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Letter
News and Geolocated Social Media Accurately
Measure Protest Size Variation
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Larger protests are more likely to lead to policy changes than small ones are, but whether or not
attendance estimates provided in news or generated from social media are biased is an open
question. This letter closes the question: news and geolocated social media data generate accurate

estimates of protest size variation. This claim is substantiated using cellphone location data frommore than
10 million individuals during the 2017 United States Women’s March protests. These cellphone estimates
correlate strongly with those provided in news media as well as three size estimates generated using
geolocated tweets, one text-based and two based on images. Inferences about protest attendance from these
estimates match others’ findings about the Women’s March.

INTRODUCTION

N ews and social media data accurately measure
protest size variation, according to estimates of
protest size obtained via cellphone location

data from 10 million individuals.
Protests are a key tool in the repertoire of social

movements (Tilly and Tarrow 2015), and observational
(Fassiotto and Soule 2017; Uba 2005; Walgrave and
Vliegenthart 2012) as well as experimental (Wouters
and Walgrave 2017) studies find that those with more
participants are more likely to generate policy change.
Methods to directly measure size are too costly to be
employed across large numbers of protests, limiting their
use in academic studies (McPhail and McCarthy 2004;

Schweingruber and McPhail 1999; Yip et al. 2010).
Instead, event datasets that record size (usually of pro-
tests but also of riots or massacres) rely on numbers
provided in media reports, usually newspapers (Earl
et al. 2004). This reliance raises concerns about the
accuracy of the tallies because researchers do not create
the measures themselves; those who do—usually organ-
izers or authority figures—have incentives to misrepre-
sent protest size,1 and estimates are often provided as
vague phrases (“hundreds” or “dozens”) whose transla-
tion into numbers is open to researcher interpretation
(Raleigh et al. 2010). Newspapers can also choose
betweenmultiple estimates to find the one that suits their
editorial beliefs (Barranco andWisler 1999; Mann 1974).
Concern about measurement validity means many event
datasets record size as an ordinal variable (Salehyan et al.
2012), average across reports (Weidmann andRod 2018),
or focus on measuring fatalities (Raleigh et al. 2010).

Using individuals’ locations recorded via their cell-
phones (“cellphone data”), we show that scholars can
rely on size estimates reported in newspapers or
obtained via geolocated tweets. Since people almost
always carry their cellphone, those devices record indi-
viduals’ locations passively, and other researchers have
verified that the locations are not biased politically
(Chen and Rohla 2018), we consider the cellphone
location to be the most accurate estimate currently
available.2 Cellphone data are especially important
because, since 1995, the federal government no longer
records protest size inWashingtonDC (McCarthy et al.
1999), rigorously measuring with enumerators is too
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1 Wouters and Camp (2017) finds that protest organizers and police
agree on size estimates 21.7% of the time.
2 We are aware of no work challenging the accuracy of
cellphone data.
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costly when protests occur in multiple locations
(Schweingruber and McPhail 1999; Yip et al. 2010),
and, even if possible across locations, is likely to feature
response bias (Walgrave and Verhulst 2011; Walgrave,
Wouters, and Ketelaars 2016). Therefore, the cell-
phone data forms the baseline against which we com-
pare estimates from news (print and television) and
social media (text and images). Since the cellphone
data are a sample, protests’ true size is still unknown;
the analysis presented below therefore compares pro-
test size variation recorded in different datasets, and
does not definitely establish protest size.
Estimates using the January 21, 2017, United States

Women’sMarch substantiate this argument. One of the
largest mobilizations in American history, that day
featured 942 protests comprised of approximately
4.77 million individuals (Beyerlein, Ryan, et al. 2018;
Chenoweth and Pressman 2017). The cellphone data
shows that variations in protest size reported in news-
papers as well as estimated via geolocated tweets are
accurate. Of the four sets of estimates we compare,
those reported in newspapers or calculated via geolo-
cated tweets containing protest key words are the most
accurate, followed by counting the number of faces in
protest photos shared on Twitter. Counting the number
of accounts that share protest photos is the least accur-
ate. The supplementary materials show that the first
principal component of the four sets of estimates
recovers the most accurate protest size variation,
though this fifth estimate is the most difficult to scale
and so not one we recommend for future use.

