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Abstract—Next-generation scientific applications in various
fields are experiencing a rapid transition from traditional
experiment-based methodologies to large-scale computation-
intensive simulations featuring complex numerical modeling with
a large number of tunable parameters. Such model-based simula-
tions generate colossal amounts of data, which are then processed
and analyzed against experimental or observation data for
parameter calibration and model validation. The sheer volume
and complexity of such data, the large model-parameter space,
and the intensive computation make it practically infeasible for
domain experts to manually configure and tune hyperparameters
for accurate modeling in complex and distributed computing
environments. This calls for an online computational steering
service to enable real-time multi-user interaction and automatic
parameter tuning. Towards this goal, we design and develop a
generic steering framework based on Bayesian Optimization (BO)
and conduct theoretical performance analysis of the steering
service. We present a case study with the Weather Research
and Forecast (WRF) model, which illustrates the performance
superiority of the BO-based tuning over other heuristic methods
and manual settings of domain experts using regret analysis.

Index Terms—Computational steering; parameter tuning;
bayesian optimization; machine learning.

1. INTRODUCTION

The advance in supercomputing technology is expediting the
transition in various basic and applied sciences from traditional
laboratory-controlled experimental methodologies to modern
computational paradigms involving complex numerical mod-
eling and extreme-scale simulations of physical phenomena,
chemical reactions, climatic changes, and biological processes.
These model-based simulations, which have become an essen-
tial component in next-generation scientific applications, typi-
cally generate a large volume of model outputs, which must be
processed and analyzed by domain experts in a timely manner
using various computing techniques for knowledge discov-
ery and scientific innovation. Increasingly, such simulation-
computing processes are represented, executed, managed, and
orchestrated by workflow technologies. Particularly, real-time
user interaction and online cooperative steering of remote
simulation form a closed control loop of the workflow-based
research process. In fact, parameter tuning and data analysis
for model exploration and evaluation constitute a crucial part
of these mission- and time-critical research processes [1]-[4].

One typical scientific application of such types is the
research on the Earth’s weather and climate system, which
involves multiple physical processes acting over a wide range
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of scales spanning from microphysics at the level of individual
cloud droplets to cloud systems at regional and global scales
as shown in Fig. 1 [5]. Limited by computational resources
and incomplete physical understanding, most of these models
contain approximate representations of processes that occur
at the spatiotemporal scales smaller than model grid spacing.
Such subgrid parameterizations often contain empirical param-
eters that need to be validated or tuned against measurements.
Depending on the subgrid processes in question, the number of
tunable parameters can range from several up to hundreds, and
the specific values of these parameters likely vary with weather
and cloud regimes. Thus, the process of “objective tuning”
poses a great challenge to the computational communities as
well as the Earth Science community including forecasting of
climate, weather, and renewable energies such as wind and
solar.

- DNS=Direct
Numerical
Simulation
LES=Large Eddy
Simulation

CRM = Cloud-
Resolving Model
WRF = Weather
Research and
Forecast Model
GCM = Global
Climate Model
RCM = Regional
Climate Model
GCRM = Global
CRM

NWP = Numerical
Weather Forecasting
SCM = Single
Column Model
MMF = Multiscale
Modeling Framework

Model Domain Size (km

1cm im 1km
Model Grid Size

100 km

lllustration of various models used to address
multiscale challenges of Earth’s climate system.

Fig. 1. Widely-used multi-scale, multi-physics models for the Earth’s weather
and climate system.

To instantiate our discussion, we shall take one specific
domain of applications - renewable energy as an example.
Renewal energy generation is different from many traditional
energy sources in that its availability highly depends on
time-varying atmospheric phenomena such as solar irradiance,
winds, clouds, and precipitations. For example, a small im-
provement (around 10% - 20% improvement in the mean
absolute error) in wind forecast can lead to millions of dollars
in cost savings. Since the total electric supply and demand



must always remain in synchronism, a cost-efficient integration
of such renewables in the electric grid ultimately depends on
our ability to accurately forecast related key meteorological
variables - solar irradiance for solar farms and winds for wind
farms - over various time horizons (e.g., minutes, hours, and
days ahead) and at high space-time resolutions. The physical
forecasting model of WRF-Solar is built on the widely used
community Weather Research and Forecast (WRF) model [6]
with an emphasis on forecasting solar and wind energies, and
contains numerous parameterized subgrid processes that affect
model performance, including cloud and aerosol microphysics,
radiative transfer, planetary boundary layer, turbulence, con-
vection, and land surface.

