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We consider the problem of conditional independence testing of X and
Y given Z where X,Y and Z are three real random variables and Z is con-
tinuous. We focus on two main cases—when X and Y are both discrete, and
when X and Y are both continuous. In view of recent results on conditional
independence testing [Ann. Statist. 48 (2020) 1514–1538], one cannot hope to
design nontrivial tests, which control the type I error for all absolutely con-
tinuous conditionally independent distributions, while still ensuring power
against interesting alternatives. Consequently, we identify various, natural
smoothness assumptions on the conditional distributions of X,Y |Z = z as
z varies in the support of Z, and study the hardness of conditional indepen-
dence testing under these smoothness assumptions. We derive matching lower
and upper bounds on the critical radius of separation between the null and al-
ternative hypotheses in the total variation metric. The tests we consider are
easily implementable and rely on binning the support of the continuous vari-
able Z. To complement these results, we provide a new proof of the hardness
result of Shah and Peters [Ann. Statist. 48 (2020) 1514–1538].

1. Introduction. Conditional independence (CI) testing is a fundamental problem, with
widespread applications throughout statistics. From being a foundation of basic concepts such
as sufficiency and ancillarity [13], to its applications in estimation and inference for graph-
ical models [23, 24] and in causal inference and causal discovery [27, 33, 41], the concept
of conditional independence and conditional independence testing play a central role in the
fields of statistics, machine learning and related areas. A large body of work has focussed on
CI testing under the assumption of joint Gaussianity. In this setting, CI testing corresponds
to testing whether certain partial correlations between the variables are zero. Since partial
correlations are (relatively) easy to estimate, the Gaussian assumption gives a shortcut to CI
testing, but if the model is non-Gaussian this can lead to misleading conclusions as variables
could be conditionally dependent even with zero partial correlation. In practice, the Gaussian
assumption is unlikely to hold exactly and many applications call for the additional flexibility
provided by nonparametric CI testing.

In this paper, we consider CI testing from a nonparametric perspective. Following Dawid
[13], given three random vectors (X,Y,Z) ∈ R

dX+dY +dZ we will denote the CI of X and Y

given Z by X ⊥⊥ Y |Z. In the case when dX = dY = dZ = 1 and Z is a continuous random
variable supported on [0,1], we construct nonparametric tests which are capable of testing the
null hypothesis X ⊥⊥ Y |Z versus the alternative X �⊥⊥ Y |Z. The variables X and Y are allowed
to be either both discrete or both continuous supported on [0,1]. It was recently argued in
a precise mathematical sense [31] that CI testing is a statistically hard task for absolutely
continuous (with respect to the Lebesgue measure) random variables—namely if one wants
to have a test that controls the type I error for all absolutely continuous triplets (X,Y,Z) such
that X ⊥⊥ Y |Z, such a test cannot have power against any alternative. This discouraging result
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demystified the fact that despite a large body of literature on the subject, no fully satisfactory
CI tests had been developed for continuous random variables.

Concurrently with the paper of Shah and Peters [31], the work of Canonne et al. [12]
constructed tests for CI of discrete distributions (X,Y,Z) which are minimax optimal in
certain regimes. Part of the effort of this paper is devoted to extending the ideas of Canonne
et al. [12] to the case when Z is an absolutely continuous random variable on [0,1].

In order to characterize the difficulty of CI testing in this setting, we adopt the minimax
perspective [21, 22]. Naturally, if an alternative distribution is very close to a null distribution
(in a certain metric such as the total variation metric) it will be very difficult to test for CI
given a finite number of n samples. By discarding distributions under the alternative that are
“εn-close” to the null hypothesis, we are able to set up a well-defined testing problem. The
goal in minimax hypothesis testing is then to characterize the optimal “critical radius” εn, that
is, the smallest εn at which it is possible to reliably distinguish the null from the εn-separated
alternative, as a function of the sample size n. This standard step of discarding “near-null
distributions” is insufficient as one cannot hope to design a nontrivial test which controls
the type I error for all conditionally independent absolutely continuous triplets [31]. In order
to make the problem of CI testing well-posed, we further impose certain natural smoothness
assumptions on the conditional distributions of X,Y |Z = z as z varies in the support of Z, and
establish upper and lower bounds on the critical radius of conditional independence testing
under these smoothness assumptions.

1.1. Related work. As we mentioned earlier, there is a large body of work on indepen-
dence and CI testing. We focus our review on the literature most relevant to our approach. It
is worth noting that almost all relevant works considered here, with the notable exception of
Canonne et al. [12] who consider minimax CI testing for discrete distributions, do not take
a minimax perspective to the problem. We are not aware of tests that achieve the minimax
rates for testing CI with a continuous random variable Z other than the ones that we develop
in this paper. In addition, we would like to note that the ideas introduced by Cannone et al.
[12] are instrumental in the development of the minimax rates in the present work. In partic-
ular, [12] offer a variety of results in the discrete X,Y,Z conditional independence testing,
including lower and upper bounds on the sample complexity. We borrow key constructs from
this work, particularly an unbiased estimator of the L2

2 distance, and tools to analyze its vari-
ance and expectation under Poisson sampling in order to come up with upper bounds for our
estimators.

Given knowledge of the conditional distribution of X|Z, Berrett et al. [9] develop a
permutation-based test for testing the null hypothesis of CI. We note that from a minimax
perspective knowing X|Z changes the problem of CI testing significantly and we do not ad-
dress this CI testing variant here. The works [7, 8] propose a partial copula approach, which
needs estimators of the conditional distributions of X|Z and Y |Z. Since estimation is typi-
cally more costly than testing, we anticipate that such a procedure does not attain minimax
optimal rates for the critical radius. In a setting different from the present paper, Song [32]
proposes a CI test for two variables given a single index of a random vector via “Rosen-
blatt transforms,” which are multivariate extensions of the probability integral transform. The
techniques in this work also involve estimation of certain conditional distributions via kernel
smoothing. Huang [20] proposes a nonparametric CI test using the so called maximal nonlin-
ear conditional correlation. The author proves that under the null hypothesis given that certain
conditions hold, the test achieves asymptotic normality. This work once again requires kernel
smoothed estimates of certain conditional expectations and is therefore unlikely to result in
minimax optimal tests of CI. In an interesting paper, Györfy and Walk [18] extend the in-
dependence testing results of Gretton and Györfi [17] to the CI case, and propose strongly
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consistent nonparametric tests. We believe however that there is a gap in one of the proofs
of this work, which would otherwise seem to contradict the CI hardness results of Shah and
Peters [31]. In particular, in the proof of Theorem 1 of Györfi and Walk [18], it is claimed
that the following expression is 0:

∣∣∣∣P(X ∈ A,Y ∈ B,Z ∈ C) −
P(X ∈ A,Z ∈ C)P(Y ∈ A,Z ∈ C)

P(Z ∈ C)

∣∣∣∣,

under the null hypothesis of independence, where A,B,C are elements of a partition of
the domains of X,Y,Z, respectively. Note that this need not hold in general for conditionally
independent distributions since averaging over Z does not necessarily preserve independence.
In fact, this is one of the major complications that we have to deal with in our proofs.

Patra, Sen and Székely [26] design a novel nonparametric residual between a random vari-
able and a random vector and use it to develop tests of CI with the help of the bootstrap.
An innovative approach to nonparametric CI testing using a nearest neighbor bootstrap and
converting the testing problem to a classification problem was recently proposed by Sen et
al. [29]. Fukumizu et al. [16] give a measure of CI of random variables, based on normalized
cross-covariance operators on reproducing kernel Hilbert spaces. Different reproducing ker-
nel based methods were proposed by Zhang et al. [41] and Doran et al. [15], respectively. The
recent work of Shah and Peters [31], along with the hardness result, proposes CI tests based
on the so called generalized covariance measure which is a measure related to the normal-
ized residuals of regressing X and Y on Z. In another recent paper, Azadkia and Chatterjee
[3] propose a novel measure of CI which takes values in [0,1], where the measure takes the
value 0 when the variables are conditionally independent, and is equal to 1 when the Y is a
measurable function of X given Z.

There is also a significant amount of work on CI testing in the econometrics literature
(see, for instance, [34–36, 39]). Su and White [35] give a Hellinger distance based approach
to CI testing, which employs a plug in based estimate using kernel smoothed estimates of
the joint and conditional densities of X,Y,Z. In follow-up work, Su and White [34] propose
estimating a functional involving the difference of two conditional characteristic functions.
They show asymptotic normality under the null hypothesis and explore the power of the test
based on this estimator under local alternatives. In the work [36], the authors propose an
empirical likelihood based approach to CI testing. Wang and Hong [39] develop a new test
based on characteristic functions, which achieves faster rates against certain local alternatives
in comparison to the test developed by Su and White [34].

So far we have discussed works which focus on nonparametric CI testing in the continuous
case. It is noteworthy that there are also numerous CI tests in the discrete case as well. See,
for example, the works [1, 12, 28, 40] as well as references therein.

1.2. Summary of results. We will now informally summarize the main findings of our
work. For the most part, this paper is focused on the following two cases:

1. When X and Y are discrete supported on [ℓ1] × [ℓ2] for some integers ℓ1, ℓ2 (here,
[ℓ1] = {1,2, . . . , ℓ1} and similarly for [ℓ2]), and when Z has an absolutely continuous (with
respect to the Lebesgue measure) distribution supported on [0,1],

2. When all three variables (X,Y,Z) have an absolutely continuous (with respect to the
Lebesgue measure) distribution supported on [0,1].
We study the minimax rate for the critical radius εn which we define as the separation between
the null and alternative hypothesis, in the total variation (TV) distance, required to reliably
distinguish them. Formally, we consider distinguishing

H0 : pX,Y,Z s.t. X ⊥⊥ Y |Z versus

H1 : pX,Y,Z s.t. inf
q in H0

‖pX,Y,Z − q‖1 ≥ εn.
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TABLE 1
This is a summary of the minimax results obtained in the main text of our paper

X,Y

Discrete on [ℓ1] × [ℓ2], ℓ1, ℓ2 fixed Discrete on [ℓ1] × [ℓ2] Continuous

εn-Upper Bounds n−2/5 (ℓ1ℓ2)
1/5

n2/5 , given
ℓ4

1
ℓ2

� n3 n−2s/(5s+2)

εn-Lower Bounds n−2/5 (ℓ1ℓ2)
1/5

n2/5 n−2s/(5s+2)

In addition, we remove distributions under H0 and H1 which are not smooth enough, that is,
pX,Y |Z=z is not a smooth function of z (for precise definitions, refer to Section 2.3). Given
this set-up, our interest is in finding the smallest possible εn such that even in the worst-case
scenario for distributions under H0 and under H1 the sum of the type I and type II errors can
be controlled under a prespecified threshold.

