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ABSTRACT

Logical queries constitute an important subset of questions posed
in knowledge graph question answering systems. Yet, effectively
answering logical queries on large knowledge graphs remains a
highly challenging problem. Traditional subgraph matching based
methods might suffer from the noise and incompleteness of the un-
derlying knowledge graph, often with a prolonged online response
time. Recently, an alternative type of method has emerged whose
key idea is to embed knowledge graph entities and the query in
an embedding space so that the embedding of answer entities is
close to that of the query. Compared with subgraph matching based
methods, it can better handle the noisy or missing information in
knowledge graph, with a faster online response. Promising as it
might be, several fundamental limitations still exist, including the
linear transformation assumption for modeling relations and the
inability to answer complex queries with multiple variable nodes.
In this paper, we propose an embedding based method (NewLook)
to address these limitations. Our proposed method offers three
major advantages. First (Applicability), it supports four types of
logical operations and can answer queries with multiple variable
nodes. Second (Effectiveness), the proposed NewLook goes beyond
the linear transformation assumption, and thus consistently out-
performs the existing methods. Third (Efficiency), compared with
subgraph matching based methods, NewLook is at least 3 times
faster in answering the queries; compared with the existing embed-
ding based methods, NewLook bears a comparable or even faster
online response and offline training time.
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1 INTRODUCTION

Question answering on large knowledge graphs has numerous
applications. Many methods have been developed for answering
different types of questions, ranging from single-hop queries [1],
multi-hop queries [18], to logical queries [19]. Among them, logical
queries constitutes an important subset1 of questions posed in
question answering systems. Examples of logical queries include
“Who is the spouse of Barack Obama?” “In 2018, who won the Turing
award and where do they come from?” Despite its key importance, it
remains a difficult challenge to effectively answer logical queries
on large knowledge graphs.

The traditional approaches first transform the original question
into a logical query graph (also known as ‘dependency graph’ or
‘logical DAG graph’, or ‘query graph’ for short) (e.g., [24, 28, 31]).
For example, the aforementioned question “Who is the spouse of
Barack Obama?” can be transformed into a logical query graph

“?
isMarriedTo−−−−−−−−−→ Barack Obama”. We can then use subgraph match-

ing (e.g., [2, 12, 17, 23]) to find the answers from the underlying
knowledge graphs. However, real-world knowledge graphs are of-
ten incomplete with noisy information [7], which makes subgraph
matching based methods suffer from a number of issues, e.g., the
empty-answer problem [27], the wrong answer problem [19] and
so on. Besides, the intrinsic high computational complexity of sub-
graph matching-based methods often lead to a prolonged online
response time [19].

Recently, an alternative type of method for answering logical
queries has emerged (e.g., [1, 5, 7, 11, 19]). The key idea is to embed
the logical query graph and the knowledge graph entities into the
same low-dimensional vector space, so that the embedding of enti-
ties that answer the query graph is close to that of the query. There-
fore, after the embedding is obtained, answering logical queries
essentially becomes a similarity search problem in the embedding
space. In this way, the reasonable answers could be found even
when the knowledge graph is incomplete or noisy. What is more,
compared with subgraph matching based methods, embedding
based methods tend to have a faster online response.

Besides its promising results, several fundamental limitations
still exist with embedding based methods. Let us elaborate us-
ing four most recent approaches as examples, including GQE [5],
Query2Box [19], BetaE [20] and EmQL [21]. First, the existing meth-
ods like GQE [5] and Query2Box [19] treat the one hop transition be-
tween two nodes in the embedding space as a linear transformation.
This makes themselves suffer from severe cascading errors [8], espe-
cially when dealingwith long, complex logical queries withmultiple
inter-dependent paths. Second, GQE [5] and Query2Box [19] only
1Examples of questions which cannot be represented as logical queries include “Which
is the best university in computer science?”“How many programmers did Google hire last
year?”

https://doi.org/10.1145/3447548.3467375
https://doi.org/10.1145/3447548.3467375


Figure 1: Accuracy and query time of different meth-

ods. Compared with the existing embedding based meth-

ods (GQE [5] and Query2box [19]), the proposed method

(NewLook) is significantly better in accuracy with a com-

parable online query response time; compared with the sub-

graph matching based methods (G-Ray [23], FilM [15] and

GFinder [12]), the proposed NewLook is bothmore accurate

and faster. The results are for query ‘3ippu’ in Figure 8 on

NELL dataset. See Section 4.3 for more details.

support three logical operations, namely projection, intersection
and union, and thus limit their applicability. Although BetaE [20]
further supports the negation operation and EmQL [21] also sup-
ports more logical operations: relation filtering and the difference
operation. Nonetheless, both methods suffer from some subtle defi-
ciency in modeling difference operation (see Section 3.1 for more
discussions).

In response, we propose an embedding based algorithm (NewLook)
to answer logical queries on knowledge graphs. Compared with pre-
vious methods, our method has three distinctive advantages. First,
we go beyond the linear transformation assumption and model each
type of logical operation as a neural network. In this way, we can
significantly mitigate the cascading errors. Second, in addition to
projection, intersection and union, our method also supports a new
type of logical operation, namely difference. Third, our method can
simultaneously find the geometric embedding for multiple variable
nodes in the logical query, which not only broadens the applicability
of our method, but also offers a pruningmethod for subgraphmatch-
ing based algorithms. We evaluate NewLook on three benchmark
datasets and show that our method (1) outperforms both subgraph
matching based methods and prior embedding based methods; and
(2) is computationally efficient. See Figure 1 for a comparison.

The main contributions of the paper are
• We propose an algorithm NewLook which can not only
mitigate the cascading error problem but also support more
logical operations.

• we redesign the projection operation, intersection operation
and loss function which greatly improve the accuracy. More-
over, NewLook can learn a box embedding for each variable
node in the logical query with high accuracy.

• We perform extensive empirical evaluations to demonstrate
the efficacy of our model.

2 PROBLEM DEFINITION

Table 1 gives the main notations used throughout this paper. We use
upper case calligraphic font letters for graphs (e.g. G, Q, C), lower
case bold letters (e.g., e, b) for embedding vectors. A knowledge
graph is denoted as G = (𝑉 , 𝑅,𝑇 ) where 𝑉 = {𝑣1, 𝑣2, ..., 𝑣𝑛} is the

Table 1: Notations and definitions

Symbols Definition

G = (𝑉 , 𝑅,𝑇 ) the knowledge graph
𝑣𝑖 the 𝑖th entity/node in knowledge graph
e𝑖 the embedding of entity/node 𝑣𝑖
𝑟𝑖 the 𝑖th relation/edge in knowledge graph

Q = (𝑈 ,𝑅, 𝐿) a dependency graph
𝑈 the node set of Q
𝑢𝑖 the 𝑖th node in𝑈
𝐿 Logical operations
b𝑖 the box embedding of𝑈𝑖

b𝑐
𝑖

the center of b𝑖
b𝑜
𝑖

the offset of b𝑖
p𝑖 the embedding of 𝑟𝑖
p𝑐
𝑖

the center embedding of p𝑖
p𝑜
𝑖

the offset embedding of p𝑖

set of nodes/entities, 𝑅 = {𝑟1, 𝑟2, ..., 𝑟𝑚} is the set of relations and
𝑇 is the set of triples. Each triple in the knowledge graph can be
denoted as (ℎ, 𝑟, 𝑡) whereℎ ∈ 𝑉 is the head (i.e., subject) of the triple,
𝑡 ∈ 𝑉 is the tail (i.e., object) of the triple and 𝑟 ∈ 𝑅 is the edge (i.e.,
relation, predicate) of the triple which connects the head ℎ to the
tail 𝑡 . The knowledge graph structure information can be denoted
as an 𝑛 × 𝑛 adjacency matrix A with A(𝑖, 𝑗) = 1 if 𝑣𝑖 is connected
with 𝑣 𝑗 , and A(𝑖, 𝑗) = 0 otherwise. For the computational efficiency,
we randomly divide all the nodes in the knowledge graph into
different groups, and use a three dimensional tensor T to denote
the connectivity between different groups. For each relation 𝑟𝑖 ∈ 𝑅,
T (𝑖, 𝑗, 𝑘) = 1 if any node in group 𝑗 connects with any node in
group 𝑘 by relation 𝑟𝑖 . For each node 𝑣𝑖 , we use a row one-hot
vector x𝑖 to denote which group it belongs to. If node 𝑣𝑖 belongs
to group 𝑗 then x𝑖 [ 𝑗] = 1, otherwise, it equals to 0. For a node
set 𝑆 , we can use a row multi-hot vector x𝑆 to denote its group
information. If any node in 𝑆 belongs to group 𝑗 , then x𝑆 [ 𝑗] = 1,
otherwise, it equals to 0.