THE CHALLENGE

A long line of research finds that large protests (those
withmany participants) aremore likely than small ones
to elicit policy responses across issues and regimes.
During the Vietnam War in the United States, Con-
gresspeople were more likely to engage in roll-call
votes in response to protests with more than 10,000
participants (McAdam and Su 2002). This responsive-
ness exists across branches of the government
(Walgrave and Vliegenthart 2012) and in non-Western
contexts (Lohmann 1994; Uba 2005). Large protests
are especially powerful in authoritarian settings
because they decrease the legitimacy of the rulers while
increasing the cost of repression (Stephan and Cheno-
weth 2008). Experimental work that manipulates the
reported size of a protest also finds that protest size
affects policy decisions (Wouters and Walgrave 2017).
Amenta et al. (2010) provide a more detailed overview
of how social movements affect policy outcomes.
Previous estimates of protest size rely on teams of

well-trained observers, surveys of participants, or size
estimates reported in newspapers.Using observers who
understand the square footage of a protest site, the
density of the crowd, and the percentage of the site the
crowd occupies is considered the most accurate estima-
tion method; on average, a standing person requires
about five square feet of personal space (McPhail and
McCarthy 2004). New technology, such as unmanned

aerial vehicles (Choi-Fitzpatrick, Juskauskas, and
Sabur 2018) and high-resolution satellite imagery,
may allow this methodology to scale across simultan-
eous events. Trained observers can also disperse within
a protest and count the size of clusters of participants
(Schweingruber and McPhail 1999; Yip et al. 2010).
Surveying protesters, during or after an event, can also
generate size estimates (Beyerlein, Barwis, et al. 2018;
Opp and Gern 1993; Walgrave and Wouters 2014;
Walgrave, Wouters, and Ketelaars 2016).

Scholars most often rely on estimates of protest size
in newspapers (Earl et al. 2004;Woolley 2000). Though
newspapers have known biases in their coverage
(Baum and Zhukov 2015; Gerner and Schrodt 1998;
Myers and Caniglia 2004), the concern about measure-
ment validity for protest size does not stem from their
preference towards violent events in urbanized areas.
The concerns are two. First, newspaper estimates of
protest size are secondary, usually coming directly from
protest organizers or state authorities (Wouters and
Camp 2017). The estimates could be too high or too
low, but the bias would not be correctable since no
independent size estimate exists. Second, newspapers
prefer to report on large protests, generating inaccurate
records of protest events (McCarthy,McPhail, and Smith
1996;McCarthy et al. 1999). See Section S1 of theOnline
Appendix for how other datasets report protest size.

DATA

That news and geolocated social media can accurately
measure protest size variation is demonstrated using
the 2017 United States’Women’s March. Occurring on
January 21, 2017, the simultaneous protests across the
country constitute the largest single-daymobilization in
the United States.3

This letter compares seven estimates of protest size
from three sources: cellphone location data (Chen
and Rohla 2018), the Crowd Counting Consortium
(Chenoweth and Pressman 2017), and Twitter. The
cellphone data are from a data broker and shared with
an author of this paper. The Crowd Counting Consor-
tium (CCC) data are publicly available, and the tweets
have been collected by another author of this paper
(Steinert-Threlkeld 2018).4 Table 1 provides summary
statistics of the three sources, and they are available at
Sobolev et al. (2020).5

The cellphone estimates use data provided from
SafeGraph. Cellphones record owners’ location and
let downloaded applications use that information to
provide, ostensibly, services. The applications and tele-
communications providers then sell the location data to
brokers or directly to companies (Cox 2019; Valentino-
DeVries et al. 2018). The dataset contains location

