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A B S T R A C T

Big data transfer in large-scale scientific and business applications is increasingly carried out over connections
with guaranteed bandwidth provisioned in High-performance Networks (HPNs) via advance bandwidth
reservation. Provisioning agents need to carefully schedule data transfer requests, compute network paths, and
allocate appropriate bandwidths. Such reserved bandwidths, if not fully utilized, could be simply wasted due to
the exclusive access during the approved time window, and cause extra overhead and complexity for resource
management. This calls for accurate performance prediction to reserve bandwidths that match actual needs
and avoid over-provisioning. We employ machine learning algorithms to predict big data transfer performance
based on extensive performance measurements collected in the past several years from data transfer tests using
different protocols and toolkits between various end sites on several real-life physical or emulated testbeds. We
first analyze the performance patterns in response to a comprehensive list of parameters in end-host systems,
network connections, and data transfer applications, which motivate the use of machine learning and also help
us identify the effects of latent factors. We then propose threshold- and clustering-based methods to eliminate
negative effects of latent factors in data preprocessing and build a robust performance predictor based on
customized domain-oriented loss functions. The performance of the proposed methods is verified by extensive
experiments using SVR and RFR as well as theoretical analysis of the general performance bound.
1. Introduction

High-speed network connections with guaranteed bandwidth pro-
isioned in High-performance Networks (HPNs) such as ESnet (ESnet,
021), Internet2 (Internet2, 2021), XSEDE (XSEDE, 2021), and Google’s
DN (Jain et al., 2013) are increasingly used for big data transfer in
upport of applications in various domains ranging from extreme-scale
cientific research to industrial big data analytics. Provisioning agents
e.g., OSCARS Guok et al., 2006; OSCARS, 2021) typically ask users
o request bandwidth as needed in advance and then establish end-to-
nd network paths with reserved bandwidths. Such network paths are
omprised of a sequence of end-host systems, edge switches/routers,
ore switches/routers, and physical circuits or lightpaths, which are
ypically time-shared among geographically distributed users, hence re-
ulting a high level of topological and temporal complexity in resource
haring. Therefore, efficient resource scheduling is needed to cope with
uch complexity for bandwidth reservation to improve HPN resource
tilization and user satisfaction.

✩ Some preliminary results in this manuscript were presented at IFIP Networking 2020 (Yun et al., 2020) and IEEE ICC 2020 (Liu et al., 2020).
∗ Corresponding author.
E-mail addresses: dyun@harrisburgu.edu (D. Yun), wl87@njit.edu (W. Liu), chase.wu@njit.edu (C.Q. Wu), raons@ornl.gov (N.S.V. Rao), kettimut@anl.gov

(R. Kettimuthu).

The predictability of end-to-end big data transfer performance
(mainly throughput) is critical to the scheduling and planning of
HPN resources. An on-demand ‘‘bandwidth-guaranteed’’ connection,
once allocated and granted, is used exclusively by the requesting user
during the approved time window. Due to the nature of exclusive
access, the reserved bandwidth, if not fully utilized, could be wasted
during the approved time window, and cause extra overhead for HPN
resource management. Therefore, accurate performance prediction is
not only useful for end users to design and optimize their strategies for
satisfactory data transfer performance, e.g., determining what transport
methods to use and what parameter values to set (Yun et al., 2016), but
also important for HPN management to wisely schedule data transfer
requests for better resource utilization, e.g., rejecting requests with
‘‘over-claimed’’ bandwidth demands or granting an appropriate amount
of bandwidths that could be actually utilized.

However, predicting the performance of big data transfer in HPNs is
challenging. Although the exclusive use of HPN connections minimizes
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the impact of complex dynamics caused by some factors such as cross
traffic, many other elements involved in a typical big data transfer
process still affect the performance to a great extent, including (i)
configurations of end host systems, (ii) properties of network connec-
tions, and (iii) control parameters of data transfer methods and their
underlying transport protocols. It is generally very difficult to apply
an analytical approach to big data transfer performance prediction,
due to (i) the lack of accurate throughput performance models for
high-performance transport protocols such as UDT (Gu and Grossman,
2007), (ii) the complex composition of end-to-end HPN connections,
(iii) the complexities of end host configurations; (iv) the time-varying
workloads in end host systems; and (v) other latent variables that may
not even be accessible or measurable. Consequently, HPN technologies
and services have not been fully utilized for big data transfer regardless
of the continuous bandwidth upgrades in backbones.

Informally, we attempt to answer the following question: given
a sender host, a receiver host, and a dedicated connection between
them with (high) bandwidth reserved in advance, for a data trans-
fer application with an underlying transport protocol and its control
parameter values, what end-to-end application-level throughput perfor-
mance could be achieved? In turn, the answer to the above question
would help us determine how much bandwidth should be reserved and
allocated to the corresponding data transfer request such that we could
meet its bandwidth requirement without resource waste.

In this work, we develop an important capability of performance
prediction of memory-to-memory big data transfer for HPN manage-
ment to facilitate effective resource scheduling and planning. We focus
on memory-to-memory big data transfer because it is critical to a wide
range of scientific applications for various purposes such as collabora-
tive computational steering among geographically distributed users as
well as on-line analysis and visualization of scientific data generated
on remote computing facilities. Furthermore, in most of the practical
scenarios, disk-to-disk data transfer is bottlenecked by disk I/O speed,
which is typically much slower than the speed of HPN connections.
With memory-to-memory transfer, we are able to sustain high through-
put over HPN connections and examine the behaviors of transport
methods deployed on end hosts with heavy incoming/outgoing traffic.

We employ machine learning methods in both data preprocessing
and model training based on comprehensive performance measure-
ments that have been collected and accumulated in the past several
years. These measurements are recorded from a large number of big
data transfer tests that are conducted between various end sites on
several real-life physical or emulated HPN testbeds, using different data
transfer protocols and toolkits. These datasets carry very important
information about the patterns and behaviors of existing transport
methods in different HPN environments, and can be used to train
machine learning models to shed light on performance optimization
and prediction of big data transfer. Based on these performance mea-
surements, we first identify a comprehensive list of attributes involved
in a typical big data transfer process, including end host system con-
figurations, network connection properties, control parameters of data
transfer methods, and other unobservable latent factors. We then con-
duct qualitative and comparative exploratory analysis of the impacts
of these attributes on end-to-end transport performance observed by
end users at the application level. We propose latent effect elimination
methods and incorporate them into data preprocessing, and further
build a performance predictor using machine learning algorithms based
on customized domain-oriented loss functions. We conduct experiments
to illustrate the quality of our predictor and perform theoretical analy-
sis to understand the applicability of machine learning methods to data
transfer performance prediction in HPN environments.

We summarize our contributions in this work as follows.

∙ Exploratory Analysis. We conduct in-depth analysis of a com-
prehensive list of transport-related attributes to qualitatively
explain their impacts on big data transfer performance in HPNs.
Such analysis motivates the use of machine learning and further
provides insights into feature selection in later learning-based
performance prediction.
2

∙ Latent Effect Elimination. We show the (negative) effects of
latent factors on performance prediction based on comparative
experimental studies. Such latent factors are difficult to ob-
serve, predict, or estimate, and therefore may severely impair
the accuracy of performance prediction models. We propose
threshold- and clustering-based methods to eliminate such nega-
tive effects in data preprocessing and show that such elimination
significantly improves the efficiency of model training and the
accuracy of performance prediction.

∙ Loss Function Customization. Inspired by the domain knowl-
edge of HPN resource management and the requirements of
big data transfer requests from end users, we design a ‘‘one-
side’’ 𝜖-insensitive loss function specifically for the performance
prediction of big data transfer to facilitate better bandwidth
resource utilization in HPNs.

We evaluate the effectiveness of the proposed latent effect elimina-
tion and domain-oriented loss customization methods by incorporating
them into the model training of a support vector regression (SVR)-
based performance predictor and conducting experiments for perfor-
mance evaluation in comparison with the default SVR method. We
further compare the SVR-based predictor with another representative
method, random forest regression (RFR). The experimental results show
that the proposed methods not only achieve more effective perfor-
mance predictions but also reduce resource waste. We also show that
the performance predictor built on the ‘‘critical’’ features selected
based on the exploratory analysis is statistically meaningful by de-
riving a performance bound with several domain-specific conditions
incorporated.

The rest of the paper is organized as follows. In Section 2, we con-
duct a brief survey of existing work in related fields. Section 3 describes
the problem of big data transfer performance prediction in HPNs. We
introduce the performance measurement dataset used in this work in
Section 4. An exploratory analysis of big data transfer performance is
conducted in Section 5. In Section 6, we detail the proposed methods
for threshold- and clustering-based latent effect elimination as well as
loss function customization. In Section 7, we evaluate the performance
of the proposed methods and provide a confidence analysis of our
machine learning-based performance prediction by deriving theoretical
performance bounds. We conclude our work and sketch a research plan
in Section 8.

