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1. Introduction

Variational fracture has been very successful for studying static and quasi-static fracture (see [1] and [2] for
overviews), but only for problems with Dirichlet boundary conditions, possibly with traction-free conditions
on part of the boundary. Considering mixed boundary conditions, with a load applied to part of the
boundary, has been seen as problematic, and even impossible, as we describe below. Here we propose a
different variational formulation from the most natural one, and a method for finding solutions.

To make the presentation as simple as possible, we consider only scalar valued displacements, and the
simplest elastic energy, % f o |Vu|2, for the displacement u on 2 C RY. We now describe the issue with
combining variational Griffith fracture with boundary loads, noting that cohesive fracture is similar. First,
we decompose df2 into the disjoint union of measurable sets dp 2 and dy 2, where Op {2 is the Dirichlet part
of the boundary, and dy {2 is the Neumann part.

The variational formulation of equilibrium Griffith fracture (based on global minimization) with specified
Dirichlet data g and preexisting crack I" is to minimize

Ep[I(u) ::;/Q|Vu2+’HN_1(Su\F)

over u € SBV(£2) with u = g on dp {2 (see [3] for the definition and properties of SBV'). We write Ep to
emphasize that only Dirichlet boundary values will be imposed when minimizing this energy. A minimizer
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u will satisfy

/ Vu-Vo =0 (1.1)
Q
for all ¢ € SBV(12) satisfying ¢ = 0 on dpf2 and Sy C S, U I'. This is the weak form of

Au=0in 2\ (S, UT'), u=gondp, dyu=0o0nS, Ul Udy1, (1.2)

where v is normal to S, and I', and is the outer normal to 0f2. Minimizers of Ep will also satisfy Griffith’s
stability [4], that for any increment A" in S, U I and function v € SBV({2) with the same boundary
condition as u and S, = .S, UI U AI', we have

1 1
/ |Vul® — / Vo> <HN-LAT). (1.3)
2 /g 2 /)0
At the same time, the variational formulation for solutions u of
Au=0in {2, u=gondpf?, O,u= fon Oyn{? (1.4)

is to minimize 1
En(u) = 2/ Vu|” — fu
Q ON 02

over u € H'(£2) with u = g on dpf2. Here we write Ex to emphasize that we minimize this energy to get
the Neumann boundary condition on Oy {2. A minimizer u will satisfy

/w-w— fo=0 (1.5)
0] ON R

for all ¢ € H'(£2) satisfying ¢ = 0 on dp {2, which is the weak form of (1.4).
A natural question is then how to combine (variationally) (1.4) with (1.2) and (1.3): what is a variational
problem that will produce a u satisfying

Au=0in 2\ (S, UTI'), u=gondpR, Ou=fondynf2, du=0onS,Ul, (1.6)

together with (1.3)7
There is an immediate answer: combine Ep and Ey, and minimize

Ern(u) ::;/Qm\2+HN1(su\r)— [ (1.7)

over u € SBV(§2) with uw = g on Op 2. A minimizer u will then satisfy (1.6) and (1.3), as desired. But there
is a fatal problem readily found in the literature (see, e.g., [2]): there cannot be a minimizer of (1.7) unless
f = 0. The reason is straightforward: the crack S, can disconnect part of dn {2 from Jdp{2, and then the
infimum of (1.7) is minus infinity. In essence, the problem is that the crack and Neumann boundary term
can collaborate to make the energy arbitrarily low. Our proposal here is to hide these terms from each other
and prevent this collaboration.

Specifically, we propose finding » that simultaneously solves two variational problems. Instead of com-
bining the energies Ey and Ep into one enegy, we look for u minimizing both, so that it satisfies (1.6) and
(1.3), a subtle point being that its competitors for the latter (and Ep) satisfy the same Dirichlet condition
on all of Af2. The idea is the crack energy and the Neumann boundary term do not appear in the same
energy, so they cannot collaborate, and each energy can be minimized. Actually, we will see at the end, in
Remark 2.10, that it is possible to consider just one energy, with a restriction on admissible competitors.

Another way of viewing this formulation is as follows. Suppose u minimizes Ep subject to u = g on dp {2
and v = h on On {2, and happens to satisfy d,u = f on Iy 2. Is this not a solution to variational fracture
with the boundary conditions we seek? It is solutions like this that we will be producing.

