trails, and ii) automate

the steering process based on the underlying model M and

expert guidance. The second step continues in an iterative

manner until the goal is achieved with a certain error tolerance.

Our approach could be broadly classified as fully automated

steering with supervised algorithms and automated steering

with hybrid algorithms. These solutions are objective-driven

and follow the aforementioned two-step approach. We design

the tuning process as an iterative stationary process and

propose to use Gaussian process to explore the unknown

mapping f that captures the interplay between the parameters

and the objective.

1) Fully Automated Steering with Supervised Algorithms:

The steering objective of interest is determined by the configu-

ration of a set of control parameters ~x (e.g., relative dispersion

and condensation rate in a weather forecast model) and the

observation f(·) is corrupted with independent, identically

distributed noise ǫ = N(0, σ2), i.e., y = f(·) + ǫ. Due

to the high computation overhead for simulating a large

number of complex scientific processes, the evaluation of each

configuration could be prohibitively time-consuming. Even

with common model complexity and parameter space, it may

oftentimes take half a day to complete.

The second step of our iterative approach selects the next

configuration of the parameters for validation. Hence, it is

important to exploit the historical validations and explore

the unknown configurations. BO offers desired properties to

balance exploration and exploitation. In each iteration, BO fits

the existing dataset using a machine learning model M (e.g.,

Gaussian Process Regression), selects the next query point by

maximizing an acquisition function, and updates the dataset.

The implementation details are shown in Alg. 1.

Algorithm 1 Bayesian Optimization

Input: surrogate model M, simulation model S, historical dataset D
and acquisition function L
Output: the best configuration ~x∗

1: for ti = 1, 2, . . . , T do
2: fit M with D;

3: obtain the next query point ~x
′

= argmaxx L;

4: simulate with a new configuration: y
′

= S(~x
′

);

5: consolidate the data: D = D ∪ {~x
′

, y
′

};
6: query D to obtain the best configuration ~x∗ that results in the

minimum y;
7: return ~x∗;

2) Semi Automated Steering: The use of automated meth-

ods does not, however, obviate the need for subjective judg-
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Fig. 3. Architecture of the Co2Steer framework.

ment concerning the priorities and targets of the steering

process. Moreover, BO is shown to be overconfident in

searching some unexplored boundary region and may lead to

unnecessary cost.

To address the overconfidence problem, we propose a hybrid

approach to involve humans in the steering loop, but only in a

strategic manner. We present the dynamic steering procedure

to domain experts, who could provide a wide range of feed-

backs - from simple binary feedbacks (e.g., labeling a parame-

ter as important vs. unimportant) to non-binary feedbacks (e.g.,

iteratively shrinking the search boundary), or a combination

of both. Based on such feedbacks, we update model M and

repeat the overall computational loop until certain accuracy is

achieved.

B. API Design and Provenance Tracking

One essential function of Co2Steer is to enable compu-

tational steering by a group of remote collaborative users

who wish to keep track of the simulation process SIM and

communicate and share simulation/analysis results DSout or

DSfinal with peers while the simulation is being steered in

batch mode. To make this possible, the simulation steering

can no longer remain closed and needs to open up channels

to intercept and distinguish steering commands from different

users at runtime. Towards this goal, we define the syntax and

semantics of a set of generic core APIs, and provide steering

capability through automatic mode: Users upload their codes

through the dashboard and Co2Steer identifies the locations in

the codes for taking appropriate steering actions at the entry

or exit of a loop that implements the body of a simulation

process.

Fig. 4 illustrates the code skeleton of typical model-based

simulation programs that call a set of essential API functions

for computational steering by multiple users simultaneously.

Among them, Co2Steer init() initializes the steering process

by subscribing to the communication channel and registering

with the steering service and provenance database. A steering

action SA is captured by Co2Steer recvMsg() in the begin-

ning of each iteration to update the parameter setting used in

the simulation process SIM . All changes and corresponding

results are recorded in the provenance database and also

sent back to a group of participating users for analysis and

examination.

Provenance is a key part of the architecture and service in

the common computing infrastructure for tracking processes

and analyzing results. Particularly, in a model-based simulation

process, it is critical to keep track of all configuration options,

model versions, parameter choices, etc., all of which have

an impact on the outcome of the model simulation. Such

provenance information provides a complete view of the

derivation process from original sources to final results, and

enables scientists to verify the correctness of their simulations

and reproduce them if necessary. We design a provenance

component using script and integrate it into the Co2Steer

steering engine to provide complete provenance information

related to the execution of the simulation for post-data process-

ing and analysis. The provenance component automatically

records all the information about the simulation process such

as the execution time and parameter settings, and tracks the

history and evolution of all trials.