The development of such models must iterate through
complex parameterization, which, for scientists, is a labor-
intensive, time-consuming process requiring careful consid-
erations of various trade-offs and calibrations with obser-
vations/experiments or domain knowledge. The combination
of high-resolution measurements and high-resolution physical
modeling in dynamic tuning of high-dimensional parameter
space (up to several hundred, depending on the science ques-
tion) with multiple objective functions generates an explosive
growth of data characterized by large volume, variety, velocity,
and veracity, and presents a paramount need for effectively and
efficiently steering the “tuning” of parameters [7], [8]. The
challenges for such steering processes mainly arise from nu-
merous model options, vast parameter spaces, complex inter-
parameter coupling effects, and almost infinite continuous
value ranges. In some sense, the tasks such as selecting the best
model, identifying critical parameters, and setting appropriate
values in the enormous model and parameter space are just as
challenging as looking for a needle in a haystack.

We would also like to point out that many computational
science applications such as supernova and combustion re-
search follow a similar modeling-computing paradigm as in
climate and weather research. The large model-parameter
space in the simulation, the colossal amount of generated
data, the intensive computing needed for data processing and
analysis, the high complexity of user interactions, and the
increasing dynamics of computer and network systems make
it practically infeasible for domain experts to manually deploy
and optimize such scientific workflows for predictive modeling
and computational steering. Especially, many scientists are
isolated from each other in using computing facilities and
accessing simulation or experimental data produced by indi-
vidual modeling processes or scientific instruments, inevitably
leading to high cost and low efficiency in replicating results
and sharing information and resources, which significantly
impede the pace of knowledge discovery and constrain the
productivity of scientists.

In this work, we aim to provide the capability of collab-
orative computational steering (Co®Steer) as a service to
automate and accelerate parameter tuning of scientific sim-
ulations. We develop a Co?Steer framework, which employs
Bayesian Optimization to guide the parameter tuning process
and identify the best parameter values for guaranteed quality
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of simulations. Our contributions to the field are summarized
as follows:

o We design a framework of Co?Steer for steering as a
service with generic models of simulations and extensible
Application Programming Interfaces (APIs) to interact
with and guide model-based simulations towards user-
preferred directions.
We design a data-driven approach using Bayesian Op-
timization to perform incremental parameter tuning and
identify optimal model configurations quickly to acceler-
ate scientific simulations.
We theoretically analyze the steering performance of
Co?Steer, and test it with real-life climate modeling
workloads to illustrate its performance superiority com-
pared with the default setting provided by domain experts.
The rest of the paper is organized as follows. In Section II,
we define the computational steering objective, conduct a
brief survey of existing work in related fields, and introduce
background knowledge of Bayesian Optimization. The design
of Co®Steer is detailed in Section III. In Section IV, we
conduct theoretical analysis of the proposed steering approach.
In Section V, we present a case study of computational
steering with a real-life scientific application and conduct a
comparative performance evaluation of our framework. We
conclude our work and sketch a research plan in Section VI

II. PRELIMINARIES
A. Steering Objectives and Effects of Hyperparameters

In scientific simulations, there are three main goals of
computational steering: performance optimization, algorithm
experimentation, and model exploration. In performance opti-
mization, steering is used to improve an application’s perfor-
mance, e.g., by balancing workload in parallel applications. In
algorithm experimentation, it allows the user to adapt program
algorithms at run time, e.g., to experiment with different
numerical solving methods. In this work, we focus on model
exploration, where computational steering is used to explore
parameter spaces and simulation processes to gain additional
insights into the model behaviors.

Without loss of generality, we define the steering objective
of model exploration as

argmin f(S(Z), obs),

x

6]

where S is a model of steering with tunable parameters &
of interest and f is a user-specified objective function, e.g.,
the Mean Square Error (MSE) between the output (simulation
data) of the steering model and the observation data obs.

To illustrate the effects of hyperparameters on the steering
objective f, we simulate the WRF-Solar model with various
hyperparameter settings, and then fit the simulation trails and
plot the response surface of MSE using Gaussian Regression
Model.

