
Side-Channel Resistant Implementations of a Novel Lightweight
Authenticated Cipher with Application to Hardware Security

Abubakr Abdulgadir, Sammy Lin, Farnoud Farahmand, Jens-Peter Kaps, Kris Gaj
{aabdulga,slin5,ffarahma,jkaps,kgaj}@gmu.edu

George Mason University
Fairfax, VA, USA

ABSTRACT
Lightweight authenticated ciphers are crucial in many resource-
constrained applications, including hardware security. To protect
Intellectual Property (IPs) from theft and reverse-engineering, mul-
tiple obfuscation methods have been developed. An essential com-
ponent of such schemes is the need for secrecy and authenticity
of the obfuscation keys. Such keys may need to be exchanged
through the unprotected channels, and their recovery attempted us-
ing side-channel attacks. However, the use of the current AES-GCM
standard to protected key exchange requires a substantial area and
power overhead. NIST is currently coordinating a standardization
process to select lightweight algorithms for resource-constrained
applications. Although security against cryptanalysis is paramount,
cost, performance, and resistance to side-channel attacks are among
the most important selection criteria. Since the cost of protection
against side-channel attacks is a function of the algorithm, quantify-
ing this cost is necessary for estimating its cost and performance in
real-world applications. In this work, we investigate side-channel
resistant lightweight implementations of an authenticated cipher
TinyJAMBU, one of ten finalists in the current NIST LWC standard-
ization process. Our results demonstrate that these implementations
achieve robust security against side-channel attacks while keep-
ing the area and power consumption significantly lower than it is
possible using the current standards.

CCS CONCEPTS
• Security and privacy→ Symmetric cryptography and hash
functions; Hardware security implementation.

KEYWORDS
lightweight cryptography; hardware; FPGA; side-channel attacks

ACM Reference Format:
Abubakr Abdulgadir, Sammy Lin, Farnoud Farahmand, Jens-Peter Kaps, Kris
Gaj. 2021. Side-Channel Resistant Implementations of a Novel Lightweight
Authenticated Cipher with Application to Hardware Security. In Proceedings
of the Great Lakes Symposium on VLSI 2021 (GLSVLSI ’21), June 22–25, 2021,
Virtual Event, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/3453688.3461761

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GLSVLSI ’21, June 22–25, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8393-6/21/06. . . $15.00
https://doi.org/10.1145/3453688.3461761

1 INTRODUCTION
To protect the intellectual property (IP) from being reverse engi-
neered and misused by any participant of the manufacturing supply
chain, various forms of hardware obfuscation have been developed.
Obfuscation is the process of hiding the true functionality of an inte-
grated circuit (IC). This functionality remains incorrect without the
knowledge of a special key called an obfuscation key. The obfusca-
tion key needs to be protected using cryptographic methods when
this key is sent from the Authentication Server to an obfuscated IC
during activation. The role of the Authentication Server can also be
played by a trusted chip physically attached to an untrusted chip
during packaging in the trusted facility. In [2], Communication and
Obfuscation Management Architecture (COMA) has been proposed
to handle secure and efficient distribution of obfuscation keys. The
crucial component of this architecture is a hardware implemen-
tation of an authenticated cipher protected against side-channel
attacks. This authenticated cipher must be trusted, but its imple-
mentation should introduce the smallest possible overhead in terms
of area and power. In cryptography, trust comes from standardiza-
tion. Until now, the only standardized authenticated cipher suitable
for the protection of obfuscation keys is AES-GCM.

However, in 2018, as a response to the increasing need for light-
weight cryptography (LWC) solutions, the U.S. National Institute
of Standards and Technology (NIST) started an effort to select and
standardize additional algorithms. In March 2021, NIST announced
ten algorithms as finalists of this process. For such a selection pro-
cess, security and software efficiency are usually the major criteria
in the first rounds, with concentration shifting toward hardware
and security against side-channel analysis (SCA) in the final rounds.
One of the finalists that distinguished itself from others in terms of
the minimal area, power, and energy usage is TinyJAMBU [13].

In this paper, we investigate the suitability and advantages of
using TinyJAMBU instead of AES-GCM to protect obfuscation
keys. As a part of this evaluation, we develop the first reported
hardware implementation of TinyJAMBU protected against side-
channel attacks (SCAs).