1. Let us first discuss the case when X and Y are discrete on [ℓ1] × [ℓ2] where ℓ1 and ℓ2
are fixed integers which are not allowed to scale with n. In this setting, we show that

εn ≍ n−2/5.

That is we show matching minimax lower and upper bounds at the optimal rate of the critical
radius which is given by n−2/5. Here, we use ≍ to mean equal up to a positive absolute
constant.

2. Next, consider the more general case when ℓ1 and ℓ2 are allowed to scale with n. Then
we are able to show that

εn �
(ℓ1ℓ2)

1/5

n2/5 ∧ 1,

and we have a matching upper bound (i.e., a test) whenever, for ℓ1 ≥ ℓ2, we have
ℓ4

1
ℓ2

� n3.
We further show that this latter condition holds whenever ℓ1 ≍ ℓ2. Here, and throughout this
paper, � and � mean inequalities up to a positive absolute constant.

3. Finally, in the fully continuous case we show that

εn ≍ n−2s/(5s+2),

where s denotes the Hölder smoothness parameter of the conditional density pX,Y |Z under
the alternative hypothesis.

Our results are also summarized in Table 1. The tests used to achieve the upper bounds for
the above minimax rates, are computationally tractable and we implement them and provide
some numerical results. Our tests do not require kernel smoothing. They are rather calculated
based on binning the support of Z (and X and Y when they are continuous) into a certain
sample-size dependent number of bins. For each Z-bin, a (weighted) U-statistic is calculated
and the resulting statistics are summed up according to appropriate weighting across the Z-
bins. Roughly, the U-statistics target the L2

2 distance between pX,Y |Z and pX|ZpY |Z within
each of the Z-bins (or in the weighted U-statistic case a distance similar to the chi-square
distance between pX,Y |Z and pX|ZpY |Z). This strategy also reveals the need to impose certain
smoothness assumptions on the conditional distribution of pX,Y |Z=z in z since otherwise the
binning may result in unreliable estimates of the L2

2 distance.
Along with the aforementioned results, we also provide a new proof of the hardness result

of Shah and Peters [31]. Our proof is based on a coupling between an arbitrary absolutely
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continuous distribution and a statistically independent distribution, which bears some resem-
blance to the coupling used in Lemma 14 of [31]. We use this coupling to show the fact
that conditionally independent distributions are Wasserstein dense in the set of all absolutely
continuous distributions of bounded support.

1.3. Organization. The paper is structured as follows. We present some basic back-
ground in Section 2. We revisit the hardness results of Shah and Peters [31] in Section 3.
Minimax lower bounds on the critical radius are given in Section 4. Section 5 is devoted to
developing tests of CI which match the lower bounds of Section 4. Section 6 gives exam-
ples for distributions satisfying the smoothness assumptions we impose in Sections 4 and 5.
Section 7 provides a brief numerical study, which is meant to show that our nonparametric
tests are in fact readily implementable and perform well in practice. Finally, a discussion is
provided in Section 8.

2. Background. In this section, following some basic notation, we present some back-
ground on minimax testing and briefly introduce the various smoothness conditions we use
in our minimax upper and lower bounds.

2.1. Notation. We make extensive usage of metrics on probability distributions in this
paper. The total variation (TV) metric between two distributions p,q on a measurable space
(�,F) is defined as

dTV(p, q) = sup
A∈F

∣∣p(A) − q(A)
∣∣ =

1

2
‖p − q‖1 =

1

2

∫ ∣∣∣∣
dp

dν
−

dq

dν

∣∣∣∣dν,

where the last identity assumes ν is a common dominating measure of p and q , that is, p ≪ ν

and q ≪ ν and dp
dν

,
dq
dν

denote the densities of p and q with respect to ν (note here that ν can
always be taken as ν = p + q). Under the latter assumption, one can also define the L2

distance between p and q as

‖p − q‖2 =
[∫ ∣∣∣∣

dp

dν
−

dq

dν

∣∣∣∣
2
dν

]1/2
.

Assuming that p ≪ q , we may define the χ2-divergence between p and q as

dχ2(p, q) =
∫ (

dp

dq
− 1

)2
dq.

If p ≪ q fails to hold, then we take dχ2(p, q) = ∞.
Next, we formalize our notation for conditional distributions. If the triplet (X,Y,Z) has

a distribution pX,Y,Z , we will use pX,Y |Z=z to denote the conditional joint distribution of
X,Y |Z = z. Additionally, pX|Z=z and pY |Z=z will denote the marginal conditional distri-
butions of X|Z = z and Y |Z = z, respectively. The marginal distributions will be denoted
with pX,pY ,pZ and joint marginal distributions will be denoted with pX,Y ,pY,Z,pX,Z . Fur-
thermore, with a slight abuse of notation, pX,Y |Z(x, y|z) and pX|Z(x|z) and pY |Z(y|z) will
denote the densities of these distributions evaluated at the points x, y and z (or the corre-
sponding probability mass functions when X and Y are discrete).

In addition, we will use � and � to mean ≤ and ≥ up to positive universal constants
(which may be different from place to place). If both � and � hold, we denote this as ≍. For
an integer n ∈ N, we use the convenient shorthand [n] = {1,2, . . . , n}.
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2.2. Minimax testing. In order to characterize the complexity of CI testing, we use the
minimax testing framework, introduced in the work of Ingster and coauthors [21, 22], and
which has since then been considered by many authors (see, for instance, [2, 4–6, 11, 12, 14,
37]). Formally, consider the testing problem

H0 : p ∈ H0 vs H1 : p ∈ S1(ε),(2.1)

where S1(ε) := {p ∈ H1 : infq∈H0
‖p − q‖1 ≥ ε}, and H0 ⊆H0 and H1 are prespecified sets

of distributions. We define the minimax risk of testing as

Rn(H0,H0,H1, ε) = inf
ψ

{
sup

p∈H0

Ep

[
ψ(Dn)

]
+ sup

p∈S1(ε)

Ep

[
1 − ψ(Dn)

]}1,(2.2)

where the infimum is taken over all Borel measurable test functions ψ : supp(Dn) 
→ [0,1]
(which gives the probability of rejecting the null hypothesis), and supp(Dn) is the support
of the random variables Dn = {(X1, Y1,Z1), . . . (Xn, Yn,Zn)}. We note that it is common to
choose the sets H0 and H0 to be identical. However, as will be clearer hereafter, in the setting
of CI testing we will choose H0 to be a subset of distributions which are conditionally inde-
pendent and appropriately smooth, while we will choose H0 to be the set of all conditionally
independent distributions.

In the minimax framework, our goal is to study the critical radius of testing defined as

εn(H0,H0,H1) = inf
{
ε : Rn(H0,H0,H1, ε) ≤

1

3

}
.(2.3)

The constant 1
3 above is arbitrary, and can be chosen as any small constant. The minimax

testing radius or the critical radius, corresponds to the smallest radius ε at which there exists
some test which distinguishes distributions in H0 from those in H1 which are appropriately
far from H0. The critical radius provides a fundamental characterization of the statistical
difficulty of the hypothesis testing problem in (2.1).

2.3. Smoothness conditions. In Sections 4 and 5, we derive upper and lower bounds on
the minimax critical radius for conditional independence testing. However, in view of the
results of Shah and Peters [31], and our own results in Section 3, we must impose some
restrictions on the distributions under consideration in order to obtain nontrivial minimax
rates. Broadly, we restrict our attention to settings where the conditional distributions are
appropriately smooth.

We focus on two main settings in our work, the setting where X and Y are discrete but
Z is continuous and when all three are continuous. For the case when X and Y are discrete
and Z is continuous, we consider Z that is supported on [0,1]. Define the set of distributions
E ′

0,[0,1] as distributions whose generating mechanism of the triple (X,Y,Z) supported on R
3

is as follows: first, a Z from the distribution pZ (which is absolutely continuous with respect
to the Lebesgue measure) with support [0,1] is generated. Next, X and Y are generated
from the distribution pX,Y |Z , which is supported on2 [ℓ1] × [ℓ2] for (almost) all Z. Denote
by P ′

0,[0,1] ⊂ E ′
0,[0,1] the set of null distributions (i.e., distributions such that X ⊥⊥ Y |Z) and

let Q′
0,[0,1] = E ′

0,[0,1] \ P ′
0,[0,1]. Similarly, in the case when X,Y and Z are continuous, we

let P0,[0,1]3 ⊂ E0,[0,1]3 be the set of distributions for which X ⊥⊥ Y |Z and let Q0,[0,1]3 =
E0,[0,1]3 \P0,[0,1]3 .

With these preliminaries in place, we can define the various smoothness classes that we
work with in this paper:

1Here and throughout, with a slight abuse of notation, we use Ep to denote expectation under i.i.d. data Dn =
{(X1, Y1,Z1), . . . , (Xn, Yn,Zn)} where each observation is drawn from p.

2It is not crucial here that X,Y |Z is supported on [ℓ1] × [ℓ2]. It could be supported on any set X × Y with
|X | = ℓ1 and |Y| = ℓ2. Here, for the sake of simplicity of presentation, we focus only on the case [ℓ1] × [ℓ2].
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DEFINITION 2.1 (Null Lipschitzness).

1. Null TV Lipschitzness: Let P ′
0,[0,1],TV(L) ⊂ P ′

0,[0,1] (analogously P0,[0,1]3,TV(L) ⊂
P0,[0,1]3 ) be the collection of distributions pX,Y,Z such that for all z, z′ ∈ [0,1] we have

‖pX|Z=z − pX|Z=z′‖1 ≤ L
∣∣z − z′∣∣ and ‖pY |Z=z − pY |Z=z′‖1 ≤ L

∣∣z − z′∣∣,

where pX|Z=z and pY |Z=z denote the conditional distributions of X|Z = z and Y |Z = z under
pX,Y,Z respectively.

2. Null χ2 Lipschitzness: Let P ′
0,[0,1],χ2(L) ⊂ P ′

0,[0,1] (analogously P0,[0,1]3,χ2(L) ⊂
P0,[0,1]3 ) be the collection of distributions pX,Y,Z such that for all z, z′ ∈ [0,1] we have

dχ2(pX|Z=z,pX|Z=z′) ≤ L
∣∣z − z′∣∣ and dχ2(pY |Z=z,pY |Z=z′) ≤ L

∣∣z − z′∣∣,

where pX|Z=z and pY |Z=z denote the conditional distributions of X|Z = z and Y |Z = z

under pX,Y,Z , respectively. The distance dχ2(pX|Z=z,pX|Z=z′) is considered ∞ if pX|Z=z ≪
pX|Z=z′ is violated.

