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Abstract—Lossy compression on scientific data is coming into
prominence as the scientific workflow is hampered significantly
by large amounts of data produced by high-performance com-
puting (HPC) applications. State-of-the-art lossy compressors,
such as SZ and ZFP, show promising rate-distortion efficiency.
However, as the data storage burden and need for feature-
preserving compression continue to grow, relying on unitary or
single-stage compression is becoming insufficient for obtaining
desirable data reductions and feature preservation. This paper
aims to improve the compression ratio by taking advantage of
information retrieval (IR), a well-established topic but under-
explored in lossy compression for scientific data. We propose
our lossy compression technique, called DPZ, based on multi-
stage feature extractions, a commonly employed step in IR.
Unlike the prior works where the compression is either done by
predicting or bit-plane encoding, this work focuses on preserving
the key data content from each stage to the maximum extent,
ultimately elevates the compression ratio. With the application
of discrete cosine transform, principal component analysis, and
quantization, DPZ obtains the dominant features with the least
amount of bits possible. Specifically, a knee-point detection and
an explained variance variation method are designed for finding
optimal tradeoffs. DPZ also employs a sampling strategy to
reduce computational overhead and estimate compressibility and
parameters before compression. We evaluate the performance of
DPZ using real-world scientific datasets. Experiments demon-
strate that DPZ achieves superior compression ratios through
multi-stage retrievals and outperforms SZ and ZFP at medium
to high accuracy on most of the evaluated datasets.

Index Terms—Lossy compression; information retrieval; PCA

I. INTRODUCTION

Data compression is becoming crucial in HPC workflows, as
even a single simulation run by modern HPC applications eas-
ily exceeds petabytes [1], [2]. For example, the data generated
by the Large Hadron Collider (LHC) is expected to approach
150 PB/year by 2025 [3], potentially exabytes and beyond in
cumulative storage volume. Lossless compression can alleviate
such a burden but attaining an appreciable compression ratio
is limited. As the simulations generate data far rapidly than
the current scientific workflow can handle, lossy compression,
on the other hand, is in an increasing need.

Error-controllable lossy compressors for scientific data gen-
erally can be classified into three categories. One is prediction-
based, such as SZ [4]–[6], which relies on the prediction
mechanism employed in the decorrelation stage. The second
one is transform-based, such as ZFP [7], [8], TTHRESH [9],
and DCTZ [10]–[12], which depends on efficient transforms to
decorrelate original data. The last one is multigrid-based, such

as MGARD [13]–[16], which decomposes data into multi-grid
levels. Several state-of-the-art lossy data compressors, such as
SZ and ZFP, have shown success in providing high compres-
sion ratios while bounding errors. However, the compression
ratios achieved by unitary or single-stage lossy compressors
are still far from being desired.

Luo et al. [17] recently proposed applying preconditioners
on existing lossy compressors to improve the compression
ratio. Specifically, they improved their prior work on [18] and
implemented latent reduced models as a precondition on SZ
and ZFP. Their approach showed high compression ratios but
required a model selection strategy before compression as the
reduced model does not apply to all datasets. Moreover, using
preconditioners in conjunction with stand-alone compressors,
such as SZ and ZFP, would show a lack of consistency
in methodology (i.e., feature preservation), which might be
insufficient for scientists to make production-level analyses.

As there is an increasing need for domain scientists to
understand the “physics” or “features” in their simulations and
analysis [1], a growing number of studies considered feature-
relevant compression. For instance, a recent study by Fox
et al. [19] explored the impact of lossy compression on the
features of interest. The authors indicated that feature varies in
distinct ways and suggested that implementing an algorithm to
characterize data and select optimal compression parameters
accordingly would be a rewarding path for the future of
HPC simulations. Several studies [20], [21] also discuss the
potential need for developing a feature-relevant compressor
to improve the compression ratio compared to the growth of
the data volumes. However, their analyses are based on the
compression results of existing compression schemes, which
are not purposely designed for feature-relevant reduction.

In this work, complementary to the current lossy com-
pression techniques and the feature preservation idea, we
propose our lossy compressor, called DPZ. We implement our
mechanism that preserves features by retrieving the highest
information with the minimum data content, thereby achieving
high compression ratios. Our key contributions are as follows:
• We study the properties of efficient retrieval methods and

formulate their information preservation over the features
of interest. We explore the viability and effectiveness
of a different combination of retrievals and propose our
framework with multi-stage feature extractions.

• We design a block decomposition strategy such that
the compressor applies to arbitrary dimensional data.



By preserving the locality of the original data during
decomposition and adopting the optimized block size, it
improves compressibility through feature selection.

• We apply discrete cosine transform (DCT) on the de-
composed data and implement principal component anal-
ysis (PCA) to transform coefficients into eigenspace. To
preserve the most information, we introduce our k-PCA
method using knee-point detection and explained vari-
ance variation, thereby containing maximum variations
through k selection while discarding less informative data
contents. We also design a quantization scheme for the
selected components to improve the compression ratio
further. Lastly, we develop a sampling strategy to estimate
preliminary reduction ratios and provide proper param-
eters before compression. More importantly, it would
reduce computational overhead.

• Our experimental results show that, compared with SZ
and ZFP, our proposed compressor DPZ, although simple,
achieves superior compression ratios on tested real-world
datasets at medium to high accuracy.

II. MOTIVATION

A. Information Retrieval

The intuition behind our compression strategies arises from
information retrieval (IR), a system designed for finding
information archives and search on written data. The basic
idea of IR, while its definition can be rather broad, is to find
data content of an unstructured nature, where data does not
have a clear structure that satisfies the information needed
from within large collections of data [22]–[25]. One of the
commonly-used retrieval methods in IR [26] is feature extrac-
tion that typically utilizes techniques such as data transform,
dimensionality reduction, and autoencoder [27]–[30]. Also, to
obtain the desired information, the IR system usually includes
several extraction stages, each of which involves a specific
model for its data representation purposes, to acquire key
content from different features (e.g., vector, index).

