Engineering Applications of Artificial Intelligence 102 (2021) 104285

Contents lists available at ScienceDirect
Artificial
Intelligence

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

Exploratory analysis and performance prediction of big data transfer in n

Check for

High-performance Networks™
Dagqing Yun ?, Wuji Liu®, Chase Q. Wu ", Nageswara S.V. Rao ¢, Rajkumar Kettimuthu ¢

a Computer and Information Sciences Program, Harrisburg University, Harrisburg, PA 17101, USA

b Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA

¢ Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
d Data Science and Learning Division, Argonne National Laboratory, Lemont, IL 60439, USA

ARTICLE INFO ABSTRACT
Keywords: Big data transfer in large-scale scientific and business applications is increasingly carried out over connections
Performance prediction with guaranteed bandwidth provisioned in High-performance Networks (HPNs) via advance bandwidth

Latent effect
Machine learning
Big data transfer

reservation. Provisioning agents need to carefully schedule data transfer requests, compute network paths, and
allocate appropriate bandwidths. Such reserved bandwidths, if not fully utilized, could be simply wasted due to
the exclusive access during the approved time window, and cause extra overhead and complexity for resource
management. This calls for accurate performance prediction to reserve bandwidths that match actual needs
and avoid over-provisioning. We employ machine learning algorithms to predict big data transfer performance
based on extensive performance measurements collected in the past several years from data transfer tests using
different protocols and toolkits between various end sites on several real-life physical or emulated testbeds. We
first analyze the performance patterns in response to a comprehensive list of parameters in end-host systems,
network connections, and data transfer applications, which motivate the use of machine learning and also help
us identify the effects of latent factors. We then propose threshold- and clustering-based methods to eliminate
negative effects of latent factors in data preprocessing and build a robust performance predictor based on
customized domain-oriented loss functions. The performance of the proposed methods is verified by extensive
experiments using SVR and RFR as well as theoretical analysis of the general performance bound.

1. Introduction The predictability of end-to-end big data transfer performance
(mainly throughput) is critical to the scheduling and planning of

High-speed network connections with guaranteed bandwidth pro- HPN resources. An on-demand “bandwidth-guaranteed” connection,
visioned in High-performance Networks (HPNs) such as ESnet (ESnet, once allocated and granted, is used exclusively by the requesting user
2021), Internet2 (Internet2, 2021), XSEDE (XSEDE, 2021), and Google’s during the approved time window. Due to the nature of exclusive
SDN (Jain et al., 2013) are increasingly used for big data transfer in access, the reserved bandwidth, if not fully utilized, could be wasted

support of applications in various domains ranging from extreme-scale
scientific research to industrial big data analytics. Provisioning agents
(e.g., OSCARS Guok et al., 2006; OSCARS, 2021) typically ask users
to request bandwidth as needed in advance and then establish end-to-
end network paths with reserved bandwidths. Such network paths are
comprised of a sequence of end-host systems, edge switches/routers,
core switches/routers, and physical circuits or lightpaths, which are
typically time-shared among geographically distributed users, hence re-

during the approved time window, and cause extra overhead for HPN
resource management. Therefore, accurate performance prediction is
not only useful for end users to design and optimize their strategies for
satisfactory data transfer performance, e.g., determining what transport
methods to use and what parameter values to set (Yun et al., 2016), but
also important for HPN management to wisely schedule data transfer
requests for better resource utilization, e.g., rejecting requests with

sulting a high level of topological and temporal complexity in resource “over-claimed” bandwidth demands or granting an appropriate amount

sharing. Therefore, efficient resource scheduling is needed to cope with of bandwidths that could be actually utilized.

such complexity for bandwidth reservation to improve HPN resource However, predicting the performance of big data transfer in HPNs is
utilization and user satisfaction. challenging. Although the exclusive use of HPN connections minimizes

* Some preliminary results in this manuscript were presented at IFIP Networking 2020 (Yun et al., 2020) and IEEE ICC 2020 (Liu et al., 2020).
* Corresponding author.
E-mail addresses: dyun@harrisburgu.edu (D. Yun), wl87@njit.edu (W. Liu), chase.wu@njit.edu (C.Q. Wu), raons@ornl.gov (N.S.V. Rao), kettimut@anl.gov
(R. Kettimuthu).

https://doi.org/10.1016/j.engappai.2021.104285

Received 23 November 2020; Received in revised form 19 March 2021; Accepted 26 April 2021
Available online 4 May 2021

0952-1976/© 2021 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.engappai.2021.104285
http://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2021.104285&domain=pdf
mailto:dyun@harrisburgu.edu
mailto:wl87@njit.edu
mailto:chase.wu@njit.edu
mailto:raons@ornl.gov
mailto:kettimut@anl.gov
https://doi.org/10.1016/j.engappai.2021.104285

D. Yun, W. Liu, C.Q. Wu et al.

the impact of complex dynamics caused by some factors such as cross
traffic, many other elements involved in a typical big data transfer
process still affect the performance to a great extent, including (i)
configurations of end host systems, (ii) properties of network connec-
tions, and (iii) control parameters of data transfer methods and their
underlying transport protocols. It is generally very difficult to apply
an analytical approach to big data transfer performance prediction,
due to (i) the lack of accurate throughput performance models for
high-performance transport protocols such as UDT (Gu and Grossman,
2007), (ii) the complex composition of end-to-end HPN connections,
(iii) the complexities of end host configurations; (iv) the time-varying
workloads in end host systems; and (v) other latent variables that may
not even be accessible or measurable. Consequently, HPN technologies
and services have not been fully utilized for big data transfer regardless
of the continuous bandwidth upgrades in backbones.

Informally, we attempt to answer the following question: given
a sender host, a receiver host, and a dedicated connection between
them with (high) bandwidth reserved in advance, for a data trans-
fer application with an underlying transport protocol and its control
parameter values, what end-to-end application-level throughput perfor-
mance could be achieved? In turn, the answer to the above question
would help us determine how much bandwidth should be reserved and
allocated to the corresponding data transfer request such that we could
meet its bandwidth requirement without resource waste.

In this work, we develop an important capability of performance
prediction of memory-to-memory big data transfer for HPN manage-
ment to facilitate effective resource scheduling and planning. We focus
on memory-to-memory big data transfer because it is critical to a wide
range of scientific applications for various purposes such as collabora-
tive computational steering among geographically distributed users as
well as on-line analysis and visualization of scientific data generated
on remote computing facilities. Furthermore, in most of the practical
scenarios, disk-to-disk data transfer is bottlenecked by disk 1/0 speed,
which is typically much slower than the speed of HPN connections.
With memory-to-memory transfer, we are able to sustain high through-
put over HPN connections and examine the behaviors of transport
methods deployed on end hosts with heavy incoming/outgoing traffic.

We employ machine learning methods in both data preprocessing
and model training based on comprehensive performance measure-
ments that have been collected and accumulated in the past several
years. These measurements are recorded from a large number of big
data transfer tests that are conducted between various end sites on
several real-life physical or emulated HPN testbeds, using different data
transfer protocols and toolkits. These datasets carry very important
information about the patterns and behaviors of existing transport
methods in different HPN environments, and can be used to train
machine learning models to shed light on performance optimization
and prediction of big data transfer. Based on these performance mea-
surements, we first identify a comprehensive list of attributes involved
in a typical big data transfer process, including end host system con-
figurations, network connection properties, control parameters of data
transfer methods, and other unobservable latent factors. We then con-
duct qualitative and comparative exploratory analysis of the impacts
of these attributes on end-to-end transport performance observed by
end users at the application level. We propose latent effect elimination
methods and incorporate them into data preprocessing, and further
build a performance predictor using machine learning algorithms based
on customized domain-oriented loss functions. We conduct experiments
to illustrate the quality of our predictor and perform theoretical analy-
sis to understand the applicability of machine learning methods to data
transfer performance prediction in HPN environments.

We summarize our contributions in this work as follows.

« Exploratory Analysis. We conduct in-depth analysis of a com-
prehensive list of transport-related attributes to qualitatively
explain their impacts on big data transfer performance in HPNs.
Such analysis motivates the use of machine learning and further
provides insights into feature selection in later learning-based
performance prediction.

Engineering Applications of Artificial Intelligence 102 (2021) 104285

« Latent Effect Elimination. We show the (negative) effects of
latent factors on performance prediction based on comparative
experimental studies. Such latent factors are difficult to ob-
serve, predict, or estimate, and therefore may severely impair
the accuracy of performance prediction models. We propose
threshold- and clustering-based methods to eliminate such nega-
tive effects in data preprocessing and show that such elimination
significantly improves the efficiency of model training and the
accuracy of performance prediction.

Loss Function Customization. Inspired by the domain knowl-
edge of HPN resource management and the requirements of
big data transfer requests from end users, we design a “one-
side” e-insensitive loss function specifically for the performance
prediction of big data transfer to facilitate better bandwidth
resource utilization in HPNs.

We evaluate the effectiveness of the proposed latent effect elimina-
tion and domain-oriented loss customization methods by incorporating
them into the model training of a support vector regression (SVR)-
based performance predictor and conducting experiments for perfor-
mance evaluation in comparison with the default SVR method. We
further compare the SVR-based predictor with another representative
method, random forest regression (RFR). The experimental results show
that the proposed methods not only achieve more effective perfor-
mance predictions but also reduce resource waste. We also show that
the performance predictor built on the “critical” features selected
based on the exploratory analysis is statistically meaningful by de-
riving a performance bound with several domain-specific conditions
incorporated.