3. Null Hölder Lipschitzness: Let P ′
0,[0,1],TV2(L) ⊂ P ′

0,[0,1] be the collection of distribu-

tions pX,Y,Z such that for all z, z′ ∈ [0,1] we have

‖pX|Z=z − pX|Z=z′‖1 ≤
√

L
∣∣z − z′∣∣ and ‖pY |Z=z − pY |Z=z′‖1 ≤

√
L

∣∣z − z′∣∣,

where pX|Z=z and pY |Z=z denote the conditional distributions of X|Z = z and Y |Z = z under
pX,Y,Z , respectively.

Under the alternative, we consider slightly different classes in the discrete and continuous
cases. Formally, we define the following class for the discrete X and Y setting.

DEFINITION 2.2 (Alternative TV Lipschitzness). Let Q′
0,[0,1],TV(L) ⊂ Q′

0,[0,1] be the
collection of distributions pX,Y,Z such that for all z, z′ ∈ [0,1] we have

‖pX,Y |Z=z − pX,Y |Z=z′‖1 ≤ L
∣∣z − z′∣∣,

where pX,Y |Z=z denotes the conditional distribution of X,Y |Z = z under pX,Y,Z .

In the continuous case, we will further restrict our attention to distributions which in ad-
dition to being TV smooth (as above), also have smooth conditional density pX,Y |Z . In order
for us to impose proper smoothness on the density pX,Y |Z , we will first define a Hölder
smoothness class.

DEFINITION 2.3 (Hölder smoothness). Let s > 0 be a fixed real number, and let ⌊s⌋
denote the maximum integer strictly smaller than s. Denote by H2,s(L), the class of functions
f : [0,1]2 
→ R, which posses all partial derivatives up to order ⌊s⌋ and for all x, y, x′, y′ ∈
[0,1] we have

sup
k≤⌊s⌋

∣∣∣∣
∂k

∂xk

∂⌊s⌋−k

∂y⌊s⌋−k
f (x, y) −

∂k

∂xk

∂⌊s⌋−k

∂y⌊s⌋−k
f

(
x′, y′)

∣∣∣∣

≤ L
((

x − x′)2 +
(
y − y′)2)

)
s−⌊s⌋

2 ,

(2.4)

and in addition

sup
k≤⌊s⌋

∣∣∣∣
∂k

∂xk

∂⌊s⌋−k

∂y⌊s⌋−k
f (x, y)

∣∣∣∣ ≤ L.
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In the above assumption, in the addition to the usual Hölder smoothness assumption, we
assume that there is a uniform bound on all derivatives of lower than ⌊s⌋ order. When s = 1,
the above is simply the class of L-Lipschitz functions.

DEFINITION 2.4 (Alternative Lipschitzness). Let Q0,[0,1]3,TV(L, s) ⊂ Q0,[0,1]3 be the
collection of distributions pX,Y,Z such that for all z, z′ ∈ [0,1] we have

‖pX,Y |Z=z − pX,Y |Z=z′‖1 ≤ L
∣∣z − z′∣∣,

where pX,Y |Z=z denotes the conditional distribution of X,Y |Z = z under pX,Y,Z . In addition,
we assume that for all z, x, y ∈ [0,1]: pX,Y |Z(x, y|z) ∈ H2,s(L).

We devote Section 6 to investigating various relationships between these different Lips-
chitzness assumptions, as well as to constructing broad nonparametric classes of distributions
which satisfy these Lipschitzness conditions.

3. The hardness of CI testing revisited. In this section, we revisit the recent work of
Shah and Peters [31]. In order for us to review their results, and to build upon them, we will
recall their notation. Let E0 denote the set of all distributions for (X,Y,Z) on R

dX+dY +dZ ,
which are absolutely continuous with respect to the Lebesgue measure. Define the set of
conditionally independent distributions, that is, distributions such that X ⊥⊥ Y |Z, as P0 ⊂ E0.
Let E0,M ⊆ E0 be the set of distributions whose support is contained within an L∞ ball of
radius M . Define the set of alternative distributions as Q0 = E0 \ P0 and P0,M = E0,M ∩P0
and Q0,M = E0,M ∩Q0.

In their Proposition 5, Shah and Peters argue that the null and alternative sets of distri-
butions P0,M and Q0,M are separated in TV distance. Here, separated is meant in the sense
that there exists a distribution from Q0,M which is at least 1/24 apart in TV distance from
any distribution in P0,M . Similarly, in Proposition 16, Shah and Peters argue that the sets of
distributions P0 and Q0 are separated in KL divergence (in this proposition they consider
only the case (X,Y,Z) ∈ R

3). In contrast, the first result of this section will show that when
the Wasserstein distance is considered, the set of distributions P0,M is dense in the set Q0,M .
Let us first define the Wasserstein distance.

DEFINITION 3.1 (Wasserstein distance). Let p ≥ 1 be a real number. Let Pp(Rd) denote
the set of measures μ on (Rd ,‖ · ‖2), such that there exists x0 ∈ R

d for which
∫

Rd
‖x − x0‖p

2 dμ(x) < ∞.

For two probability measures, μ and ν in Pp(Rd) the pth Wasserstein distance between μ

and ν is defined as

Wp(μ, ν) =
(

inf
γ∈Ŵ(μ,ν)

∫

Rd×Rd
‖x − y‖p

2 dγ (x, y)

)1/p

,

where Ŵ(μ, ν) is set of all couplings between the measures μ and ν, that is, all probability
measures on R

d ×R
d , with marginals μ and ν.

We are now ready to state the first result of this section.

LEMMA 3.2 (Wasserstein denseness). Take any distribution P ∈ E0,M for some M > 0.
Then for any p ≥ 1 and any ε > 0 there exists a distribution Q ∈ P0,M such that

Wp(P,Q) ≤ ε.
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FIG. 1. This schematic describes the construction of Q from P . [−M,M] is divided in intervals {A1, . . . ,Am},
{B1, . . . ,Bm} and {C1, . . . ,Cm}. Next, each interval Ck is subdivided into m2 smaller subintervals. The interval

C1 is displayed along with its subdivisions of Cij1 for i, j ∈ [m]. Each little interval Cij1 corresponds to a pair

(Ai ,Bj ) or equivalently to a cell Ai × Bj in [−M,M]2.

PROOF. For simplicity, we will prove this result for the one-dimensional case dX = dY =
dZ = 1. The proof extends trivially to the more general case. First, note that since both P,Q ∈
E0,M ⊆ Pp(R3), the Wasserstein distance between P and Q is well defined. We will now
construct Q from P by describing a coupling between the two distributions.

Let {A1, . . . ,Am} denote an equipartition of [−M,M] in intervals. Similarly, let {B1, . . . ,

Bm} and {C1, . . . ,Cm} be equipartitions of [−M,M]. Divide each Ck further in m2 subin-
tervals of equal length denoted by Cijk , so that each of these small intervals corresponds
to a pair (Ai,Bj ). Refer to Figure 1 for a visualization of this construction. The lengths of
each interval Ai , Bi or Ci is 2M

m
, while the length of an interval Cijk is 2M

m3 . Given a draw

(X,Y,Z) ∼ P , we construct (X̃, Ỹ , Z̃) ∼ Q as follows. Suppose that X ∈ Ai , Y ∈ Bj and
Z ∈ Ck . Then we generate uniformly Z̃ ∈ Cijk and (X̃, Ỹ ) uniformly in Ai × Bj . By defi-
nition then X̃ ⊥⊥ Ỹ |Z̃, and further X̃, Ỹ , Z̃ ∈ [−M,M]. Hence Q ∈ P0,M .3 Furthermore, we
can bound the Wasserstein distance for this particular coupling as

Wp(P,Q)p ≤ EE(X̃,Ỹ ,Z̃)|(X,Y,Z)

∥∥(X,Y,Z) − (X̃, Ỹ , Z̃)
∥∥p

2 ≤
(√

3
2M

m

)p

.

Since m can be selected arbitrarily large, the above can be made smaller than εp . This com-
pletes the proof. �

The construction used to obtain Q from P in the above result captures intuitively the
essence of the “hardness” of CI testing with continuous Z. The set P0,M contains distribu-
tions, which allow the conditional distributions of X,Y |Z = z to be “wildly discontinuous”
as functions of z. This in turn allows for the existence of distributions in P0,M capable of
approximating any distribution in E0,M in the Wasserstein metric. Later in this paper we will
see that, if we disallow distributions in E0,M whose conditional distributions can be wildly
variable in z, CI testing becomes possible. We would also like to point out the intuition why
the Wasserstein distance yields a result like Lemma 3.2 in contrast to using TV distance or
KL divergence. The Wasserstein distance is based on a metric (in our case the L2 metric)
on the underlying sample space, and as a consequence has the critical feature (unlike the KL
divergence or TV distance) that it is robust to small perturbations in the sample space (on

3For a precise expression of the density of Q, refer to Appendix A in the supplementary material [25].
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the other hand, metrics like the TV metric are typically stable to small perturbations in the
probability space). Indeed, the heart of the construction of Shah and Peters [31] and of our
own result, is the idea that given a sample from a conditionally dependent distribution, one
can perturb it slightly (effectively “encoding” the value of X in Z) to create a conditionally
independent distribution. This operation, effectively a small perturbation in the sample space,
does not change the Wasserstein distance much, but can have a large effect on the TV distance
or KL divergence.

Lemma 3.2 suggests, but does not imply that CI testing is “hard.” Building on the con-
struction of Lemma 3.2, we give a new simpler proof of the “no-free-lunch” theorem of
Shah and Peters [31], see Theorem 2. For convenience of the reader, we restate the no-
free-lunch theorem below, and give a complete proof in Appendix A of the supplemen-
tary material. Let d = dX + dY + dZ , and suppose that we observe n observations Dn =
{(X1, Y1,Z1), . . . , (Xn, Yn,Zn)}.

THEOREM 3.3 (No-free-lunch). Given any n ∈ N, α ∈ (0,1), M ∈ (0,∞] and a poten-

tially randomized test ψn :Rnd ×[0,1] 
→ {0,1}, that has valid level α for the null hypothesis

P0,M , we have that PQ(ψn = 1) ≤ α for all Q ∈ Q0,M .