B. IR Methods in Lossy Data Compression

In the same way as IR systems, lossy data compression re-
trieves information through transforming data representations
such that minimal bits preserve the dominant information of
the original data. Simple arithmetic transforms such as fixed-
point conversion could preserve meaningful data information
through the truncation of unnecessary bits. Quantization, a
local approach that transforms several with-in-range points
into some approximations, can also be used for information
retrieval. However, the compression ratios obtained by these
transforms could be limited when data itself has less bit
representation or has high dispersion.

Two types of discrete transforms are known to be effective
for feature extraction: deterministic and statistical [31]. Deter-
ministic transform, such as discrete cosine transform (DCT)
and discrete wavelet transform (DWT) having invariant basis
vectors independent of the datasets, can simplify the data
representation. For example, Figure 1a and Figure 1b show
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Fig. 1: The distribution of the FLDSC dataset in different
forms. (a) flatten original data, (b) after discrete transform.
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Fig. 2: (a) The overlay distribution of selected blocks (e.g.,
bk1: the 1st block-data) of FLDSC. The distribution of (b) the
1st, (c) the 2nd, and (d) the 30th components after PCA.

the distribution of CESM-ATM FLDSC and its re-arranged
coefficients after applying a deterministic transform (DCT in
this example), respectively. From Figure 1b, we can see that
the trend exhibited in the left part of coefficients reproduces
the shape of the original data. As a result, we can keep the
information close to the original data by preserving only these
coefficients and discarding the remaining ones.

Statistical transform, such as PCA and linear discriminant
analysis (LDA) that have different basis vectors depending on
the statistical specification of the datasets, is another effective
feature extraction method. The unsupervised PCA is suitable
for data compression. In PCA, data is projected from a high-
dimension space to a low-dimensional space such that the most
efficient data representation can be extracted. Figure 2a depicts
the overlay of seven selected feature vectors (block-data) for
PCA of 2D FLDSC (a total of 1800 blocks, and each includes
3600 datapoints). Figure 2b–2d show the distribution of PCA
components after the projection. As we can see, the 1st PCA
component (depicted in Figure 2b) captures an overall trend of
the original overlay, and the remaining PCA components (e.g.,
2nd and 30th) are less representative of the original. Thus, we
need to retrieve the major information of the data by selecting
the largest primary components.



C. Challenges on Scientific Data

Though utilizing feature extraction methods to retrieve
important information in lossy data compression shows its ef-
fectiveness, it is still not straightforward to achieve promising
performance on floating-point scientific data due to several
challenges. First, data compression needs to achieve not only
high compression ratios and but also high precision. Striking
a balance between these two is not an easy task. Second, the
complexity of data content varies across different applications
and would require special knowledge to define or formulate
features of interest associated with compression performance.
Last, as no compressor can be designed best for all datasets, a
preliminary compressibility estimation before compression is
necessary for reference. These challenges motivate us to design
a lossy data compressor with efficient rate-distortion perfor-
mance and preliminary reduction estimation. Our compressor,
which takes advantage of multi-stage feature extractions in IR,
finds the desired data contents systematically and preserves the
information required.

III. EXPLORING IR FRAMEWORK & PROBLEM
FORMULATION

In this section, we first present the unique properties of
effective retrieval methods and formulate our problem in the
context of feature representation and information preservation.
Then, we explore the viability and effectiveness of different
combinations of retrievals and identify the potential framework
of multi-stage feature extractions.

A. Feature Representation & Information Preservation

1) Features: How to select a suitable feature and formulate
its performance on information preservation is crucial. As in
each retrieval method, a feature of interest has a different
representation. For deterministic transform, coefficients could
be the feature as they represent the datapoints in the trans-
formed space. For statistical transform like PCA, components
in the lower dimensional space could be the feature. To exploit
these properties in our context, rather than finding an inherent
data feature (i.e., application relevant) or a domain-specific
one, which is beyond the scope of this work, we focus on
transform-based features (i.e., feature vectors) that have high
information preservation and can be quantified in terms of the
numeric information loss over the selected number of features
(to be illustrated later in Section III-A3). Accordingly, in our
design, we aim at obtaining the least number of features that
contribute to the most information required, thereby achieving
high compression ratios and low errors. To achieve this goal,
we identify suitable retrieval methods and useful metrics and
formulate them on information preservation.

2) Feature Extraction Methods: As demonstrated in Sec-
tion II-B, both deterministic and statistical approaches show
desirable information retrieval, so we want to employ both
methods in our design. Regarding deterministic transforms,
prior studies [7], [10], [32]–[34] employed several transforms,
such as DCT, DFT, DWT, etc. In this work, we use DCT
(i.e., DCT-II) as our first desired retrieval method as it has

demonstrated its effectiveness in lossy compression on real-
world datasets. Also, some unique properties of DCT make it
a powerful retrieval method. For example, the most crucial
characteristic of DCT is that it takes correlated input data
and concentrates its energy in just the first few transformed
coefficients. DCT expresses a finite sequence of data points
through a sum of the cosine function and can be written in a
vector form as z = ATx, where x is dataset and matrix A is
an orthogonal matrix, i.e., AT = A−1.

Regarding statistical transform, we use PCA as a retrieval
method in this category. Compared to other reductions such
as singular value decomposition (SVD) and NMF, PCA is
provenly efficient in generating the optimal linear transfor-
mation that projects data into space that is preferably close
to its intrinsic dimension [35], [36]. Moreover, it supports
inverse transformation, which is essential for reconstruction.
Specifically, it performs an orthogonal transformation to the
basis of correlation eigenvectors, and projects onto a subspace
of s-dimension spanned by those eigenvectors p1, p2, p3...ps,
which correspond to the largest eigenvalues λ1, λ2, λ3...λs.
The s principal components of an t dimensional original
feature x can be written in a vector form as y = DTx, where
D is an t× s matrix (s < t).

