
Hardware Benchmarking of Round 2 Candidates in
the NIST Lightweight Cryptography Standardization

Process
Kamyar Mohajerani, Richard Haeussler, Rishub Nagpal, Farnoud Farahmand, Abubakr Abdulgadir,

Jens-Peter Kaps, and Kris Gaj
Department of Electrical and Computer Engineering

George Mason University
Fairfax, VA, U.S.A.

{mmohajer, rhaeussl, rnagpal2, ffarahma, aabdulga, jkaps, kgaj}@gmu.edu

Abstract—Twenty five Round 2 candidates in the NIST
Lightweight Cryptography (LWC) process have been implemented
in hardware by groups from all over the world. All imple-
mentations compliant with the LWC Hardware API, proposed
in 2019, have been submitted for hardware benchmarking to
George Mason University’s LWC benchmarking team. The re-
ceived submissions were first verified for correct functionality
and compliance with the hardware API’s specification. Then, the
execution times in clock cycles, as a function of input sizes, have
been determined using behavioral simulation. The compatibility
of all implementations with FPGA toolsets from three major
vendors, Xilinx, Intel, and Lattice Semiconductor was verified.
Optimized values of the maximum clock frequency and resource
utilization metrics, such as the number of look-up tables (LUTs)
and flip-flops (FFs), were obtained by running optimization tools,
such as Minerva, ATHENa, and Xeda. The raw post-place and
route results were then converted into values of the corresponding
throughputs for long, medium-size, and short inputs. The results
were presented in the form of easy to interpret graphs and
tables, demonstrating the relative performance of all investigated
algorithms. An effort was made to make the entire process as
transparent as possible and results easily reproducible by other
groups.

Index Terms—Lightweight Cryptography, authenticated ci-
phers, hash functions, hardware, FPGA, benchmarking

I. INTRODUCTION

A comprehensive framework for fair and efficient bench-
marking of hardware implementations of lightweight cryptog-
raphy was proposed in [1]. This framework was based on the
idea of the Lightweight Cryptography Hardware API [2], which
was published in October 2019, and has remained stable since
then.

The corresponding LWC Development Package has been
built as a major revision of the CAESAR Development Pack-
age [3], [4] by an extended team including representatives of
the Technical University of Munich (TUM), Virginia Tech, and
George Mason University. The first version of this package was
published on October 14, 2019. Since then, this package was
updated several times, including the most recent revision in
October 2020. The first implementations of candidates in the

Partially supported by the US Department of Commerce (NIST) using grant
no. 70NANB18H219.

Lightweight Cryptography Standardization process, compliant
with the LWC Hardware API and using the new development
package, were reported by members of the Virginia Tech
Signatures Analysis Lab in [5].

Before the start of Round 2 of the NIST Lightweight Cryp-
tography Standardization Process in September 2019, multiple
submission teams developed hardware implementations non-
compliant with the proposed LWC API. These implementations
used very divergent assumptions, interfaces, and optimization
goals. Only 8 out 32 teams (ACE, DryGASCON, ForkAE,
ISAP, Romulus, SKINNY, Subterranean 2.0, and WAGE) made
their HDL code public, either as a part of the corresponding
Round 2 submission package or the candidate website. Pre-
liminary results reported in the algorithm specifications were
based on the use of about a dozen different FPGA families
and about the same number of standard-cell ASIC libraries.
Only results obtained using the same FPGA family or the same
ASIC library can be fairly compared with one another. As a
result, before the start of this benchmarking effort, at most
6 FPGA implementations and 4 ASIC implementations could
possibly be compared with one another. However, even such a
limited comparison would be highly unfair because of the use
of different interfaces, assumptions, and optimization targets.

II. METHODOLOGY

A. LWC Hardware API

Hardware designers participating in the hardware bench-
marking of Round 2 LWC candidates are expected to follow
Hardware API for Lightweight Cryptography defined in detail
at [2]. The major parts of this API include the minimum
compliance criteria, interface, and communication protocol
supported by the LWC core. The proposed API is intended to
meet the requirements of all candidates submitted to the NIST
Lightweight Cryptography standardization process, as well as
all CAESAR candidates and current authenticated cipher and
hash function standards. The main reasons for defining a
common API for all hardware implementations of candidates
submitted to the NIST Lightweight Cryptography standardiza-
tion project are: a) Fairness of benchmarking, b) Compatibility



among implementations of the same algorithm by different
designers, and c) Ease of creating the supporting development
package, aimed at simplifying and speeding up the design
process.