2. Related work

The importance of provisioning bandwidth over HPN connections
to support big data movement over long distances has been well
recognized in both science and networking communities. Many efforts
have been devoted to achieving predictable transport performance and
efficient resource utilization. We conduct a survey of such existing
work.

2.1. Bandwidth scheduling

To support big data transfer, bandwidths need to be scheduled and
allocated over network connections in HPNs with time-varying exclu-
sive access. Bandwidth scheduling is usually formulated as optimization
problems typically of NP-completeness, and many heuristics have been
designed to optimize various objectives such as earliest available re-
source (Rao et al., 2006), minimal data transfer time (Lin and Wu,
2013), minimum end-to-end delay (Grimmell and Rao, 2003), minimal
number of path switches (Gangulay et al., 2004), maximal resource
utilization (Zuo et al., 2018), energy efficiency (Shu et al., 2013),
etc. Due to the heuristic property, the solutions based on such service
models have inherited limitations that can lead to inefficient resource
utilization and unsatisfactory transport performance, hence making
their applications and adoptions very limited in practice. Furthermore,
these methods always make an unrealistic assumption that the reserved
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bandwidth be fully utilized, which may cause severe resource waste due
to bandwidth over-provisioning. This calls for an effective solution to
accurately predict the actual achievable performance of data transfer
over HPN connections with guaranteed bandwidth to overcome the
inherent limitations of advance bandwidth reservation.

2.2. Transport profiling and optimization

Many profiling-oriented toolkits have been developed for conduct-
ing data transfer tests to help understand and optimize transport per-
formance. For example, iperf2 (Iperf2, 2021) is a handy tool available
in most Linux distributions to run TCP tests for bandwidth estimation.
ESnet iperf3 (Iperf3, 2021) is a toolkit for actively measuring the
maximum achievable performance along an end-to-end network path
via continuous data transfer tests. It is a rewrite of iperf2 and provides
a rich set of functions and options for tuning various parameters of
TCP, UDP, and SCTP, including packet size, block size, buffer size, and
number of data streams. Similar to iperf2/3, TPG (Yun et al., 2015)
is a toolkit for conducting data transfer tests using UDT (UDT, 2021a),
nother widely-used protocol (UDT, 2021b). In addition to the common
unable parameters in iperf2/3, TPG enables tuning of UDP socket
ptions for UDT and other UDT-specific parameters (UDT, 2021c)
e.g., UDT_MAXBW, as detailed in UDT, 2021c), and also supports
rofiling tests over multiple NIC-to-NIC connections as a complement.
Some of these toolkits have been integrated into transport profiling

ptimization (e.g., FastProf Yun et al., 2016) and data transfer advising
e.g., ProbData Yun et al., 2019) as functional units to carry out data
ransfer tests guided by various optimization methods such as stochastic
pproximation (Spall, 2003) and time series analysis (Sapkota et al.,
019). Performance measurements are collected using these toolkits
y measuring throughput in response to various attributes including
nd host system configurations, network connection properties, control
arameter values, and other unobservable latent factors, and can be
tilized to train performance models of data transfer for prediction.

.3. Performance modeling and characterization

There are numerous efforts devoted to understanding the behaviors
f transport protocols and modeling their throughput performance. For
xample, Padhye et al. in Padhye et al. (2000) developed a through-
ut model of TCP bulk data transfer corresponding to loss rate and
ound-Trip Time (RTT). A TCP throughput profile in response to RTT
nd number of streams is presented in a more recent study (Rao
t al., 2017). Gu et al. proposed a throughput model of UDT proto-
ol in Gu et al. (2004a) and used experimental results over 1Gbps
connections to show that UDT recovers much faster than TCP from a
loss event to reach 90% capacity of Long-Fat Network (LFN) connec-
tions. The model in Gu et al. (2004a) also shows that UDT achieves
stable asymptotic performance across different RTTs due to its fixed
control interval. Another experimental study of UDT (Liu et al., 2016),
however, shows that UDT appears to have certain instability and vari-
ation over 10Gbps connections with different RTTs and between end
hosts with different configurations. These modeling and experimental
studies focus on performing rigorous analyses of the behaviors of
transport methods in response to the factors that represent real-time
network conditions (e.g., loss rate, available bandwidth, etc.) without
considering other attributes (e.g., control parameters) that also have
non-negligible impacts. Therefore, they have limited capability and
accuracy in predicting the performance of big data transfer in HPNs.

Instead of analytically modeling the behaviors of transport methods,
machine learning learns the performance patterns with respect to the
involved attributes based on historical data transfers and has great
potential for performance prediction of big data transfers in HPNs. For
example, He et al. in He et al. (2007) showed that a simple predictor
using moving average based on a few historical samples provides

accurate prediction under certain conditions. In Mirza et al. (2010),

3

Mirza et al. used a support vector regression method to predict TCP file
transfer performance in publicly shared Internet environments, using
path properties and file transfer sizes as the features. Liu et al. in Liu
et al. (2017) used regression analysis to explain the observed perfor-
mance patterns based on the log files of GridFTP-powered disk-to-disk
wide-area file transfers and empirically built a performance predictor
in Liu et al. (2018). Our work differs from the aforementioned efforts
in that (i) we focus on memory-to-memory data transfer over network
connections with guaranteed bandwidth up to several tens of Gbps, and
(ii) we identify a comprehensive list of attributes involved in a typical
data transfer process, including not only connection properties and
end host configurations, but also control parameters of data transfer
applications and their underlying protocols as well as unobservable
latent factors. We conduct an exploratory analysis of their impacts
on the end-to-end application-level throughput performance of big
data transfer and investigate the applicability of machine learning to
performance prediction in HPNs.

3. Problem statement

End-to-end data transfer is a complex process that involves various
components in both network segments and end hosts that may affect
application-level throughput. Among these components, some can be
accessed and controlled by user applications, including packet size,
block size, buffer size, and the number of data streams, while others are
mainly determined by the hardware and system (kernel) configurations
as well as network infrastructures, including CPU frequency, memory
size and bandwidth, bus speed, disk I/O speed, path MTU, RTT, link
bandwidth, and loss rate.

Although network connections reserved in advance with guaranteed
bandwidth have some relatively stable properties such as RTT and
connection loss rate, throughput performance is still largely affected
and limited by many other issues such as a mismatch of end host
capabilities and configurations (e.g., a faster sender host to a slower
receiver host Tierney, 2016), the use of an unsuitable data transfer
protocol (Yu et al., 2015), incorrect settings of CPU affinity (Hanford
et al., 2016) and IRQ balance/conflict (Leitao, 2009), and suboptimal
control parameter values (Yun et al., 2016). Due to the quantity and
complexity of these factors, it is dauntingly difficult to develop an
analytical approach to predict transport performance, especially in the
presence of latent factors such as system dynamics and competing
workloads on end hosts.

Given two end hosts (a sender and a receiver) and a network
connection with guaranteed bandwidth between them, our goal is to
predict the maximal achievable end-to-end throughput performance
of a given data transfer, using a specific data transfer tool and its
underlying transport protocol together with their corresponding control
parameter values. Such prediction can not only help end users under-
stand and optimize transport performance, but also facilitate effective
resource scheduling and planning for HPN management.

The end-to-end throughput performance 𝑦 of a data transfer could
be expressed as a function 𝑓 of a set of variables including: (i) end
host system configurations , (ii) network connection properties  ,
and (iii) control parameters  of data transfer methods and their
underlying transport protocols, which collectively form a feature vector
𝐱 = [, ,], i.e., 𝑦 = 𝑓 (𝐱). The analytical form of 𝑓 (𝐱) is essentially
unknown (or too complicated to be accurately modeled). Let 𝑦𝑖 be
the throughput performance in response to 𝐱𝑖 as observed by end
users at the application level. We have 𝑦𝑖 = 𝑓 (𝐱𝑖) + 𝜁𝑖 + 𝜉(𝐮𝑖), where
𝑦𝑖 is actually the ‘‘noise-corrupted’’ throughput observation, 𝜁𝑖 is an
i.i.d. random variable reflecting the noise such as inherent system
dynamics and observation randomness, 𝐮𝑖 represents the unpredictable
and unobservable latent variables such as competing workloads on end
hosts and other unknowns, and 𝜉(𝐮𝑖) < 0 represents the collective

(negative) effects caused by 𝐮𝑖.
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The expected throughput performance 𝑦𝑖 of a big data transfer
during time interval 𝑡 ∈ [0, 𝛥𝑇 ] is given by

𝑦𝑖 =
∫

𝛥𝑇

0
𝑦𝑖
(

𝐱𝑖,𝐮𝑖(𝑡), 𝑡
)

𝑑𝑡

𝛥𝑇
,

where 𝑦𝑖(𝐱𝑖,𝐮𝑖(𝑡), 𝑡) is the throughput at time point 𝑡 in response to
a specific feature vector 𝐱𝑖 and latent variable 𝐮𝑖(𝑡). Note that 𝐮𝑖(𝑡)
s time-dependent and is often unmeasurable in practice. For a given
ata transfer, we obtain 𝑦𝑖 by approximating it with its corresponding
observed throughput performance, i.e.,

𝑦𝑖 ≈ 𝑦̃𝑖 =
𝐹𝑖(𝐱𝑖,𝐮𝑖)

𝛥𝑇
,

where 𝐹𝑖(𝐱𝑖,𝐮𝑖) is the total size of the user payload delivered by a
data transfer with feature 𝐱𝑖 under latent effects of 𝐮𝑖 during the time
indow [0, 𝛥𝑇 ], and 𝛥𝑇 is the time period used for completing the
ransfer. In this work, we take 𝑦𝑖 as the ground truth (i.e., let 𝑦𝑖 = 𝑦̃𝑖)
and measure 𝑦𝑖 in unit of Mbps unless specifically indicated otherwise.