The rest of the paper is organized as follows. In Section 2, we con-
duct a brief survey of existing work in related fields. Section 3 describes
the problem of big data transfer performance prediction in HPNs. We
introduce the performance measurement dataset used in this work in
Section 4. An exploratory analysis of big data transfer performance is
conducted in Section 5. In Section 6, we detail the proposed methods
for threshold- and clustering-based latent effect elimination as well as
loss function customization. In Section 7, we evaluate the performance
of the proposed methods and provide a confidence analysis of our
machine learning-based performance prediction by deriving theoretical
performance bounds. We conclude our work and sketch a research plan
in Section 8.

2. Related work

The importance of provisioning bandwidth over HPN connections
to support big data movement over long distances has been well
recognized in both science and networking communities. Many efforts
have been devoted to achieving predictable transport performance and
efficient resource utilization. We conduct a survey of such existing
work.

2.1. Bandwidth scheduling

To support big data transfer, bandwidths need to be scheduled and
allocated over network connections in HPNs with time-varying exclu-
sive access. Bandwidth scheduling is usually formulated as optimization
problems typically of NP-completeness, and many heuristics have been
designed to optimize various objectives such as earliest available re-
source (Rao et al., 2006), minimal data transfer time (Lin and Wu,
2013), minimum end-to-end delay (Grimmell and Rao, 2003), minimal
number of path switches (Gangulay et al.,, 2004), maximal resource
utilization (Zuo et al., 2018), energy efficiency (Shu et al., 2013),
etc. Due to the heuristic property, the solutions based on such service
models have inherited limitations that can lead to inefficient resource
utilization and unsatisfactory transport performance, hence making
their applications and adoptions very limited in practice. Furthermore,
these methods always make an unrealistic assumption that the reserved

D. Yun, W. Liu, C.Q. Wu et al.

bandwidth be fully utilized, which may cause severe resource waste due
to bandwidth over-provisioning. This calls for an effective solution to
accurately predict the actual achievable performance of data transfer
over HPN connections with guaranteed bandwidth to overcome the
inherent limitations of advance bandwidth reservation.

2.2. Transport profiling and optimization

Many profiling-oriented toolkits have been developed for conduct-
ing data transfer tests to help understand and optimize transport per-
formance. For example, iperf2 (Iperf2, 2021) is a handy tool available
in most Linux distributions to run TCP tests for bandwidth estimation.
ESnet iperf3 (Iperf3, 2021) is a toolkit for actively measuring the
maximum achievable performance along an end-to-end network path
via continuous data transfer tests. It is a rewrite of iperf2 and provides
a rich set of functions and options for tuning various parameters of
TCP, UDP, and SCTP, including packet size, block size, buffer size, and
number of data streams. Similar to iperf2/3, TPG (Yun et al., 2015)
is a toolkit for conducting data transfer tests using UDT (UDT, 2021a),
another widely-used protocol (UDT, 2021b). In addition to the common
tunable parameters in iperf2/3, TPG enables tuning of UDP socket
options for UDT and other UDT-specific parameters (UDT, 2021c)
(e.g., UDT_MAXBW, as detailed in UDT, 2021c), and also supports
profiling tests over multiple NIC-to-NIC connections as a complement.

Some of these toolkits have been integrated into transport profiling
optimization (e.g., FastProf Yun et al., 2016) and data transfer advising
(e.g., ProbData Yun et al., 2019) as functional units to carry out data
transfer tests guided by various optimization methods such as stochastic
approximation (Spall, 2003) and time series analysis (Sapkota et al.,
2019). Performance measurements are collected using these toolkits
by measuring throughput in response to various attributes including
end host system configurations, network connection properties, control
parameter values, and other unobservable latent factors, and can be
utilized to train performance models of data transfer for prediction.

2.3. Performance modeling and characterization

There are numerous efforts devoted to understanding the behaviors
of transport protocols and modeling their throughput performance. For
example, Padhye et al. in Padhye et al. (2000) developed a through-
put model of TCP bulk data transfer corresponding to loss rate and
Round-Trip Time (RTT). A TCP throughput profile in response to RTT
and number of streams is presented in a more recent study (Rao
et al., 2017). Gu et al. proposed a throughput model of UDT proto-
col in Gu et al. (2004a) and used experimental results over 1Gbps
connections to show that UDT recovers much faster than TCP from a
loss event to reach 90% capacity of Long-Fat Network (LFN) connec-
tions. The model in Gu et al. (2004a) also shows that UDT achieves
stable asymptotic performance across different RTTs due to its fixed
control interval. Another experimental study of UDT (Liu et al., 2016),
however, shows that UDT appears to have certain instability and vari-
ation over 10 Gbps connections with different RTTs and between end
hosts with different configurations. These modeling and experimental
studies focus on performing rigorous analyses of the behaviors of
transport methods in response to the factors that represent real-time
network conditions (e.g., loss rate, available bandwidth, etc.) without
considering other attributes (e.g., control parameters) that also have
non-negligible impacts. Therefore, they have limited capability and
accuracy in predicting the performance of big data transfer in HPNs.

Instead of analytically modeling the behaviors of transport methods,
machine learning learns the performance patterns with respect to the
involved attributes based on historical data transfers and has great
potential for performance prediction of big data transfers in HPNs. For
example, He et al. in He et al. (2007) showed that a simple predictor
using moving average based on a few historical samples provides
accurate prediction under certain conditions. In Mirza et al. (2010),

Engineering Applications of Artificial Intelligence 102 (2021) 104285

Mirza et al. used a support vector regression method to predict TCP file
transfer performance in publicly shared Internet environments, using
path properties and file transfer sizes as the features. Liu et al. in Liu
et al. (2017) used regression analysis to explain the observed perfor-
mance patterns based on the log files of GridFTP-powered disk-to-disk
wide-area file transfers and empirically built a performance predictor
in Liu et al. (2018). Our work differs from the aforementioned efforts
in that (i) we focus on memory-to-memory data transfer over network
connections with guaranteed bandwidth up to several tens of Gbps, and
(ii) we identify a comprehensive list of attributes involved in a typical
data transfer process, including not only connection properties and
end host configurations, but also control parameters of data transfer
applications and their underlying protocols as well as unobservable
latent factors. We conduct an exploratory analysis of their impacts
on the end-to-end application-level throughput performance of big
data transfer and investigate the applicability of machine learning to
performance prediction in HPNs.

3. Problem statement

End-to-end data transfer is a complex process that involves various
components in both network segments and end hosts that may affect
application-level throughput. Among these components, some can be
accessed and controlled by user applications, including packet size,
block size, buffer size, and the number of data streams, while others are
mainly determined by the hardware and system (kernel) configurations
as well as network infrastructures, including CPU frequency, memory
size and bandwidth, bus speed, disk 1/0 speed, path MTU, RTT, link
bandwidth, and loss rate.

Although network connections reserved in advance with guaranteed
bandwidth have some relatively stable properties such as RTT and
connection loss rate, throughput performance is still largely affected
and limited by many other issues such as a mismatch of end host
capabilities and configurations (e.g., a faster sender host to a slower
receiver host Tierney, 2016), the use of an unsuitable data transfer
protocol (Yu et al., 2015), incorrect settings of CPU affinity (Hanford
et al., 2016) and IRQ balance/conflict (Leitao, 2009), and suboptimal
control parameter values (Yun et al., 2016). Due to the quantity and
complexity of these factors, it is dauntingly difficult to develop an
analytical approach to predict transport performance, especially in the
presence of latent factors such as system dynamics and competing
workloads on end hosts.

Given two end hosts (a sender and a receiver) and a network
connection with guaranteed bandwidth between them, our goal is to
predict the maximal achievable end-to-end throughput performance
of a given data transfer, using a specific data transfer tool and its
underlying transport protocol together with their corresponding control
parameter values. Such prediction can not only help end users under-
stand and optimize transport performance, but also facilitate effective
resource scheduling and planning for HPN management.

The end-to-end throughput performance y of a data transfer could
be expressed as a function f of a set of variables including: (i) end
host system configurations H, (ii) network connection properties P,
and (iii) control parameters C of data transfer methods and their
underlying transport protocols, which collectively form a feature vector
x = [H,P,C], i.e., y = f(x). The analytical form of f(x) is essentially
unknown (or too complicated to be accurately modeled). Let y; be
the throughput performance in response to x; as observed by end
users at the application level. We have y;, = f(x;) + ¢; + &(u;), where
y; is actually the “noise-corrupted” throughput observation, ¢; is an
ii.d. random variable reflecting the noise such as inherent system
dynamics and observation randomness, u; represents the unpredictable
and unobservable latent variables such as competing workloads on end
hosts and other unknowns, and &(u;) < 0 represents the collective
(negative) effects caused by u;.

D. Yun, W. Liu, C.Q. Wu et al.

The expected throughput performance y; of a big data transfer
during time interval 7 € [0, AT] is given by

/AT y,.(x,.,u,.(z),t) dr
— 0

! AT ’
where y;(x;,u;(r),?) is the throughput at time point ¢ in response to
a specific feature vector x; and latent variable u,;(r). Note that wu;(r)
is time-dependent and is often unmeasurable in practice. For a given
data transfer, we obtain y; by approximating it with its corresponding
observed throughput performance, i.e.,
_ Fx,u)
i= T
where F;(x;,u;) is the total size of the user payload delivered by a
data transfer with feature x; under latent effects of u; during the time
window [0, AT], and AT is the time period used for completing the
transfer. In this work, we take y; as the ground truth (i.e., let y; = ;)
and measure y; in unit of Mbps unless specifically indicated otherwise.
The attributes of the feature vector x have a large range of possible
values in a multidimensional parameter space, and the performance
measurement dataset 7 can be viewed as samples in this space. These
samples are used to generalize to the whole feature set and the per-
formance space for prediction purposes, and we use machine learning
to train such prediction models based on historical data transfers.
More specifically, we collect a training dataset 7 that consists of
n performance measurements of big data transfer tests, i.e., 7 =
{(X1, 1), (X0,), ..., (X,,, ¥,)}, where x; (i = 1,2, ...,n) is an instance of x
that collectively determines the corresponding throughput performance
y;. We propose to employ machine learning-based methods to estimate
y; based on 7 such that the predicted (estimated) value j; is close
enough to the true value y, for all training samples (x;,y;), i = 1,2,...,n,
and can be applied to arbitrary future cases with high accuracy. For
convenience, we tabulate the notations used in this work in Table 1,
some of which are also used in the loss function customization and
general performance bound analysis.

i

~

4. Performance measurements

We describe the acquisition of our throughput performance dataset
in this section.