B. LWC Hardware Development Package

To make the benchmarking framework more efficient in
terms of the hardware development time, the designers are
provided with the following resources, compliant with the use
of the proposed LWC Hardware API:
a) VHDL code supporting the API protocol, common to all
Lightweight Cryptography standardization process candidates,
as well as all CAESAR candidates and AES-GCM (LWC rtl)
b) Universal testbench, common for all API-compliant designs
(LWC TB)
c) Python app used to automatically generate test vectors
(cryptotvgen)
d) Reference implementations of a dummy authenticated cipher
and a dummy hash function (dummy lwc)
e) Implementer’s Guide, describing all steps of the development
and benchmarking process, including verification, experimental
testing, and generation of results.

It should be stressed that the implementations of authenti-
cated ciphers (with an optional hash functionality), compliant
with the LWC Hardware API, can also be developed without
using any of the aforementioned resources, by just following
the specification of the LWC Hardware API directly.

C. FPGA Platforms and Tools

For the purpose of this benchmarking study, the GMU group
selected three benchmarking platforms representing FPGA
families of three major vendors: Xilinx, Intel, and Lattice
Semiconductor. The primary criteria for the selection of FPGA
devices were as follows:

1) representing widely used low-cost, low-power FPGA
families

2) capable of holding SCA-protected designs (possibly us-
ing up to four times more resources than unprotected
designs)

3) supported by free versions of state-of-the-art industry
tools.

These criteria led to the selection of the following FPGA
devices:

1) From Xilinx
Artix-7 : xc7a12tcsg325-3, including 8,000 LUTs, 16,000
FFs, 40 18Kbit BRAMs, 40 DSPs, and 150 I/Os.

2) From Intel
Cyclone 10 LP : 10CL016-YF484C6, including 15,408
LEs, 15,408 FFs, 56 M9K blocks, 56 multipliers (MULs),
and 162 I/Os, and

3) From Lattice Semiconductor
ECP5 : LFE5U-25F-6BG381C, including 24,000 LUTs,
24,000 FFs, 56 18Kbit blocks, 28 MULs, and 197 I/Os.

The corresponding FPGA tools capable of processing HDL
code targeting these (and many other FPGA devices) were:

1) From Xilinx: Xilinx Vivado 2020.1 (lin64)

2) From Intel: Intel Quartus Prime Lite Edition Design
Software, ver. 20.1

3) From Lattice Semiconductor: Lattice Diamond Software
v3.11 SP2.

D. Optimization Target

Our underlying assumption is that the implementation of an
LWC algorithm protected against side-channel attacks should
take no more than all look-up tables (LUTs) of the selected
Xilinx FPGA device, Artix-7 : xc7a12tcsg325-3. Taking into
account that protected implementations typically take up to
3-4 times more LUTs than unprotected implementations, our
unprotected design should take no more than one-fourth of
the total number of LUTs, i.e., 2000 LUTs. At the same
time, we assume that the benchmarked implementations are
not permitted to use any family-specific embedded resources,
such as Block RAMs, DSP units, or embedded multipliers.
Any storage should be implemented using either flip-flops or
distributed memory, which, in the case of Xilinx FPGAs, is
built out of LUTs. The number of Artix-7 flip-flops is limited
to 4000, as in this FPGA family, each LUT is accompanied by
two flip-flops. The designs are also prohibited from using any
family-specific primitives or megafunctions.

This proposed optimization target has been clearly communi-
cated to all LWC submission teams through the document titled
Suggested FPGA Design Goals, posted on the LWC hardware
benchmarking project website [2], as well as announcements
on the lwc-forum, and private communication.

E. Functional Verification

All submitted implementations were first investigated in
terms of compliance with the LWC Hardware API and the
completeness of their deliverables, requested for benchmarking.
Then, a comprehensive set of new test vectors, unknown in
advance to hardware designers, was generated separately for
each variant of each algorithm. These tests included multiple
special cases, such as empty AD, empty plaintext, various
widths of an incomplete last block, etc. If these test vectors
passed, the implementation was judged functionally correct
and compliant with the LWC Hardware API. If these test
vectors failed, the source of failure was investigated in close
collaboration with hardware designers. The designers were
allowed to submit revised versions of their code.