Following the definition in [5], [19], [20], a first-order logic query
contains a non-variable anchor entity set 𝑈̃ ⊆ 𝑉 , existentially
quantified bound variables 𝑢1, ..., 𝑢𝑘 and a single target variable 𝑢?,
which provides the query answer. In mathematical form, it can be
defined as 𝑞 [𝑢?] = 𝑢? .∃𝑢1, ..., 𝑢𝑘 : 𝜋1∨𝜋2∨ ...∨𝜋𝑛 , where 𝜋𝑖 = 𝜚𝑖1∧
𝜚𝑖1∧...∧𝜚𝑖𝑚 and 𝜚𝑖𝑚 = 𝜛(𝑢̃𝑎, 𝑢𝑖 ) or𝜛(𝑢𝑖 , 𝑢 𝑗 ) or𝜛(𝑢𝑖 , 𝑢?).𝜛 belongs
to projection or negation [20]. For example, GQE [5] considers
conjunctive logical query, Query2Box [19] considers existential
positive first-order (EPFO) logical queries. In this paper, we consider
logical queries which can support four kinds of logical operations:
projection, intersection, union and difference. Besides this, instead
of constraining a logical query only having a single target variable,
we treat all non-anchor nodes as target variables.

A logical query graph (i.e., dependency graph) Q = (𝑈 , 𝑅, 𝐿) is
the graph expression of the logical query, where the upper case
letter𝑈 = {𝑈̃ ,𝑈?} denotes the node set, with 𝑈̃ as the anchor node
set and𝑈? as the variable node set (we use 𝑢̃ 𝑗 and 𝑢 𝑗 to index the
specific node in 𝑈̃ and𝑈? respectively), 𝑅 denotes the relation set
which is the same as the relation set of G, and 𝐿 denotes logical
operations. According to the definition of first-order logic, Q is
a Directed Acyclic Graph (DAG), with the anchor entities as the
source nodes of the DAG [19]. An example of logical query graph
is given in the first column of Figure 2.

Given a knowledge graph G, a three dimensional tensor T , the
one-hot vector x𝑖 for each node 𝑣𝑖 and a logical query graph Q, we
aim to embed (1) each entity of the knowledge graph as a point, (2)



Figure 2: An illustrative example of how NewLook works.

each node of the query graph as a closed box region, namely box
embedding [19], and (3) each relation 𝑟 ∈ 𝑅 as a box embedding, in
the same embedding space, so that entities that answer the query
are inside or close to the boxes of the query nodes.

With box embedding, if an entity is in the answer set, it is natural
to model the entity embedding to be a point inside or close to the
box of the corresponding query node. We use e𝑖 to denote the point
embedding of 𝑣𝑖 ∈ 𝑉 and b𝑗 to denote the box embedding of node
𝑢 𝑗 ∈ Q. If node 𝑣𝑖 is the answer of the node𝑢 𝑗 , we hope that e𝑖 ∈ b𝑗
or e𝑖 is very close to b𝑗 . Formally, a box embedding is represented
by its center and its offset, which is defined as follows.

b𝑗 = {e𝑘 : b𝑐𝑗 − b𝑜𝑗 ≤ e𝑘 ≤ b𝑐𝑗 + b𝑜𝑗 } (1)
where b𝑐 is the center of the box which represents its location, and
b𝑜 is the offset of the box which represents its size. An anchor node
can be represented as a special box of size 0. In other words, a point
embedding can be viewed as a box with its offset vector as a zero
vector. Likewise, we use the lower case bold letter p for relation
(i.e., predicate) box embedding, and its center and offset are denoted
as p𝑐 and p𝑜 respectively. In step 1 to step 3 of Figure 2, each blue
point denotes a point embedding, and each rectangle denotes a box
embedding in the embedding space.

The proposed NewLook supports four logical operations in total,
including projection, intersection, union and difference, which are
defined as follows. Figure 3 illustrates these four logical operations.

Definition 1. Projection. Given a box embedding bℎ and a rela-
tion 𝑟 , the projection operation P outputs a new box embedding
b𝑡 where b𝑡 contains the nodes connected to any node 𝑣 ∈ bℎ by
relation 𝑟 .
Definition 2. Intersection. Given a set of box embedding { b1, b2,
..., b𝑘 }, the intersection operation I outputs a new box embedding
b𝑡 which contains a set of nodes ∩𝑘

𝑖=1𝑆𝑖 , where 𝑆𝑖 ⊆ b𝑖 .
Definition 3. Difference. Given a set of box embedding { b1, b2,
..., b𝑘 }, the difference operation D outputs a new box embedding
b𝑡 which contains a set of nodes 𝑆1 − 𝑆2 − ... − 𝑆𝑘 where 𝑆𝑖 ⊆ b𝑖 .

For the example in Figure 2, given the embedding of the enti-
ties Texas, Republican and relations wasBornIn, is, the difference
operation generates a box embedding, which contains the embed-
ding of all individuals who were born in Texas but were not a
Republican.
Definition 4. Union. Given a set of box embedding { b1, b2, ..., b𝑘
}, the union operation U produces all the nodes that are in at least
one of the 𝑘 input boxes, i.e., ∪𝑘

𝑖=1𝑆𝑖 where 𝑆𝑖 ⊆ b𝑖 .

Remarks. As we can see from Figure 3, the projection and inter-
section operations always produce a valid box. However, this is

Figure 3: The illustration of four logical operations. The

pink shaded area is the desirable output of the correspond-

ing logical operation.

not necessarily true for either difference or union operations. In
Section 3.6, we will present detailed solutions to address this issue.

With these logical operations, we traverse the query graph start-
ing from the anchor node(s) and execute the logical operations to
obtain the box embedding for each variable node. A computation
graph which can be derived from the logical query graph will guide
the traverse process (e.g., to decide the orders of executing various
logical operations, to manage the intermediate results). Formally a
computation graph is denoted as C = (𝑀, 𝐿), where𝑀 denotes the
node set and 𝐿 denotes the logical operation set which is the same
as the logical operation set of Q. Traversing the computation graph
is equivalent to traversing the logical query graph. An example of
computation graph is given in the second column of Figure 2.

With the above notations, the problem of answering logical
queries on knowledge graphs boils down to how to find the point
embedding of the knowledge graph entities, the box embedding
of the nodes of the query graph as well as the box embedding of
the relations. This can be formally defined as follows. Notice that
both the three dimensional tensor T and the one-hot vector x𝑖 for
𝑣𝑖 can be constructed according to G.
Problem Definition 1. Logical query embedding. Given: (1) a
knowledge graph G = (𝑉 , 𝑅,𝑇 ), (2) a logical query graph Q with
anchor node(s) and variable node(s);

Output: (1) the box embedding for each variable node in Q, (2)
the point embedding for each entity 𝑣 ∈ G and (3) the box embedding
for each relation 𝑟 ∈ 𝑅.

3 PROPOSED MODEL

In this section, we start with the overall framework of the proposed
NewLook, followed by the details of its key components.
3.1 Overall Framework

Given a logical query graph and a knowledge graph, our goal is to
embed the nodes of the query graph as closed boxes and entities
of the knowledge graph as points in the embedding space, so that
entities that answer the query are inside or close to the boxes.
To this end, we treat the query graph as a sequence of geometric
logical operations, and model each logical operation as a neural
network. During the training process, we learn the point embedding
of the entities in knowledge graph G and the parameterized neural



Figure 4: Framework of NewLook.

networks for logical operations at the same time. After the model
is learned, given a new logical query, the box embedding of nodes
of the query graph can be obtained by executing a set of logical
operations. Entities that are close to the box embedding are returned
as answers of the query.