The attributes of the feature vector 𝐱 have a large range of possible
values in a multidimensional parameter space, and the performance
measurement dataset  can be viewed as samples in this space. These
samples are used to generalize to the whole feature set and the per-
formance space for prediction purposes, and we use machine learning
to train such prediction models based on historical data transfers.
More specifically, we collect a training dataset  that consists of
𝑛 performance measurements of big data transfer tests, i.e.,  =
{(𝐱1, 𝑦1), (𝐱2, 𝑦2),… , (𝐱𝑛, 𝑦𝑛)}, where 𝐱𝑖 (𝑖 = 1, 2,… , 𝑛) is an instance of 𝐱
that collectively determines the corresponding throughput performance
𝑦𝑖. We propose to employ machine learning-based methods to estimate
𝑦𝑖 based on  such that the predicted (estimated) value 𝑦̂𝑖 is close
enough to the true value 𝑦𝑖 for all training samples (𝐱𝑖, 𝑦𝑖), 𝑖 = 1, 2,… , 𝑛,
and can be applied to arbitrary future cases with high accuracy. For
convenience, we tabulate the notations used in this work in Table 1,
some of which are also used in the loss function customization and
general performance bound analysis.

4. Performance measurements

We describe the acquisition of our throughput performance dataset
in this section.

4.1. Testbeds

Our throughput performance measurements are accumulated and
archived in the past several years based on numerous data transfer tests
conducted on several HPN testbeds, as depicted in Fig. 1 and briefly
described below.

∙ UM-Local: This testbed is established by back-to-back (Fig. 1(a))
connecting two regular workstations (dual-core, 2.9GB RAM)
via 10GigE NICs. Both ends (um.dragon and um.rabbit) are
installed with FC 17 Linux OS of 3.9.10 kernel.

∙ NJIT-Local: This testbed is established between two back-to-
back connected (Fig. 1(a)) high-end servers (njit.tiger and
njit.rabbit), each with 12 cores, 16GB RAM, CentOS 3.10 kernel,
and a 10GigE NIC.

∙ ANL-UC: This testbed consists of several physical network con-
nections of 2 ms, 100 ms, and 380 ms RTTs established between
three end hosts at Argonne National Laboratory (ANL) including
jlse (64 cores, 64GB RAM, CentOS 3.10 kernel, and 10GigE
NIC), tubes (16 cores, 48GB RAM, CentOS 2.6 kernel, and bound
4x10GigE NIC), and tubes2 (64 cores, 128GB RAM, CentOS 3.10
kernel, and bound 2x40GigE NIC), and two identical virtual
end hosts at University of Chicago (UC) (g1903 and g1904 with
domain name midway) that are dynamically allocated (64 cores,

32GB RAM, CentOS 2.6 kernel, and 40GigE NIC). The delay of

4

Table 1
List of notations used in the paper.
Notations Definitions

 Properties of end host

 Properties of network connection

 Control parameters

𝐵 Connection bandwidth (reserved in HPN)

𝐱 Feature vector, 𝐱 = [, ,]

𝐱𝑖 The 𝑖th feature vector

𝑦 Data transfer performance

𝑓 (𝐱) 𝑦 as a function of 𝐱

𝑦𝑖 Data transfer performance w.r.t. 𝐱𝑖
𝑦𝑖 The expected data transfer performance w.r.t. 𝐱𝑖
𝑦̃𝑖 The observed data transfer performance w.r.t. 𝐱𝑖
𝜁𝑖 i.i.d. random noise in measurements

𝐮 Latent variable vector

𝐮𝑖 The 𝑖th latent variable vector

𝜉(𝐮𝑖) The collective (negative) effects caused by 𝐮𝑖
 Performance measurement dataset

{𝑦′} Performance measurements without latent effects

{𝑦′′} Performance measurements with latent effects

𝜏 Latent effect elimination threshold

𝜃 Parameter set of prediction model

𝜖 Error tolerance in the customized loss function

(𝜃, 𝜖) The customized loss function

𝑦̂𝜃𝑖 The predicted performance w.r.t. 𝐱𝑖 and 𝜃

𝜆, 𝐿, 𝐾 All are positive constants

the 2 ms connection is mainly due to the physical distance, while
the 100 ms and 380 ms connections are engineered using a layer-
2 circuit within ESnet that starts from ANL, extends to the west
coast of the US, and loops back to UC (Fig. 1(b)).

∙ UC-Local: This testbed is a 40Gbps local connection estab-
lished between those two dynamically allocated virtual end hosts
(g1903 and g1904) located at UC.

∙ ORNL-E: This emulated testbed at Oak Ridge National Lab-
oratory (ORNL) as depicted in Fig. 1(c) consists of various
connections with different emulated RTTs between several pairs
of high-end workstations, each pair with identical hardware con-
figurations and 10GigE NICs. Two 48-core workstations (bohr04
and bohr05, or b4 and b5, with Linux 3.10 kernel) are back-
to-back connected with 10GigE NICs directly connected to two
IXIA emulator ports. Another two 32-core Linux workstations
(feynman1 and feynman2, or f1 and f2, with Linux 2.6 ker-
nel and CentOS 6.8 release) are connected via a back-to-back
fiber connection with two SONET OC192 ANUE emulator ports,
where E300 switches are used to convert between 10GigE LAN-
PHY and WAN-PHY frames that are inter-operable with OC192
frames. The peak capacity of this OC192 connection is 9.6Gbps,
less than 10Gbps of the 10GigE connection. We use these emu-
lators to collect performance measurements for network connec-
tions with various RTTs of {0, 11.8, 22.6, 45.6, 91.6, 183, 366}
ms. The RTTs in the mid range represent US cross-country
connections, such as those provisioned via OSCARS (OSCARS,
2021) between Department of Energy sites, and the higher RTTs
represent transcontinental connections.

4.2. Data transfer protocols and toolkits

The data transfer tests are performed using two main data transfer
protocols, TCP and UDT. TCP is the de facto standard protocol on the
Internet with a number of variants; and UDT (Gu and Grossman, 2007)
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is a high-performance UDP-based data transfer protocol designated
for LFNs and is widely adopted in HPN community (UDT, 2021b).
art of the tests are conducted specifically for data collection pur-
oses and powered by a number of profiling-oriented toolkits including
perf2 (Iperf2, 2021), ESnet iperf3 (Iperf3, 2021), and TPG (Yun et al.,
015), while the rest are mainly the byproducts of the experimental
tudies for transport profiling optimization (Yun et al., 2016, 2015) and
ata transfer advising (Yun et al., 2019). All of these tests enable the
uning of various control parameters of TCP and UDT.

.3. Data acquisition and introduction

We use the toolkits in Section 4.2 to run big data transfer tests on
he testbeds in Section 4.1. The tests typically take time on the order of
inutes to complete, and in each test, a number of attributes and the
orresponding throughput performance are measured and recorded. A
arge number of measurements have been collected and archived in the
ast several years. The entire dataset consists of total 109,683 tabular
ata records, 30,433 of which are performance measurements of TCP
ests and the rest (79,250 records) are performance measurements of
DT tests. Each data record contains a list of attributes, where the
ast one is the target attribute (i.e., performance) and the rest are
oughly classified in three categories: (i) end host configurations; (ii)
etwork connection properties; and (iii) data transfer protocols/toolkits
nd their control parameters, as listed in Table 2. Note that the latent
ttributes such as competing workloads on end hosts are omitted from
able 2 because they are typically unobservable with the limited system
ccess granted to data transfer applications. We identify the effects of
uch latent attributes based on comparative experimental studies in
ection 6.1.