We now turn to the question of existence. We show one method, and note that there may be others that
are better at avoiding material failure, defined below. For further ease of exposition, we will consider the
case that the Dirichlet boundary condition g is identically zero.
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2. Existence

Definition 2.1. Allowing cracks along the boundary of {2 generally involves some notational issues. Here
we do something slightly different from what has been done previously, but we believe it is the simplest way
of considering the issue. The problem is the meaning of u on 92, when u € SBV({2). The usual meaning
is the trace of u, denoted Tu, which is a limit of values of u as the boundary is approached. The idea here
is simply that we will consider u : 2 — R that take values on 92, but these values are not necessarily the
trace, in which case such points are included in the jump set of u, S,. So, here, for regular domains {2, we
say u € SBV(2) if u: 2 — R, u|gp € LY (002; HN71002), u|o € SBV(£2) (in the usual sense), and

Sy =Sy, U{z € 902 : Tu(x) # u(z)}.

ulo

To begin the existence argument, we first choose a minimizer u; of
1 2
En(u) = 3 |Vu|® — fu
Q ON 0

over u € H'(§2) satisfying u = 0 on dp 2. This will be used to supply Dirichlet data on 9y {2 when finding
v1: minimize

1
Ep(u) = 2/9|Vu|2+”HN1(Su)

over u € SBV (£2) satisfying u = 0 on dpf2 and u = u; on Iy 2.
We repeat this process recursively to find w, and v, as follows: First, Iy = §,, and for n > 2,
I'n_1=1,_2US,, . Then choose u, that minimizes

1
En(u) ::2/9Vu|2— ; qu
N

over u € SBV () satisfying S, C I',_1 and u = 0 on dpf2 (there is a potential issue with the existence of
such a minimizer; we address this shortly in a remark below). Now choose v,, that minimizes

Ep[ly-1](u) = % /Q |Vu\2 + ,HNil(Su \I'n-1)

over u € SBV(£2) satisfying v = 0 on dpf2 and u = u, on Oy 2. Note again that in this minimization we
include in u’s discontinuity set, Sy, the set {x € dp 2 : Tu(z) # 0} and {z € IN2 : Tu(x) # uy(x)}.

The hope is that u,, weakly converges to a u, that minimizes both En and Ep[I'w] over the appropriate
classes of competitors, where Iy := U, I,,.

Remark 2.2. There is necessarily a possibility of material failure when there are loads and fracture. When
we minimize, the second term in Ep, the boundary term, wants to go to minus infinity, but is held back by
the combination of the Dirichlet data on dpf2 and the stored elastic energy, which normally would increase
as the boundary term in the energy decreases. However, if the crack at stage n, I,,_1, disconnects dp {2 from
part of On {2, then the infimum of the energy is minus infinity, and there is no minimizer.

Note that this lack of solution is not caused by the variational formulation—in this case, there is in fact
no solution to the Neumann problem. For this reason, we must allow for the possibility that the material
fails under the boundary load. This failure can also occur in the limit, as n tends to infinity (which limit we
will eventually take), and so we will consider the material to have failed if at some stage n a minimizer w,,
does not exist, or {||un||ls} is not bounded, where |[u|oo = max{||ul|zo ), |ull L @0) }-

A similar failure occurs if I'n, = U,I,, partly lies along Oy {2, resulting in the Neumann problem not
being solvable for the limit. For simplicity, we strengthen this condition, and say that the material fails if
dist(I's, On §2) = 0 (in the natural measure theoretic sense). This is all encapsulated in the definition below.
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At this point, a natural question, or even objection, might be, how is the above failure different from the
non-existence problem described earlier? The key difference is that, with the latter, failure is guaranteed
due to direct interaction between the crack and boundary term. Here, it is only a possibility, as the crack
might happen to grow to meet dy {2, or in a way that disconnects dp {2 from part of dn {2, oblivious to the
existence of a boundary energy term.

Finally, we note that it seems possible that in some situations, there does exist a u that minimizes both
FEn and Ep, but when we do the above recursive approach, the crack grows in a way that results in failure.
For this reason, it would be interesting to explore other approaches to existence.

Definition 2.3. We say the material does not fail under the boundary load f if the following hold:

(1) Each w, exists, and {||u,||s} is bounded
(2) dist(l's,On2) > 0.

We will see below that condition (1) implies { Ex(u,)} and {Ep(u,)} are bounded, and HVN~1(I'y,) < oc.