F. Timing Measurements

The testbench LWC TB, being a part of the LWC Develop-
ment package, has been extended to include support for mea-
surements of the execution times for authenticated encryption,
authenticated decryption, and hashing. This testbench was used
to measure the execution times for:

1) Input sizes used in the definitions of benchmarking
metrics

2) All possible AD and plaintext lengths (in bytes) between
0 and 2 full input blocks, in increments of one byte.

Only the execution times obtained experimentally, using the
timing measurements, were used to calculate values of the
corresponding throughputs.



G. Synthesis, Implementation, and Optimization of Tool Op-
tions

The determination of the maximum clock frequency and the
corresponding resource utilization was performed using tools
specific for each FPGA vendor. For Artix-7 FPGAs, Minerva:
An Automated Hardware Optimization Tool, described in [6],
was used. The average time required to find the optimum
requested clock frequency and the best optimization strategy
was about 3.5 hours per algorithm variant. For Intel FPGAs,
ATHENa – Automated Tool for Hardware EvaluatioN [7],
was used. This tool supports all recent Intel FPGA families
as well as older Xilinx FPGA families before Series 7. A
new tool, Xeda [8], which stands for cross (X) electronic
design automation, was developed. Xeda provides a layer of
abstraction over simulation and synthesis tools and removes
the difficulty associated with testing a design across multiple
FPGA vendors. Additionally, Xeda allows user-made plugins,
which can extend functionality to new tools or allow for post-
processing of synthesis and simulation results. For Lattice
Semiconductor FPGAs, Xeda and a plugin developed to find
the maximum clock frequency were used. The synthesis was
performed using both the Lattice Synthesis Engine (LSE) and
Synplify Pro. Only the better of the two results was reported.

H. Performance Metrics

The following performance metrics have been evaluated as
a part of this benchmarking project:

1) Resource utilization
Number of LUTs for Artix-7 and ECP5 FPGAs, LEs for
Cyclone 10 LP FPGAs, and flip-flops for all FPGAs, as-
suming no use of embedded memories (such as BRAMs),
DSP units, and embedded multipliers.

2) Throughput in Mbits/s for the following sizes of inputs
a) Long [with Throughput = d·Block size/(Time(N+

d blocks)− Time(N blocks))]
b) 1536, 64 bytes, and 16 bytes.

All throughputs are calculated separately for plaintext
(PT) only, Associated Data (AD) only, and hash message.

III. HARDWARE DESIGNS

A total of 30 designs were received. These designs covered
25 out of 32 Round 2 candidates. Candidates implemented in-
dependently by two different groups included Ascon, COMET,
Gimli, TinyJAMBU, and Xoodyak. The following submissions
were provided by co-authors of algorithms submitted to the
NIST LWC standardization process: ACE, ESTATE, ForkAE,
Gimli, ISAP, KNOT, LOCUS-AEAD/LOTUS-AEAD, Orib-
atida, Romulus, Spook, Subterranean 2.0, TinyJAMBU, WAGE,
and Xoodyak. The implementation of DryGASCON was de-
veloped by an independent researcher, Ekawat Homsirikamol,
in close collaboration with the author of the algorithm. An
additional implementation of Gimli was contributed by mem-
bers of the Chair of Security in Information Technology at the
Technical University of Munich, Germany.

Most groups used VHDL. Four design teams used exclu-
sively Verilog for the implementation of the entire LWC unit.

As a result, these implementations did not take advantage of the
LWC Development Package, available only in VHDL. Algo-
rithms implemented this way included Gimli, Romulus, Spook-
v2, and Subterranean 2.0. The submission Xoodyak GMU2-v1
is implemented purely in Bluespec SystemVerilog, depending
on its own Bluespec LWC development package [9]. Three
implementations modeled only the part unique to a given
algorithm, its CryptoCore, in Verilog. These designs included
DryGASCON, KNOT, and SpoC.

Ten submissions contained a single variant. In the remaining,
the number of variants varied between 2 and 16, with an
average of 2.7 per hardware design submission. Most of the
variants of the same algorithm share a significant portion of
the HDL source code and differ only in values of generics or
constants. In some cases, a separate source code was provided
for each variant.

