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a b s t r a c t

Variational fracture has been viewed as incompatible with boundary loads, due

to a straightforward non-existence argument. We introduce a di�erent variational

formulation that includes loads, and we illustrate a method for showing existence.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Variational fracture has been very successful for studying static and quasi-static fracture (see [1] and [2] for
overviews), but only for problems with Dirichlet boundary conditions, possibly with traction-free conditions
on part of the boundary. Considering mixed boundary conditions, with a load applied to part of the
boundary, has been seen as problematic, and even impossible, as we describe below. Here we propose a
di�erent variational formulation from the most natural one, and a method for finding solutions.

To make the presentation as simple as possible, we consider only scalar valued displacements, and the
simplest elastic energy, 1

2
s
⌦ |Òu|

2, for the displacement u on ⌦ µ RN . We now describe the issue with
combining variational Gri�th fracture with boundary loads, noting that cohesive fracture is similar. First,
we decompose ˆ⌦ into the disjoint union of measurable sets ˆD⌦ and ˆN⌦ , where ˆD⌦ is the Dirichlet part
of the boundary, and ˆN⌦ is the Neumann part.

The variational formulation of equilibrium Gri�th fracture (based on global minimization) with specified
Dirichlet data g and preexisting crack � is to minimize

ED[� ](u) := 1
2

⁄

⌦
|Òu|

2 + H
N≠1(Su \ � )

over u œ SBV (⌦) with u = g on ˆD⌦ (see [3] for the definition and properties of SBV ). We write ED to
emphasize that only Dirichlet boundary values will be imposed when minimizing this energy. A minimizer
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u will satisfy ⁄

⌦
Òu · Ò„ = 0 (1.1)

for all „ œ SBV (⌦) satisfying „ = 0 on ˆD⌦ and S„ µ Su fi � . This is the weak form of

�u = 0 in ⌦ \ (Su fi � ), u = g on ˆD⌦ , ˆ‹u = 0 on Su fi � fi ˆN⌦ , (1.2)

where ‹ is normal to Su and � , and is the outer normal to ˆ⌦ . Minimizers of ED will also satisfy Gri�th’s
stability [4], that for any increment �� in Su fi � and function v œ SBV (⌦) with the same boundary
condition as u and Sv = Su fi � fi �� , we have

1
2

⁄

⌦
|Òu|

2
≠

1
2

⁄

⌦
|Òv|

2
Æ H

N≠1(�� ). (1.3)

At the same time, the variational formulation for solutions u of

�u = 0 in ⌦ , u = g on ˆD⌦ , ˆ‹u = f on ˆN⌦ (1.4)

is to minimize
EN (u) := 1

2

⁄

⌦
|Òu|

2
≠

⁄

ˆN⌦
fu

over u œ H
1(⌦) with u = g on ˆD⌦ . Here we write EN to emphasize that we minimize this energy to get

the Neumann boundary condition on ˆN⌦ . A minimizer u will satisfy
⁄

⌦
Òu · Ò„ ≠

⁄

ˆN⌦
f„ = 0 (1.5)

for all „ œ H
1(⌦) satisfying „ = 0 on ˆD⌦ , which is the weak form of (1.4).

A natural question is then how to combine (variationally) (1.4) with (1.2) and (1.3): what is a variational
problem that will produce a u satisfying

�u = 0 in ⌦ \ (Su fi � ), u = g on ˆD⌦ , ˆ‹u = f on ˆN⌦ , ˆ‹u = 0 on Su fi � , (1.6)

together with (1.3)?
There is an immediate answer: combine ED and EN , and minimize

EF N (u) := 1
2

⁄

⌦
|Òu|

2 + H
N≠1(Su \ � ) ≠

⁄

ˆN⌦
fu (1.7)

over u œ SBV (⌦) with u = g on ˆD⌦ . A minimizer u will then satisfy (1.6) and (1.3), as desired. But there
is a fatal problem readily found in the literature (see, e.g., [2]): there cannot be a minimizer of (1.7) unless
f = 0. The reason is straightforward: the crack Su can disconnect part of ˆN⌦ from ˆD⌦ , and then the
infimum of (1.7) is minus infinity. In essence, the problem is that the crack and Neumann boundary term
can collaborate to make the energy arbitrarily low. Our proposal here is to hide these terms from each other
and prevent this collaboration.

Specifically, we propose finding u that simultaneously solves two variational problems. Instead of com-
bining the energies EN and ED into one enegy, we look for u minimizing both, so that it satisfies (1.6) and
(1.3), a subtle point being that its competitors for the latter (and ED) satisfy the same Dirichlet condition
on all of ˆ⌦ . The idea is the crack energy and the Neumann boundary term do not appear in the same
energy, so they cannot collaborate, and each energy can be minimized. Actually, we will see at the end, in
Remark 2.10, that it is possible to consider just one energy, with a restriction on admissible competitors.