. Exploratory analysis

We perform exploratory analysis to investigate the impact of a com-
rehensive list of attributes on throughput performance of both TCP-
nd UDT-based big data transfers over connections with guaranteed
andwidth. Such analysis inspires feature selection in our machine
earning-based performance prediction, helps identify the negative ef-
ects of latent variables, and further motivates the proposed threshold-
nd clustering-based latent effect eliminations for higher prediction
ccuracy. In this section, we present some representative results to
llustrate the performance patterns in response to different attributes
more details can be found in Yun et al., 2020; Liu et al., 2020).
 a

5

Table 2
List of attributes in the data transfer performance dataset.
Categories Attributes Remarks

Identifier Record ID Integer, unique

Testbed Testbed String, nominal

End host

CPU frequency Double, hertz
# of processors Integer
# of cores per processor Integer
Memory size Integer, MB
Kernel buffer size Integer, byte

Connection
Bandwidth Double, Gbps
RTT Double, millisecond
Loss rate Double, emulated

Toolkits and Data transfer protocol String, nominal
protocols Data transfer toolkit String, nominal

Control parameters

Frame size Integer, byte
Packet size Integer, byte
Payload size Integer, byte
Block size Integer, byte
TCP send buffer size Double, MB
TCP receive buffer size Double, MB
UDP send buffer size Double, MB
UDP receive buffer size Double, MB
UDT send buffer size Double, MB
UDT receive buffer size Double, MB
Number of streams Integer
Data size Double, MB
Time duration Integer, second

Performance Throughput Double, Mbps

5.1. Effects of application-accessible parameters

We focus on a set  of parameters that are accessible and tunable in
ata transfer applications (e.g., iperf3 Iperf3, 2021 and TPG Yun et al.,
015) running in the user space, including packet size, block size, buffer
ize, and number of streams. To illustrate the independent impact of a
arameter being examined, we empirically set other parameters in 
ith values that do not cause significant interferences.

.1.1. Packet size
Fig. 2 shows that a larger packet size typically increases the per-

ormance since it carries more per-packet user payload and reduces
er-packet processing overhead (Chase et al., 2001). The increase
attern is almost linear when other parameters such as buffer size
re fixed, which is consistent over connections with different RTTs on
ifferent testbeds between different hosts using both UDT (Fig. 2(a))
nd TCP (Fig. 2(b)) protocols. If the buffer size is fixed at a value that
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Fig. 2. Performance vs. packet size. Results are collected on different testbeds with single-stream data transfer tests.
Fig. 3. Performance vs. buffer size. Results are collected on different testbeds with single-stream data transfer tests.
Fig. 4. Performance vs. block size. Results are collected on different testbeds with single-stream data transfer tests.
g

imits the performance, e.g., 256MB, for a 10Gbps connection with a
00+ms RTT, the performance still linearly increases with packet size,
ut at a slower speed for a given packet size in comparison with other
ases where the buffer size is sufficiently large, as represented by the
66 ms curve in Fig. 2(a).

.1.2. Buffer size
The UDT and TCP performance in response to buffer size in Fig. 3

hows a ‘‘piecewise’’ pattern.
In the region where buffer size is insufficiently small, e.g., less than

he bandwidth-delay product (BDP), TCP and UDT behave similarly and
he performance linearly increases with buffer size. The slope of such
ncrease varies across different hosts and connections, which can be
nterpreted by comparing Figs. 3(a) and 3(b). The maximal achievable
erformance in this region is mainly limited by buffer size and thus is
ower than the overall peak.
As buffer size increases up to be around the BDP, both TCP and UDT

each the overall peak performance, and at this stage, other factors start
 a

6

to impose limitation on the performance. The specific buffer size for
the maximal achievable performance is ‘‘agnostic’’ as other factors such
as RTTs play a more important role in such cases, the peak is usually
achieved around the BDP, as illustrated by both UDT and TCP results
in Fig. 3.

In the region where buffer size is larger than the BDP, TCP and UDT
significantly diverge and the performance may not stay at the peak after
buffer size increases beyond the BDP. Fig. 3(b) shows that TCP perfor-
mance stabilizes when buffer size exceeds the BDP. UDT performance
when buffer size is around or larger than BDP is more complicated as
an overly large buffer may hurt the performance, as shown in Fig. 3(a),
which, compared with the TCP case, is counter-intuitive.

5.1.3. Block size
Fig. 4(a) shows the UDT performance increases with block size

iven a sufficiently large buffer. The performance curves first show
certain ‘‘concave’’ shape, indicating that the improvement brought
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Fig. 5. Performance vs. number of streams. Results are collected on different testbeds with fixed-buffer data transfer tests.
Fig. 6. Maximal achievable performance of UDT and TCP vs. RTT. Results are collected from ORNL-E between hosts bohr04 and bohr05 using: (a) TPG UDT tests; and (b) iperf2
TCP tests.
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by enlarging data block becomes marginal, and then stabilize at the
peak after block size reaches a certain point. The optimal block size is
also prone to other factors, but the performance pattern with respect to
block size appears to be consistent across network connections with dif-
ferent properties, e.g., RTT. Fig. 4(b) shows the TCP performance is not
significantly affected by block size, and the stabilized performance is
mainly determined by other factors such as buffer size (Section 5.1.2),
RTT (Section 5.2), and number of streams (Section 5.1.4).

5.1.4. Number of parallel streams
The UDT performance is expected to be insensitive to the number

of streams used in data transfer applications since it is not designed
for environments with high concurrency (Gu et al., 2004b). Fig. 5(a)
shows that when the end hosts are able to keep up with extra overhead
incurred by multi-stream UDT due to user-space buffer copying and
context switching, the change to the number of streams does not affect
the throughput significantly.

The effectiveness of using multi-stream TCP to achieve high
throughput over LFN connections is well recognized in the network
research community (Allcock et al., 2005). As shown in Fig. 5(b),
single-stream TCP achieves near-capacity throughput over connections
of short RTTs, but suffers over long-haul connections, where using
multiple streams helps achieve higher performance. The performance
increase pattern as the stream number increases is consistent over
connections with various RTTs given that the number of streams is not
excessively large to overwhelm the end hosts.

5.2. Effects of network connection properties

There are two important properties for a HPN connection: (i) the
reserved bandwidth, which sets a theoretical upper bound for the
achievable performance; and (ii) the connection delay, which affects
the performance to a large extent but in a different way from shared
7

Fig. 7. Maximal achievable performance of UDT over four connections (RTT ≈0 ms)
between different pairs of end hosts.

Internet connections. All else in ORNL-E being equal, Fig. 6 plots
he maximal achievable performance of UDT and TCP in response to
arious emulated RTTs, and shows that the performance varies and
enerally decreases as RTT increases. Comparing Figs. 6(a) and 6(b),
e observe that: (i) UDT is more stable than TCP across different RTTs;
ii) TCP outperforms UDT for short RTTs but fails to keep up with UDT
or mid-range and long RTTs; (iii) using multiple streams helps TCP
utperform UDT for mid-range RTTs; and (iv) UDT outperforms TCP in
oth single- and multi-stream cases for longer RTTs.

.3. Effects of end hosts configurations

The complexities in host hardware/software configurations and
ime-varying system loads and dynamics make it non-trivial to predict
ig data transfer performance. They, together with connection prop-
rties, impose an upper bound on the achievable performance using
ifferent transport methods. Fig. 7 compares the maximal achievable
performance of UDT over similar 10Gbps connections established
between four different pairs of hosts, respectively. Fig. 8 shows the
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Fig. 8. Maximal achievable performance of UDT over connections with different RTTs
emulated between the same two pairs of end hosts.

performance difference over identical 10Gbps connections with dif-
ferent delays emulated between the same two pairs of end hosts.
They both show that similar or identical connections between different
hosts may result in very different maximal performance achievable by
‘‘near-exhaustive’’ tuning.

5.4. Remarks

The results presented in Sections 5.1, 5.2, and 5.3 suggest the use
f machine learning for performance prediction of big data transfer
n HPN environments. There exist clear patterns between throughput
erformance 𝑦 and the feature vector 𝐱, and such patterns are qual-
tatively consistent and stable across different connections established
etween different end hosts on different testbeds, e.g., the performance
ncreases as the buffer size and the number of streams increase; the
aximum achievable performance decreases as the connection delay
ncreases. However, the hyper-dimensional parameter space makes it
ery difficult, if not impossible, to analytically model these patterns
or performance prediction. For example, the slope of performance
ncrease with respect to buffer size increase may vary across different
onnections; the optimal number of data streams may depend on not
nly the connection properties but also the end system configurations.

. Performance prediction

We first study the effects of latent factors on big data transfer
erformance (Section 6.1), and then propose latent effect elimination
ethods and conduct experiments to illustrate their effectiveness (Sec-
ion 6.2). We also develop a domain-oriented loss function for perfor-
ance prediction based on practical requirements of HPN management
Section 6.3). We develop a performance predictor that incorporates

atent effect elimination and customized loss function.