One of the most serious SCAs is Differential Power Analysis
(DPA)[11]. In this attack, an adversary collects several power traces
from the device performing a cryptographic function and uses
statistical distinguishers to reveal sensitive information such as
secret keys. First-order DPA exploits leakage that appears in the
first-order statistical moment. On the other hand, high-order DPA
uses leakage in high-order statistical moments. Implementations
protected against dth-order DPA can be broken using d+1-order
DPA. However, the number of leakage traces needed increases
exponentially with respect to d [4].

https://doi.org/10.1145/3453688.3461761
https://doi.org/10.1145/3453688.3461761
https://doi.org/10.1145/3453688.3461761

The power and the practicality of DPA fueled a focus on coun-
termeasures since the time the attack was published. Among ex-
isting countermeasures, masking style countermeasures, such as
Threshold Implementations (TI) [15] and Domain Oriented Mask-
ing (DOM) [9], are provably secure under certain assumptions. In
this work, we utilize the DOM scheme, which can be used to im-
plement ciphers that are synthesizable for an arbitrary protection
order. This is useful in providing flexible designs that adapt to the
needs of applications with different levels of security and, at the
same time, maintain a single code base.

In particular, we present a flexible SCA-protected hardware de-
sign of TinyJAMBU that can be synthesized for arbitrary order of
protection utilizing the DOM countermeasure. The implementa-
tions can trade area for performance. We then show the advantages
of this solution, as compared to the use of the existing standard
AES-GCM, to protect obfuscation keys in COMA.

2 BACKGROUND
2.1 TinyJAMBU
TinyJAMBU [17] is a NIST LWC finalist designed to perform au-
thenticated encryption. TinyJAMBU is a lightweight variant of
JAMBU, a CAESAR Round-3 candidate that has a small footprint.

Figure 1 shows the data flow in TinyJAMBU. The TinyJAMBU-
128 variant has a 128-bit state and uses a 128-bit key, 96-bit nonce,
and 64-bit tag. The data (associated data and plaintext/ciphertext)
is processed in 32-bit blocks. To update its state, TinyJAMBU uses
a keyed permutation based on a Nonlinear Shift Register (NLFSR)
as shown in Figure 2. To perform the permutation, the NLFSR is
updated by calculating the feedback bit(s) as a function of the state
and the key. Then the state register is shifted to the right. Depending
on how the permutation is implemented, multiple feedback bits can
be calculated in parallel.

2.2 Domain Oriented Masking
Hardware implementations of cryptography can leak information
as a result of glitches[12]. The Domain-Oriented Masking (DOM)
[10] countermeasure is designed to provide security in the pres-
ence of glitches, and, at the same time, implementations can be
synthesized for arbitrary order of protection.

Similar to traditional Boolean masking, sensitive data is split
into shares. For example 𝑥 is split into 𝑥0 and 𝑥1, such that 𝑥 =

𝑥0 ⊕ 𝑥1. DOM, however, introduces the concept of share domains,
where each share of a variable is associated with a domain. For
example, 𝑥0 and 𝑦0 can be associated with Domain0 and 𝑥1 and 𝑦1
can be associated with Domain1. The data in each domain is kept
independent from other domains. If data from different domains
must mix (e.g., in non-linear operations), precautions are taken
to preserve the Independence. These precautions include adding
randomness and using synchronization registers to stop glitches.

3 METHODOLOGY
We used the unprotected hardware implementation of TinyJAMBU
at [3] as baseline to implement our SCA-resistant implementa-
tion. This design uses the RTL methodology which provides cycle-
accurate operation simplifying side-channel protection. We employ
the DOM countermeasure to build a TinyJAMBU implementation

that can be synthesized for arbitrary order of protection only by
setting a single configuration parameter d.

3.1 Unprotected Implementation
The lightweight hardware implementation of TinyJAMBU at [3]
has a very small footprint requiring only 591 LUTs in Artix7 FPGA
and at the same time provides a throughput of 250 Mbps. Our
hypothesis, which is later confirmed by concrete results, is that
we can implement high-order DPA resistant implementations of
TinyJAMBU and still keep the implementation lightweight.