As shown in Fig 2, the response surface of f is significantly
affected by the intricate interplay of tunable parameters such as
relative dispersion and condensation rate. Although one ideal



4000

3000
w

S

=
2000

1000

Fig. 2. Response surface of Mean Squared Error fitted by Gaussian regression.

approach would be to check all possible parameter settings,
it is practically infeasible to do so because the number of
possible parameter settings in a given model-based simulation
typically grows exponentially with the number of parameters.
For example, if a simulation involves the interaction of n
binary parameters (that is, each has one of the two states), this
leads to checking and understanding 2" possible parameter
settings with respect to the underlying goal [9]-[11]. An
additional level of complexity arises from the underlying
model that dictates how these parameters contribute to the
goal. In reality, most parameters are continuous and represent
an even much larger number of states or values than binary
ones.

B. Existing Computational Steering Systems

Computational steering enables users to interact online with
simulations or computing procedures, and its importance has
been well recognized by the research community [12]-[21].
There exist a plethora of systems and frameworks that sup-
port computational steering. Examples include SCIRun [22],
CUMULVS [23], VIPER [24], ParaView Catalyst Live [25],
GRASPARC [26], Cactus [27], RealityGrid [28], RICSA [29],
and many others [16]-[18], [30], [31]. Similar to our approach,
these systems also require code instrumentation through li-
braries or API calls, as commonly adopted in computational
sciences [13], [32]. However, most of them may suffer from
a high learning curve and require the installation of various
software packages such as Globus, SOAP, PVM [33] and,
AVS [34] on the user end to realize their full benefits,
which often places an undue burden on end users, who are
typically domain experts, to spend a significant amount of
time in configuring and learning a new system. Furthermore,
some of them are platform dependent and hence are not
universally supported in diverse environments. Also, to the
best of our knowledge, these systems currently do not perform
the tracking of steering actions.

There also exist several application-specific steering solu-
tions, for example, in the oil and gas industry [35] and in the
study of computational fluid dynamics [36]. One representative
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system is BSIT [37], which is tailored for seismic applications
to support adaptations in parameters, programs, and datasets.
The steering capability in such systems is built upon a fixed
scheme and is generally not adaptable or extendable to other
applications.

In addition to steering commonly applied to computations,
some workflow management systems (WMS) also provide
such capability to computing modules, including [18]-[21],
[38]. Pegasus [38] is a widely used WMS that provides a
database with execution data for debugging. As an extension
to Pegasus, Lee et al. [18] enabled adaptive execution of
scientific workflows through the analysis of this database.
OpenMole [19] is another WMS that allows users to replace
programs in the workflow at runtime. FireWorks WMS [20]
uses a DBMS-driven workflow engine and takes a JSON-based
approach for state management and workflow execution mon-
itoring, but it does not support other steering actions. Coper-
nicus WMS [21] also allows for dynamic workflow steering
via parameter tuning to steer exploration towards undiscovered
regions of a solution space. WorkWays [15], which uses
Nimrod/K, an extension of the Kepler workflow system [39],
as its workflow engine, enables users to dynamically adapt the
workflow by reducing the range of some parameters. However,
these WMS do not consider the dynamics caused by various
steering actions in job scheduling and resource allocation in
big data systems deployed on clouds.

Different from the aforementioned work, we propose Steer-
ing as a Service that provides the capability of automatic
parameter tuning based on machine learning techniques.

C. Bayesian Optimization for Computational Steering

Bayesian Optimization (BO) is a powerful data-driven
technique for solving hyperparameter optimization problems
and has been extensively studied in the field of automated
machine learning [40], [41]. Under the standard settings of
BO, the steering objective y is denoted as a function f of
a vector of hyperparameters Z, i.e., y = f(Z&). The steering
problem is then transformed into an optimization problem,
i.e., argmin,, f(Z).

BO first makes an assumption of f with an approximate
function/model M, i.e., M(Z) ~ f(Z), and then solves this
problem in an iterative way: in each iteration, it queries f using
the contemporary decision Z by optimizing an acquisition
function derived from the surrogate model M and maintains a
dataset D consisting of query pairs {Z, f(Z)}. It then updates
M using the updated historical dataset D.