As stated, Theorem 3.3 assumes that (X,Y,Z) have a distribution which is continuous with
respect to the Lebesgue measure. Suppose that ℓ1 and ℓ2 are two fixed and finite integers. We
assume that X and Y are supported on [ℓ1] and [ℓ2], respectively, and that Z is supported
on [−M,M]dZ and has a continuous density with respect to the Lebesgue measure. The
generating mechanism of the triple (X,Y,Z) is as follows: first a Z from the distribution PZ

is generated. Next, X and Y are generated from the distribution PX,Y |Z which is supported
on [ℓ1] × [ℓ2] for (almost) all Z. Denote the set of all such distributions with E ′

0,M (where
we omit the dependence of E ′

0,M on dZ, ℓ1, ℓ2 for simplicity). Let P ′
0,M ⊂ E ′

0,M be the subset
of E ′

0,M consisting of distributions such that X ⊥⊥ Y |Z and Q′
0,M = E ′

0,M \ P ′
0,M . Again as

before we assume that we observe n observations Dn. We have the following simple corollary
to Theorem 3.3, which was alluded to by Shah and Peters [31].

COROLLARY 3.4 (Discrete no-free-lunch). Given n ∈ N, α ∈ (0,1), M ∈ (0,∞) and a

potentially randomized test ψn, that has a valid level α for the null hypothesis P ′
0,M , we have

that PQ(ψn = 1) ≤ α for all Q ∈ Q′
0,M .

Intuitively, Corollary 3.4 reveals that it is the continuity of Z that makes CI testing “hard,”
and not the continuity of X and Y .

4. Minimax lower bounds. In this section, we present our minimax lower bounds on
the critical radius for conditional independence testing in various settings. Our first main
result (Theorem 4.1) develops a lower bound on the critical radius in the case when X and Y

are discrete and Z is continuous. Our next main result (Theorem 4.2) develops an analogous
bound for the setting when X, Y and Z all have continuous distributions.

4.1. X and Y discrete, Z continuous case. We begin by recalling the Lipschitzness
classes P ′

0,[0,1],TV(L),P ′
0,[0,1],TV2(L) and P ′

0,[0,1],χ2(L) introduced in Definition 2.1, and

Q′
0,[0,1],TV(L) introduced in Definition 2.2. In this section, we develop a lower bound on

the critical radius for distinguishing the conditionally independent distributions in any one of
the null classes P ′

0,[0,1],TV(L),P ′
0,[0,1],TV2(L) and P ′

0,[0,1],χ2(L) from the alternative class of

conditionally dependent distributions Q′
0,[0,1],TV(L). Formally, we have the following result.
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THEOREM 4.1 (Critical radius lower bound). Let H0 = P ′
0,[0,1]. Suppose that H0 is ei-

ther of P ′
0,[0,1],TV(L), P ′

0,[0,1],TV2(L) or P ′
0,[0,1],χ2(L), while H1 = Q′

0,[0,1],TV(L) for some

fixed L ∈ R
+. Then for some absolute constant c0 > 0 the critical radius defined in (2.3) is

bounded as

εn(H0,H0,H1) ≥ c0

(
(ℓ1ℓ2)

1/5

n2/5 ∧ 1
)
.

REMARKS.

• In the case when ℓ1 and ℓ2 are constant, our lower bound on the critical radius

εn(H0,H0,H1) ≥ c0n
−2/5,

scales as the familiar rate for goodness-of-fit testing in the nonparametric setting of εn ≍
n−2s/(4s+d) [2, 5, 22] (where in our setting we take d = 1 and s = 1, corresponding to the
one-dimensional Lipschitz smooth component Z).

We note that as is typical in hypothesis testing problems this rate is faster than the n−1/3

rate that we would expect for estimating a univariate Lipschitz smooth density, highlighting
the fact that in many cases, from a statistical perspective, hypothesis testing is easier than
estimation.

• On the other hand, the scaling of εn with ℓ1 and ℓ2 has a typical square-root dependence
seen in parametric hypothesis testing problems [22, 37], where roughly we see that the
critical radius shrinks provided that

√
ℓ1ℓ2/n → 0. Once again this is in contrast to the

linear dependence we would expect in estimating a multinomial distribution on ℓ1 × ℓ2
categories, which would require ℓ1ℓ2/n → 0 for consistent estimation.

Thus we see that the lower bound we obtain for CI testing in the setting where X and Y

are discrete, and Z is continuous blends parametric and nonparametric hypothesis testing
rates. In Section 5, we develop matching upper bounds in various settings.

• We note in passing that our lower bound applies when the null distribution is restricted to
belong to any of the three Lipschitzness classes introduced in Definition 2.1.

• We give the proof of Theorem 4.1 in Appendix B of the supplementary material. We note
that at a high level we follow the strategy of Ingster [21] of creating a carefully chosen
collection of possible densities under the alternative, and lower bounding the performance
of the (optimal) likelihood ratio test in distinguishing a fixed null distribution against a
uniform mixture of the selected distributions under the alternative. However, in our setting
additional care is needed when perturbing the X and Y components in order to ensure that
they remain valid discrete distributions (see Figure 1, and the associated construction), and
to characterize the distance of our perturbed distributions from the manifold of condition-
ally independent distributions.

4.2. X, Y and Z continuous case. We first recall the Lipschitzness classes P0,[0,1]3,TV(L)

and P0,[0,1]3,χ2(L) introduced in Definition 2.1, and Q0,[0,1]3,TV(L, s) introduced in Defini-
tion 2.4. We derive a lower bound on the critical radius for distinguishing the conditionally
independent distributions in either of the null classes P0,[0,1]3,TV(L) and P0,[0,1]3,χ2(L) from
the alternative class of conditionally dependent distributions Q0,[0,1]3,TV(L, s). Formally, we
have the following result.

THEOREM 4.2 (Critical radius lower bound). Let H0 = P0,[0,1]3 . Suppose that H0 is

either P0,[0,1]3,TV(L) or P0,[0,1]3,χ2(L), and H1 = Q0,[0,1]3,TV(L, s) for some fixed L ∈ R
+.

Then we have that for some absolute constant c0 > 0,

εn(H0,H0,H1) ≥
c0

n2s/(5s+2)
.
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REMARK.

• We note that our lower bound applies when the null distribution is restricted to belong to
either of the classes P0,[0,1]3,TV(L) and P0,[0,1]3,χ2(L). Our proof in this setting builds on
that of Theorem 4.1. In this case, to create a collection of distributions under the alternative
we perturb the null distribution by smooth, infinitely differentiable bumps along all three
coordinates in a carefully constructed fashion. By an appropriate choice of various param-
eters, we ensure that the distributions we construct satisfy the Lipschitzness and Hölder
smoothness conditions required by the class Q0,[0,1]3,TV(L, s), while still remaining suf-
ficiently far from the conditional independence manifold. We provide the details of our
construction, as well as the subsequent analysis of the likelihood ratio test in Appendix B
of the supplementary material.

5. Minimax upper bounds. In this section, we provide matching (in certain regimes)
upper bounds to the lower bounds given in Section 4.

5.1. Upper bound with finite discrete X and Y . In this section, we will suggest a condi-
tional independence test to match the lower bound of Section 4.1 when ℓ1, ℓ2 = O(1) are not
allowed to scale with n. In this case, the bound of Theorem 4.1 simply states that the critical
radius is bounded from below by cn−2/5, for some sufficiently small constant c > 0. To start
the preparation for our test statistic, we will first reintroduce certain unbiased estimators from
the work of Canonne et al. [12]. Our exposition and treatment of their estimators is novel,
and builds on classical work on U-statistics [19, 30].

Suppose we observe σ ≥ 4 observations of two discrete covariates X′ and Y ′ taking values
in [ℓ1] and [ℓ2].4 Denote the joint distribution of (X′, Y ′) by pX′,Y ′ . As usual we denote the
marginals as pX′ and pY ′ (i.e., pX′(x) =

∑
y∈[ℓ2] pX′,Y ′(x, y) and similarly for pY ′). We are

interested in finding an unbiased estimate of the following expression:

‖pX′,Y ′ − pX′pY ′‖2
2 =

∑

x∈[ℓ1],y∈[ℓ2]

(
pX′,Y ′(x, y) − pX′(x)pY ′(y)

)2
.(5.1)

The above expression is nothing but the L2
2 distance between pX′,Y ′ and the product of the

marginals pX′pY ′ . In order for us to unbiasedly estimate this quantity, we will use a U-
statistic, and at least 4 observations. Before we define the U-statistic, let us define its kernel.
Let i, j ∈ [σ ] be two observations. Define

φij (xy) = 1
(
X′

i = x,Y ′
i = y

)
− 1

(
X′

i = x
)
1
(
Y ′

j = y
)
.(5.2)

Next, take 4 distinct observations i, j, k, l ∈ [σ ], and define the kernel function

hijkl =
1

4!
∑

π∈[4!]

∑

x∈[ℓ1],y∈[ℓ2]
φπ1π2(xy)φπ3π4(xy),

where π is a permutation of i, j, k, l. Clearly, since i, j, k, l ∈ [σ ] are distinct, the above is an
unbiased estimate of (5.1). Next, we construct the U-statistic

U(D) :=
1( σ
4
)

∑

i<j<k<l:(i,j,k,l)∈[σ ]
hijkl,(5.3)

where we denoted D = {(X′
1, Y

′
1), . . . , (X

′
σ , Y ′

σ )}. The U-statistic (5.3) is an unbiased estimate
of the L2

2 distance in (5.1). It is not obvious that this estimator is the same as the one defined

4As in the lower bound, it is not crucial that the supports of X′ and Y ′ are [ℓ1] and [ℓ2]. We focus on this case
simply for the sake of clarity.
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in equation (18) of Canonne et al. [12]. However, using Proposition 4.2 of [12] and the fact
that the U-statistic in (5.3) is a symmetric estimator, one can deduce that the two estimators
must coincide.

In order to analyze our hypothesis test, we will appropriately bound the mean and variance
of our test statistic under the null and under the alternative. Since our test is based on the
U-statistic in (5.3), we will need to bound its variance. In principle, one can directly reuse the
bound on the variance of the U-statistic in (5.3) given in [12]. Since the original derivation of
this bound is complicated, we give a novel derivation starting from first principles, building
on the extensive theory for U-statistics. We have the following result.

LEMMA 5.1 (Variance upper bound). There exists some absolute constant C such that

Var
[
U(D)

]
≤ C

(
E[U(D)]max(‖pX′,Y ′‖2,‖pX′pY ′‖2)

σ

+
max(‖pX′,Y ′‖2

2,‖pX′pY ′‖2
2)

σ 2

)
.