4.1. Testbeds

Our throughput performance measurements are accumulated and
archived in the past several years based on numerous data transfer tests
conducted on several HPN testbeds, as depicted in Fig. 1 and briefly
described below.

« UM-Local: This testbed is established by back-to-back (Fig. 1(a))
connecting two regular workstations (dual-core, 2.9 GB RAM)
via 10 GigE NICs. Both ends (um.dragon and um.rabbit) are
installed with FC 17 Linux OS of 3.9.10 kernel.

NJIT-Local: This testbed is established between two back-to-
back connected (Fig. 1(a)) high-end servers (njit.tiger and
njit.rabbit), each with 12 cores, 16 GB RAM, CentOS 3.10 kernel,
and a 10 GigE NIC.

ANL-UC: This testbed consists of several physical network con-
nections of 2 ms, 100 ms, and 380 ms RTTs established between
three end hosts at Argonne National Laboratory (ANL) including
jlse (64 cores, 64GB RAM, CentOS 3.10 kernel, and 10 GigE
NIC), tubes (16 cores, 48 GB RAM, CentOS 2.6 kernel, and bound
4x10 GigE NIC), and tubes2 (64 cores, 128 GB RAM, CentOS 3.10
kernel, and bound 2x40 GigE NIC), and two identical virtual
end hosts at University of Chicago (UC) (g1903 and g1904 with
domain name midway) that are dynamically allocated (64 cores,
32GB RAM, CentOS 2.6 kernel, and 40 GigE NIC). The delay of

Engineering Applications of Artificial Intelligence 102 (2021) 104285

Table 1
List of notations used in the paper.
Notations Definitions
H Properties of end host
P Properties of network connection
C Control parameters
B Connection bandwidth (reserved in HPN)
X Feature vector, x = [H, P, (C]
X; The ith feature vector
y Data transfer performance
f(x) y as a function of x
Vi Data transfer performance w.r.t. x;
¥; The expected data transfer performance w.r.t. x;
Vi The observed data transfer performance w.r.t. x;
& ii.d. random noise in measurements
u Latent variable vector
u; The ith latent variable vector
E(uy) The collective (negative) effects caused by u;
T Performance measurement dataset
('} Performance measurements without latent effects
"} Performance measurements with latent effects
T Latent effect elimination threshold
0 Parameter set of prediction model
€ Error tolerance in the customized loss function
L(0,¢) The customized loss function
0 The predicted performance w.r.t. x; and 6
A, L, K All are positive constants

the 2 ms connection is mainly due to the physical distance, while
the 100 ms and 380 ms connections are engineered using a layer-
2 circuit within ESnet that starts from ANL, extends to the west
coast of the US, and loops back to UC (Fig. 1(b)).

UC-Local: This testbed is a 40Gbps local connection estab-
lished between those two dynamically allocated virtual end hosts
(g1903 and g1904) located at UC.

ORNL-E: This emulated testbed at Oak Ridge National Lab-
oratory (ORNL) as depicted in Fig. 1(c) consists of various
connections with different emulated RTTs between several pairs
of high-end workstations, each pair with identical hardware con-
figurations and 10 GigE NICs. Two 48-core workstations (bohr04
and bohr05, or b4 and b5, with Linux 3.10 kernel) are back-
to-back connected with 10 GigE NICs directly connected to two
IXIA emulator ports. Another two 32-core Linux workstations
(feynmanl and feynman2, or f1 and f2, with Linux 2.6 ker-
nel and CentOS 6.8 release) are connected via a back-to-back
fiber connection with two SONET OC192 ANUE emulator ports,
where E300 switches are used to convert between 10 GigE LAN-
PHY and WAN-PHY frames that are inter-operable with 0C192
frames. The peak capacity of this OC192 connection is 9.6 Gbps,
less than 10 Gbps of the 10 GigE connection. We use these emu-
lators to collect performance measurements for network connec-
tions with various RTTs of {0,11.8,22.6,45.6,91.6,183,366}
ms. The RTTs in the mid range represent US cross-country
connections, such as those provisioned via OSCARS (OSCARS,
2021) between Department of Energy sites, and the higher RTTs
represent transcontinental connections.

4.2. Data transfer protocols and toolkits

The data transfer tests are performed using two main data transfer
protocols, TCP and UDT. TCP is the de facto standard protocol on the
Internet with a number of variants; and UDT (Gu and Grossman, 2007)

D. Yun, W. Liu, C.Q. Wu et al.

back-to-back LAN

Engineering Applications of Artificial Intelligence 102 (2021) 104285

end host

end host

(a) Back-to-back connection

jlse, tubes,
tubes?2

2ms

midway

(1903, g1904)

(b) Short and long-haul physical connections

| bohr04 (b4) |~ 10GigE LAN
IXIA
: 10GigE,

| bohr04 (b5) Ih 10GigE LAN

10GigE
feynmanl (f1) WAN-PHY
feynman2 (f2)

0C192
(c) Connections with emulated delays

E300 10GE
LAN-WAN o

53
\Q%%»$

Fig. 1. Network structures of the testbeds used for data collection.

is a high-performance UDP-based data transfer protocol designated
for LFNs and is widely adopted in HPN community (UDT, 2021Db).
Part of the tests are conducted specifically for data collection pur-
poses and powered by a number of profiling-oriented toolkits including
iperf2 (Iperf2, 2021), ESnet iperf3 (Iperf3, 2021), and TPG (Yun et al.,
2015), while the rest are mainly the byproducts of the experimental
studies for transport profiling optimization (Yun et al., 2016, 2015) and
data transfer advising (Yun et al., 2019). All of these tests enable the
tuning of various control parameters of TCP and UDT.

4.3. Data acquisition and introduction

We use the toolkits in Section 4.2 to run big data transfer tests on
the testbeds in Section 4.1. The tests typically take time on the order of
minutes to complete, and in each test, a number of attributes and the
corresponding throughput performance are measured and recorded. A
large number of measurements have been collected and archived in the
past several years. The entire dataset consists of total 109,683 tabular
data records, 30,433 of which are performance measurements of TCP
tests and the rest (79,250 records) are performance measurements of
UDT tests. Each data record contains a list of attributes, where the
last one is the target attribute (i.e., performance) and the rest are
roughly classified in three categories: (i) end host configurations; (ii)
network connection properties; and (iii) data transfer protocols/toolkits
and their control parameters, as listed in Table 2. Note that the latent
attributes such as competing workloads on end hosts are omitted from
Table 2 because they are typically unobservable with the limited system
access granted to data transfer applications. We identify the effects of
such latent attributes based on comparative experimental studies in
Section 6.1.

5. Exploratory analysis

We perform exploratory analysis to investigate the impact of a com-
prehensive list of attributes on throughput performance of both TCP-
and UDT-based big data transfers over connections with guaranteed
bandwidth. Such analysis inspires feature selection in our machine
learning-based performance prediction, helps identify the negative ef-
fects of latent variables, and further motivates the proposed threshold-
and clustering-based latent effect eliminations for higher prediction
accuracy. In this section, we present some representative results to
illustrate the performance patterns in response to different attributes
(more details can be found in Yun et al., 2020; Liu et al., 2020).

Table 2
List of attributes in the data transfer performance dataset.
Categories Attributes Remarks
Identifier Record ID Integer, unique
Testbed Testbed String, nominal
CPU frequency Double, hertz
of processors Integer
End host # of cores per processor Integer
Memory size Integer, MB
Kernel buffer size Integer, byte
Bandwidth Double, Gbps
Connection RTT Double, millisecond
Loss rate Double, emulated

Toolkits and
protocols

Data transfer protocol
Data transfer toolkit

String, nominal
String, nominal

Frame size
Packet size
Payload size
Block size

Integer, byte
Integer, byte
Integer, byte
Integer, byte

TCP send buffer size Double, MB
Control parameters TCP receive buffer size Double, MB
UDP send buffer size Double, MB
UDP receive buffer size Double, MB
UDT send buffer size Double, MB
UDT receive buffer size Double, MB
Number of streams Integer
Data size Double, MB

Time duration Integer, second

Performance Throughput Double, Mbps

5.1. Effects of application-accessible parameters

We focus on a set C of parameters that are accessible and tunable in
data transfer applications (e.g., iperf3 Iperf3, 2021 and TPG Yun et al.,
2015) running in the user space, including packet size, block size, buffer
size, and number of streams. To illustrate the independent impact of a
parameter being examined, we empirically set other parameters in C
with values that do not cause significant interferences.