Another way of viewing this formulation is as follows. Suppose u minimizes ED subject to u = g on ˆD⌦
and u = h on ˆN⌦ , and happens to satisfy ˆ‹u = f on ˆN⌦ . Is this not a solution to variational fracture
with the boundary conditions we seek? It is solutions like this that we will be producing.

We now turn to the question of existence. We show one method, and note that there may be others that
are better at avoiding material failure, defined below. For further ease of exposition, we will consider the
case that the Dirichlet boundary condition g is identically zero.
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2. Existence

Definition 2.1. Allowing cracks along the boundary of ⌦ generally involves some notational issues. Here
we do something slightly di�erent from what has been done previously, but we believe it is the simplest way
of considering the issue. The problem is the meaning of u on ˆ⌦ , when u œ SBV (⌦). The usual meaning
is the trace of u, denoted Tu, which is a limit of values of u as the boundary is approached. The idea here
is simply that we will consider u : ⌦̄ æ R that take values on ˆ⌦ , but these values are not necessarily the
trace, in which case such points are included in the jump set of u, Su. So, here, for regular domains ⌦ , we
say u œ SBV (⌦̄) if u : ⌦̄ æ R, u|ˆ⌦ œ L

1(ˆ⌦ ; H
N≠1

Âˆ⌦), u|⌦ œ SBV (⌦) (in the usual sense), and

Su := Su|⌦ fi {x œ ˆ⌦ : Tu(x) ”= u(x)}.

To begin the existence argument, we first choose a minimizer u1 of

EN (u) := 1
2

⁄

⌦
|Òu|

2
≠

⁄

ˆN⌦
fu

over u œ H
1(⌦) satisfying u = 0 on ˆD⌦ . This will be used to supply Dirichlet data on ˆN⌦ when finding

v1: minimize
ED(u) := 1

2

⁄

⌦
|Òu|

2 + H
N≠1(Su)

over u œ SBV (⌦̄) satisfying u = 0 on ˆD⌦ and u = u1 on ˆN⌦ .
We repeat this process recursively to find un and vn as follows: First, �1 := Sv1 and for n > 2,

�n≠1 := �n≠2 fi Svn≠1 . Then choose un that minimizes

EN (u) := 1
2

⁄

⌦
|Òu|

2
≠

⁄

ˆN⌦
fu

over u œ SBV (⌦̄) satisfying Su µ �n≠1 and u = 0 on ˆD⌦ (there is a potential issue with the existence of
such a minimizer; we address this shortly in a remark below). Now choose vn that minimizes

ED[�n≠1](u) = 1
2

⁄

⌦
|Òu|

2 + H
N≠1(Su \ �n≠1)

over u œ SBV (⌦̄) satisfying u = 0 on ˆD⌦ and u = un on ˆN⌦ . Note again that in this minimization we
include in u’s discontinuity set, Su, the set {x œ ˆD⌦ : Tu(x) ”= 0} and {x œ ˆN⌦ : Tu(x) ”= un(x)}.

The hope is that un weakly converges to a uŒ that minimizes both EN and ED[�Œ] over the appropriate
classes of competitors, where �Œ := fin�n.

Remark 2.2. There is necessarily a possibility of material failure when there are loads and fracture. When
we minimize, the second term in EN , the boundary term, wants to go to minus infinity, but is held back by
the combination of the Dirichlet data on ˆD⌦ and the stored elastic energy, which normally would increase
as the boundary term in the energy decreases. However, if the crack at stage n, �n≠1, disconnects ˆD⌦ from
part of ˆN⌦ , then the infimum of the energy is minus infinity, and there is no minimizer.

Note that this lack of solution is not caused by the variational formulation—in this case, there is in fact
no solution to the Neumann problem. For this reason, we must allow for the possibility that the material
fails under the boundary load. This failure can also occur in the limit, as n tends to infinity (which limit we
will eventually take), and so we will consider the material to have failed if at some stage n a minimizer un

does not exist, or {ÎunÎŒ} is not bounded, where ÎuÎŒ := max{ÎuÎLŒ(⌦), ÎuÎLŒ(ˆ⌦)}.
A similar failure occurs if �Œ = fin�n partly lies along ˆN⌦ , resulting in the Neumann problem not

being solvable for the limit. For simplicity, we strengthen this condition, and say that the material fails if
dist(�Œ, ˆN⌦) = 0 (in the natural measure theoretic sense). This is all encapsulated in the definition below.

3



C.J. Larsen Applied Mathematics Letters 121 (2021) 107437

At this point, a natural question, or even objection, might be, how is the above failure di�erent from the
non-existence problem described earlier? The key di�erence is that, with the latter, failure is guaranteed
due to direct interaction between the crack and boundary term. Here, it is only a possibility, as the crack
might happen to grow to meet ˆN⌦ , or in a way that disconnects ˆD⌦ from part of ˆN⌦ , oblivious to the
existence of a boundary energy term.