8

6.1. Effects of latent factors

There exist certain latent factors 𝐮 that also have effects on transport
erformance. Such latent effects, if not eliminated, may cause dissatis-
actory prediction results. To illustrate such latent effects, we compare
he TCP measurements of the same set of data transfer tests conducted
n two testbeds: (i) a production HPN (ANL-UC) where the hosts are
imultaneously shared by many users and latent effects are significant;
ii) a local testbed (NJIT-Local) where the hosts are strictly controlled
nd latent effects are mild. Fig. 9(b) shows that the performance pattern
s obvious under mild latent effects. In Fig. 9(a), under significant latent
ffects, although the maximal achievable performance also follows an
bvious pattern, there are also a non-negligible number of data points
elow the maximal ones for the same (or similar) buffer sizes. Similar
henomenons are also observed in UDT tests shown in Fig. 10.

.2. Elimination of latent effects

.2.1. Rationale
As mentioned in Section 3, the throughput 𝑦 of a data transfer is

etermined by accessible variables in feature vector 𝐱, non-accessible
ariables in latent factors 𝐮, and noise 𝜁 , in some form of function 𝑦 =
(𝐱)+𝜁+𝜉(𝐮). The ‘‘normal’’ data points {𝑦′} are the measurements from
nvironments with 𝜉(𝐮) ≈ 0 and the performance is mainly determined
y the feature vector 𝐱, i.e., 𝑦′ = 𝑓 (𝐱) + 𝜁 . The ‘‘corrupted’’ data
oints {𝑦′′} are the measurements from environments with 𝜉(𝐮) < 0
nd the performance is determined by both 𝐱 and latent factors in 𝐮,
.e., 𝑦′′ = 𝑓 (𝐱) + 𝜁 + 𝜉(𝐮). In the presence of significant latent effects,
.g., 𝜉(𝐮) ≪ 0, the data points in the training set  are essentially
ampled from a combined set of both {𝑦′} and {𝑦′′} that are governed
y different functions, as collectively shown in Figs. 9 and 10.
For bandwidth scheduling, we wish to predict the maximum achiev-

ble performance of a data transfer, and thus reserve a suitable amount
f bandwidth to meet the actual need while minimizing the resource
aste caused by over-provisioning. Ideally, the prediction model should
e trained completely with {𝑦′}, since {𝑦′′} under significant 𝜉(𝐮) may
esult in high noise and large variances in  , and thus impair predic-
ion quality. However, it is difficult to build an accurate performance
redictor without over-fitting if {𝑦′} and {𝑦′′} coexist in  . In addition,
ue to the access limit in the user space, most latent factors in 𝐮 are
ot directly observable. Due to the unpredictability and randomness
f 𝐮, it is practically infeasible to model or estimate 𝜉(𝐮). Therefore,
e propose to identify and eliminate {𝑦′′} from  and then train our
rediction model based on  .

.2.2. Threshold-based latent effect elimination
When 𝜉(𝐮) ≈ 0, the performance measurements in response to a

iven 𝐱𝑖 are data points sampled from a certain Gaussian distribution
ith mean 𝑓 (𝐱𝑖) and variance 𝜎(𝐱𝑖), and 𝜎(𝐱𝑖) is bounded by some scale

determined by 𝜁 . In other words, significant performance differences
𝑖
Fig. 9. TCP performance vs. buffer size: (a) with latent effects; (b) without latent effects.
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Fig. 11. UDT performance in response to buffer size diverges.

observed in repeated measurements with the same set of values of 𝐱𝑖
ndicate the existence of {𝑦′′} that may diverge the observed perfor-
ance pattern. Fig. 11 presents such a case where the UDT performance

in response to buffer size diverges into two different patterns. Since our
goal is to avoid any excessive bandwidth reservation beyond actual
needs and meanwhile ensure that the reserved (i.e., predicted) band-
width is around the maximal achievable for a given 𝐱𝑖, we propose
a simple threshold-based method to eliminate the latent effects in
performance prediction by excluding the ‘‘undermined’’ data points
whose performances are below a threshold 𝜏 of the corresponding
achievable maximum. In particular, if there are multiple measurements
with the same set of values for a given 𝐱𝑖, those with an observed
performance 𝑦𝑖 below 𝜏 ⋅ max𝑖 {𝑦𝑖} (0 < 𝜏 < 1) are discarded in data
preprocessing.

6.2.3. Clustering-based latent effect elimination
The function 𝑓 (𝐱) is bounded by the connection capacity and satis-

fies certain smoothness conditions. For example, we have
|𝑓 (𝐱1) − 𝑓 (𝐱2)| ≤ 𝐿 ⋅ |𝐱1 − 𝐱2| for some constant 𝐿 > 0 and arbitrary
but feasible 𝐱1 and 𝐱2. When 𝜉(𝐮) ≈ 0, with a small variation to
𝐱, the corresponding change in the observed performance should be
bounded as well. In other words, large differences observed in repeated
measurements with only small changes to 𝐱 also indicate the existence
of {𝑦′′} caused by 𝜉(𝐮). In such a case, if a sufficient number of data
points for different values of 𝐱 are measured, performance divergence
may occur as exemplified in Fig. 11.

If there are no repeated measurements with the same values of 𝐱𝑖,
the proposed threshold-based method is not applicable. In this case, we
propose to use a clustering-based method to divide {𝑦′} and {𝑦′′} in 
into different groups such that the measurements in the same group are
more likely to be observed under similar conditions with similar 𝜉(𝐮),
and then eliminate those that are mainly manifested by {𝑦′′}.

Particularly, we use the DBSCAN clustering algorithm (Ester et al.,
1996) to differentiate {𝑦′} and {𝑦′′} in  . DBSCAN splits the data
 V

9

points in  into different clusters based on their densities. Tightly-
packed points are grouped together and those in low-density regions
are classified as performance measurements with severe latent effects.
Fig. 12 shows the effectiveness of DBSCAN in identifying {𝑦′′} from  .
ote that the results in Fig. 12(c) are based on the same dataset as in
ig. 11. In addition, with the same dataset as in Fig. 12(c), we test three
ther commonly-used clustering algorithms and present their results in
ig. 13. We observe that 𝐾-means, Gaussian Mixture Model (GMM),
nd Spectral Clustering are incapable of identifying {𝑦′′} from  as they
simply divide the data points in  into two groups with a roughly equal
radius measured in certain distance metrics such as Euclidean distance.
Similar results are also observed when such clustering is performed in
the kernel feature space, e.g., 𝐾-means in the sigmoid kernel space as
shown in Fig. 13(d).

6.3. Customized loss function

Different from traditional supervised learning methods (Mirza et al.,
2010; Liu et al., 2018) that seek an optimal label for a given feature
ector 𝐱𝑖, for bandwidth scheduling, the goal is to build a model that
rovides a loosened prediction. We customize the loss function of a
odel based on practical requirements of bandwidth reservation in
PNs, where the reserved bandwidth must match the actual demand of
data transfer request with minimal over-provisioning. Therefore, the
ptimal predicted performance 𝑦̂𝑖 for a given 𝐱𝑖 should lie within the
ange of [𝑦𝑖, 𝑦𝑖+𝜖], where 𝜖 ≥ 0 is a small tunable parameter and 𝑦𝑖 is the
round truth of the achievable performance with respect to 𝐱𝑖. In other
ords, the reserved (predicted) bandwidth 𝑦̂𝑖 should be slightly higher
han what a data transfer can utilize to satisfy the user request and
eanwhile minimize resource waste. Inspired by the 𝜖-insensitive loss
sed by SVR, we customize the 𝜖-insensitive loss function (Fig. 14(a))
y restricting the tolerable errors to be only positive. As shown in
ig. 14(b), the customized loss function (𝜃, 𝜖) is parameterized by an
rror tolerance 𝜖 as,

(𝜃, 𝜖) =

⎧

⎪

⎨

⎪

⎩

−(𝑦̂𝜃𝑖 − 𝑦𝑖), if 𝑦̂𝜃𝑖 − 𝑦𝑖 < 0
0, if 0 ≤ 𝑦̂𝜃𝑖 − 𝑦𝑖 ≤ 𝜖
𝑦̂𝜃𝑖 − 𝑦𝑖, if 𝑦̂𝜃𝑖 − 𝑦𝑖 > 𝜖

, (1)

here 𝜃 is the parameter set of the prediction model. If the predicted
erformance 𝑦̂𝜃𝑖 is larger than the true value 𝑦𝑖 but within the tolerable
ange bounded by 𝜖, (𝜃, 𝜖) = 0; otherwise, (𝜃, 𝜖) is the distance
etween 𝑦̂𝜃𝑖 and the tolerable 𝜖 loss range. Our objective is to minimize
(𝜃, 𝜖).