5.1.1. Packet size

Fig. 2 shows that a larger packet size typically increases the per-
formance since it carries more per-packet user payload and reduces
per-packet processing overhead (Chase et al., 2001). The increase
pattern is almost linear when other parameters such as buffer size
are fixed, which is consistent over connections with different RTTs on
different testbeds between different hosts using both UDT (Fig. 2(a))
and TCP (Fig. 2(b)) protocols. If the buffer size is fixed at a value that

D. Yun, W. Liu, C.Q. Wu et al.

10000 [

-6-22.6ms —%—45.6ms
8000 |-A-91.6ms —5—183ms
—#—366ms

—8-11.8ms

6000

4000

Perf. (Mbps)

UDT, TPG, 0-366ms,
10 Gbps, single stream,
ORNL-E (f1-f2)

0
1472 2972 4472 5972 7472 8972

Packet Size (byte)
(a) ORNL-E, 0-366 ms, 10 Gbps, UDT

Fig. 2. Performance vs. packet size. Results are collected on

10000 UDT, FastProf, 366ms,

9.6 Gbps, single stream,
8000 ORNL-E (feynmanI-feynman2)

6000

4000

Perf. (Mbps)

2000

0
0 250 500 750 1000

Buffer Size (MB)
(a) ORNL-E, 366 ms, 9.6 Gbps, UDT

Fig. 3. Performance vs. buffer size. Results are collected on

6000
5000
24000
i)
3 3000 UDT, TPG, 0-366ms,
= 10 Gbps, single stream,
L 2000 ORNL-E (bohr04-bohr05)

—+$—-0ms —B-11.8ms -©-22.6ms
10007 | 5¢-45.6ms 2-91.6ms —>— 183ms
—#—366ms

1 5 10 15 20
Block Size (Number of Payloads)

(a) ORNL-E, 0-366 ms, 10 Gbps, UDT

Engineering Applications of Artificial Intelligence 102 (2021) 104285

10000

8000

6000

4000

Perf. (Mbps)

TCP, Iperf3, 2ms,
10 Gbps, single stream,
ANL-UC (midway-tubes)

0
1480 2980 4480 5980 7480 8980

2000

Packet Size (byte)
(b) ANL-UC, 2ms, 10 Gbps, TCP

different testbeds with single-stream data transfer tests.

10000
8000
&,
< 6000
2
< 4000
&
TCP, ProbData, 2ms,
2000 10 Gbps, single stream,
0 ANL-UC (tubes2-midway)

125 5 7.5 10 125 15
Buffer Size (MB)

(b) ANL-UC, 2ms, 10 Gbps, TCP

different testbeds with single-stream data transfer tests.

5000 TCP, Iperf3, 100ms,
10 Gbps, single stream,

__ 4000 ANL-UC (midway-tubes)
a
2 3000
=)
2000
5)
[

1000 : !

0
1 4 8 12 16 20 24
Block Size (Number of Payloads)

(b) ANL-UC, 100 ms, 10 Gbps, TCP

Fig. 4. Performance vs. block size. Results are collected on different testbeds with single-stream data transfer tests.

limits the performance, e.g., 256 MB, for a 10 Gbps connection with a
200+ ms RTT, the performance still linearly increases with packet size,
but at a slower speed for a given packet size in comparison with other
cases where the buffer size is sufficiently large, as represented by the
366 ms curve in Fig. 2(a).

5.1.2. Buffer size

The UDT and TCP performance in response to buffer size in Fig. 3
shows a “piecewise” pattern.

In the region where buffer size is insufficiently small, e.g., less than
the bandwidth-delay product (BDP), TCP and UDT behave similarly and
the performance linearly increases with buffer size. The slope of such
increase varies across different hosts and connections, which can be
interpreted by comparing Figs. 3(a) and 3(b). The maximal achievable
performance in this region is mainly limited by buffer size and thus is
lower than the overall peak.

As buffer size increases up to be around the BDP, both TCP and UDT
reach the overall peak performance, and at this stage, other factors start

to impose limitation on the performance. The specific buffer size for
the maximal achievable performance is “agnostic” as other factors such
as RTTs play a more important role in such cases, the peak is usually
achieved around the BDP, as illustrated by both UDT and TCP results
in Fig. 3.

In the region where buffer size is larger than the BDP, TCP and UDT
significantly diverge and the performance may not stay at the peak after
buffer size increases beyond the BDP. Fig. 3(b) shows that TCP perfor-
mance stabilizes when buffer size exceeds the BDP. UDT performance
when bulffer size is around or larger than BDP is more complicated as
an overly large buffer may hurt the performance, as shown in Fig. 3(a),
which, compared with the TCP case, is counter-intuitive.

5.1.3. Block size

Fig. 4(a) shows the UDT performance increases with block size
given a sufficiently large buffer. The performance curves first show
a certain “concave” shape, indicating that the improvement brought

D. Yun, W. Liu, C.Q. Wu et al.

40000 UDT, TPG, 40 Gbps,
ANL-UC (tubes/tubes2-midway)

—~ 30000 —£-380ms
g -©-100ms
2 —B-2ms
<.20000
4
8

10000 f“":

1 23

4 5 6 7 8 910
Stream Number

(a) ANL-UC, 2-380ms, 40 Gbps, UDT

Engineering Applications of Artificial Intelligence 102 (2021) 104285

10000
8000
@ ——0ms —A—9Ims
= —B-11.8ms —>—183ms
2 6000 —©-22.6ms ——366ms
% —>—45ms
< 4000
(]
Ay
2000
TCP, Iperf2, 0-366ms, 10 Gbps,
ORNL-E (bohr04-bohr05)

0
1 23 45678 910
Stream Number

(b) ORNL-E, 0-366 ms, 10 Gbps, TCP

Fig. 5. Performance vs. number of streams. Results are collected on different testbeds with fixed-buffer data transfer tests.

10000 -©-single stream

—E-multiple streams

8000

60001>—e<§:5>9<g:<"

4000

Perf. (Mbps)

2000 UDT, TPG, 0-366ms, 10 Gbps,

ORNL-E (bohr04-bohr05)

0 11.822.6 45 91 183 366
RTT (ms)
(a) UDT

10000 g
8000

6000 TCP, Iperf2,
0-366ms, 10 Gbps,
4000 | ORNL-E (bohr04-bohr05)

Perf. (Mbps)

2
000 -©-single stream

—E-multiple streams

0 11.822.6 45 91 183 366
RTT (ms)
(b) TCP

Fig. 6. Maximal achievable performance of UDT and TCP vs. RTT. Results are collected from ORNL-E between hosts bohr04 and bohr05 using: (a) TPG UDT tests; and (b) iperf2

TCP tests.

by enlarging data block becomes marginal, and then stabilize at the
peak after block size reaches a certain point. The optimal block size is
also prone to other factors, but the performance pattern with respect to
block size appears to be consistent across network connections with dif-
ferent properties, e.g., RTT. Fig. 4(b) shows the TCP performance is not
significantly affected by block size, and the stabilized performance is
mainly determined by other factors such as buffer size (Section 5.1.2),
RTT (Section 5.2), and number of streams (Section 5.1.4).

5.1.4. Number of parallel streams

The UDT performance is expected to be insensitive to the number
of streams used in data transfer applications since it is not designed
for environments with high concurrency (Gu et al., 2004b). Fig. 5(a)
shows that when the end hosts are able to keep up with extra overhead
incurred by multi-stream UDT due to user-space buffer copying and
context switching, the change to the number of streams does not affect
the throughput significantly.

The effectiveness of using multi-stream TCP to achieve high
throughput over LFN connections is well recognized in the network
research community (Allcock et al., 2005). As shown in Fig. 5(b),
single-stream TCP achieves near-capacity throughput over connections
of short RTTs, but suffers over long-haul connections, where using
multiple streams helps achieve higher performance. The performance
increase pattern as the stream number increases is consistent over
connections with various RTTs given that the number of streams is not
excessively large to overwhelm the end hosts.

5.2. Effects of network connection properties

There are two important properties for a HPN connection: (i) the
reserved bandwidth, which sets a theoretical upper bound for the
achievable performance; and (ii) the connection delay, which affects
the performance to a large extent but in a different way from shared

similar connections between different pairs of end hosts

10000 T T |—| T T
ORNL-E,
2 7500 - NJIT-Local, bohr04-bohr05 |
& njit.tiger-njit.rabbit
2 5000]
5 ORNL-E,
A 2500 feynman1-feynman2 1

0

Fig. 7. Maximal achievable performance of UDT over four connections (RTT ~0 ms)
between different pairs of end hosts.

Internet connections. All else in ORNL-E being equal, Fig. 6 plots
the maximal achievable performance of UDT and TCP in response to
various emulated RTTs, and shows that the performance varies and
generally decreases as RTT increases. Comparing Figs. 6(a) and 6(b),
we observe that: (i) UDT is more stable than TCP across different RTTs;
(ii) TCP outperforms UDT for short RTTs but fails to keep up with UDT
for mid-range and long RTTs; (iii) using multiple streams helps TCP
outperform UDT for mid-range RTTs; and (iv) UDT outperforms TCP in
both single- and multi-stream cases for longer RTTs.

5.3. Effects of end hosts configurations

The complexities in host hardware/software configurations and
time-varying system loads and dynamics make it non-trivial to predict
big data transfer performance. They, together with connection prop-
erties, impose an upper bound on the achievable performance using
different transport methods. Fig. 7 compares the maximal achievable
performance of UDT over similar 10 Gbps connections established
between four different pairs of hosts, respectively. Fig. 8 shows the

D. Yun, W. Liu, C.Q. Wu et al.

identical connections between two pairs of end hosts

= 10000 ‘ ‘ " |CJORNL-E, feynman1-feynman2

2 7500 F [JORNL-E, bohr04-bohr05

5 o1

2 5000 |]

5 2500/]
0 L il ¥ 1 L Il 1 L il ¥ 1 L il ¥ 1 d L JL d

11.8 22.6 45.6 91.6 183 366
RTT (ms)

Fig. 8. Maximal achievable performance of UDT over connections with different RTTs
emulated between the same two pairs of end hosts.

performance difference over identical 10 Gbps connections with dif-
ferent delays emulated between the same two pairs of end hosts.
They both show that similar or identical connections between different
hosts may result in very different maximal performance achievable by
“near-exhaustive” tuning.