As the computational overhead is also critical to the com-
pression performance, we consider combining these two dis-
crete transforms only in our multi-stage framework.

3) Information Preservation: To see how information is
retrieved (a.k.a., preserved) over the selected (a.k.a, extracted)
features in each method of our choice, we formulate it via
the number of selected features versus information preserved
by those. In general, information (or energy) can be measured
using metrics such as gain or entropy. However, as the target
information obtained by each method is independent, we
formulate them separately. We start by representing the dataset
as x. The total number of features in the transformed dataset
is m, and k is the selected number of features (k ≤ m).

In DCT, conventional methods like zigzag, zonal masking,
and discrimination power analysis (DPA) are often used in
image compression for selecting features. But as for scientific
data, the energy compaction rate (ECR) [32], a function of
preserved energy regarding the number of largest magnitude
transform coefficients, is more appropriate. The energy is
calculated as the sum of squares of individual values, and the
ECR is denoted as:

ECR =

∑k
i=1 |fi|

2∑m
i=1 |fi|

2 , (1)

where f is the transformed format of dataset x.
In PCA, on the other hand, principal components represent

the directions of the data that explain the most variance
(i.e., the degree of spread). In other words, each principal
component represents the line that captures most information
of the data. Therefore, the greater the variance kept by a line,
the larger the dispersion of the data points associated with it,
thus the more information it has. The total variance explained
(TV E) by the number of largest primary components (also



called cumulative proportion of variance explained) can be
used to see how much information is retrieved over the selected
features. It is denoted as:

TV E =

∑k
i=1 λi∑m
i=1 λi

, (2)

where λi is the eigenvalues that calculate how much variance
(the average of the squared differences from the mean) can be
explained by its associated eigenvector pi.

4) Compression Evaluation: To assess the potential impact
on the compression performance of each method, we formulate
the correlation between the number of selected features and
their compression performance. We use Peak Signal-to-Noise
Ratio (PSNR), a commonly used metric on lossy data com-
pression, to assess the compression quality. PSNR is expressed
in terms of the logarithmic decibel scale and is equal to
20×log10(data range)−10×log10 (Mean Squared Error). Fig-
ure 3 shows the relationship between the number of selected
features versus its preserving information and versus PSNRs
by applying DCT and PCA separately on the FLDSC dataset.
As shown in the figure, only 1% of features can contain more
than 90% of the information, measured in cumulative ECR
and TV E in both methods. Moreover, around 35% and 20%
of features of DCT and PCA, respectively, could achieve a
PSNR of 75 dB. This result demonstrates the effectiveness
of both methods for attaining high information compaction
(and ultimately high compression ratios) and indicates that a
mechanism to find the optimal tradeoff between compression
ratios and compression quality is needed. The question then
arises if the combination of DCT and PCA could construct
a better feature extraction approach with both advantages as
in IR systems where a combination of retrieval methods is
usually employed for desired information.

B. Retrieval Framework

1) Combination of Methods: To evaluate the feasibility of
combined transforms, we separately apply DCT, PCA, DCT
on PCA components (DCT on PCA), and PCA on DCT
coefficients (PCA on DCT) on the FLDSC dataset. For a fair
comparison, we use the fixed compression ratio (the original
size divided by the compressed size) of 5X. In other words,
we keep 20% of major features and discard the remaining, and
compare the errors between the original and the reconstructed
one. While combining other retrieval methods afterward (e.g.,
quantization or bit reordering) than these transforms alone
generate higher compression ratios than 5X, this comparison
result serves to emphasize the impact of various combinations
of transforms on extracting features on scientific datasets.
Figure 4 visualizes the absolute error introduced by different
combinations of transforms. Specifically, Figure 4a–4b show
the error introduced by single-stage feature extraction, while
Figure 4c–4d display the one from two-stage. Surprisingly,
given the same approximation compression ratio (5X), DCT
on PCA components generates the most errors, while PCA on
DCT proves the least. This result illustrates the combination of
retrieval methods (i.e., PCA on DCT) somehow enhances the

(a) (b)

Fig. 3: Comparison of two retrieval methods: DCT and PCA.
The primary y-axis shows the CDF of information preserva-
tion, and the secondary y-axis shows the PSNR.

(a) DCT (b) PCA

(c) DCT on PCA components (d) PCA on DCT coefficients

Fig. 4: Visualization of errors with different transforms on 2D
FLDSC dataset with the compression ratio of 5X.

compression quality, but how we can elevate the performance
further with such a combination needs an investigation.

2) PCA in DCT domain: We start by discussing why
PCA on DCT is more effective than others. First, both DCT
and PCA are orthogonal linear transformations where the
transformed data is symmetric [37]. Compared to DCT, PCA
is more effective as it is the optimal linear transformation
(operates over the correlation matrix) for normally distributed
data [38] (normality assumption). As proved in the study [39]
that the coefficients of block DCT are normal distribution,
applying PCA on energy concentrated DCT coefficients is
more effective than data in its original domain. This property is
also proved in [38], [40] that adopting DCT before PCA yields
the same results as those obtained from the spatial domain.
Second, compared to DCT on PCA, PCA on DCT is more vi-
able as proved in face recognition and image compression [41],
[42]. This feasibility is because the transformation matrix of
DCT is universal such that it can be used to the following
stage, while the fixed set of eigenvectors obtained from the
original data in PCA could not approximate data well in the
other domain [43]. Lastly, PCA can be mathematically proved
to be directly implemented in the DCT domain, as follows.