The total number of implemented variants reached 88. We
assigned to each variant a unique name. For algorithms im-
plemented by a single group, this name consists of the name
of the algorithm followed by a variant number. For algorithms
implemented by two groups we add a group name abbreviation
after the algorithm name. The abbreviations used are: CI for
CINVESTAV-IPN, GMU for George Mason University, Graz
for TU Graz, Austria, GT for Gimli Team, VT for Virginia
Tech, TJT for TinyJAMBU Team, and XT for Xoodyak Team
+ Silvia. For Spook, exceptionally, the name of the variant is
Spook-v2-v1. In this name, v2 indicates version 2 of Spook
proposed in [10]. Features of all variants are summarized
in [11].

For almost all candidates, decryption can be performed with
exactly the same speed as encryption. As a result, in the
Results section, we focus only on the timing metrics related to
encryption. The following candidates process AD significantly
faster than plaintext: Xoodyak, TinyJAMBU, ESTATE, LOCUS
& LOTUS, Oribatida, and Romulus. The ratio of the hashing
throughput to the plaintext processing throughput is 2.00 for
Saturnin, 1.00 for ACE, DryGASCON, and Gimli, and the
smallest for KNOT, PHOTON-Beetle, and Subterranean 2.0.

IV. RESULTS AND THEIR ANALYSIS

A. Throughputs for Long Inputs

The two-dimensional graphs Throughput vs. Number of Used
LUTs are shown in Figs. 1 and 2. The throughputs concern the
cases of Plaintext (PT) only and Associated Data (AD) only,
respectively. Both graphs present results for the Xilinx Artix-7
FPGA xc7a12tcsg325-3. The results apply to long inputs. We
use the logarithmic scale on both axes. Dashed lines represent
the same throughput over area ratio. In the legends of these
figures, the algorithms are listed in the order of decreasing
throughput. While the order of the symbols remains the same,
the mapping of symbols to algorithms changes.

In these graphs, each candidate is represented by only one
variant, selected according to the following rules. If a candidate
has one or more variants with the area below 2520 LUTs (the
area of the smallest implementation of AES-GCM available to
us), the fastest variant meeting this criterion is selected. If a



1000 1500 2000 2500 3000

5

6

7

8
9

100

2

3

4

5

6

7

8
9

1000

2

3

4

5

6

7

8
Subterranean-v2

Xoodyak_GMU2-v1

KNOT-v2x2

Gimli_GT-v4

Ascon_Graz-v2

DryGASCON-v1

COMET_VT-v1

Spook-v2-v2

TinyJAMBU_TJT-v3

Romulus-v3

AESGCM-v2

Saturnin-v2

GIFT-COFB-v1

SCHWAEMM-v1

PHOTON-Beetle-v1

Elephant-v2

ISAP-v2

mixFeed-v1

ESTATE-v1

Pyjamask-v2

Oribatida-v1

ForkAE-v2

LOCUS-v2

WAGE-v1

SpoC-v1

ACE-v1

Area [LUTs]

PT
 T

hr
ou

gh
pu

t 
[M

bi
ts

/s
]

Fig. 1: Artix-7 Encryption PT Throughput for Long Messages vs LUTs

1000 1500 2000 2500 3000

5

6

7
8
9

100

2

3

4

5

6

7
8
9

1000

2

3

4

5

6

7
8
9

10k Xoodyak_GMU2-v1

Subterranean-v2

KNOT-v2x4h

Gimli_GT-v4

TinyJAMBU_TJT-v3

Ascon_Graz-v2

COMET_VT-v1

Saturnin-v2

Romulus-v2

DryGASCON-v1

Elephant-v2

Spook-v2-v2

SCHWAEMM-v1

AESGCM-v2

PHOTON-Beetle-v1

ISAP-v2

GIFT-COFB-v1

ESTATE-v1

Oribatida-v1

mixFeed-v1

LOCUS-v2

Pyjamask-v2

ForkAE-v2

WAGE-v1

SpoC-v1

ACE-v1

Area [LUTs]

A
D

 T
hr

ou
gh

pu
t 

[M
bi

ts
/s

]

Fig. 2: Artix-7 Encryption AD Throughput for Long Messages vs LUTs



1000 1500 2000 2500 3000 3500
7
8
9

100

2

3

4
5
6
7
8
9

1000

2

3

4

Gimli_GT-v4

Xoodyak_XT-v8

Saturnin-v2

SHA2-v1

DryGASCON-v1

Ascon_Graz-v2

SHA3-v1

Subterranean-v2

SCHWAEMM-v2

KNOT-v2x4h

PHOTON-Beetle-v1

Area [LUTs]

H
M

 T
hr

ou
gh

pu
t 

[M
bi

ts
/s

]

Fig. 3: Artix-7 Hashing Throughput for Long Messages vs LUTs

candidate does not have a variant with the area below 2520
LUTs, a variant with the smallest area is selected.