3 See Andrews, Caren, and Browne (2018), Fisher, Jasny, and Dow
(2018), and Tarrow and Meyer (2018) for more detail on the event.
4 See Davidson and Berezin (2018) for a case-study combining
multiple types of event data.
5 All tables were made using Hlavac (2018).
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information for just more than 10 million individuals.
We have no identifying information on these individ-
uals (de Montjoye et al. 2018). Section S2 uses actual
and imputed vote share by county in Texas to validate
the political representativeness of the cellphone data.
Identifying protesters from the SafeGraph data

requires several steps. First, we only search in cities
identified in the CCC data. Second, in those cities, we
only consider pedestrians by excluding pings that were
registered while the owners of mobile phones used
private or public transportation; mode of transit is
identifiable by the frequency of location pings.6 Third,
we deduplicate individuals by averaging their location
within a 30-minute window, assigning that location as
the individual’s location, and keeping only their first
appearance.7 On average, our data has approximately
three pings from every cellphone every thirty minutes.
Fourth, we take the size distribution of seven-digit
geohashes on January 21, 2017, the day of theWomen’s
March, and keep the geohashes above the 99th per-
centile per city.8,9 Figure A2 illustrates how geohashes
identify locations, and Figures A11–A19 compare

these geohashes with actual protest geohashes to dem-
onstrate that this approach recovers locations where
protests occur. Fifth, any individual in those geohashes
is counted as a protester. The size of this group repre-
sents a conservative estimate of the total size of the
protest in each city.10

To summarize, the number of people in a city’s
seven-digit geohashes whose density is in the 99th
percentile or greater is the number of protesters to
which we compare the other estimates.11

The CCC is an open-source, hand-coded event data-
set established to record reports of protest size. The
CCC dataset is agnostic regarding source type. Most
are newspapers or local television broadcasts, but a
substantial minority (26.84%) of the estimates derive
from tweets or Facebook statuses. It also reports high
and low estimates, based on these sources. Unless
otherwise indicated, we use the Best Guess variable,
usually an average of the adjusted low and high esti-
mates in an article, as the protest size estimate. The
termCCC: News refers to events for which the source is
a newspaper or local television broadcast. The term
CCC, All Estimates includes events for which only
social media provides estimates,12 and CCC, All Esti-
mates (Low) uses the Low estimate, not Best Guess,
and ignores source type.13

TABLE 1. Summary Statistics

Measure N Mean Standard Deviation Min Max

Cellphone Data 399 238.479 596.154 2 3,082
CCC: News 326 10,526.630 52,362.250 3 725,000
CCC, All Estimates (Best Guess) 614 6,727.480 42,490.840 1 725,000
CCC, All Estimates (Low) 614 5,804.056 34,443.560 1 550,000
Twitter: Text Accounts 1,045 10.793 70.643 2 1,522
Twitter: Images Faces 244 2,601.361 10,568.640 0 132,708
Twitter: Images Accounts 269 926.301 2,209.269 3 20,521

Note: CCC refers to the Crowd Counting Consortium data and uses the “Best Guess” variable unless otherwise indicated. Twitter: Text
Accounts uses keywords to identify protesters. Twitter: Images Faces sums the number of faces in protest images. Twitter: Images
Accounts counts the number of unique accounts that share protest photos.

6 One important question is whether protests that bring large num-
bers of people together at the same time degrade location data
accuracy or compromise counts made from it. We have conducted
several diagnostic checks related to this concern—for example,
looking for evidence that ping frequencies per active user are less
stable during large gatherings—and find no such irregularities. We
expect this fidelity exists because location data is logged through a
cellphone’s data connection (as opposed to call services), which is
more robust to congestion because these data are asynchronous,
events are time-stamped locally (on a user’s smartphone), and ping
quality is not degraded by data buffering.
7 We still assume that all counted individuals are protesters, not
bystanders. Since some are likely to be vendors, police, or the curious,
the size estimates are likely slightly inflated.
8 A geohash is an alphanumeric code that corresponds to a grid cell.
The seven-digit code corresponds to cells with sides of 152 meters.
Because geohashes are alphanumeric strings and not points, location
matching is much quicker than using spatial coordinates.
9 We choose the 99th percentile as a threshold for two reasons. First,
the density of these geohashes is noticeably distinct from the rest of
their city’s geohashes; see Figure A10. Second, geohashes with
density above the 99th percentile are very close to the protest
locations declared by the organizers; see Section S9.2 and
Figures A11–A19. Table A21 in Section S10 shows that using a
threshold of 95% does not change results.