Suppose the original data X = [x1, x2, ..., xn]T can be de-



noted as an n-dimensional random vector, the PCA projection
matrix D = [d1, d2, ..., dm] can be acquired by eigenanalysis
of the covariance matrix of X , VX , which is denoted as:

VXdi = λidi, i = 1, 2, ...,m, (m < n), (3)

where VX = E[(X − X̄)(X − X̄)T ] and X̄ = E[X].
Suppose further that the original data is transformed by a

DCT orthogonal matrix A, then the covariance matrix VZ of
the transformed random vector Z can be obtained by:

VZ = E[(Z − Z̄)(Z − Z̄)T ]

= E[(ATX −AT X̄)(ATX −AT X̄)T ]

= ATE[(X − X̄)(X − X̄)T ]A

= ATVXA.

(4)

Therefore, the PCA projection matrix D̃ = [d̃1, d̃2, ..., d̃m]
for the DCT orthogonal transformed data can be acquired by
eigenanalysis of the covariance matrix VZ :

VZ d̃i = λid̃i, i = 1, 2, ...,m. (5)

By substituting Equation 4 into Equation 5 and using AT =
A−1, we can obtain the relationship of the eigenvector of the
covariance matrices VX and VZ ,

di = Ad̃i. (6)

Based on Equation 6, we conclude that the PCA projection
matrices D and D̃ (PCA in DCT domain) satisfy D̃ = ATD,
which proves that we can directly implement PCA in the
DCT domain. We can also prove a similar projection result
by using 2D DCT conversion, where the DCT on 2D matrix
M ×N can be computed using separable 1D row and column
transformations, i.e., Z = ATMXAN , X = AMZA

T
N .

It is noteworthy that, while we use DCT as an input to PCA,
PCA in other transform domains (e.g., wavelet transforms)
should also work if the coefficients show normality, high
information preservation, and can be mathematically proved
for direct implementation.

3) Multi-stage Framework: As we proved that PCA could
be directly implemented on DCT coefficients, a direct benefit
is that we can skip the inverse DCT transform and therefore
decrease the computational cost (DCT-II in this work is
lossless and reversible). The second advantage is that the
feature selection step only occurs in one stage (PCA in DCT
domain) rather than two, thereby potentially reducing the com-
putation complexity of the multi-staged method. Moreover, the
compression accuracy could be improved as shown in Figure 4.
Since the combination projection result is still orthogonal,
adding additional stages could elevate the performance further.
However, there needs to be a mechanism that can select the
optimal compression parameters.

IV. PROPOSED LOSSY COMPRESSOR

In this section, we present the design of our lossy compres-
sor DPZ as illustrated in Figure 5. The framework consists
of three stages of retrievals: data decomposition and transfor-
mation, k-PCA selection, and quantization and encoding. The
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Fig. 5: An overview of our proposed compression framework.

decompression is in reverse order. Moreover, DPZ incorporates
a lossless compression add-on and a sampling strategy for
compression improvements.

A. Data Decomposition and Transformation

We first decompose the multidimensional data into a block-
based 2D matrix (i.e., M 1D blocks with N datapoints). We
achieve this by converting the data into 1D and rearrange them
into 2D while maintaining the original data order, where the
value of N × M is equal to the size of the flattened data.
Then, we apply DCT transform to each block. This block-
based method reduces the 2D DCT transformation time (using
parallelism on blocks) and makes our compressor applicable
to arbitrary dimensional data. We note that in PCA feature
selection, the dimensionality (i.e., the number of blocks)
should be smaller than the number of samples (i.e., the number
of datapoints). Therefore, we set M smaller than N . We also
note that the number of blocks would affect compressibility
as well as parallelism. And our empirical analysis shows
that under the condition that M < N , the larger the M is,
the higher the compression ratios. Therefore, N

M is set to
the smallest common divisor (greater than 1). For example,
for a 3D data size of 128 × 128 × 128 (n × m × z), M
is calculated as 2(log2

√
n×m×z)//2 = 1024 and N is equal

to n × m × z/1024 = 2048, where the smallest common
divisor is 2 (which is equal to N/M ). Another advantage
of our decomposition is that the sequence order of each
block preserves the locality of data, which could improve the
compression ratios further during feature extraction, especially
on the smooth dataset. The reason is that PCA is based on
Pearson correlation coefficients, so the higher the linearity
between features, the larger the dimension is reduced.

B. k-PCA Selection

Next, we implement PCA on the transformed DCT block
data. We note that a normalization or standardization step is
often needed before transforming data into its eigenspace as
the range of each feature’s values varies largely. However, such
scaling would redistribute the weight of the variance in our
case, as the features (i.e., the decomposed block-data in the
DCT domain) have the same unit norm. Therefore, we only
apply it to low linearity data (determined based on sampling,
which will be explained in Section IV-D).

As demonstrated in Section III, variance explained mea-
sures how much information is retrieved over the selected
components. In this stage, we introduce our k-PCA selection



approach to preserve information to the maximum extent.
We propose two methods: knee-point detection and explained
variance variation, as illustrated in Algorithm 1.

1) Method 1: Knee-point Detection: We define knee-point
as the optimal information retrieval point that can best balance
the tradeoffs between compression ratio and compression
accuracy. Specifically, it is the point of maximum curvature of
our fitted cumulative total variance explained (TV E) curve.
Depending on the precision requirement, the curve can be
fitted either through a one-dimensional (1D) interpolation or
polynomial (polyn) interpolation, the latter of which generates
a smoother curve [32]. Mathematically, the knee-point is a
local maximum that can be calculated as a function of the first
and second derivatives of the spline curve and states situations
where the degree of increase in the cumulative proportion of
variance explained starts to decline [44]. By detecting the
knee-point, we can obtain the number of k components to
preserve. This method provides us an aggressive option for
achieving the highest compression ratio (i.e., obtaining the
least features) while retrieving the most worthy information.
That is, beyond k, there would be a diminishing return in terms
of compression ratio and accuracy. We note that this method
does not require extra parameter tuning, meaning it finds an
optimal solution automatically.