A - Framework. Figure 4 presents the overall framework of the
proposed NewLook. It contains three parts. In the first part (P1.
Computation Graph Construction), given a query graph, NewLook
transforms it into a computation graph. For each edge in the query
graph, it will be substituted by a projection operation. If the in-
degree of the target node is greater than one and the logical oper-
ation is intersection, all of its incoming edges will be substituted
by the intersection edges. If the logical operation is difference, we
do the same process but treat all incoming edges as the difference
edges. If the logical operation is union, we revise the query ac-
cording to Subsection 3.5. In the second part (P2. Box Embedding
Generation), after obtaining the computation graph, NewLook tra-
verses the query graph starting from the anchor node(s), and applies
geometric logical operations one by one to generate box embedding
for the variable nodes. In the third part (P3. Answer Identification),
the generated box embedding is used to predict the likelihood that
a knowledge graph entity satisfies the query, e.g., by the nearest
neighbor search in the embedding space. The point embedding of
the answer entities should be inside or close to their corresponding
boxes, whereas the point embedding of non-answer entities should
be far away from these boxes. Figure 2 gives an example to illustrate
how NewLook works.

B - Relationship with the existing methods. At the high
level, the three parts of NewLook are similar to the overall struc-
ture of Query2Box [19]. Indeed, some components of NewLook,
including union operation and nearest neighbor search, are directly
inherited from Query2Box. For the completeness of the paper, we

will briefly summarize the key idea and intuitions of these compo-
nents. Interested readers should refer to [19] for full details.

Compared with the existing embedding based methods (e.g.,
GQE [5] and Query2Box [19]), the proposed NewLook brings sev-
eral important new features, including (1) modeling logical oper-
ations (e.g., projection, difference) as a nonlinear process, (2) the
introduction of the difference operation, and (3) redesigning the
intersection operation and loss function. As we will show in the
experimental section, these new features not only bring significant
performance improvement, but also broaden the applicability of
the proposed method. Before diving into the details, let us highlight
the advantages of these new features.

First (Mitigating Cascading Errors), the key of embedding a logi-
cal query into a low-dimensional space is to accurately model the
impact of logical operations on the transformation of embedding of
different nodes. Different logical operations (e.g. ∩,∪,−) have very
different properties, which in turn require different treatment. Take
the projection operation as an example. It is one of the most com-
monly used logical operations in both knowledge graph and logical
queries. Existing methods, such as TransE [1], Query2Box [19],
treat projection operation as a linear transformation between two
nodes in the embedding space. Despite its mathematical conve-
nience, the real world projection operation could rarely be modeled
as linear transformations, thus it would consequently make the
model sub-optimal in terms of inference abilities. For example, the
linear transformation could not capture some inference patterns
in knowledge graph like symmetry, inversion, composition [22].
Besides this, the linear transformation assumption often leads to
severe cascading errors [8], especially when dealing with long, com-
plex queries with multiple inter-dependent paths. To mitigate these
issues (see details in Subsection 3.2), in NewLook, we model the
projection operation as a non-linear process by a neural network.
Although EmQL [21] also has the ability to model non-linear pro-
jection operation as a top-k triple matching problem, it requires
excessive off-line training time.

Second (Supporting Difference Operation), logical operation dif-
ference (−), is a commonly used logical operation in many logical
queries. However, none of the existing methods, with the only pos-
sible exception of EmQL [21], supports the difference operation.
Conceptually, EmQL could model the difference operation based
on count-min sketch. However, it suffers when the two involved
sets share some overlaps, which is quite common in logical queries.
Other methods such as Gaussian embedding [6] and Beta embed-
ding (BetaE) [20] represent a set as a distribution in the embedding
space (e.g., Gaussian/Beta distribution). However, the difference
between two Gaussian/Beta distributions is not Gaussian/Beta dis-
tribution anymore. Therefore, although BetaE [20] supports the
negation operation2, it does not support the difference operation.
The proposed NewLook fills in this blank by modeling the differ-
ence operation as attention neural networks.

In the following subsections, we will introduce these four logical
operations and how to train the entire model.
3.2 Projection Operation

Given a box embedding bℎ of node 𝑢ℎ and a relation 𝑟 in triple (𝑢ℎ ,
𝑟 , 𝑢𝑡 ), the projection operation P outputs a new box embedding b𝑡 .

2The negation operation can be viewed as a special case of the difference operation.



Figure 5: Comparison of different methods for modeling

projection operation. BothTransE (a) andQuery2Box (b) suf-

fer from severe cascading errors. The proposed NewLook

(c) models the projection as a linear transformation (the

dashed boxes), followed by a nonlinear process (the solid

boxes above the corresponding dashed boxes). NewLook is

able tomitigate the cascading errors by adaptively adjusting

the center and offset of the projection box.

A good projection operation should make the answers of 𝑢𝑡 inside
or close to the box b𝑡 . To be specific, suppose 𝑆ℎ is the node set of
bℎ , the goal of the projection operation is to find another node set
𝑆𝑡 such that 𝑆𝑡 = {𝑣𝑡 |∃𝑣ℎ ∈ 𝑆ℎ, (𝑣ℎ, 𝑟 , 𝑣𝑡 )}.

Many previous works have studied this problem. For example, in
TransE [1], the projection operation is formulated as e𝑡 = eℎ + p𝑐𝑟
where eℎ is the embedding of the head entity and e𝑡 is the em-
bedding of the tail entity. In GQE [5], this relation is formulated
as𝑊𝑟 eℎ where𝑊𝑟 is a 𝑑 × 𝑑 parameter matrix for relation 𝑟 . In
Query2Box [19], this relation is formulated as b𝑐𝑡 = b𝑐

ℎ
+ p𝑐𝑟 and

b𝑜𝑡 = b𝑜
ℎ
+ p𝑜𝑟 . Despite the mathematical elegance of these formula-

tions, a fundamental drawback is that they all treat the transition
between the (point or box) embedding of entities as a linear trans-
formation process. This makes these methods weak in terms of
inference abilities. For example, the linear transformation could not
capture some inference patterns in knowledge graph like symmetry,
inversion, composition [22]. Moreover, the linear transformation as-
sumption often leads to severe cascading errors [8], especially when
dealing long, complex queries with multiple inter-dependent paths.
For the example in Figure 5a, each point represents the embedding
of an entity in the embedding space. The relation parent is ideally
a simple horizontal translation, but each traversal introduces some
noises. The red circle is where we expect Milia’s parent to be. The
red square is where we expect Milia’s grandparent to be. Dotted
red lines show that the error grows larger as we traverse farther
away from Milia. Another example is shown in Figure 5b. Since
Query2Box simply sums up the offset of the head entity and that
of the projection operation, the offset b𝑜𝑡 (i.e., size) of the box of the
tail entity will become increasingly bigger, and thus increases the
uncertainty.

In this paper, instead of modeling the projection operation as a
linear transformation process, we use a non-linear neural network
to learn the projection operation which can mitigate the cascading
error problem. To be specific, we associate each relation 𝑟 ∈ 𝑅

with a box embedding p𝑟 = (p𝑐𝑟 , p𝑜𝑟 ) and a group adjacency ma-
trix T (𝑟 ). Given a triple (𝑢ℎ, 𝑟 , 𝑢𝑡 ), the box embedding bℎ and the
one-hot/multi-hot vector x𝑢ℎ , we first obtain an approximate box
embedding (b̂𝑐𝑡 , b̂𝑜𝑡 ) of 𝑢𝑡 by linear transformation and obtain the
one-hot/multi-hot vector of 𝑢𝑡 by x𝑢𝑡 = 1[(x𝑢ℎ · T (𝑟 )) > 0] where
1[] is an element-wise indicator function. Then, we use a neural
network to fine-tune the true box center (i.e., position) and offset
(i.e., size). Our conjecture is that the true center b𝑐𝑡 might be close
to b̂𝑐𝑡 and the true offset b𝑜𝑡 should be dependent on b̂𝑐𝑡 , b̂

𝑜
𝑡 and x𝑢𝑡 .

Therefore, we treat b̂𝑐𝑡 , b̂
𝑜
𝑡 and x𝑢𝑡 as the input of a neural network,

to obtain the true center b𝑐𝑡 and the true offset b𝑜𝑡 for node 𝑢𝑡 . The
neural network is defined as follows.3

b̂𝑐𝑡 = b𝑐
ℎ
+ p𝑐𝑟

z1 = MLP(b̂𝑐𝑡 )
b𝑐𝑡 = MLP(z1 | |z2 | |x𝑢𝑡 )

b̂𝑜𝑡 = p𝑜𝑟

z2 = MLP(b̂𝑜𝑡 )
b𝑜𝑡 = MLP(z1 | |z2 | |x𝑢𝑡 )

(2)

where MLP() is a multi-layer perceptron, and | | represents con-
catenation. By modeling the projection operation as a nonlinear
process, we can adaptively adjust the center and offset of the new
box, which helps mitigate the cascading error problem.