In the view of Bayesian, given a dataset of n steering trails
D = {(#,v:)|i = 1,...,n}, the posterior probability of the as-
sumption f is calculated as: P(f|D) = %. As P(D)
is irrelevant to f, the posterior is proportional to the likelihood
of steering trails D, i.e., P(f|D) o< P(D|f)P(f). Placing a
Gaussian Process (GP) prior [42] on f, the distribution of f is
assumed to be a GP, i.e., f(Z) ~ GP(u(Z), k(Z,7")), where
w(-) and k(-) are the mean function and kernel function of GP,



respectively. In each iteration of GP-based BO, the posterior
of f for a new configuration setting Z’ is described as:

P(f(@)|D, &) = N(u@),o*()), 2)
where
p(@) = K'K'Y, 3)
o (&) = k(#, &) - K"K 'k, (4)
where
k(Z1,21) k(Z1,2,)
K- S , (5)
k(fnvfl) k(£na£n)

k = [kj(fl7fl) k(l_:/a'fQ) k(f/7f7l)}7 (6)

and Y is the vector representation of {y;}? ;.

Egs. 3 and 4 are then plugged into an acquisition function
to generate the next query point that yields the extremum.
One of the widely used acquisition functions is the expected
improvement (EI) function, i.e.,

B1(3) - { @) = JEDR2) + o@(2), it o(#) >0
0, otherwise
)
where
7 — M’ (8)

()

where f(ZT) is the contemporary extremum in D, and ¢()
and ®(-) are the PDF and CDF of the normal distribution,
respectively.

ITI. A MACHINE LEARNING-ASSISTED FRAMEWORK TO
OPTIMIZE STEERING-DRIVEN SCIENTIFIC SIMULATION

To bring optimization-guided autonomy to the generic steer-
ing process in various scientific applications, we propose a
framework of Bayesian Optimization-assisted Steering as a
Service for collaborative computational steering, Co?Steer,
in support of large-scale simulation-based computational sci-
ences.

As shown in Fig. 3, the overarching framework of C'o?Steer
integrates the following technical components: i) transport
method for steering, ii) machine learning-based automatic
parameter tuning, iii) front-end dashboard, and vi) provenance
tracking. The web-based dashboard provides a user interface
through a web browser for users to access Co?Steer, which
is hosted as a service. A scientific workflow that constitutes a
model-based simulation process and various post-data process-
ing jobs are executed in a specific computing system desig-
nated by the user. The interactions between the steering engine
and the scientific workflow are carried out over a unified
communication channel that enables the delivery of various
steering commands from multiple users to different simulation
processes being executed concurrently. The output data are
analyzed for model validation with visual feedback provided
to the user through the dashboard. The entire steering process,
and model validation are managed, tracked and recorded in a
provenance database.
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A. Steering with Bayesian Optimization

Scientific simulations often encompass a large parameter
space that constitutes various of computation-intensive pro-
cesses. The computational steering problem is to determine
a specific configuration of model parameters to produce a
desired output with a limited number of trails.

Our approach consists of two steps: i) build a prior belief
model (i.e., a Gaussian regression model M) to describe
the relationship between the parameters & and the steering
objective y using existing historical trails, and ii) automate
the steering process based on the underlying model M and
expert guidance. The second step continues in an iterative
manner until the goal is achieved with a certain error tolerance.
Our approach could be broadly classified as fully automated
steering with supervised algorithms and automated steering
with hybrid algorithms. These solutions are objective-driven
and follow the aforementioned two-step approach. We design
the tuning process as an iterative stationary process and
propose to use Gaussian process to explore the unknown
mapping f that captures the interplay between the parameters
and the objective.

1) Fully Automated Steering with Supervised Algorithms:
The steering objective of interest is determined by the configu-
ration of a set of control parameters Z (e.g., relative dispersion
and condensation rate in a weather forecast model) and the
observation f(-) is corrupted with independent, identically
distributed noise ¢ = N(0,02), ie, y = f(-) + e Due
to the high computation overhead for simulating a large
number of complex scientific processes, the evaluation of each
configuration could be prohibitively time-consuming. Even
with common model complexity and parameter space, it may
oftentimes take half a day to complete.

The second step of our iterative approach selects the next
configuration of the parameters for validation. Hence, it is
important to exploit the historical validations and explore
the unknown configurations. BO offers desired properties to
balance exploration and exploitation. In each iteration, BO fits
the existing dataset using a machine learning model M (e.g.,
Gaussian Process Regression), selects the next query point by
maximizing an acquisition function, and updates the dataset.
The implementation details are shown in Alg. 1.