Theorem 2.4. If the material does not fail under the boundary load f € L'(OnS2), then there exists

Uoo € SBV(£2) such that, up to a subsequence,
Uy, — Uso Tn SBV(12),

Uso minimizes Ex over functions in {u € SBV(£2) : Sy C I'so,u = 0 on Op N}, and it minimizes Ep[ls]
over {u € SBV (2): u = uy on 002}.

The proof will be done in two parts. From here on, we will assume that Definition 2.3 holds. First, we
have

Lemma 2.5. There exists oo € SBV(D) such that, up to a subsequence, U, — Uso, aNd Uso MINIMizes
1 _
Ep(Ll(w) = 5 [ |Vuf® + MY (S, I)
Q

overu € SBV (), u = us on 812. Furthermore, for all ¢ € SBV () satisfying ¢ = 0 on 02 and Sy C I,
we have

/Vun-v¢—>0.
o)

Proof. The existence of a weak limit u, (of a subsequence) will follow from the boundedness of {||uy||},
{En(un)}, {HNY(I,)}, and SBV compactness (see [3]), with it remaining to define u., on 942. We first
note some monotonicity properties. For all n > 2, it is immediate from the minimality of u,, that

1 1
2/ |Vun|2 — fu, < 2/ |an_1\2 - fon_1, (2.1)
2 On 2 2 N2

and from the minimality of v,_;, that, since u,_1 = v,,_1 on On {2,

1 1
s [l = [ o <g [ Vual - [ fun - MU, (22)
Q IS, Q ",

Furthermore, since u, is an admissible variation for its minimality, as in (1.5) we get

/ Vu, - Vu, = fun.
0 oN 2

4
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Below we will refer to the right hand side as the Neumann energy of w,,.

‘We now have ]

1 1
/ [V, |* — fun, = —/ [Vu,|> = —= f,. (2.3)
2 N2 2 Jq 2 Jone

Combining this with (2.1) and (2.2), we get

/ [Vu n[ / |V, 1| and /aNqun Z/BNqunl. (2.4)

By the boundedness of |[u, ||~ and by (2.3), we have boundedness of the elastic and Neumann energies, and
by the monotonicity (2.4), the sequences of elastic and Neumann energies converge. Let C, and 2C, be their
respective limits. Then En(u,) converges to —C',, by (2.3).

Next, we look at HV~1(I,). Combining (2.1) and (2.2) we get

7_[]\]71([177,71 \ Fn72) + EN(un) S EN(unfl)-
For m > n and iterating the above, we get
HY N1 \ Tuzt) + En(um) < En(up). (2.5)

Since I; C ;41 Vi € N, it follows that HY =2 (I 1\ 1) — HY (I \ I'h—1) as m — o0o. So taking the
limit in (2.5) as m — oo gives
HN_I(FOO \ Fn—l) —CL < EN(“n)y

so that HN~1(I'y,) < 0o. We then also have HN~1(I',, \ I,) — 0, and by SBV compactness, a subsequence
of {u,} weakly converges to a u., € SBV(§2) with S, C s, where

uOO|aD.Q = 07 uoo|8NQ = TuOO

We now want to establish that the elastic energies of v,, also converge to C'1,. Since by assumption the u,
are bounded in L, so are the v,, by the maximum principle. From (2.2), the fact that v,, are bounded in
L*°(£2), and the fact that

HN N1\ T) — 0,

we have

1
limsup/ [Vun|* < CL.
2 /)0

Similarly, from (2.1), we have
. . ]- 2 ]. 2
liminf = [ |Vu,|” > Cp, andso = [ |Vu,|” — CL.
2Ja 2Ja
Now suppose there exists ¢ € SBV () with ¢ = 0 on 042 and
1 1
[ 190+ 0 + WS, T) < 5 [ Vsl 4 MY (1),
2J)a 2J)a
This is equivalent to the energy difference being negative:
1 2 g /N-1 _
Vi - Vo + 3 IVo|" + H" 7 (Sp \ I's) =1 < 0. (2.6)
Q Q
But the left hand side of (2.6) is equal to the limit of

[ Vun- Vo5 [ [96F MY NS\ L),
£ £
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since HN =1 (I's, \ I'y) — 0, which means that, for n large enough, since

1 1
2/Q|wn|2 - 2/Q|an|2 —0,
we have

1 1 1
2 /Q [V (un + @)+ HY Sy U L) < 5 /Q V| + MY L) + 5 < 5 /Q Vo |* + HN NI,

contradicting the minimality of v,,.