3.3 Intersection Operation

Figure 6: An illustration of intersection operation. Given

three boxes b1, b2 and b3 on the left, whose intersection is

empty in the training set but not in the ground truth. A neu-

ral network approach based on attention mechanism and

deepset can result in a reasonable box b4 on the right.

Intersection is a widely used logic operation. Given a set of box
embedding { b1, b2, ..., b𝑘 } and a set of one-hot/multi-hot vectors {
x𝑢1 , x𝑢2 , ..., x𝑢𝑘 } for {𝑢1,𝑢2, ...,𝑢𝑘 }, the intersection operation aims
to output a new box embedding b𝑡 which contains the intersection
of node sets ∩𝑘

𝑖=1𝑆𝑖 , where 𝑆𝑖 ⊆ b𝑖 .
If we directly calculate the overlap among all input boxes, it

might result in an empty box when the input boxes do not share a
common area in the training set, even if such an overlapped area
might exist in the ground truth. To address this issue, Query2Box [19]
designed an ingenious solution by using an attention neural net-
work to learn the box center of the intersection operation, together
with a deepset [29] neural network to learn its offset. Figure 6
presents an illustrative example. Like Query2Box [19], we model
the intersection as an attention neural network. However, instead
of simply using the center and offset information of each box,
we further leverage the one-hot/multi-hot vector information of
each box. The one-hot/multi-hot vector for 𝑢𝑡 can be calculated
as x𝑢𝑡 = x𝑢1 ⊙ x𝑢2 ⊙ ... ⊙ x𝑢𝑘 where ⊙ is the element-wise prod-
uct. If x𝑢𝑖 is similar with x𝑢𝑡 , box 𝑏𝑖 should have a high attention
score. More specifically, the mathematical formulas of intersection
operation are defined as follows.

z𝑖 =
1

Relu(x𝑢𝑖 − x𝑢𝑡 )




1

a𝑖 =
exp(z𝑖MLP(b𝑐

𝑖
| |b𝑜

𝑖
))∑𝑘

𝑗=1 exp(z𝑘MLP(b𝑐
𝑘
| |b𝑜

𝑘
))

w = MLP(Mean(
𝑘∑
𝑖=1

MLP(b𝑐𝑖 | |b
𝑜
𝑖 )))

b̂𝑜 = Min({b𝑜1 , ..., b
𝑜
𝑘
})

b𝑐𝑡 =

𝑘∑
𝑖=1

a𝑖 ⊙ b𝑐𝑖

b𝑜𝑡 = b̂𝑜 ⊙ 𝜎 (w)

(3)

3An alternative choice is to set the approximate offset b̂𝑜𝑡 = b𝑜
ℎ
+ p𝑜𝑟 . However, we

found in the experiments that it does not perform as good as setting b̂𝑜𝑡 = p𝑜𝑟 .



where { b1, b2, ..., b𝑘 } are the input boxes, b𝑡 is the output box, ⊙
is the dimension-wise product, MLP() is a multi-layer perceptron,
Mean() is the dimension-wise mean, Min() is the dimension-wise
min and 𝜎 () is the sigmoid function.
3.4 Difference Operation

Logical difference operation is another very useful logic operation.
It aims to answer the question like “Who won the Turing award in
2018 but was not born in France?” In this paper, we model the differ-
ence operation as an attention neural network on box embedding.
Given a set of box embedding b1, b2, ..., b𝑘 , the difference operation
will output a new box embedding b𝑡 which contains all the entities
belonging to b1 but not belonging to { b2, b3, ..., b𝑘 }.

Figure 7: An illustration of difference operation. The pro-

posed NewLook uses two attention networks to learn the

center and offset of the box embedding b3, with the help of

z to indicate if and how the two input boxes are overlapped

with each other.

When modeling the difference of b1 and { b2, b3, ..., b𝑘 }, one
naive way is to subtract the overlapping area from b1. However,
the result of the difference, in general, is not a box (See Figure 3 for
an example). Moreover, if b1 is entirely inside the overlapping area
during the training process, it will result in an empty box. This will
in turn prevent the gradient from flowing to the model [10], even
if b1 is not entirely inside the overlapping area in the ground truth.

Another possible way to model the difference of b1 and { b2, b3,
..., b𝑘 } is to follow the similar idea as intersection operation. That
is, we could use an attention neural network to learn the center of
b𝑡 , and use a deepset model to learn the offset of b𝑡 . However, the
difference operation bears an important subtlety from the intersec-
tion operation, in that the difference operation is asymmetric (i.e.,
b1−b2 ≠ b2−b1). Since deepset treats all inputs in a symmetric way,
which means that 𝑑𝑒𝑒𝑝𝑠𝑒𝑡 (b1, b2, ..., b𝑘 ) = 𝑑𝑒𝑒𝑝𝑠𝑒𝑡 (b2, b1, ..., b𝑘 ).
This would make the offset of (b1 − b2 − ... − b𝑘 ) be equal to the
offset of (b2 − b1 − ... − b𝑘 ), which is not necessarily true. For the
example in Figure 7, the offset of (b1 − b2) is much smaller than
the offset of (b2 − b1).

To address this issue, we consider the following two situations
when calculating the offset of the resulting box b𝑡 . First, if there
is no overlap between b1 and b𝑖 , for any 2 ≤ 𝑖 ≤ 𝑘 , or b1 is
partially overlapped with b𝑖 , the offset of b𝑡 should be non-negative.
Second, if b1 is entirely inside b𝑖 , the offset of b𝑡 should be zero
(i.e., the difference operation will result in an empty box). In order
to encode this kind of information in neural network, we use z𝑖 =
|b𝑐1 − b𝑐

𝑖
| + b𝑜1 − b𝑜

𝑖
to measure whether b1 is entirely inside b𝑖 or

not. If z𝑖 is (dimension-wisely) less than 0, it means b1 is entirely

inside b𝑖 . Otherwise, b1 is either partially overlapped with b𝑖 , or
there is no overlap between the two. More specifically, NewLook
models the difference operation of a set of boxes via two attention
neural networks which are defined as follows. See Figure 7 for an
illustration.

t = exp(MLP(b𝑜1 ))
z𝑖 = |b𝑐1 − b𝑐𝑖 | + b𝑜1 − b𝑜𝑖 (𝑖 = 2, .., 𝑘)

w𝑖 =
exp(MLP(zi))

t +∑𝑘
𝑖=2 exp(MLP(zi))

w1 =
t

t +∑𝑘
𝑖=2 exp(MLP(zi))

a𝑖 =
exp(MLP(b𝑐

𝑖
)))∑𝑘

𝑖=1 exp(MLP(b𝑐
𝑖
))

b𝑐𝑡 =

𝑘∑
𝑖=1

a𝑘 ⊙ b𝑐
𝑘

b𝑜𝑡 =

𝑘∑
𝑖=1

w𝑖 ⊙ b𝑜𝑖

(4)

where MLP() is a multi-layer perceptron, and ⊙ is the dimension-
wise product. In BetaE [20], they proposed a new logical operation:
negation. The negation of a set usually contains a huge mount
of entities. As a by-product, we can directly reuse the difference
operation to model the negation operation, i.e., ¬𝐴 = (𝐼 −𝐴) where
𝐼 is the whole set.
3.5 Union Operation

Different from the above three logical operations, the union of mul-
tiple input boxes might not be a single box. For example, in step 3
of Figure 2, the two yellow boxes are located in distant places in the
embedding space and do no overlap with each other. If we model
their union as a single box, it will contain a large false positive area.
Thanks to [19], any union operation in the query graph can be
transformed to the last step. This means that if the union operation
occurs somewhere in the computation graph, we can revise its logic
and move the union operation to the last step. For the example
in Figure 2, its original query is ((u? , isPresidentOf, USA) - (u?
, is, Republican)) ∩ ((u?, wasBornIn, Texas) ∪ (u?, wasBornIn,
North Carolina)). We can transform it into an equivalent query
as ( (u? , wasBornIn, Texas) ∩ (u?, isPresidentOf, USA) - (u?,
is, Republican) ) ∪ ( (u? , wasBornIn, North Carolina) ∩ (u?,
isPresidentOf, USA) - (u?, is, Republican) ). Therefore, if we
want to find the answering nodes for the union of multiple boxes,
we only need to find the answers for each of these boxes and take
the union of the answers.
3.6 Training

During the training process, we generate a set of queries together
with their answers, and then learn entity embedding, relation em-
bedding and geometric logical operations at the same time. We use
the negative sampling [14] to optimize the model. The goal is to
minimize the loss function which is defined as follows.