10 All the results in the paper are generated without deduplicating
across 30-minute geohashes. Deduplicating users across the
30-minute geohashes generates the same results because there is
almost no overlap in the protest geohashes with respect to individ-
uals.
11 We explored an additional step to identifying protesters, based on
the path of their walking. In response to concerns from the data
provider, we dropped this methodology. Initial results suggested that
this extra step degraded results.
12 We include television broadcasts as part of news because all
estimates come from the source type’s website, and there is no facile
method to distinguish between newspapers and broadcasts. Twitter
and Facebook are identifiable with the presence of “Twitter” or
“Facebook” in the link or the word “FB” entered as the source.
13 To investigate the introduction’s claim that protests often receive
multiple reported size estimates, we model, using CCC, the number
of sources per event as a function of the Best Guess variable.
Figure A1 shows that there exists no relationship between the size
of a protest and the number of sources reporting on it, suggesting that
the problem ofmultiple reported sizes exists for protests regardless of
their size.

News and Geolocated Social Media Accurately Measure Protest Size Variation

1345

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

CL
A 

Li
br

ar
y,

 o
n 

13
 O

ct
 2

02
1 

at
 2

0:
54

:4
1,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/S
00

03
05

54
20

00
02

95

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0003055420000295


For Twitter, three approaches approximate the num-
ber of protesters.14 The first counts the number of
unique accounts in a city between 10:00 and 17:00 hours
local time using one of three common keywords:
“womensmarch,” “whyimarch,” or “imarchfor.” Tweets
are not resolved to intracity locations for three
reasons. First, for the majority of tweets, Twitter aggre-
gates the specific location of a tweet to local polygons
while reporting the actual location as the city that
contains that polygon. The polygon, however, does
not necessarily envelop the location of the actual tweet.
For example, Rancho Palos Verdes and Monterrey,
two cities near Los Angeles, recorded, based on GPS
coordinates, the most number of tweets from January
21, but Twitter labels those tweets as coming from Los
Angeles. Intracity location information is therefore
unknown for almost all tweets. Second, the Crowd
Counting Consortium does not always provide intracity
geographic information. A protest it labels as occurring
in Seattle would require further research for obtaining
the specific location, for example. Third, most cities,
even large ones, contain only one protest per day; if
they contain multiple events, one protest will contain
the vast majority of the protesters (Biggs 2016).We call
this measure Twitter: Text Accounts.
The second Twitter approach counts the number of

faces in any protest photo from a city. A convolutional
neural network first identifies protest photos, and then
another convolutional neural network identifies faces
in that photo. Faces in a protest photo are summed and
added per city-day. We call this measure Twitter:
Images Faces.15

The third Twitter approach counts the number of
people tweeting a protest photo. This approach does
not count retweets, so it assumes that any tweet of a
protest photo requires that the Twitter user was actu-
ally at a protest. We call this measure Twitter: Images
Accounts. The Discussion section provides more detail
about why these three measures should correlate with
the cellphone data estimates. For an explanation of
using deep learning and computer vision to extract
politically relevant data from images, see Joo and
Steinert-Threlkeld (2019) and Steinert-Threlkeld,
Chan, and Joo (2020).
For either image approach to be accurate, we assume

that Twitter account owners take photographs of pro-
testers, share them on Twitter during the day of the
protest, are not strategic about the timing of the sharing
(Pfeffer and Mayer 2018), and enable geolocation for
the tweet. If these assumptions are true, using Twitter is
similar to authorities’ estimating procedures (McPhail
and McCarthy 2004). While we can think of no reason
that accounts would, in aggregate, be biased in sharing

protest photos, it is possible these estimates will not be
accurate, especially because somany steps are required
to enter our data. The results presented in the next
section show that, despite the biases that could enter in
any of these steps, the Twitter approaches are accurate.