The threshold of 2520 LUTs (26% more than the intended
target of 2000 LUTs) was selected because many designers tried
to aggressively use close to 2000 LUTs to achieve the highest
possible speed. As a result many of them ended up with designs
taking between 2000 and 2520 LUTs. Additionally, the exact
number of LUTs may depend on the exact options of tools,
providing different trade-offs between the area and speed.

The winner for the PT only is Subterranean 2.0. Its imple-
mentation reaches the throughput of 6 Gbit/s and is the second
smallest in terms of the number of LUTs. The second fastest
is Xoodyak, with the throughput about 4.5 Gbit/s.

The next group includes three algorithms, KNOT, Gimli, and
Ascon, with the throughputs between 2.3 and 3.2 Gbits/s. Out of
these three, the implementation of KNOT is the fastest and the
implementation of Ascon the smallest. The third group includes
three algorithms with throughputs between 1 and 2 Gbits/s:
DryGASCON, COMET, and Spook-v2. Their areas are in the
range between 2000 and 2500 LUTs. The implementation of
DryGASCON is the fastest, and the implementation of Spook-
v2 the smallest in this group. The next algorithm in the ranking
is TinyJAMBU, which reaches a speed very close to 1 Gbit/s
and at the same time has by far the smallest area, around 600
LUTs. The first dozen candidates in terms of throughput, with
the area below 2520 LUTs, also include Romulus, Saturnin,
and GIFT-COFB. The design of SCHWAEMM is by far the
largest, above 3000 LUTs, yet still only average (rank 13) in
terms of throughput. More effort is required to demonstrate the
competitiveness of this algorithm with the first 12 candidates
mentioned above. All remaining algorithms have throughputs
below 700 Mbits/s. Out of them, ISAP, Pyjamask, and ForkAE
already have areas exceeding 2000 LUTs.

For AD only, the following changes in the rankings are the
most significant. Subterranean 2.0 and Xoodyak swap their
positions. Xoodyak is the fastest, with a speed exceeding
8 Gbit/s. The next group includes KNOT and Gimli, with
the throughputs around 4 Gbit/s and 3 Gbits/s, respectively.
TinyJAMBU moves from position 9 for processing plaintext

only to position 5 for AD only, followed closely by Ascon
at position 6. The new algorithms with throughputs in the
range between 1 and 2 Gbit/s include Saturnin, Romulus, and
Elephant. Among the first dozen algorithms in the ranking,
there is only one change, GIFT-COFB is replaced by Elephant.
All first 12 algorithms have throughputs for AD only greater
than 1 Gbit/s.

Only 10 out of 25 investigated candidates support hashing.
The two-dimensional graph, Throughput vs. Area for hashing
long messages on Artix-7 FPGA, is shown in Fig. 3.

The two fastest designs are Gimli and Xoodyak, with
throughputs approximately equal to 3 and 2 Gbits/s, respec-
tively. Very close behind are Saturnin and DryGASCON, with
the throughputs between 1.3 and 1.5 Gbits/s. They are followed
by Ascon at about 1 Gbit/s and Subterranean at around 750
Mbits/s. SCHWAEMM (ESCH) reaches slightly less than 500
Mbit/s. The three remaining algorithms, KNOT, PHOTON-
Beetle, and ACE have throughputs below 450 Mbits/s.

The average ratios of the number of Cyclone 10 LP LEs and
ECP5 LUTs to the number of Artix-7 LUTs, calculated over
all major designs, are 1.9 and 1.7, respectively. The average
decrease in the frequency is by a factor of 1.6 for Cyclone
10 LP and 2.6 for ECP5. The ranking of candidates remains
approximately the same [11].

B. Throughputs for Short Inputs

For 1536-byte plaintexts, the throughputs are very close to
throughputs for long inputs. The average percentage is 97%, the
minimum 89% (Subterranean-v1). Multiple algorithms reach
99%. For 64-byte plaintexts, this ratio varies from 25% for
Subterranean-v2 to 99% for ForkAE-v1, with an average of
61%. For 16-byte plaintexts, the ratio varies from 8% for
Subterranean-v1 to 98% for ForkAE-v1, with an average of
32%. All mentioned above percentages are dependent only on
the algorithm and its hardware architecture. They do not depend
on a particular FPGA device.