𝐿 =
∑

𝑢 𝑗 ∈𝑈?

[− log𝜎 (𝛾 − 𝑑 (𝑣, b𝑗 ) − 𝜆 ∗ | |Relu(x𝑣 − x𝑢 𝑗
) | |1)

− 1
𝑛

𝑛∑
𝑚=1

log𝜎 (𝜆 ∗ | |Relu(x𝑚′ − x𝑢 𝑗
) | |1 + 𝑑 (𝑣𝑚′ , b𝑗 ) − 𝛾 ) ]

(5)

where 𝑑 (𝑣, b𝑗 ) is the distance between an entity embedding vector
e𝑣 and a box embedding b𝑗 of a variable node 𝑢 𝑗 , 𝛾 is a fixed scalar
margin, 𝑣 is a positive entity (i.e., the answer to the node 𝑢 𝑗 ), 𝑣𝑚′

is the 𝑚th negative node (𝑚′ is its index), and 𝑛 is the negative
sample size. In order to distinguish the nodes inside the box from
the nodes outside the box, the distance function 𝑑 (𝑣, b𝑗 ) splits the
distance into two parts, including the within box distance and
outside box distance, and it down-weights the within-box distance
by a weighting parameter 0 < 𝛼 < 1. In this way, as long as the



nodes are inside the box, they will be regarded as “close enough” to
the box center. The term 𝜆 ∗ ||Relu(x𝑣 − x𝑢 𝑗

) | |1 is used to measure
the distance between the one-hot vector x𝑣 and one-hot/multi-hot
vector x𝑢 𝑗

. The full details of the distance function are in [19],
which can also be found in Appendix.

4 EXPERIMENTS

In this section, we conduct empirical studies to evaluate the perfor-
mance of the proposed NewLook method.
4.1 Datasets and Baseline Methods

We run the experiments on three commonly used knowledge graphs,
including FB15k, FB15k-237 and NELL. FB15k is a widely used
knowledge graph which is a subset of FreeBase [1]. FB15k-237
is a subset of FB15k by removing the duplicated relations. NELL is
a knowledge graph used by Query2Box [19] and GQE [5]. Table 4
summarizes the statistics of these three datasets. We compare the
proposed NewLook algorithm against the state-of-the-art embed-
ding base methods including GQE [5], Query2Box [19], BetaE [20]
and EmQL [21] 4 , and subgraph matching based algorithms in-
cluding FilM [15], GFinder [12] and G-Ray [23]. More details about
datasets and baseline algorithms can be found in Appendix.

We use 18 different query structures in the experiments in total,
which can be divided into two groups. For each query structure, we
generate multiple query graphs. The first group (Figure 8a) contains
12 query structures, which are used to evaluate queries with a
single target variable node. This is the same setting as the existing
embedding based methods for answering logical queries. In detail,
the query structures 1p, 2p, 3p, 2i, 3i, 2d and 3d are used for training,
validation and testing the model, while query structures ip, pi, 2u,
up, and dp are only used in the validation and test phrases in order
to evaluate the inductive ability of the model. For a fair comparison,
we follow the exact same experimental setting as Query2Box and
GQE which only predict the answers for a single target node (the
red node in Figure 8a). The second group of query structures are for
queries with multi-variable nodes, which include six larger query
structures (Figure 8b). Our goal is to find the candidate answers
for each of the variable nodes in the query structure. We compare
NewLook with subgraph matching methods to show the power of
embedding methods. The details on how to generate the training
data, testing data and validation data are given in Appendix.

In the experiments, we set embedding dimensionality 𝑑 = 400,
𝛾 = 24 (Eq. (5)), and 𝛼 = 0.2 (Eq. (7)). We train all types of training
structures jointly. In each iteration, we sample a minibatch of 512
queries, and the negative sampling number is set to 128. We opti-
mize the loss in Eq. (5) using Adam Optimizer [9] with a learning
rate of 0.0001. We train all models for 50, 000 iterations.
4.2 Queries with A Single Target Variable Node

Here, we compare NewLook with Query2Box and GQE to test their
performance in answering queries with a single target variable node.
Following the same setting as Query2Box, We use 1p, 2p, 3p, 2i,
3i, 2d and 3d for training, validation and testing, and use ip, pi, 2u,
up, and dp to test the generalization ability of the model to unseen
queries. Since the original Query2Box and GQE do not have the

4In theory, EmQL can model the difference operation. However, we could not find
this function in its current official code. Therefore, the comparison with EmQL in the
context of the difference operation is omitted.

ability to handle difference operation, we implement the difference
operation in both Query2Box and GQE.
4.2.1 Evaluation Protocol. Given a query 𝑞, we use 𝐴𝑞 to denote
the answer set of 𝑞. The rank of 𝑣 is denoted as Rank(𝑣). We use
Hits at K (H@K) as the evaluation metric for answering query 𝑞:

H@K(𝑞) = 1
|𝐴𝑞 |

∑
𝑣∈𝐴𝑞

1(Rank(𝑣) ≤ 𝐾) (6)

where 1[𝑥 ≤ 𝐾] is an indicator function and it equals to 1 if
𝑥 ≤ 𝐾 , and 0 otherwise.

The overall accuracy for each query structure is calculated by
averaging Eq. 6 over all queries with the same structure. The same
evaluation metric is used for training, validation and testing.
4.2.2 Main Results. As shown in Table 2, NewLook significantly
and consistently outperforms both Query2Box and GQE across all
the query structures, including those not seen during the training
stage as well as those with union or difference operations. On aver-
age, we obtain 25% higher H@1 and 17% higher H@3 than the best
competitor on FB15k dataset, and 30% higher H@1, 27% higher H@3
and 20% higher H@10 than the best competitor on NELL dataset.
For some query structures (e.g. 1p, 2u), we obtain 60% higher H@1
than the best competitor on NELL dataset. For query graph 3p, we
obtain more than 15% higher H@1, H@3 and H@10 on average for
all three datasets. This is consistent with our analysis in Section 3.2,
that is, the linear transformation behind Query2Box and GQE leads
to cascading errors. What is more, NewLook performs well on both
queries with the same structure as the training queries and new
query structures unseen during training, which demonstrates that
NewLook generalizes well within and beyond query structures.
4.2.3 BetaE vs. EmQL vs. NewLook. Here, we compare NewLook
with BetaE and EmQL 5. Following the same setting as BetaE and
EmQL, we use 1p, 2p, 3p, 2i, and 3i for training, validation and
testing, and use ip, pi, 2u, and up to test the generalization ability
of the model to unseen queries. Since Mean Reciprocal Rank (MRR)
is the only common metric used by both BetaE and EmQL in their
papers, for a fair comparison, we use this metric here. MRR is de-
fined as 1

|𝐴𝑞 |
∑

𝑣∈𝐴𝑞

1
Rank(𝑣) (the higher the better). Figure 9 shows

the Average MRR of different methods on different datasets w.r.t.
the offline training time. As we can see, NewLook has the highest
average MRR and the shortest offline training time.
4.3 Queries with Multi-variable Nodes

For a query with multi-variable nodes, we aim to find the answers
for all variable nodes in the query graph, which is more challenging
compared with queries with a single target node. Since the original
GQE and Query2Box can only find the answers for a single target
node, for a fair comparison, we have extended GQE and Query2Box
to support multi-variable nodes.

We use six query structures in the experiments which are shown
in Figure 8b. For each query structure, we generate 100 query graphs.
When instantiating queries, given a query structure, we use sub-
graph matching algorithm to find multiple subgraphs in the data
graph, and merge all the subgraphs if they share the same anchor
nodes. We then start from these anchor nodes to execute the sub-
graph matching process and find all the answers for each variable

5We skip the comparison with EmQL-Entailment[21], since it requires the entire
knowledge graph for training and does not work in the inductive setting.



Figure 8: Query structures used in the experiments, where ‘p’, ‘i’, ‘d’ and ‘u’ stand for ‘projection’, ‘intersection’, ‘difference’ and

‘union’, respectively. Numbers before ‘i’, ‘d’ and ‘u’ denote their input size (i.e., the number of anchor nodes). Number before

‘p’ denotes the length of the path (i.e., the number of projection operations).