Now that we have defined the statistic U and have bounded its variance, we are ready to
introduce our test statistic. Before that we include a randomization device in the test:

Draw N ∼ Poi(n
2 ). If N > n accept the null hypothesis. If N ≤ n, take arbitrary N out of

the n samples and work with them. The next step is to discretize the variable Z into d bins
of equal size. Denote those bins with {C1, . . . ,Cd}, so that

⋃
i∈[d] Ci = [0,1], and each Ci

is an interval of length 1
d

. Next, construct the datasets Dm = {(Xi, Yi) : Zi ∈ Cm, i ∈ [N ]}.
Let σm = |Dm| be the sample size in each set Dm, so that

∑
m∈[d] σm = N . For bins Dm

with at least σm ≥ 4 observations, let for brevity Um = U(Dm). Each Um can be thought
of as a local test of independence within the bin Cm—if the value of Um is close to 0 then
intuitively independence holds within that bin, while if the value of Um is large, independence
is potentially violated within that bin. In order to combine these different statistics, we follow
Canonne et al. [12] and consider the following test statistic:

T =
∑

m∈[d]
1(σm ≥ 4)σmUm.(5.4)

We will prove that under the null hypothesis the value of T is likely to be below a threshold
τ (to be specified), while under the alternative hypothesis T will likely exceed the value τ .
Define the test

ψτ (DN ) = 1(T ≥ τ),

where DN = {(X1, Y1,Z1), . . . , (XN , YN ,ZN )}. Recall the definitions of the null Lipschitz-
ness classes P ′

0,[0,1],TV(L),P ′
0,[0,1],χ2(L),P ′

0,[0,1],TV2(L) and the alternative Lipschitzness

classes Q′
0,[0,1],TV(L) (see Definitions 2.1 and 2.2 in Section 2.3). We are now ready to state

the main result of this section.

THEOREM 5.2 (Finite discrete X, Y upper bound). Set d = ⌈n2/5⌉ and let τ = ζn1/5 for

a sufficiently large absolute constant ζ (depending on L). Finally, suppose that ε ≥ cn−2/5,
for a sufficiently large constant c (depending on ζ , L, ℓ1, ℓ2). Then we have that

sup
p∈P ′

0,[0,1],TV2 (L)∪P ′
0,[0,1],TV(L)∪P ′

0,[0,1],χ2 (L)

Ep

[
ψτ (DN )

]
≤

1

10
,

sup
p∈{p∈Q′

0,[0,1],TV(L):infq∈P ′
0,[0,1]

‖p−q‖1≥ε}
Ep

[
1 − ψτ (DN )

]
≤

1

10
+ exp(−n/8).
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REMARKS.

• In the above theorem, the constants 1
10 are arbitrary and can be made smaller (or larger) by

appropriately adjusting the constants ζ and c. In the case when ℓ1 and ℓ2 are of constant
order, the above test is optimal, in the sense that the critical radius rate n−2/5 matches the
lower bound given in Theorem 4.1.

• When ℓ1 and ℓ2 are allowed to scale with n, the test no longer results in the correct order
for the critical radius (in particular, we can no longer treat the quantity c as a constant
and its dependence on ℓ1 and ℓ2 is not optimal). In the next section, we provide more
sophisticated test which is capable of matching the bound proved in Theorem 4.1 for some
regimes of ℓ1 and ℓ2.

• In order to show that our test has high power for sufficiently large εn, we follow a classical
strategy of upper bounding the variance of our test statistic under the null and alternative,
upper bounding its expectation under null, and lower bounding its expectation under the
alternative. These bounds together with a careful choice of the threshold τ , and an appli-
cation of Chebyshev’s inequality, are used to characterize the power of our proposed test.
We detail these calculations in Appendix C of the supplementary material.

• A recurring complication, one that we need to address in the analysis of our tests in both
the discrete and continuous X,Y setting is that our test statistic does not have expectation
zero under the null. This is in sharp contrast to typical tests for goodness-of-fit and two-
sample tests (for instance, those analyzed in [2, 4, 5, 14, 37]). In more detail, under the
null, the binning operation used to discretize the Z variable, moves us off the manifold of
conditionally independent distributions (i.e., the discretized distribution need not satisfy
conditional independence even if the original distribution does).

Exploiting the Lipschitzness assumptions in Definition 2.1, we can argue that under
the null, for sufficiently small bins, we do not move too far from the collection of con-
ditionally independent distributions (say in the total variation sense). A naive reduction
would yield an imprecise null hypothesis testing problem of attempting to distinguish dis-
tributions, which are near-conditionally independent from those which are relatively far
from conditionally independent. This imprecise null testing problem is however statisti-
cally challenging [38], and this naive reduction fails to yield the optimal rates described in
our upper bounds.

Instead, avoiding this indirect reduction, we take a more direct approach of uniformly
upper bounding the expectation of our test statistic under the null. By directly using the
Lipschitzness assumptions, and the factorization structure of distributions under the null,
we are able to obtain tighter bounds on the expected value of our test statistic under the
null. This in turn yields near-optimal upper bounds on the critical radius.

5.2. Upper bound with scaling discrete X and Y . In this section, we present a more
sophisticated test procedure which is capable of matching the bound of Theorem 4.1 for
some regimes of the sizes of the supports of X and Y — ℓ1 and ℓ2. In contrast to the previous
section, we now no longer assume that ℓ1, ℓ2 = O(1). We note that throughout this section,
without any loss of generality, we focus on the case when

√
ℓ1ℓ2/n � 1. When this condition

is not satisfied, the lower bound in Theorem 4.1 shows that the critical radius must be at least
a constant, and in this regime upper bounds are trivial. Since we only characterize the critical
radius up to constants, when we choose the separation between the null and alternate ε to be
a sufficiently large constant (say 2), there are no longer any distributions in the alternate, and
the CI testing problem is trivial.

The key idea of this section is to use a weighted U-statistic in place of the (unweighted)
U-statistic from Section 5.1. This weighting is sometimes referred to as “flattening”; see, for
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example, [12, 14]. A careful choice of the weighting yields a U-statistic with smaller variance
(see Lemma 5.4), and the resulting test has higher power.

To describe the weighting, consider again the same scenario as in Section 5.1. Suppose
we observe σ ≥ 4 samples of two discrete covariates (X′, Y ′) supported on [ℓ1] × [ℓ2]. Let
D = {(X′

1, Y
′
1), . . . , (X

′
σ , Y ′

σ )} and pX′,Y ′ be the distribution of (X′, Y ′). By losing at most
three samples, we may assume that σ = 4 + 4t for some t ∈ N. Define t1 := min(t, ℓ1) and
t2 := min(t, ℓ2). Next we split D into three datasets of sizes t1, t2 and 2t + 4, respectively:
DX′ = {X′

i : i ∈ [t1]}, DY ′ = {Y ′
i : t1 + 1 ≤ i ≤ t1 + t2} and DX′,Y ′ = {(X′

i, Y
′
i ) : 2t + 1 ≤

i ≤ σ }. The idea behind defining those three datasets is that the first two datasets—DX′ and
DY ′ , will be used to calculate weights, while the last dataset DX′,Y ′ , which has at least 4
observations, will be used to calculate the U-statistic. Construct the integers

1 + axy = (1 + ax)
(
1 + a′

y

)
,

where ax are the number of occurrences of x in DX′ and a′
y is the number of occurrences of

y in DY ′ .
Next, take 4 distinct observations indexed by i, j, k, l from the dataset DX′,Y ′ , and define

the (weighted) kernel function

ha

ijkl =
1

4!
∑

π∈[4!]

∑

x∈[ℓ1],y∈[ℓ2]

φπ1π2(xy)φπ3π4(xy)

1 + axy

,

where π is a permutation of i, j, k, l and recall the definition of φij (xy) (5.2). Here the
super-indexing with a of ha

ijkl , indicates that the statistic is weighted by the numbers 1 + axy

for x ∈ [ℓ1], y ∈ [ℓ2]. Notice that the idea of this weighting is similar to the weighting in a
Pearson’s χ2 test of independence. Indeed the quantity axy is in expectation proportional to
the product pX′(x)pY ′(y). On the other hand, the expression φπ1π2(xy)φπ3π4(xy) is unbiased
for (pX′,Y ′(x, y) − pX′(x)pY ′(y))2. Next, to reduce the variance of ha

ijkl , we construct the
(weighted) U-statistic

UW (D) :=
1

( 2t+4
4

)
∑

i<j<k<l:(i,j,k,l)∈DX′,Y ′

ha

ijkl,(5.5)

where we abused notation slightly for (i, j, k, l) ∈ DX′,Y ′ to mean taking four observations
from the dataset DX′,Y ′ . For convenience of notation, we now give a definition from [14].

DEFINITION 5.3 (Split distribution). Given a discrete distribution p over [d1] × [d2]
and a multiset S of elements of [d1] × [d2] we now define the split distribution pS . Let
bxy =

∑
(x′,y′)∈S 1((x, y) = (x′, y′)). Thus

∑
(x,y)∈[d1]×[d2] 1 + bxy = d1d2 + |S|. Define the

set BS = {(x, y, i)|(x, y) ∈ [d1]×[d2],1 ≤ i ≤ 1+bxy}. The split distribution pS is supported
on BS and is obtained by sampling (x, y) from p and i uniformly from the set [1 + bxy].

Given S and bxy as in Definition 5.3, for any two discrete distributions p and q over
[d1] × [d2] it follows that

‖pS − qS‖2
2 =

∑

(x,y)∈[d1]×[d2]

(p(x, y) − q(x, y))2

1 + bxy

.

Similarly, for the split distribution pS we have that

‖pS‖2
2 =

∑

(x,y)∈[d1]×[d2]

p2(x, y)

1 + bxy

.
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Construct a multiset A by adding axy occurrences of the pair (x, y) to A. Using this notation,
it now follows that

E
[
UW (D)|DX′,DY ′

]
=

∥∥pX′,Y ′,A − p�
X′,Y ′,A

∥∥2
2

=
∑

(x,y)∈[ℓ1]×[ℓ2]

(pX′,Y ′(x, y) − pX′(x)pY ′(y))2

1 + axy

,

where pX′,Y ′,A is the A-split distribution pX′,Y ′ , and p�
X′,Y ′,A is the A-split distribution

p�
X′,Y ′ where p�

X′,Y ′ = pX′pY ′ . We will now show an analogous variance bound to the one in
Lemma 5.1. We have the following.