The baseline implementation is fully compatible with the LWC
Hardware API. This enables direct comparison with other LWC can-
didates that adhere to the same API. Data communication with the
outside world is performed in 32-bit words, which are equal to the
block size, yielding an efficient design. The CipherCore is composed
of a datapath, shown in Figure 3, which handles all computations,
and a control Finite State Machine (FSM), which sequences the op-
erations and controls data communication. The NLFSR is designed
to be capable of computing between 1 and 32 feedback bits in one
clock cycle. This value can be selected during synthesis using a
parameter N. The implementation works as follows: The key is
accepted 32-bits at a time and stored internally in a shift register.
Afterward, the nonce is accepted, and the initialization phase is
completed. The associated data is absorbed in 32-bits and used to
update the state. On encryption, the plaintext is absorbed and, at
the same time, the ciphertext is generated. Finally the tag is gener-
ated. When performing decryption, the ciphertext is absorbed and
plaintext is produced. Finally, the tag is calculated and compared
to the expected tag, and the status code is emitted based on the
comparison outcome.

3.2 Protected Implementations
Building on the unprotected design described above, we developed
a protected design that can be synthesized for arbitrary order of
protection using the DOM countermeasure. Our protected design is
parameterized by two synthesis parameters d and N, denoting the
order of protection and the number of feedback bits computed in
parallel, respectively. This highly flexible design with two degrees
of freedom can be synthesized to cater to various applications with
different security, cost, and performance requirements and at the
same time maintained in a single code base.

Figure 4 depicts the datapath of a first-order protected implemen-
tation. The NLFSR_pr unit is the protected version of the NLFSR
used for the permutation. Depending on the protection order, the
state register is duplicated as needed and also the logic needed
to compute the feedback bits. The rest of the datapath, which is
responsible for implementing the mode of operation and performs
data selection (multiplexing), FrameBits bit addition, etc., is denoted
TinyJAMBU_ops in Figure 4. This component is duplicated 𝑑 + 1
times, with each instance residing in a separate domain. Note that
constants (FrameBits and partial block length) are added to the
state only in Domain0 to avoid negating the operation.

To provide the random bits required for the DOM countermea-
sure, we utilize a Pseudo-Random Number Generator (PRNG) based
on Trivium [6] which is seeded using data provided through the
RDI port.

Figure 1: TinyJAMBU Authenticated Encryption [17]

Figure 2: TinyJAMBU NLFSR [17]

Figure 3: Baseline Unprotected TinyJAMBU Datapath

Figure 5 shows the block diagram of a second-order protected
NLFSR. This component is critical since the only non-linear compo-
nent in TinyJAMBU is DOM_NAND in the NLFSR. We instantiate a
DOM-dep multiplier [9] that can be synthesized for arbitrary order
instead of the AND gates in the unprotected design. We utilized the
DOM-dep multiplier to avoid any leakage related to dependently

Figure 4: First-Order Protected TinyJAMBU Top-level Block
Diagram

shared variables. Since the multiplier is the only non-linear part
of the design, it is the only component that is not residing purely
in a separate share domain. To turn the AND gates to NAND, we
negate Domain0 output of the each AND gate, which is equivalent
to XOR with 1. Due to the mandatory synchronization registers
in the DOM-dep multiplier, the NLFSR takes two clock cycles to
compute N feedback bits. This will have the effect of doubling the
number of clock cycles needed to perform the permutation. The
rest of the NLFSR logic and the state are duplicated depending on
the number of share domains, which is equal to 𝑑 + 1.

The operation of the protected implementation is as follows: The
state is cleared, and the seed is accepted from the RDI port and
stored in a Serial-In Parallel-Out (SIPO) shift register. The PRNG is
seeded and allowed to be initialized. Once the PRNG is ready, the
input is accepted, and the operation proceeds similarly as in the
unprotected design discussed above. The main exception is that

Figure 5: Protected Second-OrderNLFSR. Thick lines are 128-
bit buses. All other buses are N bit-wide unless specified di-
rectly. Data is processed in three share domains 0, 1 and 2.

data shares are processed in parallel by logic residing in separate
domains.

Processing the shares in parallel means that the number of clock
cycles to process a block remains the same as the protection order
d increases, and the throughput may only be affected by minor
variation in the maximum frequency of the implementation.