Table 2: Answering queries with a single target variable node. NLK refers to NewLook, Q2B refers to Query2Box.

Query
Query 1p 2p 3p 2i 3i ip pi 2u up 2d 3d dp Average
Method GQE Q2B NLk GQE Q2B NLk GQE Q2B NLk GQE Q2B NLk GQE Q2B NLk GQE Q2B NLk GQE Q2B NLk GQE Q2B NLk GQE Q2B NLk GQE Q2B NLk GQE Q2B NLk GQE Q2B NLk GQE Q2B NLk

FB15k
Hits@1 0.31 0.48 0.81 0.15 0.23 0.51 0.11 0.15 0.39 0.20 0.32 0.51 0.27 0.41 0.69 0.07 0.10 0.21 0.12 0.19 0.48 0.14 0.25 0.81 0.11 0.17 0.25 0.31 0.49 0.88 0.12 0.15 0.38 0.17 0.23 0.34 0.17 0.27 0.52

Hits@3 0.69 0.78 0.88 0.32 0.38 0.64 0.22 0.26 0.51 0.44 0.58 0.72 0.55 0.69 0.78 0.13 0.18 0.31 0.27 0.37 0.61 0.43 0.59 0.94 0.24 0.29 0.37 0.66 0.77 0.95 0.36 0.32 0.54 0.36 0.33 0.46 0.39 0.47 0.64

Hits@10 0.85 0.90 0.93 0.48 0.54 0.75 0.35 0.40 0.64 0.63 0.75 0.80 0.74 0.84 0.89 0.24 0.30 0.43 0.44 0.54 0.74 0.68 0.81 0.98 0.40 0.46 0.51 0.83 0.90 0.97 0.44 0.46 0.69 0.52 0.46 0.59 0.56 0.62 0.74

FB15k-237
Hits@1 0.20 0.27 0.68 0.10 0.13 0.30 0.07 0.09 0.19 0.10 0.14 0.47 0.16 0.22 0.57 0.04 0.05 0.08 0.06 0.09 0.28 0.05 0.07 0.49 0.06 0.09 0.15 0.29 0.40 0.76 0.16 0.26 0.29 0.15 0.16 0.27 0.12 0.16 0.37

Hits@3 0.39 0.45 0.85 0.19 0.22 0.43 0.13 0.16 0.31 0.25 0.31 0.71 0.36 0.43 0.71 0.07 0.10 0.16 0.15 0.19 0.41 0.15 0.22 0.70 0.14 0.17 0.24 0.54 0.64 0.86 0.38 0.44 0.46 0.28 0.26 0.39 0.25 0.29 0.52

Hits@10 0.57 0.63 0.94 0.32 0.36 0.59 0.24 0.28 0.45 0.43 0.50 0.81 0.54 0.61 0.81 0.15 0.19 0.25 0.27 0.32 0.54 0.33 0.43 0.86 0.27 0.31 0.37 0.72 0.79 0.94 0.57 0.62 0.64 0.43 0.39 0.53 0.39 0.45 0.64

NELL
Hits@1 0.13 0.20 0.81 0.08 0.11 0.45 0.08 0.10 0.33 0.09 0.14 0.60 0.14 0.24 0.66 0.04 0.05 0.13 0.08 0.10 0.33 0.03 0.07 0.68 0.04 0.06 0.23 0.20 0.29 0.88 0.16 0.28 0.36 0.19 0.19 0.46 0.11 0.14 0.49

Hits@3 0.44 0.53 0.92 0.20 0.23 0.34 0.19 0.21 0.48 0.27 0.33 0.74 0.36 0.45 0.80 0.08 0.11 0.21 0.17 0.19 0.46 0.22 0.33 0.85 0.12 0.13 0.35 0.55 0.69 0.95 0.41 0.43 0.54 0.38 0.33 0.60 0.28 0.33 0.60

Hits@10 0.62 0.70 0.96 0.35 0.39 0.48 0.30 0.34 0.63 0.47 0.55 0.84 0.58 0.66 0.89 0.17 0.20 0.32 0.28 0.32 0.59 0.44 0.56 0.93 0.27 0.29 0.47 0.72 0.82 0.98 0.63 0.64 0.71 0.54 0.49 0.71 0.45 0.49 0.71

Figure 9: Average MRR results on the Query2Box datasets.

Table 3: Answering queries with multi-variable nodes.

Method GQE Q2B GRay FilM GFinder NewLook
2ipp 0.550 0.481 0.554 0.566 0.638 0.720

2ippu 0.592 0.426 0.505 0.583 0.631 0.761

2ippd 0.462 0.435 0.452 0.637 0.652 0.641
3ipp 0.447 0.442 0.513 0.394 0.437 0.688

3ippu 0.507 0.417 0.456 0.408 0.465 0.733

3ippd 0.447 0.395 0.421 0.423 0.482 0.634

Average 0.500 0.432 0.483 0.501 0.550 0.696

node in the query. In order to test the generalization ability of dif-
ferent models (e.g. GQE, Query2Box and NewLook), we train them
on the following query structures, including 1p, 2p, 3p, 2i, 3i, 2d,
and id.

4.3.1 Evaluation Protocol. We use the following metric to measure
the accuracy 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝐹

min(𝑁,10) , where 𝐹 is the number of
qualifying nodes in the top 10 candidate nodes, and𝑁 is the number
of nodes in the ground truth. A qualifying node is the one which
can form a connected subgraph with other qualifying nodes of
other variable nodes. We normalize 𝐹 by min(𝑁, 10) because the
total number of answers of a variable node may be less than 10 in
the ground truth.

For GQE, Query2Box and NewLook, given a variable node 𝑢𝑖 in
the query graph, for each node 𝑣 ∈ 𝑉 , we use 𝑑 (𝑣, b𝑖 ) to rank 𝑣 . We
then select the top-10 entities which have the smallest distance as
the candidate answers. For G-Ray, we treat the square node (i.e., the
intersection node) as the seed node, and set the size of the seed list
as 10. For each seed node, we use G-Ray to find the subgraph, and
merge all the results together to calculate the accuracy. For FilM
and GFinder, we randomly select 10 nodes from their candidate
lists, and calculate the corresponding accuracy.

Table 3 shows the average accuracy of different methods on
NELL dataset. For each query structure, we calculate the accuracy
for each variable node, then we take the average of all variable
nodes of a query structure, and treat it as the overall accuracy of
multi-variable nodes. As we can see, NewLook has the highest
accuracy in all but one query structures. On average, NewLook



(a) Training Time
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Figure 10: Running time of different methods.

obtains more than 10% higher accuracy than the best competitor.
For query 3ipp, 3ippu, and 3ippd, NewLook obtains more than 15%
higher accuracy than the best competitor.

Figure 10 shows the offline training time and online query time
of different methods. For the query time, we run each structure
separately, and then take the average running time of these six
query structures. For each query structure, there are 100 queries
and we count the total running time. Since GFinder, FilM and GRay
do not require offline training, we omit them in Figure 10a. As we
can see, on average, GQE has the shortest online query time (about
5 seconds), whereas GFinder has the longest online query time
(about 281 seconds).

We found that most of the query time of G-Ray is spent on
calculating the node proximity matrix; most of the query time of
GFinder is spent on parsing data graph and building indexing for the
data graph. For FilM, its running time scales near linearly w.r.t the
number of query graphs. For GQE, Query2Box and NewLook, most
of their query time is spent on answer identification which needs to
sort all the nodes in the data graph according to their distance to the
point or box embedding of the query node. This suggests that there
might be room to further speedup the online query response of
NewLook, say based on efficient indexing techniques (e.g., k-d-tree)
or locality sensitive hashing.

Figure 1 shows the trade-off between the accuracy and online
query time of different algorithms on a single query structure (i.e.,
3ippu on NELL dataset). As we can see, (1) embedding based meth-
ods (e.g., NewLook, GQE and Query2Box) are much faster than
subgraph matching based methods (e.g., G-Ray, Film and GFinder),
and (2) the proposed NewLook achieves the highest accuracy with
a comparable online response time with GQE and Query2Box. More
experimental results and ablation study can be found in Appendix.
5 RELATEDWORK

Subgraph matching based knowledge graph question answering
has been studied for a long time. Some methods use semantic pars-
ing [28] to transform the natural language query into a query graph
or executable queries such as SPARQL [30]. Other methods trans-
form the input question into a structured query by employing tem-
plates [24, 31]. After the query graph is obtained, many subgraph
matching methods can be used to find the results (e.g. [2, 12, 17, 23]).