LEMMA 5.4 (Variance upper bound). For some absolute constant C, the following holds:

Var
[
UW (D)|DX′,DY ′

]

≤ C

(
E[UW (D)|DX′,DY ′]‖p�

X′,Y ′,A‖2

σ

+
E[UW (D)|DX′,DY ′]3/2

σ
+

‖p�
X′,Y ′,A‖2

2

σ 2 +
E[UW (D)|DX′,DY ′]

σ 2

)
.

In comparing to the result of Lemma 5.1, we see roughly that the variance bound now de-
pends on the (typically much smaller) L2-norm of the flattened or split distribution p�

X′,Y ′,A,
instead of the L2 norm of the original distribution pX′,Y ′ . As emphasized in [12, 14], this
variance reduction achieved through flattening is critical for designing minimax optimal tests
(particularly when ℓ1 and ℓ2 are allowed to grow with the sample-size n).

Now we are ready to define our test statistic. As before, the first step is to draw a random
sample size N ∼ Poi(n

2 ) and take N subsamples of the n observations, with the convention
that if N > n we accept the null hypothesis. Next, bin the support of the variable Z into d

bins of equal size. Denote those bins with {C1, . . . ,Cd}, so that
⋃

i∈[d] Ci = [0,1], and each
Ci is an interval of length 1

d
. Construct the datasets Dm = {(Xi, Yi) : Zi ∈ Cm, i ∈ [N ]}. Let

σm = |Dm| be the sample size in each set Dm, so that
∑

m∈[d] σm = N . Recall that each set
Dm will be further separated into three sets Dm,X , Dm,Y and Dm,X,Y , the first two of which
are used for calculating weights, while the last one is used for the calculation of the weighted
U-statistic. For bins Dm with at least σm ≥ 4 observations, let for brevity Um = UW (Dm).
We now combine these different independence testing statistics into one CI testing statistic
as follows. Let

T =
∑

m∈[d]
1(σm ≥ 4)σmωmUm,(5.6)

where ωm =
√

min(σm, ℓ1)min(σm, ℓ2) is a weighting factor, which further weights the
statistics Um. The presence of ωm is necessitated by the weighting of the U-statistic (5.5).
In order to show that the test based on the statistic T has high power (and low type 1 error)
we will prove that under the null hypothesis the value of T is likely to be below a threshold
τ (to be specified), while under the alternative hypothesis T will likely exceed the value τ .
Define the test

ψτ (DN ) = 1(T ≥ τ),(5.7)

where DN = {(X1, Y1,Z1), . . . , (XN , YN ,ZN )}. We have the following result.
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THEOREM 5.5 (Scaling discrete X, Y upper bound). Set d = ⌈ n2/5

(ℓ1ℓ2)
1/5 ⌉ and set the

threshold τ =
√

ζd for a sufficiently large absolute constant ζ (depending on L). Suppose

that ℓ1 ≥ ℓ2 satisfy the condition that dℓ1 � n. Then when ε ≥ c (ℓ1ℓ2)
1/5

n2/5 , for a sufficiently

large absolute constant c (depending on ζ , L), we have that

sup
p∈P ′

0,[0,1],χ2 (L)

Ep

[
ψτ (Dk)

]
≤

1

10
,

sup
p∈{p∈Q′

0,[0,1],TV(L):infq∈P ′
0,[0,1]

‖p−q‖1≥ε}
Ep

[
1 − ψτ (Dk)

]
≤

1

10
+ exp(−n/8).

REMARKS.

• Some remarks regarding this result are in order. First, when dℓ1 � n, the bound on the
critical radius we obtain matches the information-theoretic limit derived in Theorem 4.1.
An important special case (that we will use in our tests in the continuous X and Y setting)
when this condition is automatically implied is when ℓ1 ≍ ℓ2.

To see this, observe that when ℓ1 ≍ ℓ2 we have that dℓ1 � n is equivalent to ( n
ℓ1

)2/5 � n
ℓ1

(for our choice of d) which is implied by the condition that ℓ1
n
� 1. When this latter con-

dition is not satisfied, the lower bound on the critical radius in Theorem 4.1 is a universal
constant (and the upper bound is trivial).

We also note in passing that for our choice of d , the condition that dℓ1 � n is equivalent

to the condition that
ℓ4

1
ℓ2

� n3, which yields the claim in Section 1.2 that our test is minimax

optimal when
ℓ4

1
ℓ2

� n3.
• In contrast to Theorem 5.2, here we choose the null set of distributions as P ′

0,[0,1],χ2(L).
As we discussed following Theorem 5.2, one of the key difficulties is to characterize the
effect of discretization of the Z variable, in order to upper bound the expectation of our
test statistic under the null, over the appropriate Lipschitzness class. When ℓ1 and ℓ2 are
allowed to scale, we show an upper bound on this expectation in terms of the χ2-divergence
between the discretized null distribution and the product of its marginals (see equation
(C.23) in Appendix C) of the supplement. We in turn show that this discretization error due
to binning is appropriately small when the null distribution satisfies the χ2 Lipschitzness
condition, that is, belongs to P ′

0,[0,1],χ2(L).

• As we detail further in Appendix C of the supplement, when the condition that dℓ1 � n is
not satisfied we still provide upper bounds on the critical radius but these upper bounds do
not match the lower bound in Theorem 4.1. As we discuss further in Section 8, we believe
that sharpening either the lower or upper bound is challenging, requiring substantially
different ideas, and we defer this to future work.

• From a technical standpoint, analyzing the power of the test statistic in (5.6) is substantially
more involved than the analysis of its fixed ℓ1, ℓ2 counterpart in (5.4). Several complica-
tions are introduced in ensuring that the flattening weights (the terms axy in the definition
of our U-statistic in (5.5)) are well behaved. In a classical fixed dimensional setup (where
ℓ1, ℓ2 and the number of bins d are all held fixed), it would be relatively straightforward
to argue that the flattening weights concentrate tightly around their expected values. In
the high-dimensional setting that we consider, these weights can have high variance and
substantial work is needed to tightly bound the mean and variance of our test statistic.

This also highlights an important difference from the goodness-of-fit problem consid-
ered in [5, 10, 37]. In the goodness-of-fit problem, where we test fit of the data to a known
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distribution p0 the corresponding weights in the Pearson χ2 statistic are fixed and known
to the statistician. In conditional independence testing, these weights are estimated from
data.

5.3. Upper bound in the continuous case. In this section, consider testing for CI when
(X,Y,Z) are supported on [0,1]3 and have a distribution which is absolutely continuously
with respect to the Lebesgue measure. In view of the notation in Section 4.2, this is equivalent
to assuming that pX,Y,Z ∈ E0,[0,1]3 . We begin our discussion with formally describing the test.

The testing strategy is related to the test described in Section 5.2. First, draw N ∼ Poi(n
2 ),

and take arbitrary N out of the n observations in the case when N ≤ n, and accept the null hy-
pothesis if N > n. Next, we bin the support [0,1] with bins {C1,C2, . . . ,Cd}, where the sizes
of those bins are equal and

⋃
i∈[d] Ci = [0,1]. These bins will be used to discretize Z. In addi-

tion, we create a second rougher (in the case s ≥ 1) partition of [0,1] into d ′ := ⌈d1/s⌉ inter-
vals

⋃
i∈[d ′] C

′
i = [0,1]. These second bins will be used to discretize X and Y . Specifically, we

use these two sets of bins to discretize the observations DN = {(Xi, Yi,Zi)}i∈[N] as follows.
First, define the discretization function g : [0,1] 
→ [d ′] by g(x) = j iff x ∈ C′

j . Next, con-
sider the set of observations D′

N = {(g(Xi), g(Yj ),Zi)}i∈[N]. We can now use the test defined
in (5.7): ψτ (D

′
N ) with an appropriately selected threshold τ and the bins {C1,C2, . . . ,Cd} to

discretize Z with in order to test for CI. We have the following result.

THEOREM 5.6 (Continuous X,Y,Z upper bound). Set d = ⌈n2s/(5s+2)⌉ and set the

threshold τ =
√

ζd for a sufficiently large ζ (depending on L). Let H0(s) = P0,[0,1]3,TV(L)∪
P0,[0,1]3,χ2(L) when s ≥ 1 and H0(s) = P0,[0,1]3,χ2(L) when s < 1. Then, for a sufficiently

large absolute constant c (depending on ζ,L), when ε ≥ cn−2s/(5s+2), we have that

sup
p∈H0(s)

Ep

[
ψτ

(
D′

k

)]
≤

1

10
,

sup
p∈{p∈Q0,[0,1]3,TV(L,s):infq∈P

0,[0,1]3
‖p−q‖1≥ε}

Ep

[
1 − ψτ

(
D′

k

)]
≤

1

10
+ exp(−n/8).

REMARKS.

• Theorem 5.6 shows that the test ψτ (D
′
N ) matches the lower bound derived in Theorem 4.2,

showing that under appropriate Lipschitzness conditions our test is a minimax optimal
nonparametric test for conditional independence.

• We note that in this setting, a careful analysis of the expectation of our statistic under the
null shows that the null set of distributions can be taken as P0,[0,1]3,TV(L)∪P0,[0,1]3,χ2(L)

which is a larger set of distributions in comparison to that of Theorem 5.5.
• Finally, the analysis in the continuous setting builds extensively on our analysis for the test

in (5.7). However, as we detail in Appendix C of the supplement (see Lemmas C.16, C.17
and C.18), careful analysis is needed to show that the additional discretization error of the
X and Y variables does not change the mean and variance of our test statistic too much
(under both the null and alternative).

6. Investigating Lipschitzness conditions. In our upper and lower bounds, in order to
tractably test conditional independence in the nonparametric setting, we impose various Lip-
schitzness conditions on the distributions under consideration. In order to build further intu-
ition for these conditions, in this section we derive several inclusions which relate the Lips-
chitzness classes defined in Sections 4.1 and 4.2. We then give examples of natural classes of
distributions which satisfy our various Lipschitzness conditions.
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6.1. Relationships between the Lipschitzness classes. Recall the definitions of the null
Lipschitzness classes in Definition 2.1. Our first result shows that the class of Hölder smooth
distributions contains the class of TV smooth distributions and χ2 smooth distributions.

LEMMA 6.1. We have the following inclusions:

P
′
0,[0,1],χ2(L) ⊆ P

′
0,[0,1],TV2(L),(6.1)

P ′
0,[0,1],TV(

√
L) ⊆ P ′

0,[0,1],TV2(L).(6.2)

PROOF. To prove this result, we state a simple but useful direct corollary of the Cauchy–
Schwarz inequality, which is also known in the literature as the T2 Lemma.