2) Method 2: Explained Variance Variation: Our second
method to meet different accuracy required by different appli-
cations is to use the total variance explained (TV E) as a fine-
tuning parameter. A 95% of TV E is the most commonly used
threshold to select k (the first couple of largest components)
in the general case. In our design, we start with the threshold
of 99% (“two-nine”) and alter it from 99.9% (“three-nine”) to
“eight-nine” to adjust the compression quality. Based on our
empirical analysis, “eight-nine” is strict enough for generating
high compression quality. But we need to tighten the threshold
at this stage, as the selected k features can be compressed
further in the following stage (i.e., quantization). This method
provides a dynamic option of tuning compression accuracy,
which supplements our knee-point detection mechanism.

We note that these two methods perform slightly differently
in terms of compression ratio and accuracy, which allow
domain scientists to choose the one best suited for their appli-
cation. We also note that both methods can be applied to the
compression performance curve (i.e., PSNR curve in Figure 3)
to generate compression results with high accuracy, but it
requires a time-consuming reconstruction step. To improve the
speed of this stage, we propose k selection in sampling (to be
illustrated later in Section IV-D).

C. Quantization and Encoding

As proved in Section III-B, PCA on DCT follows a normal
distribution where the values of our k-PCA are symmetric
around zero. This property plays a critical role as it makes
quantization effective for selected k-PCA, ultimately improv-
ing the compression ratio further. Specifically, we design
a uniform quantizer where the with-in-range datapoints of
the k component will be saved as its corresponding code

Algorithm 1 k-PCA Selection.
Input: Dataset X with M number of features.

Method 1: knee-point detection; Method 2: explained variance variation.
tve: user-defined total variance explained.
sf : spline fitting method (1D or polynomial interpolation).

Output: k: selected components.
1: Apply PCA on dataset X and generate the cumulative TV E curve f .
2: if choose Method 1 then
3: fit f with selected fitting method sf to preserve the shape (denoted as sf ).
4: normalize sf to the unit square.

5: determine the value k from Ksf
(x) =

s′′f (x)

(1+s′
f
(x)2)1.5

.

6: return k (first detected local maxima).
7: else if choose Method 2 then
8: for k = 1, 2, . . . ,M do
9: if TV E ≥ tve then return k

10: end if
11: end for
12: end if

value (determined by its represented bin index and its center
value), while the out-of-range ones will be saved as is. The
bin index is mapped to an integer encoded as either 1-byte
unsigned char or 2-byte unsigned short integer depends on
the needs. We define the bounding range symmetric about
zero with each half equals to P × B and set the width of
each bin equals to 2P , where B is the number of bins and
P is the defined error bound (i.e., 1E-3, 1E-4, etc.). The
difference between the approximated value and the original
one is bounded within P . We note that this error bound is
designed only for approximation on k-PCA. Taking advantage
of such a symmetric and equal-width quantization, we apply
zlib [45] (a lossless compressor) to compress the indexing and
out-of-range datapoints further. The combination with zlib is
efficient in terms of speed and indexing and does not involve
any computationally intensive tasks.

It is worth mentioning that, unlike studies that apply pre-
conditioners on existing lossy compressors, our algorithm is
information-oriented, where the reconstruction at any level
shows consistency of the original data itself. In other words,
we not only avoid computing “delta” (the differences be-
tween reconstruction on the reduced model and original data)
and applying inverse transformation in compression, but also
consistently extract dominant features without creating extra
redundancy, thus potentially improves the compression ratio.

D. Sampling Strategy

We note that PCA can be computationally expensive (with
time complexity of O(min(M3, N3)) of searching the direc-
tions of maximum variance), especially when the number of
features (M ) and the number of datapoints (N ) are large.
However, if we have a way of selecting k based on a
“priori” (i.e., sample set), then the complexity of PCA can
be significantly reduced. To accomplish this goal, we develop
a sampling strategy, as shown in Algorithm 2. Our sampling
strategy reduces the variance searching time, provides proper
compression parameters (i.e., k selection), and estimates the
preliminary data compressibility.

1) Sampling Algorithm and Parameter Selection: Our sam-
pling algorithm is composed of the following steps. We first
divide the block-data Y into S (10 by default) subsets. Next,



Algorithm 2 Our proposed sampling Strategy.
Input: Dataset Y with M number of features.

SR: sampling rate.
S: the number of subsets.
T : the number of random pick subsets.
tve: user-defined total variance explained.

Output: ks: estimated k, CRp: estimated preliminary compression ratio, V IF :
variance inflation factor.

1: Generate sampling data Sy based on SR for compressibility estimation.
2: Calculate V IF of Sy . If V IF < 5, apply standardization in Algorithm 1.
3: Divide dataset Y into S subsets, randomly pick T subsets as sample data.
4: Compute the variances of sample data (SR1,SR2,...,SRT ) and choose their corre-

sponding k (kSR1
, kSR2

,..., kSRT
) based on tve.

5: Estimate ke as (kSR1
+kSR2

+...+kSRT
)//T.

6: Estimate preliminary CR as CRp=CRstage1&2 × CR′
stage3 × CR

′
zlib, where

CRstage1&2=ke/M .

we randomly pick T (3 by default) subsets as sample data
(SR1,SR2,...,SRT ), compute their variances, and select their
corresponding k based on defined tve. We then obtain the
estimate ke by averaging the value of kSR1

, kSR2
,...,kSRT

. Our
empirical observation suggests that the computation over the
first Sf , the middle Sm, and the last subsets Sl as sample data
usually gives a more proper estimation on high linearity block-
data due to its locality and our decomposition mechanism.
Therefore, if S is set to 10, ke equals to the average value of
kS1 , kS5 and kS10 . This algorithm provides a way of selecting
leading principal components (ke) based only on the sample
data, such that it reduces the compression time (Stage 2) for
the remaining. Specifically, when k � min(M,N), the time
complexity of k-PCA can be reduced to O(k3). Though the
estimated ke is not strict on tve for the remaining subsets,
it would not affect much of their compression performance in
terms of rate-distortion (to be described in Section V). Overall,
selecting k based on sampling provides a constant compression
ratio performance, while selecting k based on tve offers us a
stable compression quality.