In Table I, we summarize the relative changes in rankings
for Artix-7. For the processing of PT only, the following
algorithms rank higher for short messages than for long



TABLE I: Xilinx Artix-7 Encryption PT Throughput Rankings

Rank 1536 Byte 64 Byte 16 Byte

1 Subterranean-v2 Xoodyak GMU2-v1 Xoodyak GMU2-v1
2 Xoodyak GMU2-v1 Subterranean-v2 Subterranean-v2
3 KNOT-v2x2 KNOT-v2x2 Ascon VT-v1
4 Gimli GT-v4 Ascon Graz-v2 COMET VT-v1
5 Ascon Graz-v2 DryGASCON-v1 DryGASCON-v1
6 DryGASCON-v1 Gimli GT-v4 KNOT-v2x2
7 COMET VT-v1 COMET VT-v1 TinyJAMBU TJT-v3
8 Spook-v2-v2 TinyJAMBU TJT-v3 Romulus-v2
9 TinyJAMBU TJT-v3 Romulus-v2 Gimli GT-v4
10 Romulus-v3 Spook-v2-v2 PHOTON-Beetle-v1
11 Saturnin-v2 PHOTON-Beetle-v1 Elephant-v2
12 GIFT-COFB-v1 GIFT-COFB-v1 GIFT-COFB-v1
13 SCHWAEMM-v1 Elephant-v2 ESTATE-v1
14 PHOTON-Beetle-v1 SCHWAEMM-v1 Spook-v2-v2
15 Elephant-v2 Saturnin-v2 ForkAE-v2
16 ISAP-v2 ESTATE-v1 SCHWAEMM-v1
17 mixFeed-v1 mixFeed-v1 Oribatida-v1
18 ESTATE-v1 ForkAE-v2 LOCUS-v2
19 Pyjamask-v2 Oribatida-v1 Saturnin-v2
20 Oribatida-v1 LOCUS-v2 mixFeed-v1
21 ForkAE-v2 ISAP-v2 SpoC-v1
22 LOCUS-v2 Pyjamask-v2 ISAP-v2
23 WAGE-v1 SpoC-v1 Pyjamask-v2
24 SpoC-v1 WAGE-v1 WAGE-v1
25 ACE-v1 ACE-v1 ACE-v1

messages: Xoodyak, Ascon, DryGASCON, COMET, Tiny-
JAMBU, Romulus, PHOTON-Beetle, Elephant, ESTATE, Ori-
batida, ForkAE, LOCUS, and SpoC. The opposite is true
for the following candidates: Subterranean 2.0, KNOT, Gimli,
Spook, SCHWAEMM, Saturnin, ISAP, Pyjamask, and WAGE.
The following 9 algorithms remain among the best 10, inde-
pendently of the size of inputs: Subterranean 2.0, Xoodyak,
KNOT, Gimli, Ascon, DryGASCON, COMET, TinyJAMBU,
and Romulus. For the shortest considered plaintext of the size
of 16 bytes, Spook-v2 drops to position 14. Out of these
9 algorithms, the following 6 also support hashing: Gimli,
Xoodyak, DryGASCON, Ascon, Subterranean 2.0, and KNOT
(with the first four at least two times faster than KNOT).
A candidate particularly fast in hashing but not so good for
processing small plaintexts is Saturnin. Details of all results
are available in [11].

V. CONCLUSIONS AND FUTURE WORK

For processing of long plaintexts, with the budget of 2520
Artix-7 LUTs or less, 10 candidates outperform the current
standard AES-GCM. These candidates, in the order of Through-
put, include: Subterranean 2.0, Xoodyak, KNOT, Gimli, Ascon,
DryGASCON, COMET, Spook-v2, TinyJAMBU, and Romu-
lus. All these algorithms, as well as Saturnin and Elephant,
outperform AES-GCM also for processing of long ADs, while
meeting the area limit. Out of them, only Gimli, Xoodyak, and
Saturnin support hashing faster than SHA-2. Two additional
ones, DryGASCON and Ascon, perform hashing faster than
the folded implementation of SHA-3. Future work will include
ASIC benchmarking and energy per bit evaluation in FPGAs
and ASICs.