Algorithm 1 Bayesian Optimization

Input: surrogate model M, simulation model S, historical dataset D
and acquisition function £
Output: the best configuration &*

1. for t; =1,2,...,7 do

2 fit M with D; ,

3:  obtain the next query point £ = argmax, L;

4:  simulate with a new configuration: y' = S (f/);

5: consolidate the data: D = DU {&,y };

6: query D to obtain the best configuration Z* that results in the

minimum y;
7: return I

2) Semi Automated Steering: The use of automated meth-
ods does not, however, obviate the need for subjective judg-
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Fig. 3. Architecture of the Co?Steer framework.

ment concerning the priorities and targets of the steering
process. Moreover, BO is shown to be overconfident in
searching some unexplored boundary region and may lead to
unnecessary cost.

To address the overconfidence problem, we propose a hybrid
approach to involve humans in the steering loop, but only in a
strategic manner. We present the dynamic steering procedure
to domain experts, who could provide a wide range of feed-
backs - from simple binary feedbacks (e.g., labeling a parame-
ter as important vs. unimportant) to non-binary feedbacks (e.g.,
iteratively shrinking the search boundary), or a combination
of both. Based on such feedbacks, we update model M and
repeat the overall computational loop until certain accuracy is
achieved.

B. API Design and Provenance Tracking

One essential function of Co?Steer is to enable compu-
tational steering by a group of remote collaborative users
who wish to keep track of the simulation process SIM and
communicate and share simulation/analysis results DS,,; or
DS tina with peers while the simulation is being steered in
batch mode. To make this possible, the simulation steering
can no longer remain closed and needs to open up channels
to intercept and distinguish steering commands from different
users at runtime. Towards this goal, we define the syntax and
semantics of a set of generic core APIs, and provide steering
capability through automatic mode: Users upload their codes
through the dashboard and C'o? Steer identifies the locations in
the codes for taking appropriate steering actions at the entry
or exit of a loop that implements the body of a simulation
process.

Fig. 4 illustrates the code skeleton of typical model-based
simulation programs that call a set of essential API functions
for computational steering by multiple users simultaneously.
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Among them, C'o2Steer_init() initializes the steering process
by subscribing to the communication channel and registering
with the steering service and provenance database. A steering
action S'A is captured by C'o2Steer_recvM sg() in the begin-
ning of each iteration to update the parameter setting used in
the simulation process SIM. All changes and corresponding
results are recorded in the provenance database and also
sent back to a group of participating users for analysis and
examination.

Provenance is a key part of the architecture and service in
the common computing infrastructure for tracking processes
and analyzing results. Particularly, in a model-based simulation
process, it is critical to keep track of all configuration options,
model versions, parameter choices, etc., all of which have
an impact on the outcome of the model simulation. Such
provenance information provides a complete view of the
derivation process from original sources to final results, and
enables scientists to verify the correctness of their simulations
and reproduce them if necessary. We design a provenance
component using script and integrate it into the Co?Steer
steering engine to provide complete provenance information
related to the execution of the simulation for post-data process-
ing and analysis. The provenance component automatically
records all the information about the simulation process such
as the execution time and parameter settings, and tracks the
history and evolution of all trials.

IV. CONVERGENCE RATE ANALYSIS

The steering objective of our Bayesian Optimization-based
framework for large-scale scientific simulations is to find the
optimal hyperparameter setting 2’ with the least number of
iterations such that the error between simulation result S(2”)

is arbitrarily close to the observation obs, i.e.,

f(8(F"), 0bs) — f(S(Z"), 0bs) <4, &)
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where 7' is the best guess of our optimization method, &* is
the unknown global optimal setting of S, and § is a positive
constant.

To determine the convergence speed of computational steer-
ing, we need to estimate the total number of iterations required
to achieves § accuracy. Moreover, the general global optimiza-
tion problem is theoretically intractable without making any
assumptions to function f [43]. Without loss of generality,
we consider f to be Lipschitz continuous, i.e., the simulation
error f(-) cannot vary arbitrarily fast as we change #. The con-
vergence rate of our approach is dominated by the theoretical
bound of the Bayesian Optimization technique, which contains
two intertwined components: the surrogate component for
exploitation and the acquisition component for exploration.
Our approach follows the standard setting, where the Gaussian
process regression model is selected as the surrogate model
and the expected improvement (EI) function is used as the
acquisition model [44]. The convergence speed of BO has
been widely investigated [45], [46]. As stated by Bull in [45],
under certain hypothesis, the expected improvement-based BO
is shown to converge to the minimum of any function on its
Reproducing-Kernel Hilbert Space (RKHS) with rate O( ﬁ)
where v is a smooth measure of f and d is the number of
parameters to optimize over. Note that the smooth measure v
of f is assumed to be greater than one to make BO better
than random guesses. The time complexity of BO is O(n?),
where n is the number of historical trails, because BO solves
Cholesky decomposition problem for each iteration.