5.4. Remarks

The results presented in Sections 5.1, 5.2, and 5.3 suggest the use
of machine learning for performance prediction of big data transfer
in HPN environments. There exist clear patterns between throughput
performance y and the feature vector x, and such patterns are qual-
itatively consistent and stable across different connections established
between different end hosts on different testbeds, e.g., the performance
increases as the buffer size and the number of streams increase; the
maximum achievable performance decreases as the connection delay
increases. However, the hyper-dimensional parameter space makes it
very difficult, if not impossible, to analytically model these patterns
for performance prediction. For example, the slope of performance
increase with respect to buffer size increase may vary across different
connections; the optimal number of data streams may depend on not
only the connection properties but also the end system configurations.

6. Performance prediction

We first study the effects of latent factors on big data transfer
performance (Section 6.1), and then propose latent effect elimination
methods and conduct experiments to illustrate their effectiveness (Sec-
tion 6.2). We also develop a domain-oriented loss function for perfor-
mance prediction based on practical requirements of HPN management
(Section 6.3). We develop a performance predictor that incorporates
latent effect elimination and customized loss function.

10000

8000

6000

4000

Perf. (Mbps)

2000 B

0
25 35 45 55
Buffer Size (MB)
(a) ANL-UC

Engineering Applications of Artificial Intelligence 102 (2021) 104285
6.1. Effects of latent factors

There exist certain latent factors u that also have effects on transport
performance. Such latent effects, if not eliminated, may cause dissatis-
factory prediction results. To illustrate such latent effects, we compare
the TCP measurements of the same set of data transfer tests conducted
on two testbeds: (i) a production HPN (ANL-UC) where the hosts are
simultaneously shared by many users and latent effects are significant;
(ii) a local testbed (NJIT-Local) where the hosts are strictly controlled
and latent effects are mild. Fig. 9(b) shows that the performance pattern
is obvious under mild latent effects. In Fig. 9(a), under significant latent
effects, although the maximal achievable performance also follows an
obvious pattern, there are also a non-negligible number of data points
below the maximal ones for the same (or similar) buffer sizes. Similar
phenomenons are also observed in UDT tests shown in Fig. 10.

6.2. Elimination of latent effects

6.2.1. Rationale

As mentioned in Section 3, the throughput y of a data transfer is
determined by accessible variables in feature vector x, non-accessible
variables in latent factors u, and noise ¢, in some form of function y =
f(X)+¢+E&(u). The “normal” data points {y’} are the measurements from
environments with &(u) ~ 0 and the performance is mainly determined
by the feature vector x, i.e., 3 = f(x) + {. The “corrupted” data
points {y"} are the measurements from environments with &u) < 0
and the performance is determined by both x and latent factors in wu,
ie.,, y' = f(x) + ¢ + &u). In the presence of significant latent effects,
e.g., £&(u) < 0, the data points in the training set 7 are essentially
sampled from a combined set of both {)’} and {y”’} that are governed
by different functions, as collectively shown in Figs. 9 and 10.

For bandwidth scheduling, we wish to predict the maximum achiev-
able performance of a data transfer, and thus reserve a suitable amount
of bandwidth to meet the actual need while minimizing the resource
waste caused by over-provisioning. Ideally, the prediction model should
be trained completely with {y’}, since {y”} under significant £(u) may
result in high noise and large variances in 7, and thus impair predic-
tion quality. However, it is difficult to build an accurate performance
predictor without over-fitting if {)’} and {y"’} coexist in 7. In addition,
due to the access limit in the user space, most latent factors in u are
not directly observable. Due to the unpredictability and randomness
of u, it is practically infeasible to model or estimate &(u). Therefore,
we propose to identify and eliminate {)”} from 7 and then train our
prediction model based on 7.

6.2.2. Threshold-based latent effect elimination

When &(u) ~ 0, the performance measurements in response to a
given x; are data points sampled from a certain Gaussian distribution
with mean f(x,-) and variance o(x;), and o(x;) is bounded by some scale
determined by ¢;. In other words, significant performance differences

7500
+

-

6000

~
D
(e
(==}

+ 3000

Perf. (Mbps)

#
4

0 50 100 150 200
Buffer Size (KB)

(b) NJIT-Local

1500

Fig. 9. TCP performance vs. buffer size: (a) with latent effects; (b) without latent effects.

D. Yun, W. Liu, C.Q. Wu et al.

10000
T+ + 4t
~ 7500
£
= L
= 5000 £+ . 4?
&
2500 ++
+ + +
0+
o 1 2 3 4 5 6
Buffer Size (MB)
(a) ANL-UC

Engineering Applications of Artificial Intelligence 102 (2021) 104285

10000

8000

A D
(=2 -
(=]
oS O

Perf. (Mbps)

2000

0 100 200 300 400 500 600
Buffer Size (KB)

(b) NJIT-Local

Fig. 10. UDT performance vs. buffer size: (a) with latent effects; (b) without latent effects.

8000
6000
&
el
2 4000 -
= bk X x X X x %X
0 KK XWX %§ xﬂx"}ixx
[a¥ K X
2000 SE Ry R xRk
0
0 100 200 300 400 500

Buffer Size (MB)

Fig. 11. UDT performance in response to buffer size diverges.

observed in repeated measurements with the same set of values of x;
indicate the existence of {)”} that may diverge the observed perfor-
mance pattern. Fig. 11 presents such a case where the UDT performance
in response to buffer size diverges into two different patterns. Since our
goal is to avoid any excessive bandwidth reservation beyond actual
needs and meanwhile ensure that the reserved (i.e., predicted) band-
width is around the maximal achievable for a given x;, we propose
a simple threshold-based method to eliminate the latent effects in
performance prediction by excluding the “undermined” data points
whose performances are below a threshold r of the corresponding
achievable maximum. In particular, if there are multiple measurements
with the same set of values for a given x;, those with an observed
performance y; below 7 - max; {y;} (0 < z < 1) are discarded in data
preprocessing.

6.2.3. Clustering-based latent effect elimination

The function f(x) is bounded by the connection capacity and satis-
fies certain smoothness conditions. For example, we have
|f(x;) — f(X,)] < L-|x; —X,| for some constant L > 0 and arbitrary
but feasible x; and x,. When &(u) ~ 0, with a small variation to
x, the corresponding change in the observed performance should be
bounded as well. In other words, large differences observed in repeated
measurements with only small changes to x also indicate the existence
of {y""} caused by &(u). In such a case, if a sufficient number of data
points for different values of x are measured, performance divergence
may occur as exemplified in Fig. 11.

If there are no repeated measurements with the same values of x;,
the proposed threshold-based method is not applicable. In this case, we
propose to use a clustering-based method to divide {y’} and {y”} in T
into different groups such that the measurements in the same group are
more likely to be observed under similar conditions with similar &(u),
and then eliminate those that are mainly manifested by {y"}.

Particularly, we use the DBSCAN clustering algorithm (Ester et al.,
1996) to differentiate {y’} and {y”} in 7. DBSCAN splits the data

points in 7 into different clusters based on their densities. Tightly-
packed points are grouped together and those in low-density regions
are classified as performance measurements with severe latent effects.
Fig. 12 shows the effectiveness of DBSCAN in identifying {y"'} from 7.
Note that the results in Fig. 12(c) are based on the same dataset as in
Fig. 11. In addition, with the same dataset as in Fig. 12(c), we test three
other commonly-used clustering algorithms and present their results in
Fig. 13. We observe that K-means, Gaussian Mixture Model (GMM),
and Spectral Clustering are incapable of identifying {y”} from 7 as they
simply divide the data points in 7 into two groups with a roughly equal
radius measured in certain distance metrics such as Euclidean distance.
Similar results are also observed when such clustering is performed in
the kernel feature space, e.g., K-means in the sigmoid kernel space as
shown in Fig. 13(d).

6.3. Customized loss function

Different from traditional supervised learning methods (Mirza et al.,
2010; Liu et al., 2018) that seek an optimal label for a given feature
vector x;, for bandwidth scheduling, the goal is to build a model that
provides a loosened prediction. We customize the loss function of a
model based on practical requirements of bandwidth reservation in
HPNs, where the reserved bandwidth must match the actual demand of
a data transfer request with minimal over-provisioning. Therefore, the
optimal predicted performance y; for a given x; should lie within the
range of [y;, y;+¢], where € > 0 is a small tunable parameter and y; is the
ground truth of the achievable performance with respect to x;. In other
words, the reserved (predicted) bandwidth y; should be slightly higher
than what a data transfer can utilize to satisfy the user request and
meanwhile minimize resource waste. Inspired by the e-insensitive loss
used by SVR, we customize the e-insensitive loss function (Fig. 14(a))
by restricting the tolerable errors to be only positive. As shown in
Fig. 14(b), the customized loss function £(0, ¢) is parameterized by an
error tolerance ¢ as,

_(}A’f)_yi)s if JA’?_J’,' <0
0,if0<9? -y <e , @
W=y if 90—y, >e

L(b,e) =

where 0 is the parameter set of the prediction model. If the predicted
performance §? is larger than the true value y; but within the tolerable
range bounded by ¢, £(6,¢) = 0; otherwise, £(6,¢) is the distance
between $¢ and the tolerable ¢ loss range. Our objective is to minimize
L, ¢).