2) Compressibility and Compression Ratio Estimation:
The compression ratio achievable by our k-PCA algorithm
is highly related to the linearity between features. So we
introduce the variance inflation factor (V IF ), which allows
detecting the collinearity between features, as a compressibil-
ity indicator in our compressor. Specifically, we randomly gen-
erate sampling data with a sampling rate of SR on block-data
and calculate its V IF value. V IF is calculated as 1/(1−R2),
where R2 is a statistical measure of how well a single feature
can be described by others. Unlike the Shannon entropy, which
estimates the inherent data information level, V IF quantifies
how much the variance is increased due to collinearity which
is more suitable for compressibility prediction on DPZ. And
as higher V IF s produce high compression ratios in Stage
2 (k-PCA), smaller ks are then needed for obtaining high
TV Es. Furthermore, based on our empirical results, DPZ can
estimate the overall compression ratio by multiplying the ap-
proximated reduction factors of each stage: CRp= CRstage1&2

× CR′stage3 × CR′zlib, where CRstage1&2 equals to ke/M ,
the approximate CR′stage3 ranges between 1.9X to 2.5X and
the approximate CR′zlib is around 1.25X in general based on
tested datasets (to be evaluated in Section V-C6).

V. EVALUATION

A. Experiment Setup and Evaluated Schemes

We conduct our experiments on a dual-core Intel i5 CPU
with 8GB RAM running at 2GHz. We evaluate our proposed
compressor DPZ against two state-of-the-art lossy compres-
sors, SZ v2.0 and ZFP v0.5.5. We assess our DPZ using the
following two schemes:
• DPZ-l: DPZ (loose) with P of 1E-3 and 1-byte indexing.
• DPZ-s: DPZ (strict) with P of 1E-4 and 2-byte indexing.
Based on different performance demands, both schemes can

be used in conjunction with either knee-point detection (a
high compression ratio oriented compression by finding the
optimal point) or explained variance variation (an error-aware
compression by satisfying required variance).

B. Datasets and Metrics

We evaluate the compression performance of nine scientific
datasets generated from three real HPC applications [49]
summarized in Table I. The comparison is based on rate-
distortion, compression accuracy (i.e., PSNR) versus bit-rate
(inversely proportional to compression ratio (CR)), a critical
metric used in evaluating the overall compression quality. Bit-
rate refers to the average number of bits used to represent a
data point after the compression. It is equal to the number
of full bits (i.e., 32-bit for single precision) to express each
original data point divided by the overall compression ratio.

C. Evaluation Results

1) Rate-distortion Comparison: Figure 6 presents the rate-
distortion of different compressors on nine datasets (CLDLOW
shows a similar result to CLDHGH, thus not presented here).
Specifically, we vary the TV E from “three-nine” to “eight-
nine” (explained variance variation) on DPZ and evaluate SZ
and ZFP based on their configurations to achieve similar PSNR
for a fair comparison. By the definition of rate-distortion, the
curve on the upper left part with a higher positive slope has
better compression performance than the ones on the lower
right with a lower positive slope. Therefore, we observe that
DPZ-l outperforms DPZ-s on most evaluated datasets but
exhibits a limitation of achieving high PSNR when TV E is
approaching “eight-nine”. On the other hand, DPZ-s shows
a steady and competitive performance, particularly on the
JHTDB (3D) and CESM (2D) datasets compared with SZ
and ZFP. This result is compelling as HACC (1D) proves
to be less compressible (V IF lower than cutoff value) using
DPZ discussed later in Section V-C6. Overall, DPZ achieves
superior compression ratios (preferable on high dimensional
datasets) compared with SZ and ZFP at medium to high
compression accuracy (PSNR in between 30 dB and 90 dB).

2) Compression based on Knee-point Detection: To find
the best tradeoff points of DPZ, we show the compression
performance of both schemes based on knee-point detection
in Table II. We present only six datasets here due to space
limitation, and the performance of the remaining datasets is
consistent with the evaluation results shown in Figure 6. As



TABLE I: Scientific datasets and their descriptions.

Source Dataset Name Type Dimension Size Format
JHTDB [46] “Isotropic1024-coarse”,“Channel” Turbulence simulation 128× 128× 128 5.04GB 32-bit float

CESM-ATM-Taylor [47] “CLDHGH”,“CLDLOW”,“PHIS”,“FREQSH”,“FLDSC” Climate simulation 1800× 3600 1.47GB 32-bit float
HACC [48] “x”,“vx” Cosmology particle simulation 2097152 496MB 32-bit float
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Fig. 6: Comparison of rate-distortion using different lossy compression methods on selected datasets.
TABLE II: Compression performance based on knee-point detection with different interpolations on selected datasets.

metric Isotropic Channel CLDHGH PHIS HACC-x HACC-vx
1D polyn 1D polyn 1D polyn 1D polyn 1D polyn 1D polyn

DPZ-l
CR 55.75 22.73 110.38 26.13 186.89 38.87 155.62 54.27 42.64 28.08 14.88 9.00

PSNR 12.34 12.79 8.08 8.66 37.20 48.09 42.04 76.09 47.33 49.38 37.75 39.15
mean θ 1.94E-1 1.84E-1 2.76E-3 2.60E-3 9.83E-3 2.69E-3 4.48E-3 9.06E-5 3.15E-3 2.48E-3 8.83E-3 7.78E-3

DPZ-s
CR 65.75 23.89 127.44 25.51 160.71 29.62 113.87 34.52 47.34 49.29 25.11 15.00

PSNR 12.34 12.85 8.08 8.66 37.20 48.09 42.04 76.70 47.34 49.29 37.74 39.15
mean θ 1.94E-1 1.83E-1 2.51E-3 2.60E-3 9.83E-3 2.69E-3 4.48E-3 8.38E-5 3.15E-3 2.50E-3 8.83E-3 7.77E-3

TABLE III: Breakdown of compression ratio on selected datasets.