4 RESULTS
4.1 Countermeasure Verification
To validate the SCA resistance of our protected implementations, we
utilized the Test-vector LeakageAssessmentmethodology (TVLA) [8]
which is widely used to determine if a cryptographic device is leak-
ing information without performing attacks. Techniques from [16]
were utilized to perform high-order TVLA. We adopt a threshold
of | 𝑡 |> 4.5, which indicates that DUT leaks information at a
confidence level of 99.999%. We utilized the Flexible Opensource
workBench fOr Side-channel analysis (FOBOS) [1] platform, and
the DUT was instantiated in a NewAE CW305 board, which is a
low-noise SCA target board that uses Artix-7 (xc7a100tftg256-3)
FPGA. The DUT power consumption is measured at the output of
the CW305’s Low-Noise Amplifier (LNA), that amplifies the voltage
drop across the on-board 0.1Ω shunt resistor. We clocked the DUT
with a low frequency of 1.25 MHz to avoid signal distortion seen at
high frequencies when power consumption at adjacent clock cycles
interferes with each other. A USB3-based oscilloscope (Picoscope
5000) was used to collect traces at a sampling rate of 125MS/s and
8-bit sample resolution.

TVLA results are shown in Figure 6. For the unprotected baseline
design, the t values exceed the threshold, which indicates a signif-
icant leakage as expected. This leakage is observed even at only

10,000 traces. On the other hand, the TVLA for the first and second-
order protected implementations show no observable leakage even
when 1 million traces are analyzed, confirming the validity of our
countermeasure implementation.

4.2 Cost of Protection
It is expected that protection against side-channel analysis will
come at a price in area, performance, and power consumption.
Quantifying this cost is critical for a fair evaluation of candidates
since the cost of protection varies among candidates. To assess
the cost of protection, we benchmarked various variants of our
TinyJAMBU implementation in FPGA. The benchmarking results
are listed in Table 1. Multiple variants up to the third order of pro-
tection, with a combination of N=8, 16, and 32 are shown. Each
TinyJAMBU variant in Table 1 is parameterized with two param-
eters; d and N that correspond to the order of protection and the
number of feedback bits calculated in parallel, respectively. For
example, TinyJAMBU-d2-N32 is a second-order implementation
that updates 32 bits in parallel. Table 1 abbreviations are Max Freq.
(Maximum Frequency), TP (Throughput), TP Ratio (Throughput
Ratio), LUT (Lookup Table) and Rand. Bits (Random Bits). The
throughput is calculated for encryption of long messages in Mbps.
We benchmarked the variants in Xilinx Artix-7 FPGA using Vivado
2020.1 for synthesis and implementation. Minerva [7] was used to
search for optimized tool settings for the maximum frequency.

We further compare with results from [5], where side-channel
resistant variants of NIST LWC candidates COMET-CHAM and
SCHWAEMM were reported. Comparison with these results can
be done directly since the implementations conform to the LWC
Hardware API, and results were reported for Xilinx Artix-7 FPGA.
Further, the PRNG footprint is not calculated as a part of the area.
We follow the same approach since there are various trade-offs in
the implementation of PRNGs, which are beyond the scope of this
work. Instead of reporting the PRNG area, we provide the num-
ber of bits required to calculate the N feedback bits. Each variant
in Table 1 is also compared against its unprotected baseline vari-
ant by providing the throughput and area ratios. It can be shown
from Table1 that TinyJAMBU is flexible and can be efficiently pro-
tected against side-channel analysis. Also, due to its small footprint
and the small size of non-linearity, one can implement high-order
variants that can fit in small FPGAs. For example, the third-order
TinyJAMBU-d3-N32 can easily fit in small Xilinx FPGAs such as
Artix7-xc7a12tcsg325, which has 8000 LUTs. Below, we discuss our
observations;

• Since we process shares in parallel, the throughput of our
TinyJAMBU implementations is not significantly affected
by increasing the order of protection. As shown in table
1, cycles per block remain the same. A minor reduction in
maximum frequency as the order of protection increases is
responsible for the throughput reduction.

• Due to the synchronization registers in the protected NAND
gates, we update the state after two clock cycles. This causes
the permutation to take twice the number of clock cycles
compared to the unprotected variant. Pipelining may be
used to reduce the number clock cycles at the expense of
increasing the number of registers.

Figure 6: TVLA Results. From left to right: 1st-order TVLA on unprotected TinyJAMBU (10,000 traces) , 1st-order TVLA on
1st-order protected TinyJAMBU (1 million traces) and 2nd-order TVLA on 2nd-order TinyJAMBU (1 million traces)

Table 1: Benchmarking Results in Xilinx Artix-7 FPGA. The protection order is denoted by d and the number of feedback bits
calculated in parallel is denoted by N.