. Performance evaluation

In this section, we evaluate the performance of the proposed meth-
ds. We first study the efficacy of the latent elimination methods
Section 7.1), and then compare the prediction results of Support

ector Regression (SVR) with and without using the domain-oriented
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Fig. 12. Clustering results of DBSCAN (values are normalized). Cluster 0: ‘‘normal’’ data points; Cluster 1: data points with latent effects.
Fig. 13. Clustering results of different algorithms (values are normalized). Cluster 0: ‘‘normal’’ data points; Cluster 1: data points with latent effects.
W
d

ustomized the loss function in training (Section 7.2). We build a
erformance predictor by integrating latent elimination into data pre-
rocessing and incorporating the customized loss function into model
raining of SVR, and compare its prediction performance with another
epresentative method, Random Forest Regression (RFR) (Section 7.3).
10
e provide theoretical analysis of the confidence of prediction by
eriving general performance bounds (Section 7.4), which show that

𝑦 = 𝑓 (𝐱) is indeed a good estimate in a statistical sense with a high
probability. Note that all datasets used for both training and testing
are normalized.
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Fig. 14. Loss functions.
Fig. 15. Performance prediction results using default SVR with and without latent effect elimination in data preprocessing.
Fig. 16. Performance prediction results using customized SVR with and without latent effect elimination in data preprocessing.
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7.1. Effectiveness of latent effect elimination

To illustrate the effectiveness of the proposed latent elimination
methods, we implement a predictor using SVR algorithm based on
the scikit-learn library (Pedregosa et al., 2011). We train this
predictor using performance measurements with and without elimi-
nating latent effects from the dataset using the methods proposed in
Section 6.2. In particular, this SVR-based predictor uses the Radial Basis
Function (RBF) kernel and the default and customized loss functions,
as presented in Section 6.3 with an error tolerance 𝜖 = 0.05. It performs
grid search (with 5-fold cross validation) with a kernel coefficient
set {0.0001, 0.001, 0.01, 0.1, 0.2, 0.5, 0.6, 0.9, 10} and a regularization
parameter set {0.01, 0.1, 1.0, 10}. In each case, the dataset is randomly
split for training (80%) and testing (20%), respectively. The prediction
accuracy of a test case is measured by the Absolute Percentage Error
(APE) defined as |𝑦̂𝑖−𝑦𝑖|

𝑦𝑖
× 100%, where 𝑦𝑖 is the true value and 𝑦̂𝑖

s the predicted value. The performance measurements used here are
 o

11
collected from the UDT data transfer tests performed over the 380 ms
connection on ANL-UC testbed under non-negligible latent effects that
are mainly caused by competing workloads on the end hosts (tubes and
midway) of the connection. Note that these hosts are simultaneously
used by other scientists for running their scientific computing jobs
during our data transfer experiments.

Figs. 15 and 16 plot the empirical cumulative distribution function
ECDF) that are measured in terms of APE over all test cases with
nd without data preprocessing using the proposed latent elimination
ethods based on the SVR algorithm with (Fig. 15) and without
Fig. 16) loss function customization. The plots marked with ‘‘None’’
re obtained using the ‘‘raw’’ datasets without latent effect elimination
n data preprocessing.
In Fig. 15(a), we conduct performance prediction using the ANL-

C 380 ms UDT dataset combined with necessary synthetic repeated
easurements. Without data preprocessing, a 15% APE is achieved
nly around 55% of the time among all test cases. Incorporating the
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Fig. 17. Comparison of the ratio of effective prediction using SVR with and without
loss function customization.

threshold-based method for latent effect elimination into data prepro-
cessing, when 𝜏 = 0.80, 26.7% of the test data points under latent effects
re removed and the prediction accuracy is significantly improved and
he 15% percentile of APE is increased to 77% (a 20%+ improvement);
hen 𝜏 = 0.90, 37.6% of the test data points under latent effects are
emoved and the 15% percentile of APE is further increased to 81%. In
ig. 15(b), we conduct performance prediction using the ‘‘raw’’ ANL-UC
80 ms UDT dataset, which shows that the prediction performance is
lso significantly improved by incorporating the proposed clustering-
ased latent effect elimination into data preprocessing. For example, a
5% percentile of APE is increased from 55% to 73%, and in this case,
4.9% of the test data points under latent effects are removed.
In Fig. 16, we conduct similar experiments using the same datasets

s in Fig. 15 but using the SVR algorithm with the customized loss
unction stated in Eq. (1). Similar improvements on prediction perfor-
ance are observed as well. For example, as shown in Fig. 16(a), a 10%

percentile of APE is increased from 41% to 59% and 67% with 𝜏 = 0.80
and 𝜏 = 0.90, respectively.

7.2. Effectiveness of customized loss function

To illustrate the effectiveness of the proposed customized loss func-
tion in Eq. (1), we test SVR with and without customizing its loss
function based on the ANL-UC 380 ms UDT measurements as de-
scribed in Section 7.1. We count the number of effective predictions
(i.e., 𝑦̂𝑖 ≥ 𝑦𝑖) and calculate its corresponding ratio among all test
cases. As expected, Fig. 17 shows that, using the ‘‘raw’’ dataset without
preprocessing, SVR with loss function customization produces 20%
more effective performance predictions than without loss function cus-
tomization. With data preprocessing using the proposed clustering- and
threshold-based (with 𝜏 ∈ {0.80, 0.90}) latent elimination methods,
such improvement in terms of effective prediction ratio is up to 40%.
The results in Fig. 17 show that using SVR with customized loss
function has a much higher chance to produce a performance prediction
that guarantees sufficient resource reservation to obtain the maximal
achievable performance of a data transfer request.

Although small over-provisioning is inevitable and necessary to ob-
tain the maximum achievable performance, significant resource waste
could be caused by predictions when 𝑦̂𝑖 ≫ 𝑦𝑖 and should be avoided
in practice. Therefore, we further measure the resource waste that
might be potentially caused by over-provisioning when 𝑦̂𝑖 > 𝑦𝑖 in
erms of absolute percentage error and present the ECDF plots in
ig. 18. The results in Fig. 18 show that whether using the raw dataset
Fig. 18(a)) or applying latent effect elimination using the proposed
ethods (Figs. 18(b), 18(c), and 18(d)), SVR with customized loss
lways performs better than without customized loss.
Note that the results in Figs. 17 and 18 are obtained with the same

ets of tuning parameter values for SVR as in Section 7.1.
12
.3. Comparison between SVR and RFR

We compare the prediction performance of SVR with Random Forest
egression (RFR). The RFR-based predictor is also implemented based
n the scikit-learn library (Pedregosa et al., 2011).

.3.1. Settings
For the ANL-UC 380 ms UDT dataset, we apply the proposed

lustering-based latent effect elimination in data preprocessing and
rain the SVR model with its default loss function replaced by the pro-
osed ‘‘one-side’’ 𝜖-insensitive loss function (Eq. (1)). Other parameter
ettings for this SVR training remain the same as in Section 7.1.
In comparison, we train two RFR models using the same dataset

ith and without applying the clustering-based latent elimination in
ata processing. We perform grid search (with 5-fold cross validation)
o find the best hyperparameters for the RFR model with the set of
umbers of trees {100, 200, 300, 400, 500}, the set of maximum depths
f trees {5, 10, 15, 20, 25, 30}, the set of minimum numbers of data
amples to split internal nodes of trees {2, 5, 10, 15, 100}, and the set
f minimum numbers of samples in leaf nodes of trees {1, 2, 5, 10}.

.3.2. Results
As shown in Fig. 19(a), using the raw dataset without latent effect

limination, RFR performs poorly and the 10% percentile of APE is
chieved only around 25% of the time among all test cases, as denoted
y ‘‘RFR+None’’. Using the raw dataset with the proposed clustering-
ased latent elimination in data preprocessing, SVR and RFR perform
oughly equally well and the 10% percentile of APE is achieved 70%
f the time among all test cases, as denoted by ‘‘C-SVR+Clustering’’
nd ‘‘RFR+Clustering’’, respectively. Taking a deeper look, as shown in
ig. 19(b), SVR outperforms RFR in terms of effective prediction ratio.
t indicates that using SVR with customized loss is more likely to make
n effective prediction that meets the requirement of a data transfer
equest, while incurring a comparable level of resource waste to other
ethods such as RFR.