Stage TV E
Isotropic Channel CLDHGH PHIS HACC-x HACC-vx

DPZ-l DPZ-s DPZ-l DPZ-s DPZ-l DPZ-s DPZ-l DPZ-s DPZ-l DPZ-s DPZ-l DPZ-s

Stage 1&2
99.9% 8.192 13.128 34.615 30.508 16.126 1.196

99.999% 2.107 2.473 3.704 13.953 1.218 1.005
99.99999% 1.260 1.316 1.727 4.687 1.006 1.001

Stage 3
99.9% 2.335 1.989 2.494 1.991 2.872 1.985 2.836 1.963 3.667 1.997 2.000 1.991

99.999% 3.251 1.997 3.387 1.998 3.697 1.998 3.128 1.983 3.972 2.000 2.000 1.992
99.99999% 3.515 1.998 3.649 1.999 3.853 1.999 3.625 1.994 3.977 2.000 2.000 1.992

zlib
99.9% 1.078 1.168 1.407 1.258 1.979 2.588 1.543 1.458 1.132 1.269 1.326 1.113

99.999% 1.255 1.313 1.590 1.452 2.174 3.329 1.667 1.571 1.559 1.526 1.343 1.125
99.99999% 1.453 1.440 1.994 1.664 3.057 4.835 2.337 1.993 1.650 1.569 1.344 1.126

TABLE IV: Accuracy loss between stages in terms of ∆ PSNR (dB) on selected datasets.

TV E
Isotropic Channel CLDHGH PHIS HACC-x HACC-vx

DPZ-l DPZ-s DPZ-l DPZ-s DPZ-l DPZ-s DPZ-l DPZ-s DPZ-l DPZ-s DPZ-l DPZ-s
99.9% 0.001 0.001 0.688 0.673 0.062 0.059 0.001 0.001 0.003 0.001 0.005 0.001

99.999% 0.321 0.002 1.009 0.016 1.756 0.026 0.037 0.001 3.201 0.047 0.518 0.006
99.99999% 11.462 0.546 16.758 1.386 20.309 3.287 5.461 0.110 20.892 3.460 2.522 0.330

expected, DPZ with knee-point detection produces aggressive
CRs. In particular, DPZ could achieve CRs above 100X on
Channel, CLDHGH, and PHIS while obtaining a reasonable
PSNR and average relative error θ (data-range based error).
We observe that the compression accuracy of both schemes is
similar, but for JHTDB (Isotropic and Channel) and HACC,
DPZ-s shows higher CRs than DPZ-l, while for CESM, DPZ-l

shows higher CRs than DPZ-s. This result illustrates that there
could be potential for improving the compression ratio further
with proper parameter settings in quantization and encoding.
We also notice that the polynomial interpolation (polyn) curve
fitting improves the compression accuracy but reduces the CR
to a certain degree (between 1.5X and 5X lower).



3) Performance Breakdown: The compression ratio of DPZ
is calculated by multiplying each stage’s reduction factor. To
investigate each stage’s contribution to the compression perfor-
mance, we break down the change of CR and PSNR as shown
in Table III and Table IV, respectively. We can make several
observations from these results. First, at Stage 1&2 (data
decomposition with DCT & k-PCA), CLDHGH and PHIS
are more compressible than other datasets, while HACC-vx is
the hardest to compress. Second, the CR changes significantly
with varying TV E. We notice that at Stage 3 (quantization
and encoding) and the zlib stage, the CR improves when TV E
increases as more components are selected and thus quantized
and encoded accordingly. The CR of DPZ-l at Stage 3 is higher
than 2X, but no more than 4X on most datasets (except HACC-
vx), and the CR of DPZ-s is close to 2X. The CR by zlib on
both schemes ranges from 1X to 5X. On an average, the CR
by zlib is 1.42X, 2.38X, and 1.2X on JHTDB, CESM, and
HACC, respectively. Overall, when TV E varies from “three-
nine” to “seven-nine”, the compression ratio reduces at Stage
1&2 but increases at Stage 3 and the zlib (lossless) stage.

Table IV, on the other hand, presents the accuracy loss in
terms of ∆ PSNR (dB) between Stage 1&2 and Stage 3. We
notice that the accuracy drops when TV E increases, especially
on DPZ-l (as it has higher CR than DPZ-s as shown in
Table III). These observations indicate that DPZ could achieve
high CR from Stage 3 and zlib without much information loss
in Stage 1&2 when TV E gets tight. DPZ could also achieve
high CR from Stage 1&2 without much information loss in
Stage 3 when TV E gets loose. Overall, DPZ achieves the
best trade-off between high accuracy by selecting DPZ-s and
high CR (or more aggressively in conjunction with knee-point
detection) by selecting DPZ-l.

4) Visualization: Figure 7 displays the visualization results
of the original data and the decompressed data from different
compressors on dataset CLDHGH. Figure 7b-7d visualize the
decompressed data when CR is around 10.5X. According to
the figures, all visualization results look similar to the original
data shown in Figure 7a. However, significant differences
indeed exist in much smaller regions (hard to visualize as
a whole because human eyes are less sensitive to minor
changes) in terms of compression accuracy. We note that the
visualization presents here is for an overall picture of the
compression result, and the numeric compression result (i.e.,
rate-distortion) is still our primary concern. Specifically, in this
case, when CR is around 10.5X, DPZ (i.e., DPZ-s) achieves a
PSNR of 66.9 dB, SZ achieves 64.1 dB, and ZFP achieves 26.8
dB. Figures 7d-7f visualize the decompressed data when PSNR
is around 26 dB. As we can see in the figure, ZFP displays the
most accurate visualization result, while SZ and DPZ show the
fidelity loss at certain degrees. However, SZ achieves a CR of
154.5X, and DPZ achieves a CR of 489.1X, 14.4X and 45.7X
higher than ZFP in the presented case, respectively. Overall,
the visualization effect shows that DPZ preserves the data
information (e.g., edges, trends) well and shows the smooth
details of the original data.