Implementation
Protection

Order
cycles per
block

Freq.
MHz

TP
Mbps

TP
Ratio LUTs

LUT
Ratio

Rand.
Bits Ref.

TinyJAMBU_d0-N32 unprotected 34 266 250.4 1.00 591 1.00 N/A [13]
COMET-CHAM-d0 unprotected - 201 282.7 4.99 2214 0.92 N/A [5]
COMET-CHAM-KSA-d0 unprotected - 255 56.7 1.00 2399 1.00 N/A [5]
SCHWAEMM-d0 unprotected - 169 920.5 3.56 2321 0.82 N/A [5]
SCHWAEMM-KSA-d0 unprotected - 189 258.7 1.00 2824 1.00 N/A [5]
TinyJAMBU-d1-N32 1 66 247 119.8 0.48 1267 2.14 96 T.W.
TinyJAMBU-d1-N16 1 130 248 61.0 0.24 1086 1.84 48 T.W.
TinyJAMBU-d1-N8 1 258 249 30.9 0.12 969 1.64 24 T.W.
COMET-CHAM-KSA-d1 1 - 205 44.2 0.78 8760 3.65 - [5]
SCHWAEMM-KSA-d1 1 - 207 231.4 0.89 12531 4.44 - [5]
TinyJAMBU-d2-N32 2 66 237 114.9 0.46 2044 3.46 192 T.W.
TinyJAMBU-d2-N16 2 130 239 58.8 0.23 1586 2.68 96 T.W.
TinyJAMBU-d2-N8 2 258 243 30.1 0.12 1362 2.30 48 T.W.
TinyJAMBU-d3-N32 3 66 224 108.6 0.43 2842 4.81 320 T.W.
TinyJAMBU-d3-N16 3 130 229 56.4 0.23 2249 3.81 160 T.W.
TinyJAMBU-d3-N8 3 258 233 28.9 0.12 1817 3.07 80 T.W.

Table 2: COMA Resource Utilization on Artix-7 FPGA (xc7a100tcsg324-1). Table adapted from [2] except TinyJAMBU resource
utilization.

Name AES-GCM+AES-CTR ACORN+Trivium TinyJAMBU+Trivium
Slice LUT FF Slice LUT FF Slice LUT FF

AEAD_EXT 1336 3804 4432 333 1067 591 564 1765 1156
RNG 738 2352 628 241 683 460 241 683 460
Others 1024 2535 2155 1024 2535 2155 1024 2535 2155
Total w/o PUF 3098 8691 7215 1598 4285 3206 1829 4983 3771

• Due to the small size of a non-linear component, the cost
of protection is low. For example, the area of the first-order
variant TinyJAMBU-d1-N32 is only 2.14× the unprotected
baseline variant. It is noteworthy that the control logic and
constant additions in the datapath are not duplicated in the
protected design.

• Our first-order TinyJAMBU-d1-N32 is only 15% the area of
the first-order COMET-CHAM reported in [5], however, it
can provide 2.7× the throughput.

• Although first-order SCHWAEMM-KSA is 2× faster than our
first-order TinyJAMBU-d1-N32, it has roughly 10× the area.
Its 12,531 LUTs size may not be suitable for small FPGAs
used in lightweight applications.

4.3 Power and Energy Estimation
Power consumption and energy per bit are critical considerations
for lightweight applications, especially for battery-powered devices.
We provide average dynamic power and energy per bit (E/bit) esti-
mations for Xilinx Artix7-xc7a100tftg256-3 FPGA in Table 3. We
utilized Xeda [14], which provides an abstraction layer to run flows
on different Electronic Design Automation (EDA) tools. In our case,
Xilinx Vivado 2020.1 was run by Xeda to perform power estimation.
For result accuracy, we performed vector-based estimation, and
the Switching Activity Interchange format (SAIF) files were gener-
ated by encrypting 1536 bytes of plaintext using post-route timing
simulation. Average dynamic power has been estimated at 10, 50,
and 100 MHz. As expected, the average dynamic power and E/bit
increase as the order of protection increases. For the same variant,

Table 3: Power and Energy per bit (E/bit) Estimations for
Artix-7 FPGA

Variant
Freq.
MHz

Avg. Dyn.
Power
mW

E/bit
nJ/bit

TinyJAMBU-d1-N32 10MHz 5 1.0
50MHz 24 1.0
100MHz 47 1.0

TinyJAMBU-d2-N32 10MHz 8 1.7
50MHz 37 1.5
100MHz 75 1.6

TinyJAMBU-d3-N32 10MHz 12 2.5
50MHz 59 2.5
100MHz 119 2.5

E/bit remains approximately the same as frequency increases since
the increase in power consumption is negated by a reduction in
time needed to perform the operation.