.4. Theoretical confidence analysis

The throughput performance 𝑦(𝐱) is a response variable with a
omplex distribution 𝐏𝑦(𝐱) as it depends on many factors including:
i) end host system configurations and dynamics, (ii) network con-
ection properties and randomness, and (iii) data transfer applications
nd their underlying protocols (control parameter values, congestion
ontrol mechanisms, etc.). We define the performance regression as the
ollowing expectation

𝑦(𝐱) = 𝐸 [𝑦(𝐱)] = ∫ 𝑦(𝐱) 𝑑 𝐏𝑦(𝐱),

which can be estimated based on experimental performance measure-
ments 𝑦(𝐱𝑘, 𝑡𝑘𝑖 ) at 𝐱𝑘 (𝑘 = 1, 2,… , 𝑛) and time 𝑡𝑘𝑖 (𝑖 = 1, 2,… , 𝑛𝑘).
We have 0 ≤ 𝑦(𝐱𝑘, 𝑡𝑘𝑖 ) ≤ 𝐵 due to the reserved bandwidth 𝐵 of an
HPN connection. The performance estimate 𝑦̂(𝐱𝑘), given by its empirical
mean, is computed using measurements as

𝑦̂(𝐱𝑘) =
1
𝑛𝑘

𝑛𝑘
∑

𝑖=1
𝑦(𝐱𝑘, 𝑡𝑘𝑖 ),

at 𝐱𝑘’s in the space of attribute vector 𝐱 = [, ,]. Note that 𝑦̂(𝐱𝑘) is
computed completely based on performance measurements, and is in-
dicative of the actual performance at 𝐱𝑘, whose unknown expected value
is 𝑦(𝐱𝑘) and is to be estimated. We show that 𝑦̂(𝐱𝑘) is indeed a good
estimate of 𝑦(𝐱𝑘), in terms of the estimation of expected error, and fur-
thermore, the prediction accuracy is improved with more performance
measurements, regardless of the underlying distribution 𝐏𝑦(𝐱).

Consider an estimate 𝑔(⋅) of 𝑦(⋅) based on performance measure-
ments from a class  of unimodal functions bounded in [0, 𝐵], i.e., 0 ≤
𝑔 ≤ 𝐵, 𝑔 ∈  . The expected quadratic loss 𝐼(𝑔) of the estimator 𝑔 is

𝐼(𝑔) =
[

𝑔(𝐱) − 𝑦(𝐱, 𝑡)
]2

𝑑 𝐏𝑦(𝐱,𝑡),
∫
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Fig. 18. Effective performance prediction results using SVR with and without loss function customization.
Fig. 19. Comparison of the prediction results using SVR and RFR.
and the best estimator 𝑔∗ is given by 𝐼(𝑔∗) = min𝑔∈ 𝐼(𝑔). The empirical
error of 𝑔 based on performance measurements is given by

𝐼(𝑔) = 1
𝑛

𝑛
∑

𝑘=1

{

1
𝑛𝑘

𝑛𝑘
∑

𝑖=1

[

𝑔(𝐱𝑘) − 𝑦(𝐱𝑘, 𝑡𝑘𝑖 )
]2
}

,

and the best empirical estimator 𝑔∗ ∈  minimizes the empirical error,
i.e.,

𝐼(𝑔∗) = min
𝑔∈

𝐼(𝑔).

Since 𝑦̂(𝐱𝑘) is the response mean at each attribute vector 𝐱𝑘, it achieves
the minimal empirical error.

Since both 𝑦(⋅) and 𝑔(⋅) are bounded in [0, 𝐵], 𝐼(𝑔) is also bounded
in [0, 𝐾] with some 𝐾 > 0. Let  = {𝐼(𝑔) ∣ 𝑔 ∈ } be the set of loss
functions subject to  . Based on the uniform convergence results of
Vapnik–Chervonenkis theory (Vapnik, 1995) and its generalization (An-
thony and Bartlett, 2009) and applications (e.g., Rao, 1999), we know
that, for some 𝜆 > 0,
𝑃 {𝐼(𝑦̂) − 𝐼(𝑔∗) > 2𝜆}
≤ 𝑃

{

sup |

|𝐼(ℎ) − 𝐼(ℎ)|| > 𝜆
}

,
ℎ∈
| |

13
and furthermore, according to Vapnik (1982), we have

𝑃
{

supℎ∈
|

|

|

𝐼(ℎ) − 𝐼(ℎ)||
|

> 𝜆
}

≤ 181(
𝜆
𝐾
,, 𝑛) ⋅ 𝑛 ⋅ exp

(

− 𝑛𝜆2

4𝐾2

)

,

where 1(
𝜆
𝐾
,, 𝑛) is the 𝜆-cover of  under 𝑑1 norm.

Since  satisfies Lipschitz condition, suppose that its Lipschitz con-
stant is 𝐿 > 0, we then have

1(
𝜆
𝐾
,, 𝑛) ≤ 1(

𝜆
𝐾𝐿

, , 𝑛).

Also, for any class of real-valued functions, any 𝛿 > 0 and any 𝑗 ∈ N,
we have 1(𝛿,, 𝑗) ≤ ∞(𝛿,, 𝑗) (Anthony and Bartlett, 2009). It
follows that
𝑃 {𝐼(𝑦̂) − 𝐼(𝑔∗) > 2𝜆}

≤ 18∞( 𝜆
𝐾𝐿

, , 𝑛) ⋅ 𝑛 ⋅ exp
(

− 𝑛𝜆2

4𝐾2

)

,

where ∞(𝜆, ) is the 𝜆-cover of  under 𝑑∞ norm. Due to the
unimodality of functions in  , their total variation is upper-bounded
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by 2𝐵, which provides us the following upper bound (Anthony and
Bartlett, 2009),

∞( 𝜆
𝐾𝐿

, , 𝑛) < 2
(

4𝐾2𝐿2𝑛
𝜆2

)

(

1+ 4𝐵𝐾𝐿
𝜆

)

log2
(

𝑒𝑛
𝐵

)

.

By using this bound, we obtain

𝑃 {𝐼(𝑦̂) − 𝐼(𝑔∗) > 𝜆}

≤ 36
(

16𝐾2𝐿2𝑛
𝜆2

)

(

1+ 8𝐵𝐾𝐿
𝜆

)

log2
(

𝑒𝑛
𝐵

)

⋅ 𝑛 ⋅ exp
(

− 𝑛𝜆2

16𝐾2

)

.

The exponential term on the right-hand side decays faster in 𝑛 than
other terms, and hence for sufficiently large 𝑛, it would be smaller than
a given probability. In sum, the expected error 𝐼(𝑦̂) of the response
mean is within 𝜆 of the optimal error 𝐼(𝑔∗) with a probability that
increases with the number of performance measurements. This perfor-
mance guarantee is independent of the complexity of 𝐏𝑦(𝐱). Thus, 𝑦̂(𝐱)
is a good estimate of the actual throughput performance achievable
at feature 𝐱 independent of the underlying distribution, which is a
complex composition of the impacts of end host configurations and
dynamics, network properties and randomness, and data transport
methods as well as control parameters.

Note that in the derivation, since we only consider the fact that
the loss function 𝐼(𝑔) ∈  varies slowly as the function value 𝑔(⋅)
aries, the specific loss function does not affect the bound analysis but
nly its constant coefficients. For example, if considering quadratic loss
unctions, then the Lipschitz constant is 𝐿 = 2𝐵 and 𝐾 = 𝐵2. Also note
hat the actual coefficients in the derived bound depend on detailed
lgebra and are not critical in terms of the uniform convergence.
he same is also true for the specific bounds of 𝑔(⋅) and 𝑦(⋅) since
ne can easily derive covering number bounds for different classes of
unctions that map to any bounded intervals with appropriate scaling
nd shifting (Anthony and Bartlett, 2009).

. Conclusion and future work

We conducted exploratory analysis of the impacts of a comprehen-
ive set of factors on the application-level performance of big data
ransfer in HPNs based on extensive performance measurements col-
ected on real-life physical or emulated HPN testbeds. Based on such
nalysis, we further identified latent factors and analyzed their negative
mpacts on performance prediction through comparative experimental
tudies. We proposed novel methods to eliminate the negative impacts
f latent factors, and incorporated them into data preprocessing to
mprove training efficiency and prediction accuracy. We then selected
eatures and built a performance predictor using machine learning
ethods with customized domain-oriented loss functions. The experi-
ental results show that, based on very noisy datasets, the proposed
atent effect elimination methods and the customized loss function
elp achieve significantly better prediction performance in comparison
ith other methods. We also investigated the feasibility and effec-
iveness of learning-based performance prediction through theoretical
erformance bound analysis.
We plan to synthetically study the effects of latent variables on

he performance of big data transfer and further improve prediction
ccuracy. We will also explore the feasibility and efficacy of other
echniques such as deep learning and data fusion for performance pre-
iction in HPNs. It is also of our interest to derive tighter performance
ounds on the estimated loss and the sample size by incorporating other
PN domain insights.

RediT authorship contribution statement

Daqing Yun: Conceptualization, Methodology, Writing - original
raft, Formal analysis, Investigation. Wuji Liu: Methodology, Writing
original draft, Visualization, Validation, Investigation, Data cura-
ion. Chase Q. Wu: Conceptualization, Methodology, Funding acqui-
ition, Supervision, Project administration, Writing - review & editing.
14
Nageswara S.V. Rao: Resources, Data curation, Writing - review &
editing. Rajkumar Kettimuthu: Resources, Data curation, Writing -
review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This research is sponsored by Harrisburg University, USA under
Grant No. PRG-2020-15 and by the U.S. National Science Foundation
under Grant No. CNS-1828123 with New Jersey Institute of Technol-
ogy.