Table 1 shows that size estimates vary substantially
across datasets. To compare the estimates, we convert
each estimate of size to a per capita measure, log
transform that result because it is still very skewed,
and take the z-score of the logged per-capita measure
(for the remainder of the paper, “z-score” refers to this
measure). We prefer per capita to raw estimates
because population size will drive the cellphone,
CCC, and Twitter estimates. Incorporating it into our
measurement therefore removes a possible source of
omitted variable bias. The z-score is appropriate
because the estimates vary by orders of magnitude
across datasets.16

Because each source records a different number of
protests, Section S8.5 investigates the overlap of the
cellphone data and four preferred size estimates in
more detail. Manual investigation and Table A20 show
no meaningful demographic or socioeconomic differ-
ence between the cities in which the measures record
protest. Cities that have more people, higher earners,
greater income inequality, and more inhabitants with a
professional degree are more likely to record protests.

RESULTS

The results indicate that CCC: News and Twitter: Text
Accounts estimate protest size variation with the least
error. Twitter: Images Faces is next best, while counting
the number of accounts that share protest photos is the
least accurate. No estimate, however, is inaccurate, and
the Discussion section describes when different ones
may be preferred.

Unless otherwise stated, all results are for the 155 cit-
ies for which each dataset records a protest size. The
supplementarymaterials show results keeping themax-
imum number of observations each dataset and the
cellphone data share do not change.

Figure 1 shows the correlation of the z-score for each
of the datasets with the cellphone data. Section S7.1
reports these correlations in a table.17

Table 2 shows that CCC: News and Twitter: Text
Accounts produce the closest estimates to the cellphone
data. Those two measures are also the closest to the
cellphone data the greatest percentage of the time,
whether measuring difference (rows 1–5) or the num-
ber of observations within 0.1, 0.5, and 1.0 standard
deviation of the cellphone data (rows 6–8). Twitter:
Images Accounts is the least accurate on six of the eight
fit measures.

14 Tweets were collected by connecting to Twitter’s streaming appli-
cation programming interface (API) using the package streamR and
requesting only tweets with geographic coordinates (Barbera 2013).
For more detail, see Steinert-Threlkeld (2018).
15 To verify that duplicate faces do not affect the results, we estimated
the percentage of duplicate faces per city; Section S3 presents these
results, which show that duplicate faces are very rare.

16 The supplementary materials show that the results hold when not
using the per capita or standardized measures.
17 Figure A20 in Section S11 fits a loess line instead; no nonlinear
trends exist in the data.

Anton Sobolev et al.

1346

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

CL
A 

Li
br

ar
y,

 o
n 

13
 O

ct
 2

02
1 

at
 2

0:
54

:4
1,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/S
00

03
05

54
20

00
02

95

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0003055420000295


Figures 2 and 3 show the results when each dataset’s
measure is close to the cellphone data. Figure 2 shows
the cumulative distribution of the four datasets’ closest
estimates across the range of z-scores. This graph
reveals any bias in each estimate. For example, if most
of a dataset’s closest predictions are for small protests,
its cumulative distribution function (CDF) will
approach 1.0 quickly. If its closest predictions are ran-
domly scattered across the range of protest size, its
CDF will track the cellphones’ CDF. Twitter: Text
Accounts has more of its closest estimates occur for
small protests, whichmakes sense: becausemore tweets
contain protest hashtags than protest images, it records
small protests better than image estimates. Twitter:
Images Accounts tracks the cellphone data as protests
pass their average size. Twitter: Images Faces outper-
forms Twitter: Images Accounts for most of its range
except 0≤z≤1. CCC is the most consistently accurate of
the three, as its CDF closely tracks the cellphone data
estimates.

Finally, Figure 3 shows the mean error by z-score
decile, with the closest estimate per decile labeled. All
measures overestimate the size of small protests and
underestimate large ones.CCC: News andTwitter: Text
Accounts perform best, as they each have the smallest
mean error three times. Twitter: Images Faces is closest
twice; Twitter: Images Accounts, once.