4.4 Use in COMA
In Table 2, we compare the resource utilization of three different
instantiations of COMA based on three authenticated ciphers AES-
GCM, ACORN, and TinyJAMBU. Out of these ciphers: AES-GCM is
an existing standard; ACORN has been a second choice for use case
1, Lightweight Applications, in the CAESAR cryptographic contest
conducted in the period 2014-2019; and TinyJAMBU is a finalist of
the NIST LWC standardization process, currently in progress.

AEAD_EXT represents an SCA-protected implementation of an
authenticated cipher, RNG is a random number generator, and the
row Others covers the remaining components of COMA, described
in detail in [2]. The notation <Cipher 1>+<Cipher 2> means that
<Cipher 1> is used for authenticated encryption and <Cipher 2>
for the construction of a pseudorandom part of RNG (necessary
to reach the required speed). The version of TinyJAMBU used to
generate results for this table is TinyJAMBU-d1-N32, with the first-
order DPA countermeasures, processing 32 bits in parallel. The
obtained results clearly demonstrate that the solution based on
TinyJAMBU+Trivium outperforms the solution based on existing
standards, AES-GCM+AES-CTR, in terms of resource utilization. In
particular, for AEAD_EXT, the usage of LUTs is reduced by a factor
of 2.2 and the usage of flip-flops by a factor of 3.8. When all other
components, except a PUF, are taken into account, the correspond-
ing ratios are 1.7 and 1.9. The solution based on ACORN+Trivium
has slightly smaller resource utilization, but ACORN is not any
longer considered for standardization due to the security concerns
and long initialization time. As a result, TinyJAMBU emerges as
a strong contender for protecting obfuscation keys during secure
activation of integrated circuits.

5 CONCLUSIONS AND FUTUREWORK
In this work, we present a design space exploration study for side-
channel resistant hardware implementations of TinyJAMBU. To
achieve this goal, we implemented a flexible design that can be
synthesized for an arbitrary order of protection. The implementa-
tions can trade performance for the area by configuring the level of
parallelism. This design with two degrees of freedom is flexible and

can be easily adapted for applications with different security, cost,
and performance trade-offs. The security of our implementations
has been verified up to the second order using the TVLA methodol-
ogy. The benchmarking results on Xilinx Artix7 FPGA show that
one can instantiate high-order implementations of TinyJAMBU
in small FPGAs. Concretely, our third-order TinyJAMBU-d3-N32
variant is only 2842 LUTs and can easily fit in small FPGAs. Our
conclusion is that TinyJAMBU is suitable for producing lightweight
side-channel-resistant implementations of authenticated encryp-
tion. In particular, it can be used for high-speed and low-overhead
protection of obfuscation keys in hardware security applications.
The evaluation of other protection schemes and quantifying the
associated cost and performance will be interesting for future work.

REFERENCES
[1] Abubakr Abdulgadir, William Diehl, and Jens-Peter Kaps. 2019. An Open-Source

Platform for Evaluation of Hardware Implementations of Lightweight Authen-
ticated Ciphers. In 2019 International Conference on ReConFigurable Computing
and FPGAs (ReConFig). IEEE, Cancun, Mexico, 1–5. https://doi.org/10.1109/
ReConFig48160.2019.8994788

[2] Kimia Zamiri Azar, Farnoud Farahmand, Hadi Mardani Kamali, Shervin
Roshanisefat, Houman Homayoun, William Diehl, Kris Gaj, and Avesta Sasan.
2019. COMA: Communication and Obfuscation Management Architecture. In
22nd International Symposium on Research in Attacks, Intrusions and Defenses.
USENIX Association, Beijing, China, 181–195.

[3] CERG - GMU. [n.d.]. GMU Cryptographic Engineering Group GitHub.
https://github.com/GMUCERG/.