V. VALIDATION WITH REAL-WORLD APPLICATIONS

We develop a prototyped Co?Steer service that enables,
optimizes, and tracks steering-driven simulation-oriented sci-
entific workflows for model exploration and evaluation. This
prototype steering service is deployed on a virtual machine
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(VM) instance equipped with eight processors and 20GB
memory. We test C'o?Steer for model-based simulation in a
real-life large-scale scientific application, i.e., a WRF model
for climate research.

A. Case Study: Weather Research and Forecasting

The physical forecasting model of WRF-Solar is built on
the widely used community Weather Research and Forecast
(WRF) model [47] with an emphasis on forecasting solar and
wind energies, and contains numerous parameterized subgrid
processes that affect model performance, including cloud and
aerosol microphysics, radiative transfer, planetary boundary
layer, turbulence, convection, and land surface. The tunable
parameters involved in the model are shown in Table 1. We
first introduce the interested parameters, and then illustrate the
tuning effects of such parameters on the simulation quality. We
further perform a point-wise comparison between our work
and default settings and verify the convergence speed of our
solution.

1) Description of Physical Parameterizations and Impor-
tant Tunable Parameters: The WRF-Solar model is imple-
mented based on Thomas scheme [48], which contains various
sub-processes that simulate aerosol process, cloud droplet,
liquid water, etc,.

Particularly, in this case study, we investigate two parame-
ters, namely, relative dispersion and condensation rate, which
are accessible and tunable in representative processes that
simulate the cloud-to-rain autoconversion and effective radius
in liquid water clouds. The final output of this WRF model
emulates the evolution of solar irradiance volume in 90 days.

The effective radius r. is simulated based on a Gamma
distribution, which contains two degrees of freedom, i.e., shape
parameter and slope parameter.



LIST OF MODEL PARAMETERS

TABLE I

Symbol | Description Default Value Range Location/Variable Name
Ps Density of snow 100 kg/m? 50-200 kg/m? rho_s Line 88
Py Density of graupel 500 kg/m> [450, 700] kg/m> rho_g Line 89
pi Density of ice 890 kg/m3 [700, 900] kg/m> rho_i Line 90
a Mass power-law constant 0.069 0.0185-0.176 am_s Line 139
b Fall speed power-law constant 2 [1.9, 2.2] bm_s Line 140
Rain: 4854 0.15 R Line 149
o Fall speed power-law constant Ice:1847.5 336-1847.5 I Line 157
Snow:40 129.6-40 S
Graupel:442 351.2-442 1
Rain: 1 Fixed R Line 149
B Fall speed power-law constant ISCI::(.)iVZO. 55 822_350_5 51 EZ:IS Line 157
Graupel:0.89 0.37 - 0.89 bv_g
Rain: 195 Fixed
! Fall speed power-law constant Srowe 125 100125 fv_s Line 154
Graupel: 0 Fixed
. Sphere: 0.5 15% C_cube
¢ Capacitance of hydrometeor Plpates/aggregates: 0.15 | 15% C_sqrd
si: 0.05 15% within O - 1 Ef_si
Eys Collection efficiencies ]]:; %32. : 50 within 0 - 1 E?:;;
ri: 0.95 15% within O - 1 Ef_ri
Cloud:1E~6 C: [0.5E76, 2E~6] Line 220
. —6 . -6 —6 :
Do Lower limit of hydrometeor diameter 2221;520 (f) E~6. m SR [[152(%76}350554]3] EEZ ;ié
Graupel:250E %, m [200E6, 300E9] Line 223
Beon Condensation rate constant 1.15bE%3 [1.02E20, 1.67E%%] Line 78
€ Relative dispersion of cloud droplet spectrum | 0.1 0.01 to 1.4 Line 69

The relative dispersion e affects 7. through the product of

a dimensionless parameter S and the mean volume radius v,

ie.,

For cloud droplets, rain, cloud ice and snow, (3 is calculated

as:

r=03-v.

(1+2xe2)?/3

O v

(10)

11

800 1
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where ¢ is the relative dispersion. In consideration of all un-
known effects (e.g., turbulence-related processes), an empirical
condensation rate constant (.., is defined to emulate the
turbulence effect.