The supplementary materials present additional
analyses confirming these results. To verify that
results are not driven by the per capita transform-
ation, we show results measuring the outcome as the
z-score of the logarithm of protest size; the subsec-
tions presenting them are labeled “Not Per Capita.”
We also generate protest size estimates using the first
principal component of all four measures as well as
the two Twitter images measures. Section S4 explains
this analysis, and its results are presented in other
sections of the Supplementary Materials. The first
principal component usually generates the least
error.

FIGURE 1. Correlation – Estimates

TABLE 2. Measuring Fit

CCC: Twitter: Twitter: Twitter:

News Images Accounts Images Faces Text Accounts

Mean Error 0.06 0.10 0.08 0.07
Mean Error (Trimmed) 0.06 0.11 0.14 0.04
Mean Absolute Error 0.58 0.82 0.71 0.60
Mean Absolute Error (Trimmed) 0.51 0.70 0.59 0.50
Closest Estimate % 0.31 0.22 0.20 0.27
Percentage Within 0.1 SD 0.17 0.08 0.11 0.14
Percentage Within 0.5 SD 0.52 0.38 0.52 0.54
Percentage Within 1.0 SD 0.82 0.67 0.77 0.81

Note: “(Trimmed)” datasets drop observations where ∣z∣>3. Bold is the best measure per row; underline, the worst.

News and Geolocated Social Media Accurately Measure Protest Size Variation
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After introducing the principal components analysis,
subsequent sections replicate the results above.
Section S5 repeats Table 2 using all observations per
measure and the “Not Per Capita”measure. Section S6
replicates Figure 3 using all observations per measure
and the “Not Per Capita” measure. Both incorporate
the principal components results and show results when
using themaximumnumber of observations per dataset.

Sections S7 and S8 provide two sets of additional
results. Section S7 shows the Pearson correlation coef-
ficient for each measure, using different subsets of data
and operationalizations of protest size. Section S8
introduces a series of models regressing the cellphone
data on the four measures, separately and pooled; all
models include state fixed effects, socioeconomic con-
trols at the urbanized area level taken from the 2016

FIGURE 2. Location of Best Fits per Measure

FIGURE 3. Mean Error by Decile
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American Community Survey, and population. Each
table includes a placebo model using only ACS data.
CCC: News and Twitter: Text Accounts feature the
highest correlations and best model fit regardless of
the subset of data or operationalization of protest size.
Wealthier, more Democratic, andmore populous areas
generated larger protests, matching others’ results
(McKane and McCammon 2018).

DISCUSSION

Why Does It Work?

News reports rely on others’ estimates, and the social
media estimates are from models applied to relatively
small samples with many entry points for bias. That
both sets of estimates work may therefore surprise.
The estimates in CCC: News correlate well with the

cellphone data for two reasons. First, they tend to come
from actors applyingmethodology similar to that devel-
oped in Schweingruber and McPhail (1999). While we
can find no reports of how activists generate their
estimates, state authorities approximate crowd attend-
ance by estimating the carrying capacity of public areas
and the percentage of that area covered with people
(McPhail and McCarthy 2004). The estimates in news-
papers therefore are not as haphazard as their lack of
methodological reporting would suggest. Second, CCC
generates its data by accepting submissions of protest
reports instead of managing a team of researchers;
adopting this open-source approach means it includes
a broader range of sources than most event datasets
(Herkenrath and Knoll 2011; Nam 2006).
The data generating process for Twitter: Images

Faces is similar. The protest photos primarily consist
of people documenting their immediate surrounding.
They contain anywhere from 1 to 48 faces, with an
average of 2.81 per photo. So long as people who
geotag their photos are randomly distributed across a
protest site, then Twitter: Images Faces is similar to
randomly sampling segments of a protest site
(McPhail andMcCarthy 2004). See Steinert-Threlkeld,
Chan, and Joo (2020) for verification of this approach
in Hong Kong, South Korea, Spain, and Venezuela.

Which Dataset Should I Prefer?