REFERENCES

[1] J.-P. Kaps, W. Diehl, M. Tempelmeier, F. Farahmand,
E. Homsirikamol, and K. Gaj, “A Comprehensive
Framework for Fair and Efficient Benchmarking of
Hardware Implementations,” Cryptology ePrint Archive
2019/1273, Nov. 2019.

[2] Cryptographic Engineering Research Group (CERG) at
George Mason University. (2020). “Hardware Bench-
marking of Lightweight Cryptography,” [Online]. Avail-
able: https://cryptography.gmu.edu/athena/index.php?
id=LWC.

[3] ——, (2019). “Hardware Benchmarking of CAESAR
Candidates,” [Online]. Available: https: / /cryptography.
gmu.edu/athena/index.php?id=CAESAR.

[4] P. Yalla and J.-P. Kaps, “Evaluation of the CAESAR
hardware API for lightweight implementations,” in 2017
International Conference on ReConFigurable Computing
and FPGAs (ReConFig), Cancun: IEEE, Dec. 2017.

[5] B. Rezvani, F. Coleman, S. Sachin, and W. Diehl,
“Hardware Implementations of NIST Lightweight Cryp-
tographic Candidates: A First Look,” Cryptology ePrint
Archive 2019/824, Feb. 2020.

[6] F. Farahmand, W. Diehl, and K. Gaj, “Minerva: Au-
tomated hardware optimization tool,” in International
Conference on ReConfigureable Computing and FPGAs
(ReConfig), Cancun, Mexico, 2017, pp. 1–8.

[7] K. Gaj, J.-P. Kaps, V. Amirineni, M. Rogawski, E. Hom-
sirikamol, and B. Y. Brewster, “ATHENa - Automated
Tool for Hardware EvaluatioN: Toward Fair and Com-
prehensive Benchmarking of Cryptographic Hardware
Using FPGAs,” in 2010 International Conference on
Field Programmable Logic and Applications, FPL 2010,
Milan, Italy: IEEE, Aug. 2010, pp. 414–421.

[8] K. Mohajerani and R. Nagpal, Xeda: Cross-EDA Ab-
straction and Automation, Dec. 9, 2020. [Online]. Avail-
able: https://github.com/XedaHQ/xeda.

[9] K. Mohajerani, BlueLight: Bluespec implementations of
Lightweight Cryptography Candidates, Dec. 9, 2020.
[Online]. Available: https : / / github . com / kammoh /
bluelight.

[10] D. Bellizia, F. Berti, O. Bronchain, G. Cassiers, S. Duval,
C. Guo, G. Leander, G. Leurent, C. Momin, O. Pereira,
T. Peters, F.-X. Standaert, B. Udvarhelyi, and F. Wiemer,
“Spook: Sponge-Based Leakage-Resistant Authenticated
Encryption with a Masked Tweakable Block Cipher,”
IACR Transactions on Symmetric Cryptology, vol. 2020,
no. S1, pp. 295–349, 2020.

[11] K. Mohajerani, R. Haeussler, R. Nagpal, F. Farahmand,
A. Abdulgadir, J.-P. Kaps, and K. Gaj, FPGA Bench-
marking of Round 2 Candidates in the NIST Lightweight
Cryptography Standardization Process: Methodology,
Metrics, Tools, and Results, Cryptology ePrint Archive,
Report 2020/1207, 2020. [Online]. Available: https : / /
eprint.iacr.org/2020/1207.

https://cryptography.gmu.edu/athena/index.php?id=LWC
https://cryptography.gmu.edu/athena/index.php?id=LWC
https://cryptography.gmu.edu/athena/index.php?id=CAESAR
https://cryptography.gmu.edu/athena/index.php?id=CAESAR
https://github.com/XedaHQ/xeda
https://github.com/kammoh/bluelight
https://github.com/kammoh/bluelight
https://eprint.iacr.org/2020/1207
https://eprint.iacr.org/2020/1207

	Introduction
	Methodology
	LWC Hardware API
	LWC Hardware Development Package
	FPGA Platforms and Tools
	Optimization Target
	Functional Verification
	Timing Measurements
	Synthesis, Implementation, and Optimization of Tool Options
	Performance Metrics

	Hardware Designs
	Results and Their Analysis
	Throughputs for Long Inputs
	Throughputs for Short Inputs

	Conclusions and Future Work