IV. CONVERGENCE RATE ANALYSIS

The steering objective of our Bayesian Optimization-based

framework for large-scale scientific simulations is to find the

optimal hyperparameter setting ~x′ with the least number of

iterations such that the error between simulation result S(~x′)
is arbitrarily close to the observation obs, i.e.,

f(S(~x′), obs)− f(S(~x∗), obs) < δ, (9)
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Co2Steer_init( );

for (t_step = 0; t_step < maxStep; t_step ++)

{
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Fig. 4. A code skeleton of typical model-based simulations that make steering API calls for computational steering engine and communication channel.

where ~x′ is the best guess of our optimization method, ~x∗ is

the unknown global optimal setting of S, and δ is a positive

constant.

To determine the convergence speed of computational steer-

ing, we need to estimate the total number of iterations required

to achieves δ accuracy. Moreover, the general global optimiza-

tion problem is theoretically intractable without making any

assumptions to function f [43]. Without loss of generality,

we consider f to be Lipschitz continuous, i.e., the simulation

error f(·) cannot vary arbitrarily fast as we change ~x. The con-

vergence rate of our approach is dominated by the theoretical

bound of the Bayesian Optimization technique, which contains

two intertwined components: the surrogate component for

exploitation and the acquisition component for exploration.

Our approach follows the standard setting, where the Gaussian

process regression model is selected as the surrogate model

and the expected improvement (EI) function is used as the

acquisition model [44]. The convergence speed of BO has

been widely investigated [45], [46]. As stated by Bull in [45],

under certain hypothesis, the expected improvement-based BO

is shown to converge to the minimum of any function on its

Reproducing-Kernel Hilbert Space (RKHS) with rate O( 1
δv/d

),
where v is a smooth measure of f and d is the number of

parameters to optimize over. Note that the smooth measure v

of f is assumed to be greater than one to make BO better

than random guesses. The time complexity of BO is O(n3),
where n is the number of historical trails, because BO solves

Cholesky decomposition problem for each iteration.

V. VALIDATION WITH REAL-WORLD APPLICATIONS

We develop a prototyped Co2Steer service that enables,

optimizes, and tracks steering-driven simulation-oriented sci-

entific workflows for model exploration and evaluation. This

prototype steering service is deployed on a virtual machine

(VM) instance equipped with eight processors and 20GB

memory. We test Co2Steer for model-based simulation in a

real-life large-scale scientific application, i.e., a WRF model

for climate research.

A. Case Study: Weather Research and Forecasting

The physical forecasting model of WRF-Solar is built on

the widely used community Weather Research and Forecast

(WRF) model [47] with an emphasis on forecasting solar and

wind energies, and contains numerous parameterized subgrid

processes that affect model performance, including cloud and

aerosol microphysics, radiative transfer, planetary boundary

layer, turbulence, convection, and land surface. The tunable

parameters involved in the model are shown in Table I. We

first introduce the interested parameters, and then illustrate the

tuning effects of such parameters on the simulation quality. We

further perform a point-wise comparison between our work

and default settings and verify the convergence speed of our

solution.

1) Description of Physical Parameterizations and Impor-

tant Tunable Parameters: The WRF-Solar model is imple-

mented based on Thomas scheme [48], which contains various

sub-processes that simulate aerosol process, cloud droplet,

liquid water, etc,.

Particularly, in this case study, we investigate two parame-

ters, namely, relative dispersion and condensation rate, which

are accessible and tunable in representative processes that

simulate the cloud-to-rain autoconversion and effective radius

in liquid water clouds. The final output of this WRF model

emulates the evolution of solar irradiance volume in 90 days.

The effective radius re is simulated based on a Gamma

distribution, which contains two degrees of freedom, i.e., shape

parameter and slope parameter.
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TABLE I
LIST OF MODEL PARAMETERS

Symbol Description Default Value Range Location/Variable Name

ρs Density of snow 100 kg/m3 50-200 kg/m3 rho s Line 88

ρg Density of graupel 500 kg/m3 [450, 700] kg/m3 rho g Line 89

ρi Density of ice 890 kg/m3 [700, 900] kg/m3 rho i Line 90

a Mass power-law constant 0.069 0.0185-0.176 am s Line 139

b Fall speed power-law constant 2 [1.9, 2.2] bm s Line 140

α Fall speed power-law constant

Rain: 4854 0.15 R Line 149
Ice:1847.5 336-1847.5 I Line 157
Snow:40 129.6-40 S
Graupel:442 351.2-442 I

β Fall speed power-law constant

Rain: 1 Fixed R Line 149
Ice:1 0.6635 - 1 bv i Line 157
Snow:0.55 0.42- 0.55 bv s
Graupel:0.89 0.37 - 0.89 bv g

f Fall speed power-law constant

Rain: 195 Fixed
Ice: 0 Fixed
Snow: 125 100-125 fv s Line 154
Graupel: 0 Fixed

C Capacitance of hydrometeor
Sphere: 0.5 15% C cube
Plates/aggregates: 0.15 15% C sqrd