Knowledge graph embedding aims to embed the components of a
knowledge graph (e.g. entities and relations) into a low-dimensional
space. Most relevant work includes single-hop reasoning [1, 11, 22],
multi-hop reasoning [8, 18] and geometric embedding, such as
regions (e.g., box, sphere) [3, 25], probability (Gaussian distribu-
tion) [6, 26], and so on.

Graph embedding aims to embed the nodes in the graph in low
dimension embedding space so that similar nodes will be close to
each other in the embedding space. Some works focus on learn-
ing the embedding for static graphs [4, 16], while other focus on
dynamic graphs [13].

6 CONCLUSION

In this paper, we present an embedding based algorithm NewLook
to answer complex logical queries on knowledge graphs. NewLook
supports 4 types of logical operations and can answer queries with
multiple variable nodes. Experimental results show that NewLook
outperforms both subgraph matching based methods and embed-
ding based methods, and it is computationally efficient. Further
directions include integrating subgraph matching based and em-
bedding based methods for answering logical queries.
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APPENDIX: REPRODUCIBILITY

Reproducibility. Three datasets are used in our experiments, in-
cluding FB15k, FB15k-237 and NELL. All experiments are performed
on a machine with an Intel Core-i7 3.00GHz CPU, 64GB memory
and Nvidia GeForce GTX 2080. The details of datasets, machine
and parameters can be found in Section 4. All datasets are pub-
licly available. The source code can be found at https://github.com/
lihuiliullh/NewLook.
SubgraphMatching Baselines.GFinder is an indexing based sub-
graph matching algorithm which can find both exact and approxi-
mate subgraphs at the same time. FilM is a filtering based subgraph
matching algorithm. G-Ray is an approximate attributed subgraph
matching algorithm. Since G-Ray does not support edge type, for a
fair comparison, we have extended G-Ray to support edge type [17],
and we constrain its Neighbor-Expander to only select new nodes
near the seed nodes.
A – Data Generation and Statistics

We use the same protocol as [19] to generate the training, validation
and testing datasets. That is, we first divide all the edges (i.e., rela-
tions) 𝑅 in the knowledge graph into three relation sets, including
𝑅𝑡𝑟𝑎𝑖𝑛 , 𝑅𝑣𝑎𝑙𝑖𝑑 and 𝑅𝑡𝑒𝑠𝑡 , where 𝑅𝑡𝑟𝑎𝑖𝑛 ⊂ 𝑅𝑣𝑎𝑙𝑖𝑑 ⊂ 𝑅𝑡𝑒𝑠𝑡 = 𝑅 and
𝑅𝑡𝑟𝑎𝑖𝑛 contains 10% missing edges. The induced subgraph of these
three relation sets are referred to as G𝑡𝑟𝑎𝑖𝑛 , G𝑣𝑎𝑙𝑖𝑑 and G𝑡𝑒𝑠𝑡 (note
that G𝑡𝑒𝑠𝑡 = G). Given a DAG query 𝑞 and a knowledge graph
G ∈ {G𝑡𝑟𝑎𝑖𝑛,G𝑣𝑎𝑙𝑖𝑑 ,G𝑡𝑒𝑠𝑡 }, we use subgraph matching algorithm
to find multiple subgraphs in G, and merge all the subgraphs which
share the same anchor nodes. Then starting from these anchor
nodes, we execute the subgraph matching process and find all the
answers for each of the variable nodes in the query.

For each query graph 𝑞, we denote 𝐴𝑡𝑟𝑎𝑖𝑛 , 𝐴𝑣𝑎𝑙𝑖𝑑 and 𝐴𝑡𝑒𝑠𝑡 as
the answer sets obtained on G𝑡𝑟𝑎𝑖𝑛 , G𝑣𝑎𝑙𝑖𝑑 and G𝑡𝑒𝑠𝑡 , respectively.
At the training time, we treat all the entities in 𝐴𝑡𝑟𝑎𝑖𝑛 as the posi-
tive examples and other entities as the negative examples. At the
validation and test phrases, we use the same strategy. The dataset
details can be found at Table 4. The average number of answer
entities for each query graph is shown in Table 5.

Table 4: Summary of datasets

Dataset En
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s
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tio
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Tr
ai
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ng
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at
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n

Ed
ge
s

Te
st

Ed
ge
s

To
ta
l

Ed
ge
s

FB15k 14,951 1,345 483,142 50,000 59,071 592,213
FB15k-237 14,505 237 272,115 17,526 20,438 310,079

NELL 63,361 200 114,213 14,324 14,267 142,804

Table 5: Average number of answer entities of test queries

Dataset 1p 2p 3p 2i 3i ip pi 2u up 2d dc
FB15k 10.8 255.6 250.0 90.3 64.1 593.8 190.1 27.8 227.0 3.3 59.5
FB15k-237 13.3 131.4 215.3 69.0 48.9 593.8 257.7 35.6 127.7 3.4 63.3
NELL 8.5 56.6 65.3 30.3 15.9 310.0 144.9 14.4 62.5 2.0 41.8
B – Additional Algorithm Details

Distance function. The point-to-box distance function we use in
this paper is defined as follows [10].

𝑑 (𝑣; b𝑗 ) = 𝑑𝑜 (𝑣; b𝑗 ) + 𝛼 × 𝑑𝑖 (𝑣; b𝑗 ),
𝑑𝑜 (𝑣; b𝑗 ) = | |Max(e𝑣 − 𝑞𝑚𝑎𝑥 , 0) +Max(𝑞𝑚𝑖𝑛 − e𝑣, 0) | |1
𝑑𝑖 (𝑣; b𝑗 ) = | |b𝑐𝑗 −Min(𝑞𝑚𝑎𝑥 ,Max(𝑞𝑚𝑖𝑛, e𝑣)) | |1

(7)

where 𝑞𝑚𝑎𝑥 = b𝑐
𝑗
+ b𝑜

𝑗
and 𝑞𝑚𝑖𝑛 = b𝑐

𝑗
− b𝑜

𝑗
and 0 < 𝛼 < 1 is a

fixed scalar. By this definition, the distance of a node (i.e., a point

Table 6: Accuracy of each variable node. Q2B refers to

Query2Box, NLK refers to NewLook, ✗ means the node does

not exist in the corresponding query structure.

Method GQE Q2B GRay FilM GFinder NLK GQE Q2B GRay FilM GFinder NLK
Node Node3 Node4
2ipp 0.624 0.859 0.942 0.454 0.629 0.865 0.530 0.292 0.369 0.622 0.631 0.663

2ippu 0.668 0.857 0.943 0.469 0.633 0.897 0.478 0.253 0.392 0.640 0.593 0.651

2ippd 0.640 0.878 0.927 0.521 0.707 0.901 0.490 0.333 0.381 0.689 0.711 0.669
Node Node5 Node6
2ipp 0.497 0.292 0.352 0.624 0.656 0.632 ✗ ✗ ✗ ✗ ✗ ✗

2ippu 0.574 0.285 0.357 0.642 0.636 0.676 0.651 0.313 0.330 ✗ 0.665 0.821

2ippd 0.463 0.323 0.342 0.703 0.681 0.637 0.258 0.206 0.161 ✗ 0.509 0.357
Node Node4 Node5
3ipp 0.538 0.870 0.883 0.270 0.460 0.824 0.386 0.224 0.334 0.447 0.404 0.597

3ippu 0.581 0.876 0.888 0.282 0.454 0.869 0.412 0.218 0.328 0.448 0.452 0.605

3ippd 0.621 0.903 0.865 0.303 0.508 0.878 0.420 0.213 0.329 0.481 0.470 0.581

Node Node6 Node7
3ipp 0.419 0.233 0.323 0.465 0.448 0.644 ✗ ✗ ✗ ✗ ✗ ✗

3ippu 0.451 0.271 0.324 0.496 0.484 0.661 0.587 0.306 0.286 ✗ 0.471 0.797

3ippd 0.486 0.285 0.314 0.487 0.537 0.684 0.263 0.181 0.177 ✗ 0.413 0.395

Table 7: Accuracy comparison. gf refers to GFinder.