[4] Suresh Chari, Charanjit S Jutla, Josyula R Rao, and Pankaj Rohatgi. 1999. Towards
Sound Approaches to Counteract Power-Analysis Attacks. In CRYPTO. 15. https:
//doi.org/10/fr3jwj

[5] Flora Coleman, Behnaz Rezvani, Sachin Sachin, and William Diehl. 2020. Side
Channel Resistance at a Cost: A Comparison of ARX-Based Authenticated En-
cryption. In 2020 30th International Conference on Field-Programmable Logic and
Applications (FPL). IEEE, Gothenburg, Sweden.

[6] Christophe De Canniere and Bart Preneel. 2005. TRIVIUM Specifications. Techni-
cal Report.

[7] Farnoud Farahmand, Ahmed Ferozpuri, William Diehl, and Kris Gaj. 2017. Min-
erva: Automated Hardware Optimization Tool. In 2017 International Conference
on ReConFigurable Computing and FPGAs, ReConFig 2017. IEEE, Cancun, 1–8.

[8] Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. 2011. A Testing
Methodology for Sidechannel Resistance Validation. In NIST Non-Invasive Attack
Testing Workshop.

[9] Hannes Groß. 2018. Domain-Oriented Masking - Generically Masked Hardware
Implementations. PhD Thesis. Graz University of Technology, Austria.

[10] Hannes Gross, Stefan Mangard, and Thomas Korak. 2016. Domain-Oriented
Masking: Compact Masked Hardware Implementations with Arbitrary Protection
Order. Cryptology ePrint Archive 2016/486.

[11] Paul Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Diferential Power Analysis.
In CRYPTO ’99 - 19th International Conference on Cryptology. Santa Barbara, CA.

[12] Stefan Mangard, Thomas Popp, Berndt M. Gammel, Stefan Mangard, Thomas
Popp, and Berndt M. Gammel. 2005. Side-Channel Leakage of Masked CMOS
Gates. In Topics in Cryptology – CT-RSA 2005 (LNCS, Vol. 3376). Springer, Berlin,
Heidelberg, 351–365. https://doi.org/10.1007/978-3-540-30574-3_24

[13] Kamyar Mohajerani, Richard Haeussler, Rishub Nagpal, Farnoud Farahmand,
Abubakr Abdulgadir, Jens-Peter Kaps, and Kris Gaj. 2020. FPGA Benchmarking of
Round 2 Candidates in the NIST Lightweight Cryptography Standardization Process:
Methodology, Metrics, Tools, and Results. Cryptology ePrint Archive 2020/1207.

[14] Kamyar Mohajerani and Rishub Nagpal. 2020. Xeda.
https://github.com/kammoh/xeda.

[15] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. 2006. Threshold
Implementations Against Side-Channel Attacks and Glitches. In Information and
Communications Security, ICICS 2006 (LNCS, Vol. 4307). Springer BerlinHeidelberg,
529–545. https://doi.org/10.1007/11935308_38

[16] Tobias Schneider, Amir Moradi, Tobias Schneider, and Amir Moradi. 2015. Leak-
age Assessment Methodology: A Clear Roadmap for Side-Channel Evaluations.
In Cryptographic Hardware and Embedded Systems – CHES 2015. Springer Berlin
Heidelberg, Berlin, Heidelberg, 495–513.

[17] HongjunWu and TaoHuang. 2019. TinyJAMBU: A Family of Lightweight Authen-
ticated Encryption Algorithms. Submission to the NIST Lightweight Cryptography
Standardization Process (March 2019).

https://doi.org/10.1109/ReConFig48160.2019.8994788
https://doi.org/10.1109/ReConFig48160.2019.8994788
https://doi.org/10/fr3jwj
https://doi.org/10/fr3jwj
https://doi.org/10.1007/978-3-540-30574-3_24
https://doi.org/10.1007/11935308_38

	Abstract
	1 Introduction
	2 Background
	2.1 TinyJAMBU
	2.2 Domain Oriented Masking

	3 Methodology
	3.1 Unprotected Implementation
	3.2 Protected Implementations

	4 Results
	4.1 Countermeasure Verification
	4.2 Cost of Protection
	4.3 Power and Energy Estimation
	4.4 Use in COMA

	5 Conclusions and Future Work
	References