References

Allcock, W., et al., 2005. The Globus striped GridFTP framework and server. In: Proc.
ACM/IEEE Conf. Supercomput. pp. 54–65.

Anthony, M., Bartlett, P., 2009. Neural Network Learning: Theoretical Foundations.
Cambridge University Press, New York, NY.

Chase, J., et al., 2001. End system optimizations for high-speed TCP. IEEE Commun.
Mag. 39 (4), 68–74.

ESnet, 2021. http://www.es.net.
Ester, M., et al., 1996. A density-based algorithm for discovering clusters in large spatial

databases with noise. In: Proc. Int. Conf. Knowl. Discovery Data Mine. pp. 226–231.
Gangulay, S., et al., 2004. Optimal routing for fast transfer of bulk data files in

time-varying networks. In: Proc. IEEE Int. Conf. Commun., Vol. 2. pp. 1182–1186.
Grimmell, W., Rao, N., 2003. On source-based route computation for quickest paths

under dynamic bandwidth constraints. Int. J. Found. Comput. Sci. 14 (3), 503–523.
Gu, Y., Grossman, R., 2007. UDT: UDP-based data transfer for high-speed wide area

networks. Comput. Netw. 51 (7), 1777–1799.
Gu, Y., et al., 2004. An analysis of AIMD algorithm with decreasing increases. In: Proc.

Int. Workshop Netw. Grid Appl.
Gu, Y., et al., 2004. Experiences in design and implementation of a high performance

transport protocol. In: Proc. ACM/IEEE Conf. Supercomput. pp. 22–35.
Guok, C., et al., 2006. Intra and interdomain circuit provisioning using the OSCARS

reservation system. In: Proc. 3rd Int. Conf. on Broadband Commun., Netw. Syst.
Hanford, N., et al., 2016. Improving network performance on multicore systems: Impact

of core affinities on high throughput flows. Future Gener. Comput. Syst. 56,
277–283.

He, Q., et al., 2007. On the predictability of large transfer TCP throughput. Comput.
Netw. 51 (14), 3959–3977.

Internet2, 2021. http://www.internet2.edu.
Iperf2, 2021. https://bit.ly/2WmMPhN.
Iperf3, 2021. https://github.com/esnet/iperf.
Jain, S., et al., 2013. B4: Experience with a globally-deployed software defined WAN.

SIGCOMM Comput. Commun. Rev. 43 (4), 3–14.
Leitao, B., 2009. Tuning 10 Gb network cards on Linux. In: Proc. Linux Symp. pp.

169–184.
Lin, Y., Wu, Q., 2013. Complexity analysis and algorithm design for advance bandwidth

scheduling in dedicated networks. IEEE Trans. Netw. 21 (1), 14–27.
Liu, Q., et al., 2016. Measurement-based performance profiles and dynamics of UDT

over dedicated connections. In: Proc. Int. Conf. Netw. Protocols.
Liu, Z., et al., 2017. Explaining wide area data transfer performance. In: Proc. Int.

Symp. High-Perform. Parallel Distrib. Comput. pp. 167–178.
Liu, Z., et al., 2018. Building a wide-area data transfer performance predictor: An

empirical study. In: Proc. Int. Conf. Machine Learn. for Netw.
Liu, W., et al., 2020. On performance prediction of big data transfer in

high-performance networks. In: Proc. IEEE Int. Conf. Commun.
Mirza, M., et al., 2010. A machine learning approach to TCP throughput prediction.

IEEE Trans. Netw. 18 (4), 1026–1039.
OSCARS, 2021. https://bit.ly/2Ou9qVe.
Padhye, J., et al., 2000. Modeling TCP reno performance: A simple model and its

empirical validation. IEEE Trans. Netw. 8 (2), 133–145.
Pedregosa, F., et al., 2011. Scikit-learn: Machine learning in Python. J. Mach. Learn.

Res. 12, 2825–2830.
Rao, N., 1999. Simple sample bound for feedforward sigmoid networks with bounded

weights. Neurocomputing 29 (1), 115–122.
Rao, N., et al., 2006. Control plane for advance bandwidth scheduling in ultra

high-speed networks. In: Proc. 25th Int. Conf. Comput. Commun.
Rao, N., et al., 2017. TCP throughput profiles using measurements over dedicated

connections. In: Proc. Int. Symp. High-Perform. Parallel Distrib. Comput. pp.
193–204.

http://refhub.elsevier.com/S0952-1976(21)00132-9/sb2
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb2
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb2
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb3
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb3
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb3
http://www.es.net
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb7
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb7
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb7
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb8
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb8
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb8
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb12
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb12
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb12
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb12
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb12
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb13
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb13
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb13
http://www.internet2.edu
https://bit.ly/2WmMPhN
https://github.com/esnet/iperf
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb17
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb17
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb17
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb19
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb19
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb19
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb24
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb24
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb24
https://bit.ly/2Ou9qVe
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb26
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb26
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb26
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb27
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb27
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb27
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb28
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb28
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb28


D. Yun, W. Liu, C.Q. Wu et al. Engineering Applications of Artificial Intelligence 102 (2021) 104285
Sapkota, H., et al., 2019. Time series analysis for efficient sample transfers. In: Proc.
Workshop Syst. Netw. Telemetry Analytics. pp. 11–18.

Shu, T., et al., 2013. Advance bandwidth reservation for energy efficiency in high-
performance networks. In: Proc. 38th IEEE Conf. Local Comput. Netw. pp.
541–548.

Spall, J., 2003. Introduction to Stochastic Search and Optimization: Estimation,
Simulation, and Control. John Wiley & Sons, Inc., Hoboken, NJ.

Tierney, B., 2016. Advantages of TCP pacing using FQ. https://bit.ly/30g4QO0.
UDT, 2021a. UDT: UDP-based data transfer. http://udt.sourceforge.net/.
UDT, 2021b. UDT-powered projects. https://bit.ly/2JZtA7n.
UDT, 2021c. UDT socket options. https://bit.ly/2VOoBsJ.
Vapnik, V., 1982. Estimation of Dependences Based on Empirical Data. Springer-Verlag,

New York, NY.
Vapnik, V., 1995. The Nature of Statistical Learning Theory. Springer-Verlag, Berlin,

Heidelberg.
15
XSEDE, 2021. https://www.xsede.org/.
Yu, S., et al., 2015. Comparative analysis of big data transfer protocols in an

international high-speed network. In: Proc. 34th IEEE Int. Perf. Comput. Commun.
Conf.

Yun, D., et al., 2015. Profiling transport performance for big data transfer over
dedicated channels. In: Proc. Int. Conf. Comput., Netw. Commun. pp. 858–862.

Yun, D., et al., 2016. Profiling optimization for big data transfer over dedicated
channels. In: Proc. 25th Int. Conf. Comput. Commun. Netw.

Yun, D., et al., 2019. Advising big data transfer over dedicated connections based on
profiling optimization. IEEE Trans. Netw. 27 (6), 2280–2293.

Yun, D., et al., 2020. Performance prediction of big data transfer through experimental
analysis and machine learning. In: Proc. IFIP Networking Conf. pp. 181–189.

Zuo, L., et al., 2018. Bandwidth reservation strategies for scheduling maximization in
dedicated networks. IEEE Trans. Netw. Serv. Manag. 15 (2), 544–554.

http://refhub.elsevier.com/S0952-1976(21)00132-9/sb33
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb33
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb33
https://bit.ly/30g4QO0
http://udt.sourceforge.net/
https://bit.ly/2JZtA7n
https://bit.ly/2VOoBsJ
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb38
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb38
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb38
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb39
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb39
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb39
https://www.xsede.org/
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb44
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb44
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb44
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb46
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb46
http://refhub.elsevier.com/S0952-1976(21)00132-9/sb46

	Exploratory analysis and performance prediction of big data transfer in High-performance Networks
	Introduction
	Related work
	Bandwidth scheduling
	Transport profiling and optimization
	Performance modeling and characterization

	Problem statement
	Performance measurements
	Testbeds
	Data transfer protocols and toolkits
	Data acquisition and introduction

	Exploratory analysis
	Effects of application-accessible parameters
	Packet size
	Buffer size
	Block size
	Number of parallel streams

	Effects of network connection properties
	Effects of end hosts configurations
	Remarks

	Performance prediction
	Effects of latent factors
	Elimination of latent effects
	Rationale
	Threshold-based latent effect elimination
	Clustering-based latent effect elimination

	Customized loss function

	Performance evaluation
	Effectiveness of latent effect elimination
	Effectiveness of customized loss function
	Comparison between SVR and RFR
	Settings
	Results

	Theoretical confidence analysis

	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