Method gf gf+NLK gf gf+NLK gf gf+NLK gf gf+NLK gf gf+NLK
Node Node3 Node4 Node5 Node6 Time(s)
Query1 0.629 0.579 0.631 0.584 0.656 0.585 ✗ ✗ 111 44
Query2 0.633 0.583 0.593 0.496 0.636 0.567 0.665 0.543 153 47
Query3 0.707 0.671 0.711 0.641 0.681 0.595 0.509 0.408 145 63
Node Node4 Node5 Node6 Node7 Time(s)
Query4 0.460 0.424 0.404 0.362 0.448 0.460 ✗ ✗ 124 44
Query5 0.454 0.390 0.452 0.314 0.484 0.411 0.471 0.373 149 58
Query6 0.508 0.478 0.470 0.403 0.537 0.491 0.413 0.337 163 66

Table 8: MRR results (%) on the Query2Box datasets.

Dataset 1p 2p 3p 2i 3i ip pi 2u up Average Training Time
FB15k

BetaE 65.0 42.1 37.8 52.9 64.0 41.5 22.9 48.8 26.9 44.6 2.81 days
EmQL 36.8 45.2 40.9 57.4 60.9 55.6 53.8 7.4 37.5 43.9 ≥ 4 days
NewLook 84.1 56.6 45.1 60.1 77.9 28.7 56.9 82.5 34.0 58.4 0.91 days

FB15k-237
BetaE 39.1 24.2 20.4 28.1 39.2 19.4 10.6 22.0 17.0 24.4 2.33 days
EmQL 33.4 30.5 30.4 37.8 43.6 35.1 35.8 7.5 24.1 30.9 ≥ 4 days
NewLook 77.8 39.6 28.1 55.2 64.5 14.1 36.0 61.6 23.4 44.5 0.75 days

NELL
BetaE 53.0 27.5 28.1 32.9 45.1 21.8 10.4 38.6 19.6 30.7 2.62 days
EmQL 37.2 35.1 34.9 53.9 65.4 44.1 56.1 10.5 31.1 40.9 ≥ 4 days
NewLook 87.5 54.6 43.4 68.9 74.8 19.7 42.2 77.7 31.4 55.6 0.87 days

in the embedding space) to the box center is equal to the distance
inside the box 𝑑𝑖 and the distance outside the box 𝑑𝑜 . 𝛼 is a weight
parameter to measure the importance of these two distances.
C – Additional Experimental Results

Additional Experiments for BetaE vs. EmQL vs. NewLook. Table 8
shows the MRR of different methods. As we can see, NewLook has
the shortest training time. Most of the time, it has the highest MRR.
Additional Experiments for Queries with Multi-variable Nodes. Ta-
ble 3 shows the average accuracy for queries with multi-variable
nodes. Table 6 further shows the accuracy of each variable node in
a given query structures 2ipp, 2ippu, 2ippd, 3ipp, 3ippu and 3ippd.
As we can see, NewLook has either the highest or the competitive
accuracy in most cases. For node3 in 2ipp, 2ippu and 2ippd, and
node4 in 3ippu and 3ippd, G-Ray has the highest accuracy. This is
mainly because node3 and node4 are treated as seed nodes in G-Ray.
On average, NewLook obtains more than 10% higher accuracy than
other baseline methods. For some nodes (e.g. node5 and node6 in
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3ipp and 3ippu), NewLook obtains more than 15% higher accuracy
than the best competitor.

The Pruning Power of NewLook. For most subgraphmatching meth-
ods, their online query time usually increases dramatically (e.g.,
quadratically or even exponentially) w.r.t the data graph size. A nat-
ural question is “How can we prune some unpromising entities of the
data graph, so that the size of data graph can be significantly reduced
to accelerate the online query process?” To answer this question, we
conduct experiments to evaluate the pruning power of NewLook.

In the experiments, we use the query structures in Figure 8b. For
each query, we use NewLook to find the top-50 candidates for each
variable node, and put these candidates into a node set F . Then,
we find an induced data graph according to F . In this way, the size
of the data graph is significantly reduced. To evaluate the pros and
cons of pruning, we run GFinder on the induced data graph, and
compare its accuracy and query time before and after the pruning.
Table 7 shows the results. As we can see, by running GFinder on the
induced data graph, the online query time is reduced significantly
(by about two-third), at the expense of a lightly decreased accuracy
(about 5% to 10% on average).
D – Ablation Study and Error Analysis

First, we evaluate the effect of the nonlinear modeling of projection
operation. Table 9 shows the ablation study of projection opera-
tion. As we can see from the first four columns of the table, the
proposed neural network based projection operation has a much
better performance than the linear transformation based projection
operation, especially for multi-hop queries (e.g. 2p, 3p). For one-hop
query (1p), the linear transformation (LT) performs slightly better
than the neural network method (NN) in some cases. This is con-
sistent with our intuition in that the proposed nonlinear projection
method is most effective in mitigating cascading errors in multi-hop
queries (e.g., 2p, 3p). The more accurate modeling of the projection
operations also leads to better intersection operations, as shown in
the last two columns of Table 9.

Second, we evaluate the effect of the proposed difference opera-
tion, where we use an attention network to capture the asymmetric
property of the difference operation. We compare the proposed
attention neural network based model with deepset [29] model.
The results are shown in Table 10. As we can see, the proposed
attention neural network based model has a much better perfor-
mance than deepset based model. For query graph dp, the deepset
model has a 0 hits score. It indicates that the generalization ability
of the deepset model for modeling the difference operation is very
limited. However, the proposed attention neural network based
model still obtains a reasonable hits score.

Third, we analyze where the error of the proposed NewLook
comes from.We run the query 2ippu on NELL dataset, collect all the
wrongly predicted nodes in H@10 and put them in a node list 𝑆𝑤 .
Figure 11a shows the degree distribution of the entire data graph
and that of the nodes in 𝑆𝑤 . The x-axis is degree and the y-axis
is the number of nodes. Figure 11b shows the error rate of nodes
with different degrees. If 𝑥 = 80 and 𝑦 = 0.4, this means that 40%
nodes of degree 80 in the data graph returned by NewLook are
wrong answers (i.e., they are contained in 𝑆𝑤 ). Figure 11c shows the
average times a node is returned by NewLook as a wrong answer
w.r.t. the node degree. If 𝑥 = 80 and 𝑦 = 3, this means that nodes in

Table 9: Ablation study of projection operation. LT refers

to linear transformation based model. NN refers to the pro-

posed neural network based model.

Query 1p 2p 3p 2i 3i
Method LT NN LT NN LT NN LT NN LT NN

FB15k
Hits@3 0.71 0.69 0.37 0.41 0.27 0.38 0.59 0.66 0.71 0.78

Hits@10 0.86 0.84 0.53 0.57 0.42 0.53 0.77 0.80 0.86 0.89

FB15k-237
Hits@3 0.43 0.43 0.22 0.26 0.17 0.23 0.31 0.34 0.43 0.47

Hits@10 0.60 0.59 0.36 0.39 0.29 0.35 0.49 0.51 0.61 0.63

NELL
Hits@3 0.53 0.62 0.25 0.33 0.22 0.33 0.28 0.34 0.46 0.53

Hits@10 0.70 0.73 0.39 0.47 0.35 0.45 0.48 0.49 0.66 0.68

Table 10: Ablation study of difference operation.

Query 2d 3d dp
Method Deepset Attention Deepset Attention Deepset Attention

FB15k
Hits@3 0.67 0.72 0.52 0.58 0.00 0.26

Hits@10 0.82 0.86 0.67 0.73 0.00 0.40

FB15k-237
Hits@3 0.56 0.59 0.43 0.48 0.00 0.21

Hits@10 0.73 0.75 0.60 0.66 0.00 0.35

NELL
Hits@3 0.74 0.75 0.53 0.59 0.00 0.29

Hits@10 0.83 0.85 0.69 0.74 0.00 0.43

(a) Degree distribution (b) Error Rate vs degree

(c) Average error times vs degree (d) Median error times vs degree

Figure 11: Degree distribution and error rate distribution.

𝑆𝑤 with a degree of 80 are returned as wrong answers three times
on average. Figure 11d shows the median time a node is returned
as a wrong answer w.r.t. the node degree. As we can see, compared
with low degree nodes, high degree nodes have a higher error rate.
This indicates that NewLook prefers to choosing high degree nodes
even though they might not be the true answers. We suspect this
might be a general limitation of embedding based methods, since a
higher degree node is more likely to be located in the proximity of
an arbitrary box (e.g., a query) in the embedding space. A possible
remedy is to leverage the node degree to ‘regularize’ the embedding
process so as to mitigate the negative impact of high-degree nodes.
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