7. Performance evaluation

In this section, we evaluate the performance of the proposed meth-
ods. We first study the efficacy of the latent elimination methods
(Section 7.1), and then compare the prediction results of Support
Vector Regression (SVR) with and without using the domain-oriented

D. Yun, W. Liu, C.Q. Wu et al.

Perf.

0.2 x 0 ce x Cluster 0
° o Cluster 1
o . . . T
0 0.2 0.4 0.6 0.8 1
Buffer Size

(a) The same dataset is also used in Fig. 13

0.8
W 0.6
k%
0.4
0.2 % Cluster O
oA o Cluster 1
0 0.2 0.4 0.6 0.8 1
Buffer Size

(c) Based on the same dataset as in Fig. 11

Engineering Applications of Artificial Intelligence 102 (2021) 104285

1
0.8
. 0.6
o)
0.4
0.2 : x Cluster 0
0 ‘ ‘ ‘ o C}uster 1
0 0.2 0.4 0.6 0.8 1
Buffer Size
(b)

e
X
o % o% @c
©,00 o9
000 o
o8
8o 55 %
[} o @
% Cluster 0
o Cluster 1
0.6 0.8 1
Buffer Size

(d)

Fig. 12. Clustering results of DBSCAN (values are normalized). Cluster 0: “normal” data points; Cluster 1: data points with latent effects.

1
0.8
. 0.6
o)
0.4
0.2 ©o °o x Cluster 0
- ° o Cluster 1
0' L L L I
0 0.2 0.4 0.6 0.8 1
Buffer Size

(a) K-means

x Cluster 0
o Cluster 1
0 0.2 0.4 0.6 0.8 1
Buffer Size

(c) Spectral clustering

0.2 g¢ "xx X % x Cluster 0
0 X o Cluster 1
0 0.2 0.4 0.6 0.8 1
Buffer Size
(b) GMM

x Cluster 0
o Cluster 1
0 0.2 0.4 0.6 0.8 1
Buffer Size

(d) K-means in sigmoid kernel space

Fig. 13. Clustering results of different algorithms (values are normalized). Cluster 0: “normal” data points; Cluster 1: data points with latent effects.

customized the loss function in training (Section 7.2). We build a
performance predictor by integrating latent elimination into data pre-
processing and incorporating the customized loss function into model
training of SVR, and compare its prediction performance with another
representative method, Random Forest Regression (RFR) (Section 7.3).

10

We provide theoretical analysis of the confidence of prediction by
deriving general performance bounds (Section 7.4), which show that
y = f(x) is indeed a good estimate in a statistical sense with a high
probability. Note that all datasets used for both training and testing
are normalized.

D. Yun, W. Liu, C.Q. Wu et al.

L(0,¢)

e>0
0\ /
—€ 0 €

@10 —Yi

(a) e-insensitive loss

Fig. 14.
1.0 ‘
-»-None
7=0.80

08¢ :::r =0.90
w 0.6
[a)
(@]
wo4

02r UDT, TPG, 380ms, 10Gbps,

0 ANL-UC (tubes-midway)
0 5 10 15 20 25 30
APE (%)

(a) Threshold-based

Engineering Applications of Artificial Intelligence 102 (2021) 104285

e>0

L(0,€)

0 €
ﬂf*yi

(b) one-side e-insensitive loss

Loss functions.

1.0 SR
0.8 Cluster-based
uw 0.6
[m]
©]
wo4
0.2 UDT, TPG, 380ms, 10Gbps,
ANL-UC (tubes-midway)
0
0 5 10 15 20 25 30

APE (%)
(b) Clustering-based

Fig. 15. Performance prediction results using default SVR with and without latent effect elimination in data preprocessing.

1.0 ‘
None
7=0.80
087 :::T =0.90
u 0.6
[a)
(@]
wos4r
0.2 UDT, TPG, 380ms, 10Gbps,
ANL-UC (tubes-midway)
0 L T T T T
0 5 10 15 20 25 30
APE (%)

(a) Threshold-based

1.0 —
0.8 ~@- Cluster-based
uw 0.6
[m]
(®]
wo4
0.2 UDT, TPG, 380ms, 10Gbps,
ANL-UC (tubes-midway)
0 L n n n n
0 5 10 15 20 25 30

APE (%)
(b) Clustering-based

Fig. 16. Performance prediction results using customized SVR with and without latent effect elimination in data preprocessing.

7.1. Effectiveness of latent effect elimination

To illustrate the effectiveness of the proposed latent elimination
methods, we implement a predictor using SVR algorithm based on
the scikit-learn library (Pedregosa et al., 2011). We train this
predictor using performance measurements with and without elimi-
nating latent effects from the dataset using the methods proposed in
Section 6.2. In particular, this SVR-based predictor uses the Radial Basis
Function (RBF) kernel and the default and customized loss functions,
as presented in Section 6.3 with an error tolerance e = 0.05. It performs
grid search (with 5-fold cross validation) with a kernel coefficient
set {0.0001,0.001,0.01,0.1,0.2,0.5,0.6,0.9,10} and a regularization
parameter set {0.01,0.1,1.0,10}. In each case, the dataset is randomly
split for training (80%) and testing (20%), respectively. The prediction
accuracy of a test case is measured by the Absolute Percentage Error
(APE) defined as M %X 100%, where y; is the true value and J,
is the predicted valu(ya'. The performance measurements used here are

11

collected from the UDT data transfer tests performed over the 380 ms
connection on ANL-UC testbed under non-negligible latent effects that
are mainly caused by competing workloads on the end hosts (tubes and
midway) of the connection. Note that these hosts are simultaneously
used by other scientists for running their scientific computing jobs
during our data transfer experiments.

Figs. 15 and 16 plot the empirical cumulative distribution function
(ECDF) that are measured in terms of APE over all test cases with
and without data preprocessing using the proposed latent elimination
methods based on the SVR algorithm with (Fig. 15) and without
(Fig. 16) loss function customization. The plots marked with “None”
are obtained using the “raw” datasets without latent effect elimination
in data preprocessing.

In Fig. 15(a), we conduct performance prediction using the ANL-
UC 380 ms UDT dataset combined with necessary synthetic repeated
measurements. Without data preprocessing, a 15% APE is achieved
only around 55% of the time among all test cases. Incorporating the

o
o

D. Yun, W. Liu, C.Q. Wu et al.
T
[EE SVR without Loss Customization
(]

UDT, TPG, 380ms, 10Gbps,
ANL-UC (tubes-midway) SVR with Loss Customization

o]
o

60 - al

Ratio of Effective Prediction (%)

Raw Clustering Threshold (7= 0.80)

Datasets

Threshold (7= 0.90)

Fig. 17. Comparison of the ratio of effective prediction using SVR with and without
loss function customization.

threshold-based method for latent effect elimination into data prepro-
cessing, when 7 = 0.80, 26.7% of the test data points under latent effects
are removed and the prediction accuracy is significantly improved and
the 15% percentile of APE is increased to 77% (a 20%+ improvement);
when 7 = 0.90, 37.6% of the test data points under latent effects are
removed and the 15% percentile of APE is further increased to 81%. In
Fig. 15(b), we conduct performance prediction using the “raw” ANL-UC
380 ms UDT dataset, which shows that the prediction performance is
also significantly improved by incorporating the proposed clustering-
based latent effect elimination into data preprocessing. For example, a
15% percentile of APE is increased from 55% to 73%, and in this case,
34.9% of the test data points under latent effects are removed.

In Fig. 16, we conduct similar experiments using the same datasets
as in Fig. 15 but using the SVR algorithm with the customized loss
function stated in Eq. (1). Similar improvements on prediction perfor-
mance are observed as well. For example, as shown in Fig. 16(a), a 10%
percentile of APE is increased from 41% to 59% and 67% with = = 0.80
and 7 = 0.90, respectively.

7.2. Effectiveness of customized loss function

To illustrate the effectiveness of the proposed customized loss func-
tion in Eq. (1), we test SVR with and without customizing its loss
function based on the ANL-UC 380 ms UDT measurements as de-
scribed in Section 7.1. We count the number of effective predictions
(i.e., ; = y;) and calculate its corresponding ratio among all test
cases. As expected, Fig. 17 shows that, using the “raw” dataset without
preprocessing, SVR with loss function customization produces 20%
more effective performance predictions than without loss function cus-
tomization. With data preprocessing using the proposed clustering- and
threshold-based (with = € {0.80,0.90}) latent elimination methods,
such improvement in terms of effective prediction ratio is up to 40%.
The results in Fig. 17 show that using SVR with customized loss
function has a much higher chance to produce a performance prediction
that guarantees sufficient resource reservation to obtain the maximal
achievable performance of a data transfer request.

Although small over-provisioning is inevitable and necessary to ob-
tain the maximum achievable performance, significant resource waste
could be caused by predictions when J; > y;, and should be avoided
in practice. Therefore, we further measure the resource waste that
might be potentially caused by over-provisioning when y; > y; in
terms of absolute percentage error and present the ECDF plots in
Fig. 18. The results in Fig. 18 show that whether using the raw dataset
(Fig. 18(a)) or applying latent effect elimination using the proposed
methods (Figs. 18(b), 18(c), and 18(d)), SVR with customized loss
always performs better than without customized loss.

Note that the results in Figs. 17 and 18 are obtained with the same
sets of tuning parameter values for SVR as in Section 7.1.

12

Engineering Applications of Artificial Intelligence 102 (2021) 104285
7.3. Comparison between SVR and RFR

We compare the prediction performance of SVR with Random Forest
Regression (RFR). The RFR-based predictor is also implemented based
on the scikit-learn library (Pedregosa et al., 2011).