Similarly, if ¢ € SBV ({2) with ¢ =0 on 02 and Sy C I'x, and

/ Vi, - Vo —n#0
2
then for n large enough
1 1
/ IV (un 4+ Ap))* + HVN LS, UT,) < / IVun|® + 1N YT,
2Ja 2Ja
for A small enough, and with the correct sign, since the difference between the energy of u,, + A¢ and u,, is

)\/ vun-wﬂzl/ Vo> + HNL(S4\ T,
2 2 2

and the last term goes to zero since S, C ['s. Again, this contradicts the minimality of v, for n large
enough. [

We then address minimizing Fy .

Lemma 2.6. u. minimizes

1
EN(u)ZQ/Q]Vu|2— : qu
N

over u € SBV () with u =0 on dp2 and S, C I'.

Proof. Let ¢ € SBV () with ¢ = 0 on dpf2, Sy, C I's, and Ex(¢)) < co. Choose ¢ € H'(£2) such
that ¢ = 0 on dpf2 and ¢ = v on Oy {2, which is possible because of (2) in the non-failure condition,
dist(l's, N §2) > 0 — because of this condition, 1 is an H! function in a neighborhood of dx {2, and so the
extension to ¢ is straightforward. We also consider ¢ € SBV (£2), extending to 02 using its trace.

Suppose En(us + 1) < En(us), which means

/Qwoo-vwzw fi

CINE?)

for some v < 0. From the minimality of u,,, the convergence of u,, to u~, and the fact that ¢ is an admissible
variation of u,, for Ey, we have

O—/Vun-Vd>—/ f¢—>/Vuoo-V¢— fo.
17) On 2 7] oN 2
Hence, since ¢ — ¢ € SBV (£2) with (¢ — ¢) =0 on 92 and Sy_4 C ', by Lemma 2.5 we have
0 [ Vun-Vw-0)srt [ g [ go-n
N 8N~Q 8N.Q

a contradiction. [

This completes the proof of Theorem 2.4.
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Remark 2.7. A natural question, since we show existence only when there is not failure, is whether failure
is common, or even certain. We note that, as we mentioned in the introduction, every solution u to a pure
Dirichlet problem is also a solution to a mixed problem, as we can designate part of the boundary that
is away from the crack as Oy {2, and set f := J,u on On{2. Then, u is a solution to variational fracture
with boundary load f on Oy {2. This shows that the formulation here is not vacuous. Furthermore, studying
conditions on {2 and f guaranteeing existence (or non failure) seems to be an interesting direction to explore.

In addition, we note that part 2 of our failure definition is, for simplicity, a bit unnecessarily strong. It
would be interesting to show that it is sufficient if HY ~1(I'n NN ) = 0.

We conclude with some small extensions and further remarks.

Note first that if we replace I'n, with S, in the previous lemmas, there is no effect on the energy of uq,
but there is an increase in the energy of competitors, or there is a reduction in the class of competitors, so
we have

Lemma 2.8. u., minimizes
1
Ep(Su)(w) =5 [ [Vuf 4 HY 15\ Su)
Q
over u € SBV(2), u=0 on 0pf2, u = us, on On12.

Lemma 2.9. u., minimizes

1
By =g [ vl = [ pu
N

over u € SBV () withw =0 on dp2 and S, C S, .

Remark 2.10. We can now claim that u., actually does minimize

By (1) ::;/Q|Vu|2+HN_1(Su\FOO)—/8 fu

if the class of competitors is restricted to
{u € SBV(2) : u = us on 002} U {u e SBV(2):8, C I'no,u=0o0ndpN}.

That is, competitors are not allowed to simultaneously vary both their boundary data on 9y {2 and the crack.
But this is consistent with Griffith’s idea that cracks compete with elastic energy, not boundary loads.
Note also that in the above minimality, ['w, can be replaced with S,,__, as before.

Finally, we make the following remark.
Remark 2.11. It might seem natural to instead minimize
1 2 N-—1 e .
5 |Vu|® +HY " (Sy) : v minimizes
Q
1 _
v / IVo|? — / fv, over vin SBV(2), v=0o0n dpf2, S, C Su} .
2Ja aND
This would be incorrect, however, since as S,, grows, the class of minimizers for Exn grows, so E decreases,

which means the elastic energy increases, by (2.3). The solution to this minimization problem will therefore
necessarily be S, = @.
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