LEMMA 6.2 (T2 Lemma). For positive reals {ui}i∈[k] and {vi}i∈[k], we have

(
∑

i∈[k] ui)
2

∑
i∈[k] vi

≤
∑

i∈[k]

u2
i

vi

.

By the T2 Lemma, it is simple to see that

dχ2(pX|Z=z,pX|Z=z′) =
∑

x

(pX|Z(x|z) − pX|Z(x|z′))2

pX|Z(x|z′)

≥
(
∑

x |pX|Z(x|z) − pX|Z(x|z′)|)2

∑
x pX|Z(x|z′)

= ‖pX|Z=z − pX|Z=z′‖2
1.

Hence we have that

dχ2(pX|Z=z,pX|Z=z′) ≤ L
∣∣z − z′∣∣ =⇒ ‖pX|Z=z − pX|Z=z′‖1 ≤

√
L

∣∣z − z′∣∣,

and, therefore, we obtain the inclusion in (6.1).
To derive the second inclusion, note that when z, z′ ∈ [0,1] we have |z − z′| ≤

√
|z − z′|

and, therefore,

‖pX|Z=z − pX|Z=z′‖1 ≤
√

L
∣∣z − z′∣∣ =⇒ ‖pX|Z=z − pX|Z=z′‖1 ≤

√
L

∣∣z − z′∣∣. �

In Definition 2.1, we assume that the marginal distributions of X and Y conditional on Z

are each smooth. Our next result shows that up to a factor of 2 this is equivalent to assuming
TV Lipschitzness on the joint distribution of (X,Y ) conditional on Z.

LEMMA 6.3. Define the class of distributions P ′′
0,[0,1],TV(L) ⊂P ′

0,[0,1] such that for each

pX,Y,Z ∈ P ′′
0,[0,1],TV(L) and all z, z′ ∈ [0,1]:

‖pX,Y |Z=z − pX,Y |Z=z′‖1 ≤ L
∣∣z − z′∣∣.

Then

P ′′
0,[0,1],TV(L) ⊆ P ′

0,[0,1],TV(L) and P ′
0,[0,1],TV(L) ⊆ P ′′

0,[0,1],TV(2L).

PROOF. The first inclusion is a consequence of the triangle inequality:

max
(
‖pX|Z=z − pX|Z=z′‖1,‖pY |Z=z − pY |Z=z′‖1

)
≤ ‖pX,Y |Z=z − pX,Y |Z=z′‖1.

To obtain the second inclusion, we note that pX,Y |Z=z = pX|Z=zpY |Z=z and pX,Y |Z=z′ =
pX|Z=z′pY |Z=z′ , and that dTV is subadditive on product distributions [37] so that

‖pX,Y |Z=z − pX,Y |Z=z′‖1 ≤ ‖pX|Z=z − pX|Z=z′‖1 + ‖pY |Z=z − pY |Z=z′‖1.
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�

Similar statements to Lemma 6.3 hold for the classes P ′
0,[0,1],TV2(L) and P0,[0,1]3,TV. For

brevity, we do not state them here. We now state another similar result for the Lipschitzness
class P ′

0,[0,1],χ2 .

LEMMA 6.4. Define the class of distributions P ′′
0,[0,1],χ2(L) ⊂ P ′

0,[0,1], such that for each

pX,Y,Z ∈ P ′′
0,[0,1],χ2(L) and all z, z′ ∈ [0,1] we have

dχ2(pX,Y |Z=z,pX,Y |Z=z′) ≤ L
∣∣z − z′∣∣.

Then

P ′′
0,[0,1],χ2(L) ⊆ P ′

0,[0,1],χ2(L) and P ′
0,[0,1],χ2(L) ⊆ P ′′

0,[0,1],χ2

(
2L + L2)

.

PROOF. We start by showing the first inclusion. Note that by the T2 lemma

dχ2(pX,Y |Z=z,pX,Y |Z=z′) =
∑

x,y

p2
X,Y |Z(x, y|z)

pX,Y |Z(x, y|z′)
− 1

≥
∑

x

(
∑

y pX,Y |Z(x, y|z))2

∑
y pX,Y |Z(x, y|z′)

− 1 = dχ2(pX|Z=z,pX|Z=z′).

By symmetry, it also follows that dχ2(pX,Y |Z=z,pX,Y |Z=z′) ≥ dχ2(pY |Z=z,pY |Z=z′) which
shows the first inclusion. For the second inclusion using the fact that pX,Y |Z=z =
pX|Z=zpY |Z=z and pX,Y |Z=z′ = pX|Z=z′pY |Z=z′ , it is simple to verify that

dχ2(pX,Y |Z=z,pX,Y |Z=z′) = dχ2(pX|Z=z,pX|Z=z′) + dχ2(pY |Z=z,pY |Z=z′)

+ dχ2(pX|Z=z,pX|Z=z′)dχ2(pY |Z=z,pY |Z=z′),

which yields the desired conclusion by noting that this expression in turn is smaller than
2L|z − z′| + L2|z − z′|2 ≤ 2L|z − z′| + L2|z − z′|, when pX,Y,Z ∈ P ′

0,[0,1],χ2(L). �

A similar result also holds for the set P0,[0,1]3,χ2(L) but once again we do not state the
result here for brevity.

6.2. Distribution families in our Lipschitzness classes. Next, we give some concrete ex-
amples of distributions which belong to the different Lipschitzness classes. We begin by
showing that smoothness of the log-conditional density is sufficient to ensure that the dis-
tribution belongs to both the TV and χ2 Lipschitzness classes. We then show that a broad
subset of exponential family distributions have a smooth log-conditional distributions.

LEMMA 6.5. Take a distribution pX,Y,Z ∈ P ′
0,[0,1]. Suppose that the functions

logpX|Z(x|z), logpY |Z(y|z) are L-Lipschitz in z for all values of x and y. Then the dis-

tribution pX,Y,Z belongs to P ′
0,[0,1],TV(eL − 1) ∩P ′

0,[0,1],χ2(e
L − 1).

PROOF. We begin by showing that pX,Y,Z ∈P ′
0,[0,1],χ2(e

L − 1). Note that

∑

x

p2
X|Z(x|z)

pX|Z(x|z′)
− 1 =

∑

x

(
pX|Z(x|z)
pX|Z(x|z′)

− 1
)
pX|Z(x|z).
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As a consequence it suffices to show that

pX|Z(x|z)
pX|Z(x|z′)

− 1 ≤
(
eL − 1

)∣∣z − z′∣∣,

for all z, z′ ∈ [0,1] and all x (and the analogous claim for pY |Z) in order to conclude that
pX,Y,Z ∈ P ′

0,[0,1],χ2(e
L −1). Since logpX|Z(x|z) is L-Lipschitz in z, it follows that for values

of |z − z′| ≤ 1:

pX|Z(x|z)
pX|Z(x|z′)

− 1 ≤ exp
(
L

∣∣z − z′∣∣) − 1 = L
∣∣z − z′∣∣ +

∑

k≥2

(
L

∣∣z − z′∣∣)k/k!

≤ L
∣∣z − z′∣∣ + L

∣∣z − z′∣∣ ∑

k≥2

Lk−1/k! = L
∣∣z − z′∣∣ + L

∣∣z − z′∣∣(eL − 1 − L
)
/L

=
(
eL − 1

)∣∣z − z′∣∣.
This, together with an identical claim for pY |Z , proves the first claim, that is, pX,Y,Z ∈
P ′

0,[0,1],χ2(e
L − 1). To establish the second claim, note that

∑

x

∣∣pX|Z(x|z) − pX|Z
(
x|z′)∣∣

=
∑

x

(
max(pX|Z(x|z),pX|Z(x|z′))

min(pX|Z(x|z),pX|Z(x|z′))
− 1

)
min

(
pX|Z(x|z),pX|Z

(
x|z′))

≤
∑

x

(
max(pX|Z(x|z),pX|Z(x|z′))

min(pX|Z(x|z),pX|Z(x|z′))
− 1

)
pX|Z(x|z).

Hence the same proof as above applies. This completes the proof. �

We now state several similar and related results without proof, noting that their proofs are
nearly identical to the proof of Lemma 6.5.

LEMMA 6.6. Take a distribution pX,Y,Z ∈ Q′
0,[0,1]. Suppose that the function

logpX,Y |Z(x, y|z) is L-Lipschitz in z for all values of x and y. Then pX,Y,Z ∈ Q′
0,[0,1],TV(eL−

1).

LEMMA 6.7. Let pX,Y,Z ∈ P0,[0,1]3 . Suppose that the functions logpX|Z(x|z),
logpY |Z(y|z) are L-Lipschitz in z for all values of x and y. Then the distribution pX,Y,Z

also belongs to pX,Y,Z ∈ P0,[0,1]3,TV(eL − 1) ∩P0,[0,1]3,χ2(eL − 1).

LEMMA 6.8. Let pX,Y,Z ∈ Q0,[0,1]3 . Suppose that the function logpX,Y |Z(x, y|z) is L-

Lipschitz in z for all x and y, and further that the function pX,Y |Z(x, y|z) is jointly C-

Lipschitz in x and y, for all z, that is,
∣∣pX,Y |Z(x, y|z) − pX,Y |Z

(
x′, y′|z

)∣∣ ≤ C
(∣∣x − x′∣∣ +

∣∣y − y′∣∣).(6.3)

Then pX,Y,Z ∈ Q0,[0,1]3,TV((eL − 1) ∨
√

2C,1).

Lemmas 6.6 and 6.8 are regarding the continuous case, and are therefore slightly different
from Lemmas 6.5 and 6.7. Hence for completeness, we give the proof of Lemma 6.8 in
the supplement. Roughly, these results taken together show that Lipschitzness of the log
conditional density imply the various Lipschitzness conditions we impose. Our next set of
results shows that a broad class of natural exponential family type distributions, in fact, have
smooth log conditional densities.
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LEMMA 6.9. Consider the density pW |Z(w|z) ∝ exp(g(w, z)), where g(w, z) is an L-

Lipschitz function in z ∈ [0,1] for all values of w. Then the function logpW |Z(w|z) is 2L-

Lipschitz.

We note that in the lemma above, W can be taken as a vector of any dimension so the
lemma applies to pX|Z(x|z) and pY |Z(y|z) as well as to pX,Y |Z(x, y|z). The lemma also
applies in both discrete W as well as continuous W cases.