2) Tuning Effects on Simulation Quality: The simulation re-
sult of the WRF model is a time-series sequence that represents

0 20 40 60 80
Time (days)

Fig. 5. TIllustration of tuning effects of dispersion on simulation quality.

solar irradiance change in 90 days. The tuning effects of the 2600 N

relative dispersion on the volume of solar irradiance are plotted 2400 //’/

in Fig 5. We observe that the simulation result approaches 2200 l.r" e,
the observation data as the value of dispersion decreases. 2000 /
However, further decreasing the value of dispersion does not £ / ®
bring performance improvement. This is because some of the 1600 "'

simulation processes are skipped due to a negligible value of 101 o A ~/

relative dispersion. We would like to point out that the impact o] N % ¥

of relative dispersion is complicated, which strongly suggests 1200 4 ‘ ‘ ‘ ‘

the use of machine learning algorithms for parameter tuning. 0.0 01 "% epersonF 05

3) Methods in Comparison: We compare BO with another
heuristic method using random walk [49]. Instead of exploring
the search space as a compact real realm, random walk first

Fig. 6. Ilustration of effects of dispersion on the Mean Squared Error.
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transforms the searching space into grids, and then iteratively
explores the search space by moving a fixed length at a ran-
domly generated angle. We also compare BO and random walk
with the default setting to show the performance improvement
over manual tuning recommended by domain experts.

4) Evaluation Metrics: The execution of Co?Steer in
climate research involves both model-based simulations and
real-world observations. To evaluate the effectiveness of tun-
ing, we calculate Mean Squared Error (MSE), and consider
average cumulative regret that measures the convergence rate
of steering. In each iteration of online steering, the instanta-
neous “regret” at the ¢-th iteration is defined as the distance
from the current evaluated value f(S(Z;),obs) to the optima
f(S(Z*),0bs), i.e.,

r = f(S(%;),o0bs) — f(S(Z*), 0bs). (12)

The average accumulative regret over ¢ time-steps is calculated
as % > T

5) Experimental Setting: As BO-based tuning relies on
historical trails, we randomly generate two data points to
initialize the tuning process. For random walk, we select the
center point of the search area as the start point and set the
step size to be & 0.014 for relative dispersion and + 1.67E22
for condensation rate, respectively. In each iteration, the ran-
dom walk algorithm moves a single mosquito step for each
dimension with equal probability.

6) Results: The performance evaluation includes two parts:
1) evaluate the effectiveness of our approach in terms of MSE,
and ii) evaluate the efficiency of our approach in terms of
average accumulative regret.

We first plot the smallest MSE among historical tuning trails
in terms of iterations, as shown in Fig. 7. The performance
of the default setting forms a straight line and can be used
as the baseline. The random walk algorithm performs poorly
due to the limitation of iterations. The simulation error of our
approach drastically decreases with more iterations of steering,
and achieves a plateau much lower than random walk and the
default setting recommended by domain experts.

—8— GP-based BO
—#— Random Walk
— = Default setting

2600

24001

22001

2000 1

Error

1800 A

1600 -

1400 A

1200 A

10 15 25
Number of iterations

Fig. 7. Performance comparison in terms of MSE.

We further compare the convergence rate of our approach
with that of random walk in terms of average accumulative
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regret. Fig. 8 shows that our approach converges faster than
random walk.

—+— GP-based BO

25001 —< Random Walk

20001

1500 -

1000 A

Average cumulative regret

500 -

10 15 20 25
Number of iterations

Fig. 8. Convergence rate comparison in terms of average accumulative regret.

VI. CONCLUSION

In this paper, we developed a prototype steering as a service
auto-tuning framework, which consists of a set of APIs for
domain experts to execute, monitor, and interact with model-
based simulations. We conducted extensive experiments to
evaluate the efficiency and effectiveness of our parameter
tuning method with a real-life WRF model.

We plan to integrate other optimization methods into this
steering framework to address different hyperparameter tuning
problems. For scalability evaluation, we will integrate and
vary the scale of computing systems, the complexity of big
data workflow structures, the number of steerable parame-
ters, and the range of parameter values, and measure the
corresponding end-to-end workflow performance, execution
time of automated steering algorithms, and other system-
specific optimization objectives such as speedup, efficiency,
and workload balancing.
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