Eyx Collection efficiencies

si: 0.05 15% within 0 - 1 Ef si
rs: 0.95 1 Ef rs
rg: 0.75 15% within 0 - 1 Ef rg
ri: 0.95 15% within 0 - 1 Ef ri

D0 Lower limit of hydrometeor diameter

Cloud:1E−6 C: [0.5E−6, 2E−6] Line 220

Rain: 50E−6 R: [50E−6, 100E−6] Line 221

Snow: 200E−6, m S: [150E−6, 250E−6] Line 222

Graupel:250E−6 , m [200E−6, 300E−6] Line 223

βcon Condensation rate constant 1.15E23 [1.02E20, 1.67E24] Line 78

ǫ Relative dispersion of cloud droplet spectrum 0.1 0.01 to 1.4 Line 69

The relative dispersion ǫ affects re through the product of

a dimensionless parameter β and the mean volume radius v,

i.e.,

r = β · v. (10)

For cloud droplets, rain, cloud ice and snow, β is calculated

as:

β =
(1 + 2× ǫ2)2/3

(1 + ǫ2)1/3
, (11)

where ǫ is the relative dispersion. In consideration of all un-

known effects (e.g., turbulence-related processes), an empirical

condensation rate constant βcon is defined to emulate the

turbulence effect.

2) Tuning Effects on Simulation Quality: The simulation re-

sult of the WRF model is a time-series sequence that represents

solar irradiance change in 90 days. The tuning effects of the

relative dispersion on the volume of solar irradiance are plotted

in Fig 5. We observe that the simulation result approaches

the observation data as the value of dispersion decreases.

However, further decreasing the value of dispersion does not

bring performance improvement. This is because some of the

simulation processes are skipped due to a negligible value of

relative dispersion. We would like to point out that the impact

of relative dispersion is complicated, which strongly suggests

the use of machine learning algorithms for parameter tuning.

3) Methods in Comparison: We compare BO with another

heuristic method using random walk [49]. Instead of exploring

the search space as a compact real realm, random walk first

Fig. 5. Illustration of tuning effects of dispersion on simulation quality.

Fig. 6. Illustration of effects of dispersion on the Mean Squared Error.
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transforms the searching space into grids, and then iteratively

explores the search space by moving a fixed length at a ran-

domly generated angle. We also compare BO and random walk

with the default setting to show the performance improvement

over manual tuning recommended by domain experts.

4) Evaluation Metrics: The execution of Co2Steer in

climate research involves both model-based simulations and

real-world observations. To evaluate the effectiveness of tun-

ing, we calculate Mean Squared Error (MSE), and consider

average cumulative regret that measures the convergence rate

of steering. In each iteration of online steering, the instanta-

neous “regret” at the i-th iteration is defined as the distance

from the current evaluated value f(S(~xi), obs) to the optima

f(S(~x∗), obs), i.e.,

r = f(S(~xi), obs)− f(S(~x∗), obs). (12)

The average accumulative regret over t time-steps is calculated

as 1
t

∑

i ri.

5) Experimental Setting: As BO-based tuning relies on

historical trails, we randomly generate two data points to

initialize the tuning process. For random walk, we select the

center point of the search area as the start point and set the

step size to be ± 0.014 for relative dispersion and ± 1.67E22

for condensation rate, respectively. In each iteration, the ran-

dom walk algorithm moves a single mosquito step for each

dimension with equal probability.

6) Results: The performance evaluation includes two parts:

i) evaluate the effectiveness of our approach in terms of MSE,

and ii) evaluate the efficiency of our approach in terms of

average accumulative regret.

We first plot the smallest MSE among historical tuning trails

in terms of iterations, as shown in Fig. 7. The performance

of the default setting forms a straight line and can be used

as the baseline. The random walk algorithm performs poorly

due to the limitation of iterations. The simulation error of our

approach drastically decreases with more iterations of steering,

and achieves a plateau much lower than random walk and the

default setting recommended by domain experts.

Fig. 7. Performance comparison in terms of MSE.

We further compare the convergence rate of our approach

with that of random walk in terms of average accumulative

regret. Fig. 8 shows that our approach converges faster than

random walk.

Fig. 8. Convergence rate comparison in terms of average accumulative regret.

VI. CONCLUSION

In this paper, we developed a prototype steering as a service

auto-tuning framework, which consists of a set of APIs for

domain experts to execute, monitor, and interact with model-

based simulations. We conducted extensive experiments to

evaluate the efficiency and effectiveness of our parameter

tuning method with a real-life WRF model.

We plan to integrate other optimization methods into this

steering framework to address different hyperparameter tuning

problems. For scalability evaluation, we will integrate and

vary the scale of computing systems, the complexity of big

data workflow structures, the number of steerable parame-

ters, and the range of parameter values, and measure the

corresponding end-to-end workflow performance, execution

time of automated steering algorithms, and other system-

specific optimization objectives such as speedup, efficiency,

and workload balancing.
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