7.3.1. Settings

For the ANL-UC 380 ms UDT dataset, we apply the proposed
clustering-based latent effect elimination in data preprocessing and
train the SVR model with its default loss function replaced by the pro-
posed “one-side” e-insensitive loss function (Eq. (1)). Other parameter
settings for this SVR training remain the same as in Section 7.1.

In comparison, we train two RFR models using the same dataset
with and without applying the clustering-based latent elimination in
data processing. We perform grid search (with 5-fold cross validation)
to find the best hyperparameters for the RFR model with the set of
numbers of trees {100, 200, 300, 400, 500}, the set of maximum depths
of trees {5,10,15, 20, 25,30}, the set of minimum numbers of data
samples to split internal nodes of trees {2,5,10,15,100}, and the set
of minimum numbers of samples in leaf nodes of trees {1,2,5,10}.

7.3.2. Results

As shown in Fig. 19(a), using the raw dataset without latent effect
elimination, RFR performs poorly and the 10% percentile of APE is
achieved only around 25% of the time among all test cases, as denoted
by “RFR+None”. Using the raw dataset with the proposed clustering-
based latent elimination in data preprocessing, SVR and RFR perform
roughly equally well and the 10% percentile of APE is achieved 70%
of the time among all test cases, as denoted by “C-SVR+Clustering”
and “RFR+Clustering”, respectively. Taking a deeper look, as shown in
Fig. 19(b), SVR outperforms RFR in terms of effective prediction ratio.
It indicates that using SVR with customized loss is more likely to make
an effective prediction that meets the requirement of a data transfer
request, while incurring a comparable level of resource waste to other
methods such as RFR.

7.4. Theoretical confidence analysis

The throughput performance y(x) is a response variable with a
complex distribution Py, as it depends on many factors including:
(i) end host system configurations and dynamics, (ii) network con-
nection properties and randomness, and (iii) data transfer applications
and their underlying protocols (control parameter values, congestion
control mechanisms, etc.). We define the performance regression as the
following expectation

¥x) = E [yx)] = / YX) APy,

which can be estimated based on experimental performance measure-
ments y(x;,1*) at x; (k = 1,2,...,n) and time * (i = 1,2,...,n).
We have 0 < y(xk,tf.‘) < B due to the reserved bandwidth B of an
HPN connection. The performance estimate j(x,), given by its empirical
mean, is computed using measurements as

N
N 1
) = = Y y(xy 15,
M i3

at x,’s in the space of attribute vector x = [H, P, C]. Note that j(x,) is
computed completely based on performance measurements, and is in-
dicative of the actual performance at x;, whose unknown expected value
is y(x;) and is to be estimated. We show that j(x,) is indeed a good
estimate of y(x,), in terms of the estimation of expected error, and fur-
thermore, the prediction accuracy is improved with more performance
measurements, regardless of the underlying distribution P .

Consider an estimate g(-) of)(-) based on performance measure-
ments from a class 7 of unimodal functions bounded in [0, B], i.e., 0 <
g < B,g € F. The expected quadratic loss I(g) of the estimator g is

2
19 = [[e0-00] aPyg.

D. Yun, W. Liu, C.Q. Wu et al. Engineering Applications of Artificial Intelligence 102 (2021) 104285

1.0 1.0
=~ SVR without Loss Customization =~ SVR without Loss Customization
0.8 -@-SVR with Loss Customization 0.8 -@-SVR with Loss Customization
w 0.6 4 w 0.6
3 3
@ 0.4 / w04
0.2 UDT, TPG, 380ms, 10Gbps, | 0.2 UDT, TPG, 380ms, 10Gbps, 1
ANL-UC (tubes-midway) ANL-UC (tubes-midway)
0 0
0 5 10 15 20 25 30 0 5 10 15 20 25 30
APE (%) APE (%)
(a) No latent elimination (b) Clustering-based
1.0 w w w ‘ ‘ 1.0 ‘ ‘ ‘ ‘ ‘
- SVR without Loss Customization xSVR without Loss Customization
VR with L izati SVR with L Customizati
08 -@-SVR with Loss Customization 08 with Loss Customization |
w 0.6 w 0.6
o o
wo4 wo4
0.2 UDT, TPG, 380ms, 10Gbps, | 0.2 UDT, TPG, 380ms, 10Gbps, 1
ANL-UC (tubes-midway) ANL-UC (tubes-midway)
0 0
0 5 10 15 20 25 30 0 5 10 15 20 25 30
APE (%) APE (%)
(c) Threshold-based (T = 0.80) (d) Threshold-based (T = 0.90)

Fig. 18. Effective performance prediction results using SVR with and without loss function customization.

1.0 i i i 100 i i
- C-SVR + Clustering 2 E1: C-SVR + Clustering
RFR + None c [I2: RFR + None
0.8 RFR + Clustering -% 801 [I3: RFR + Clustering
kel
o L UDT, TPG, 380ms, 10Gbps, | |
Fal 0.6 a 60 ANL-UC (tubes-midway)
o 2
Yoa § 40 ,
pim
0.2 1 S 20 1
UDT, TPG, 380ms, 10Gbps, 2
0 ANL-UC (tubes-midway) g 0
0 5 10 15 20 25 30 1 2 3
APE (%) Test Case Index
(a) ECDF (b) Effective prediction ratio

Fig. 19. Comparison of the prediction results using SVR and RFR.

and the best estimator g* is given by I(g*) = min,cy I(g). The empirical and furthermore, according to Vapnik (1982), we have
error of g based on performance measurements is given by R
P {supher |I(h) - I(h)) > /1}

R v [1< NE 2
Ig)=- — Y lgx) = yxi. 19| ¢, A n- _ni
n;{nk;[k Kk] } SlSNl(K’L") n exp(4K2>’

. . A s . 1 '
and the best empirical estimator g* € F minimizes the empirical error, where N, (-, T, n) is the A-cover of T under d, norm.

ie. . L . . - o s .

’ Since 7 satisfies Lipschitz condition, suppose that its Lipschitz con-
I(g*) = rgjlel;} 1(g). stant is L > 0, we then have
Since j(x,) is the response mean at each attribute vector x,, it achieves N 1(%, I,n) < Ny(é F,n).

the minimal empirical error.)
Since both (-) and g(-) are bounded in [0, B], I(g) is also bounded Also, for any class M of real-valued functions, any § > 0 and any j € N,
in [0, K] with some K > 0. Let T = {I(g) | ¢ € F} be the set of loss we have WV (6, M,j) < N (6, M,) (Anthony and Bartlett, 2009). It

functions subject to 7. Based on the uniform convergence results of follows that
Vapnik—Chervonenkis theory (Vapnik, 1995) and its generalization (An- PI®) - I(g*) >24)
thony and Bartlett, 2009) and applications (e.g., Rao, 1999), we know A ni2
that, for some 4 > 0, < lgﬂw(ﬂ’r’") e exp <_m> ’
P{I(®) - 1(g") > 24} where N (4, F) is the A-cover of F under d,, norm. Due to the
<P {supher |I (h) =1 (h)‘ > A}, unimodality of functions in F, their total variation is upper-bounded

13

D. Yun, W. Liu, C.Q. Wu et al.

by 2B, which provides us the following upper bound (Anthony and
Bartlett, 2009),

A2

By using this bound, we obtain

14 4BKL logy (&
Nw(%,F,n)<2<—4K2L2n>(#)en(3)

PP —1(g")> A}

16K212\ 155) oea () ni
—) - n-exp <— > .
16K2

<36 (yE

The exponential term on the right-hand side decays faster in »n than
other terms, and hence for sufficiently large n, it would be smaller than
a given probability. In sum, the expected error I(y) of the response
mean is within A of the optimal error I(g*) with a probability that
increases with the number of performance measurements. This perfor-
mance guarantee is independent of the complexity of P,). Thus, j(x)
is a good estimate of the actual throughput performance achievable
at feature x independent of the underlying distribution, which is a
complex composition of the impacts of end host configurations and
dynamics, network properties and randomness, and data transport
methods as well as control parameters.

Note that in the derivation, since we only consider the fact that
the loss function I(g) € I varies slowly as the function value g(-)
varies, the specific loss function does not affect the bound analysis but
only its constant coefficients. For example, if considering quadratic loss
functions, then the Lipschitz constant is L = 2B and K = B2. Also note
that the actual coefficients in the derived bound depend on detailed
algebra and are not critical in terms of the uniform convergence.
The same is also true for the specific bounds of g(-) and y(-) since
one can easily derive covering number bounds for different classes of
functions that map to any bounded intervals with appropriate scaling
and shifting (Anthony and Bartlett, 2009).

8. Conclusion and future work

We conducted exploratory analysis of the impacts of a comprehen-
sive set of factors on the application-level performance of big data
transfer in HPNs based on extensive performance measurements col-
lected on real-life physical or emulated HPN testbeds. Based on such
analysis, we further identified latent factors and analyzed their negative
impacts on performance prediction through comparative experimental
studies. We proposed novel methods to eliminate the negative impacts
of latent factors, and incorporated them into data preprocessing to
improve training efficiency and prediction accuracy. We then selected
features and built a performance predictor using machine learning
methods with customized domain-oriented loss functions. The experi-
mental results show that, based on very noisy datasets, the proposed
latent effect elimination methods and the customized loss function
help achieve significantly better prediction performance in comparison
with other methods. We also investigated the feasibility and effec-
tiveness of learning-based performance prediction through theoretical
performance bound analysis.