PROOF. We consider the differences

log
exp(g(w, z))

∑
w exp(g(w, z))

− log
exp(g(w, z′))

∑
w exp(g(w, z′))

≤
(
g(w, z) − g

(
w,z′)) − log

∑
w exp(g(w, z))

∑
w exp(g(w, z′))

.

Next, we use Jensen’s inequality and the fact that—log is a convex function to show that

− log

∑
w exp(g(w, z))

∑
w exp(g(w, z′))

= − log

∑
w exp(g(w, z′)) exp(g(w, z) − g(w, z′))

∑
w exp(g(w, z′))

≤
∑

w

exp(g(w, z′))
∑

w exp(g(w, z′))

(
g
(
w,z′) − g(w, z)

)

≤
∑

w

exp(g(w, z′))
∑

w exp(g(w, z′))

∣∣g
(
w,z′) − g(w, z)

∣∣

≤ L
∣∣z − z′∣∣.

Putting things together, we get

log
exp(g(w, z))

∑
w exp(g(w, z))

− log
exp(g(w, z′))

∑
w exp(g(w, z′))

≤
∣∣g(w, z) − g

(
w,z′)∣∣ + L

∣∣z − z′∣∣ ≤ 2L
∣∣z − z′∣∣.

Reversing the roles of z and z′ we conclude. The same proof goes through in the continuous
case, where summations have to be substituted with integrals. �

Finally, in the continuous case we provide a family of distributions for which
logpX,Y |Z(x, y|z) is L-Lipschitz in z and pX,Y |Z(x, y|z) is C-Lipschitz in x and y as re-
quired in Lemma 6.8.

LEMMA 6.10. Suppose that g(x, y, z) : [0,1]3 
→ [−M,M] is a bounded L-Lipschitz

function, that is, |g(x, y, z) − g(x′, y′, z′)| ≤ L(|x − x′| + |y − y′| + |z − z′|). Take

pX,Y,Z(x, y, z)∝ exp(g(x, y, z)). Then

pX,Y |Z(x, y|z) =
exp(g(x, y, z))∫

[0,1]2 exp(g(x, y, z)) dx dy
,

satisfies (6.3) with a constant C = Le2M and, furthermore, ‖pX,Y |Z=z − pX,Y |Z=z′‖1 ≤
(e2L − 1)|z − z′|.

PROOF. By Lemmas 6.8 and 6.9, since g is L-Lipschitz in z for all x, y we have that
‖pX,Y |Z=z − pX,Y |Z=z′‖1 ≤ (e2L − 1)|z − z′|. It remains to show that (6.3) holds with the



CONDITIONAL INDEPENDENCE TESTING 2173

appropriate constant C. By definition, we have

| exp(g(x, y, z)) − exp(g(x′, y′, z))|∫
[0,1]2 exp(g(x, y, z)) dx dy

≤ exp(M)
∣∣exp

(
g(x, y, z)

)
− exp

(
g
(
x′, y′, z

))∣∣.

Denote for brevity g = g(x, y, z) and g′ = g(x′, y′, z) and note that |g|, |g′| ≤ M . By a Taylor
expansion,

∣∣eg − eg′ ∣∣ ≤
∣∣g − g′∣∣

∞∑

k=1

∑k−1
i=0 |g|i |g′|(k−1−i)

k!
≤

∣∣g − g′∣∣ exp(M)

≤ L exp(M)
(∣∣x − x′∣∣ +

∣∣y − y′∣∣).

We conclude that

| exp(g(x, y, z)) − exp(g(x′, y′, z))|∫
[0,1]2 exp(g(x, y, z)) dx dy

≤ L exp(2M)
(∣∣x − x′∣∣ +

∣∣y − y′∣∣),

which is our desired result. �

7. Simulations. In this section, we report some numerical results on synthetic data to
validate some of our theoretical predictions.

We note that all of our procedures require specifying a rejection threshold τ for the differ-
ent tests. While we know the precise order of τ we do not know the appropriate constant. In
order to handle this in practice, we use a permutation approach which is often used in practice
(see, for instance, [41]). In more detail, we calculate the statistic T , and perform a permuta-
tion to obtain a reference distribution for the test statistic T under the null hypothesis. Recall
that we construct the datasets Dm = {(Xi, Yi) : Zi ∈ Cm, i ∈ [N ]} for each of the d bins Cm.
For each Dm we permute the Xi and Yi values to simulate independently drawn values. Sup-
pose that σm samples fall in the bin Cm, then for a permutation π : [σm] 
→ [σm] we consider
Dπ

m = {(Xπ(i), Yi) : Zi ∈ Cm, i ∈ [N ]}. We recalculate the statistic T over different sets Dπ
m

(using different permutations π for each set), and we repeat this M times, each time denoting
the value permuted statistic with Ti for i ∈ [M]. Finally, we compare our statistic T with the
values of the statistics in the set {T1, . . . , TM} and return the value M−1 ∑

i∈[M] 1(Ti > T ).
We would then reject the null hypothesis if this value is smaller than some pre-specified cutoff
(say 0.05).

This procedure is motivated by the intuition that permuting indexes within bins Zi ∈ Cm

generates approximately conditionally independent samples. While this intuition is apparent,
in contrast to the settings of two-sample testing and independence testing, it is not straight-
forward to show that this procedure correctly controls the Type I error. We note that this
permutation procedure works remarkably well in practice. However, rigorously proving the
validity of this permutation procedure, and studying its power, warrants further research and
is delegated to future work.

7.1. Finite discrete X and Y . In this subsection, we consider finite discrete X and Y

with fixed number of categories ℓ1 = 2 and ℓ2 = 3. In order for us to construct examples that
satisfy the conditions of Theorems 5.2 or 5.5, we rely on the examples studied in Section 6.
Under the null hypothesis, we consider the following probabilities:

pX,Y |Z(1,1|z)∝ exp
(
z + tanh(z)

)
, pX,Y |Z(1,2|z)∝ exp

(
z + cos(z)

)
,

pX,Y |Z(1,3|z)∝ exp
(
z + sin(z)

)
, pX,Y |Z(2,1|z) ∝ exp

(
cos(z) − 1 + tanh(z)

)
,

pX,Y |Z(2,2|z)∝ exp
(
cos(z) − 1 + cos(z)

)
, pX,Y |Z(2,3|z)∝ exp

(
cos(z) − 1 + sin(z)

)
.
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FIG. 2. This figure displays the size and power of the test in the discrete X,Y and continuous Z example. We

see that under the null hypothesis the size is gravitating around 0.05 which is also the most common size across

all simulations. The power of the test increases steadily with the increase of the sample size, and reaches 1 when

the sample size is 1000.

In this setting, all of the exponents are Lipschitz, and can be decomposed so that the random
variables are conditionally independent. Under the alternative, we consider the following
distribution:

pX,Y |Z(1,1|z)∝ exp(z), pX,Y |Z(1,2|z)∝ exp
(
tanh(z)

)
,

pX,Y |Z(1,3|z)∝ exp
(
sin(z)

)
, pX,Y |Z(2,1|z)∝ exp

(
cos(z)

)
,

pX,Y |Z(2,2|z)∝ exp(z + 1), pX,Y |Z(2,3|z)∝ exp
(
tanh(z) − 1

)
.

In the example above, the probabilities do not factor as products so the variables are not con-
ditionally independent; however, all functions in the exponents are still Lipschitz so that the
distribution is TV smooth by Lemma 6.9. Figure 2 shows the results of running the weighted
test of Section 5.2 on the above examples. For each sample size of N = 100,200, . . . ,1000,
we perform 100 simulations. Within each simulation, we permute M = 100 times and com-
pute the value M−1 ∑

i∈[M] 1(Ti > T ). The final size and power are calculated based on how
many (out of the 100) values were smaller than or equal to 0.05.

7.2. Continuous X,Y and Z. In this subsection, we consider the following examples.
Under H0, we generate

X =
U1 + Z

2
and Y =

U2 + Z

2
,

where U1,U2,Z ∼ U([0,1]) are independent. Under the alternative, H1, we generate

X =
U1 + U + Z

3
and Y =

U2 + U + Z

3
,

where U,U1,U2,Z ∼ U([0,1]) are independent. A straightforward calculation (see Ap-
pendix F of the supplement) shows that these distributions belong to the classes P0,[0,1]3,TV(L)

and Q0,[0,1]3,TV(L,1) (respectively) for appropriately chosen constants L, so that the condi-
tions of Theorem 5.6 hold.

Figure 3 shows the results of running the weighted continuous test described in Sec-
tion 5.3 for these examples. For each sample size of N = 100,200, . . . ,1000, we perform
100 simulations. Within each simulation, we permute M = 100 times and compute the value
M−1 ∑

i∈[M] 1(Ti > T ). The final size and power are calculated based on how many (out of
the 100) values were smaller than or equal to 0.05.
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FIG. 3. This figure displays the size and power of the test in the continuous X,Y,Z example. We see that under

the null hypothesis the size is very slightly inflated at 0.06 for most of the simulations, which may be due to the

limited number of replications of each simulation and also due to the limited number of permutations within each

simulation. The power of the test increases steadily with the increase of the sample size, and reaches 0.9 when the

sample size is 1000.

8. Discussion. In this paper, we have studied nonparametric CI testing from a minimax
perspective. We derived upper and lower bounds on the minimax critical radius in three main
settings—(1) X,Y discrete and supported on a fixed number of categories, Z continuous on
[0,1], (2) X,Y discrete on a growing number of categories Z continuous on [0,1] and (3)
X,Y,Z absolutely continuous and supported on [0,1].3 In order to develop interesting min-
imax bounds, we introduced and studied several natural Lipschitzness conditions for condi-
tional distributions. In addition, we provided a novel construction of a coupling between a
conditionally independent distribution and an arbitrary distribution of bounded support, lead-
ing to a new proof of the hardness result of Shah and Peters [31]. Finally, the CI tests that we
developed are implementable and perform well in practice as evidenced by our simulation
study in Section 7.

There are several open questions which we intend to investigate in our future work. Moving
beyond the total variation metric, a natural challenge is to derive minimax rates for the critical
radius in other metrics. Another technical challenge is to move beyond the requirement that
ℓ4

1
ℓ2

� n3 (where ℓ1 ≥ ℓ2), which we impose in the scaling ℓ1, ℓ2 case. We believe that the
analysis in this case is challenging and would require designing new tests, or deriving new
lower bound techniques, and is left for future research. Identifying conditions under which
the natural permutation procedure of Section 7 correctly controls the Type I error and has
high power is also a challenging direction that we hope to pursue.
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proofs as well as some extensions of the results presented in the main text.
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