We are agnostic about whether or not researchers
should prefer news or social media data, as there are
advantages and disadvantages to relying on either.
Broadly speaking, Twitter requires a greater fixed cost
but has lower marginal cost than using newspapers.
Newspapers are easier to access than social media, so
projects using them can start more quickly. If a project
includes local newspapers, they may also provide more
geographic coverage than Twitter. One disadvantage is
that they are still secondary sources of information,
whereas tweets, properly collected, provide primary
evidence. A project using newspapers to measure pro-
tests also requires more ongoing personnel engage-
ment than one using Twitter.

Though acquiring and processing Twitter data is
more technically challenging than doing the same for
news articles, it has some advantages over them. Pro-
test images, because they are primary source material,
may be closer to the cellphone data in their data
generating process than news are. Using the keyword
approach to estimate protest size is much less difficult
than using images and equally accurate, so estimating
protest size variation once a data pipeline is established
is relatively easy.

One advantage to using images on Twitter versus
tweet text is that text requires subject matter expertise
on keywords per protest event, whereas visuals are
closer to a universal language (Barry 1997; Graber
1996).Measuring size with text therefore requires more
ongoing involvement than image-based estimates.
Images, however, are available in fewer circumstances
than text (Hawelka et al. 2014).

How Broadly Applicable Are These Results?

Since this paper’s validation has only been tested on
one event, the scope to which it holds remains to be
tested. The results probably hold in other wealthy
democracies, though for now that claim remains an
assumption. Steinert-Threlkeld, Chan, and Joo (2020),
for example, show thatTwitter: Images Faces and news-
paper estimates correlate with each other in four coun-
tries about 70% as well as in this paper (see Table A9),
though that paper does not have cellphone data with
which to verify those estimates. This approach should
work in countries where domestic newspapers are not
reliable sources, as event datasets rely on foreign news-
papers and wire services for size estimates (Clark
and Regan 2018; Raleigh et al. 2010; Weidmann
and Rod 2018). Twitter penetration correlates strongly
with a country’s per capita income, so this methodology
may also work in wealthy non-democracies (Hawelka
et al. 2014). This work cannot test the international
robustness of this finding because CCC only focuses on
the United States, there is no other dataset of contem-
poraneous protest size, and we could not obtain cell-
phone location data in other locations.

Though cellphone location data are probably the
best source for capturing variation in protest size,
researchers still must rely on media reports or social
media because of the difficulty of acquiring them.
Orange, the French telecommunications company,
made call detail record data available via its Data for
Development program in 2012 and 2014 for the Ivory
Coast and Senegal, respectively, but those data were
not public, and the competition is no longer held. Data
brokers such as SafeGraph and Cuebiq work with
academics on a case-by-case basis. Otherwise, cell-
phone data are available based on idiosyncratic part-
nerships between researchers and private companies.

Concluding Thoughts

These results suggest that news sources provide accur-
ate estimates of protest size variation, as do social
media text or images of protesters (Botta, Moat,

News and Geolocated Social Media Accurately Measure Protest Size Variation
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and Preis 2015). Transforming, and not reporting, raw
data throws away information future researchers may
find useful. Event datasets that report size should
therefore report raw estimates recorded in news.
Researchers using those data can then decide whether
or not to transform them.
The concern that news and social media estimates of

protest size cannot be trusted should be laid to rest.
Though others have reported protest size using cell-
phone records, we are the first, as far as we are aware,
to use location data from them as opposed to call detail
records collected by transmission towers (Shalev
and Rotman 2020; Traag, Quax, and Sloot 2017) and
to verify secondary datasets. Whether a researcher
prefers news or social media to measure protest size
variation is his or her choice, as they are equally
accurate. So long as one believes that estimates of
protest size variation from cellphone location data are
accurate, then estimates of protest size variation from
news and social media are trustworthy.

SUPPLEMENTARY MATERIALS

To view supplementary material for this article, please
visit http://dx.doi.org/10.1017/S0003055420000295.
Replication materials can be found on Dataverse at:

https://doi.org/10.7910/DVN/TRLSJA
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