(a) Original (b) DPZ, 10.5:1, 66.9 dB

(c) SZ, 10.7:1, 64.1 dB (d) ZFP, 10.7:1, 26.8 dB

(e) SZ, 154.5:1, 26.5 dB (f) DPZ, 489.1:1, 27.8 dB

Fig. 7: Visualization of the CLDHGH dataset.(a) original, (b)-
(f) decompressed from different compressors.

5) Compression Throughput: While the goal of DPZ is to
extract the minimal data that contains the highest information,
it incurs some computation overhead. To understand overhead
incurred by DPZ in detail, we plot the compression and
decompression time versus compression ratio of three com-
pressors shown in Figure 8 (Isotropic datasets as an example).
DPZ (a similar trend in both schemes) is slower than SZ
and ZFP in compression throughput but narrows the gap in
decompression throughput, particularly when CR (shown in
x-axis) increases. Our experiment results show that DPZ in
conjunction with our sampling strategy improves the overall
compression speed by 1.23X, on average, compared with the
non-sampling DPZ, on the evaluated datasets. To give more
insight into the computational overhead incurred by DPZ, we
break down the compression time. As shown in Figure 9, Stage
2 and Stage 3 contribute most of the time cost as PCA and
quantization are highly dependent on the dimension of the
coefficients. We note that parallelization can be applied to
DPZ to reduce the computational cost, as our compression
mechanism is block-based. Specifically, our quantization and
encoding mechanism (Stage 3) can be easily parallelizable
without any communication among the distributed blocks.

6) Evaluation of Sampling Strategy: Figure 10 shows the
V IF distribution of HACC-vx, Isotropic, and PHIS. We set
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Fig. 8: Comparison of compression time.
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Fig. 10: VIF of sampling datasets.

SR as 2.5% and 1% to estimate the data compressibility.
As shown in the figures, the average V IF s (middle line of
the boxplot) of HACC-vx are smaller than those of Isotropic
and PHIS, which is consistent with the results presented in
Figure 6. HACC-vx shows a relatively low V IF (lower than
the commonly used cutoff value of 5) when only 1% of data
is selected. Since both figures show a clear distinction in
the V IF distribution, we consider that 1% is fair enough to
estimate the potential compressibility of data in DPZ.

We then test our parameter selection algorithm by setting S
(the number of subsets) to 5 and 10 (with corresponding TV E
of “five-nine” to “seven-nine”) and estimate CRp based on ke.
For example, to obtain a TV E of “five-nine”, Stage 2 needs a
ke of 12 (S of 10) from a total M of 1800, thus gives a CRp
ranges from 35.63X to 46.88X. By using ke, DPZ achieves the
final compression ratio of 45.4X, which falls within the range
of CRp. Our evaluation result shows that there is a 76.6% of
chance that the overall compression ratio falls into the CRp
range when S is set to 10, whereas a 63.3% of chance when S
is set to 5. In other words, higher S produces a higher predic-
tion accuracy on compressibility. This result demonstrates the
effectiveness of our sampling strategy on parameter selection
with preliminary compressibility estimation.

VI. RELATED WORK

Lossy compression for scientific data has recently received
much attention due to its promising compression results and
tolerance of minor numerical errors in scientific applications.
SZ and ZFP are the most well-known compressors. SZ [4]–
[6] estimates the compression value using a linear scale
to quantize the difference into user-set error bound. It has
implementations on CPU and GPU, which is now a modular
parametrizable compression framework. ZFP [7], [8] fixes
the compression rate based on an embedded coding scheme
and is designed for datasets with a dimension of up to 4D.
DCTZ [10]–[12] has an adaptive quantization with two specific
tasks and can achieve high compression ratios on double-
precision data. It is the predecessor of DPZ. MGARD [13]–
[16] provides different norms to control data distortion and
offers a high degree of compression flexibility. TTHRESH [9]
is a tensor decomposition-based compressor that is designed
for high dimensional visual data, which could achieve a high
compression rate with smooth visual degradation. Unlike these
studies, DPZ is information-oriented in different stages and
provides optimal parameters accordingly. The implementation
of multi-stage feature extractions in DPZ exhibits its supe-
riority in terms of information retrieval. In particular, the
mechanism of PCA in the DCT domain and the k selection
approach play an important role in achieving high compression
ratios, thanks to the linearity property of block-data.

VII. CONCLUSION

In this work, we propose a lossy compression technique,
called DPZ, based on information retrieval. Specifically, we
identify metrics for evaluating feature retrieval and information
preservation, develop a multi-stage feature extractions (DCT,
PCA, and quantization) framework, and implement an algo-
rithm that selects optimal compression parameters. Moreover,
we propose a sampling strategy that estimates compressibility
and improves the compression speed. Our experimental results
show that DPZ achieves competitive performance compared
with SZ and ZFP on real-world datasets. We believe that our
method is thus a good choice for compression on applications
with reasonable error tolerance and high compression ratio
achievement. In our future work, we plan to expand the
DPZ algorithm to exploit parallelism for better scalability.
We also plan to explore the PCA-type reduction model for
speed improvement and analyze the effect of DCT coefficients
truncation before applying PCA. Lastly, we plan to evaluate
DPZ on more diverse datasets (e.g., non-linearly correlated
ones).
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