We plan to synthetically study the effects of latent variables on
the performance of big data transfer and further improve prediction
accuracy. We will also explore the feasibility and efficacy of other
techniques such as deep learning and data fusion for performance pre-
diction in HPNs. It is also of our interest to derive tighter performance
bounds on the estimated loss and the sample size by incorporating other
HPN domain insights.

CRediT authorship contribution statement

Daqing Yun: Conceptualization, Methodology, Writing - original
draft, Formal analysis, Investigation. Wuji Liu: Methodology, Writing
- original draft, Visualization, Validation, Investigation, Data cura-
tion. Chase Q. Wu: Conceptualization, Methodology, Funding acqui-
sition, Supervision, Project administration, Writing - review & editing.

14

Engineering Applications of Artificial Intelligence 102 (2021) 104285

Nageswara S.V. Rao: Resources, Data curation, Writing - review &
editing. Rajkumar Kettimuthu: Resources, Data curation, Writing -
review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This research is sponsored by Harrisburg University, USA under
Grant No. PRG-2020-15 and by the U.S. National Science Foundation
under Grant No. CNS-1828123 with New Jersey Institute of Technol-

ogy.
References

Allcock, W., et al., 2005. The Globus striped GridFTP framework and server. In: Proc.
ACM/IEEE Conf. Supercomput. pp. 54-65.

Anthony, M., Bartlett, P., 2009. Neural Network Learning: Theoretical Foundations.
Cambridge University Press, New York, NY.

Chase, J., et al., 2001. End system optimizations for high-speed TCP. IEEE Commun.
Mag. 39 (4), 68-74.

ESnet, 2021. http://www.es.net.

Ester, M., et al., 1996. A density-based algorithm for discovering clusters in large spatial
databases with noise. In: Proc. Int. Conf. Knowl. Discovery Data Mine. pp. 226-231.

Gangulay, S., et al.,, 2004. Optimal routing for fast transfer of bulk data files in
time-varying networks. In: Proc. IEEE Int. Conf. Commun., Vol. 2. pp. 1182-1186.

Grimmell, W., Rao, N., 2003. On source-based route computation for quickest paths
under dynamic bandwidth constraints. Int. J. Found. Comput. Sci. 14 (3), 503-523.

Gu, Y., Grossman, R., 2007. UDT: UDP-based data transfer for high-speed wide area
networks. Comput. Netw. 51 (7), 1777-1799.

Gu, Y., et al., 2004. An analysis of AIMD algorithm with decreasing increases. In: Proc.
Int. Workshop Netw. Grid Appl.

Gu, Y., et al., 2004. Experiences in design and implementation of a high performance
transport protocol. In: Proc. ACM/IEEE Conf. Supercomput. pp. 22-35.

Guok, C., et al., 2006. Intra and interdomain circuit provisioning using the OSCARS
reservation system. In: Proc. 3rd Int. Conf. on Broadband Commun., Netw. Syst.

Hanford, N., et al., 2016. Improving network performance on multicore systems: Impact
of core affinities on high throughput flows. Future Gener. Comput. Syst. 56,
277-283.

He, Q., et al.,, 2007. On the predictability of large transfer TCP throughput. Comput.
Netw. 51 (14), 3959-3977.

Internet2, 2021. http://www.internet2.edu.

Iperf2, 2021. https://bit.ly/2WmMPhN.

Iperf3, 2021. https://github.com/esnet/iperf.

Jain, S., et al., 2013. B4: Experience with a globally-deployed software defined WAN.
SIGCOMM Comput. Commun. Rev. 43 (4), 3-14.

Leitao, B., 2009. Tuning 10 Gb network cards on Linux. In: Proc. Linux Symp. pp.
169-184.

Lin, Y., Wu, Q., 2013. Complexity analysis and algorithm design for advance bandwidth
scheduling in dedicated networks. IEEE Trans. Netw. 21 (1), 14-27.

Liu, Q., et al., 2016. Measurement-based performance profiles and dynamics of UDT
over dedicated connections. In: Proc. Int. Conf. Netw. Protocols.

Liu, Z., et al., 2017. Explaining wide area data transfer performance. In: Proc. Int.
Symp. High-Perform. Parallel Distrib. Comput. pp. 167-178.

Liu, Z., et al., 2018. Building a wide-area data transfer performance predictor: An

empirical study. In: Proc. Int. Conf. Machine Learn. for Netw.

W., et al, 2020. On performance prediction of big data transfer in

high-performance networks. In: Proc. IEEE Int. Conf. Commun.

Mirza, M., et al., 2010. A machine learning approach to TCP throughput prediction.
IEEE Trans. Netw. 18 (4), 1026-1039.

OSCARS, 2021. https://bit.ly/20u9qVe.

Padhye, J., et al., 2000. Modeling TCP reno performance: A simple model and its
empirical validation. IEEE Trans. Netw. 8 (2), 133-145.

Pedregosa, F., et al., 2011. Scikit-learn: Machine learning in Python. J. Mach. Learn.
Res. 12, 2825-2830.

Rao, N., 1999. Simple sample bound for feedforward sigmoid networks with bounded
weights. Neurocomputing 29 (1), 115-122.

Rao, N., et al., 2006. Control plane for advance bandwidth scheduling in ultra
high-speed networks. In: Proc. 25th Int. Conf. Comput. Commun.

Rao, N, et al., 2017. TCP throughput profiles using measurements over dedicated
connections. In: Proc. Int. Symp. High-Perform. Parallel Distrib. Comput. pp.
193-204.

Liu,

http://refhub.elsevier.com/S0952-1976(21)00132-9/sb2
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb2
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb2
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb3
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb3
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb3
http://www.es.net
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb7
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb7
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb7
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb8
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb8
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb8
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb12
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb12
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb12
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb12
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb12
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb13
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb13
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb13
http://www.internet2.edu
https://bit.ly/2WmMPhN
https://github.com/esnet/iperf
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb17
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb17
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb17
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb19
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb19
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb19
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb24
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb24
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb24
https://bit.ly/2Ou9qVe
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb26
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb26
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb26
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb27
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb27
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb27
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb28
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb28
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb28

D. Yun, W. Liu, C.Q. Wu et al.

Sapkota, H., et al., 2019. Time series analysis for efficient sample transfers. In: Proc.
Workshop Syst. Netw. Telemetry Analytics. pp. 11-18.

Shu, T., et al., 2013. Advance bandwidth reservation for energy efficiency in high-
performance networks. In: Proc. 38th IEEE Conf. Local Comput. Netw. pp.
541-548.

Spall, J., 2003. Introduction to Stochastic Search and Optimization: Estimation,
Simulation, and Control. John Wiley & Sons, Inc., Hoboken, NJ.

Tierney, B., 2016. Advantages of TCP pacing using FQ. https://bit.ly/30g4Q00.

UDT, 2021a. UDT: UDP-based data transfer. http://udt.sourceforge.net/.

UDT, 2021b. UDT-powered projects. https://bit.ly/2JZtA7n.

UDT, 2021c. UDT socket options. https://bit.ly/2VOo0BsJ.

Vapnik, V., 1982. Estimation of Dependences Based on Empirical Data. Springer-Verlag,
New York, NY.

Vapnik, V., 1995. The Nature of Statistical Learning Theory. Springer-Verlag, Berlin,
Heidelberg.

15

Engineering Applications of Artificial Intelligence 102 (2021) 104285

XSEDE, 2021. https://www.xsede.org/.

Yu, S., et al., 2015. Comparative analysis of big data transfer protocols in an
international high-speed network. In: Proc. 34th IEEE Int. Perf. Comput. Commun.
Conf.

Yun, D., et al, 2015. Profiling transport performance for big data transfer over
dedicated channels. In: Proc. Int. Conf. Comput., Netw. Commun. pp. 858-862.
Yun, D., et al., 2016. Profiling optimization for big data transfer over dedicated

channels. In: Proc. 25th Int. Conf. Comput. Commun. Netw.

Yun, D., et al., 2019. Advising big data transfer over dedicated connections based on
profiling optimization. IEEE Trans. Netw. 27 (6), 2280-2293.

Yun, D., et al., 2020. Performance prediction of big data transfer through experimental
analysis and machine learning. In: Proc. IFIP Networking Conf. pp. 181-189.
Zuo, L., et al., 2018. Bandwidth reservation strategies for scheduling maximization in

dedicated networks. IEEE Trans. Netw. Serv. Manag. 15 (2), 544-554.

http://refhub.elsevier.com/S0952-1976(21)00132-9/sb33
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb33
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb33
https://bit.ly/30g4QO0
http://udt.sourceforge.net/
https://bit.ly/2JZtA7n
https://bit.ly/2VOoBsJ
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb38
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb38
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb38
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb39
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb39
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb39
https://www.xsede.org/
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb44
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb44
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb44
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb46
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb46
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb46

	Exploratory analysis and performance prediction of big data transfer in High-performance Networks
	Introduction
	Related work
	Bandwidth scheduling
	Transport profiling and optimization
	Performance modeling and characterization

	Problem statement
	Performance measurements
	Testbeds
	Data transfer protocols and toolkits
	Data acquisition and introduction

	Exploratory analysis
	Effects of application-accessible parameters
	Packet size
	Buffer size
	Block size
	Number of parallel streams

	Effects of network connection properties
	Effects of end hosts configurations
	Remarks

	Performance prediction
	Effects of latent factors
	Elimination of latent effects
	Rationale
	Threshold-based latent effect elimination
	Clustering-based latent effect elimination

	Customized loss function

	Performance evaluation
	Effectiveness of latent effect elimination
	Effectiveness of customized loss function
	Comparison between SVR and RFR
	Settings
	Results

	Theoretical confidence analysis

	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