Finally, we note that it seems possible that in some situations, there does exist a u that minimizes both
EN and ED, but when we do the above recursive approach, the crack grows in a way that results in failure.
For this reason, it would be interesting to explore other approaches to existence.

Definition 2.3. We say the material does not fail under the boundary load f if the following hold:

(1) Each un exists, and {ÎunÎŒ} is bounded
(2) dist(�Œ, ˆN⌦) > 0.

We will see below that condition (1) implies {EN (un)} and {ED(un)} are bounded, and H
N≠1(�Œ) < Œ.

Theorem 2.4. If the material does not fail under the boundary load f œ L
1(ˆN⌦), then there exists

uŒ œ SBV (⌦̄) such that, up to a subsequence,

un Ô uŒ in SBV (⌦),

uŒ minimizes EN over functions in {u œ SBV (⌦̄) : Su µ �Œ, u = 0 on ˆD⌦}, and it minimizes ED[�Œ]
over {u œ SBV (⌦̄): u = uŒ on ˆ⌦}.

The proof will be done in two parts. From here on, we will assume that Definition 2.3 holds. First, we
have

Lemma 2.5. There exists uŒ œ SBV (⌦̄) such that, up to a subsequence, un Ô uŒ, and uŒ minimizes

ED[�Œ](u) := 1
2

⁄

⌦
|Òu|

2 + H
N≠1(Su \ �Œ)

over u œ SBV (⌦̄), u = uŒ on ˆ⌦ . Furthermore, for all „ œ SBV (⌦̄) satisfying „ = 0 on ˆ⌦ and S„ µ �Œ,
we have ⁄

⌦
Òun · Ò„ æ 0.

Proof. The existence of a weak limit uŒ (of a subsequence) will follow from the boundedness of {ÎunÎŒ},
{EN (un)}, {H

N≠1(�n)}, and SBV compactness (see [3]), with it remaining to define uŒ on ˆ⌦ . We first
note some monotonicity properties. For all n Ø 2, it is immediate from the minimality of un that

1
2

⁄

⌦
|Òun|

2
≠

⁄

ˆN⌦
fun Æ

1
2

⁄

⌦
|Òvn≠1|

2
≠

⁄

ˆN⌦
fvn≠1, (2.1)

and from the minimality of vn≠1, that, since un≠1 = vn≠1 on ˆN⌦ ,

1
2

⁄

⌦
|Òvn≠1|

2
≠

⁄

ˆN⌦
fvn≠1 Æ

1
2

⁄

⌦
|Òun≠1|

2
≠

⁄

ˆN⌦
fun≠1 ≠ H

N≠1(�n≠1 \ �n≠2). (2.2)

Furthermore, since un is an admissible variation for its minimality, as in (1.5) we get
⁄

⌦
Òun · Òun =

⁄

ˆN⌦
fun.

4
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Below we will refer to the right hand side as the Neumann energy of un.
We now have 1

2

⁄

⌦
|Òun|

2
≠

⁄

ˆN⌦
fun = ≠

1
2

⁄

⌦
|Òun|

2 = ≠
1
2

⁄

ˆN⌦
fun. (2.3)

Combining this with (2.1) and (2.2), we get

1
2

⁄

⌦
|Òun|

2
Ø

1
2

⁄

⌦
|Òun≠1|

2 and
⁄

ˆN⌦
fun Ø

⁄

ˆN⌦
fun≠1. (2.4)

By the boundedness of ÎunÎŒ and by (2.3), we have boundedness of the elastic and Neumann energies, and
by the monotonicity (2.4), the sequences of elastic and Neumann energies converge. Let CL and 2CL be their
respective limits. Then EN (un) converges to ≠CL, by (2.3).

Next, we look at H
N≠1(�n). Combining (2.1) and (2.2) we get

H
N≠1(�n≠1 \ �n≠2) + EN (un) Æ EN (un≠1).

For m > n and iterating the above, we get

H
N≠1(�m≠1 \ �n≠1) + EN (um) Æ EN (un). (2.5)

Since �i µ �i+1 ’i œ N, it follows that H
N≠1(�m≠1 \�n≠1) æ H

N≠1(�Œ \�n≠1) as m æ Œ. So taking the
limit in (2.5) as m æ Œ gives

H
N≠1(�Œ \ �n≠1) ≠ CL Æ EN (un),

so that H
N≠1(�Œ) < Œ. We then also have H

N≠1(�Œ \�n) æ 0, and by SBV compactness, a subsequence
of {un} weakly converges to a uŒ œ SBV (⌦̄) with SuŒ µ �Œ, where

uŒ|ˆD⌦ := 0, uŒ|ˆN⌦ := TuŒ.

We now want to establish that the elastic energies of vn also converge to CL. Since by assumption the un

are bounded in L
Œ, so are the vn, by the maximum principle. From (2.2), the fact that vn are bounded in

L
Œ(⌦), and the fact that

H
N≠1(�n≠1 \ �n≠2) æ 0,

we have
lim sup 1

2

⁄

⌦
|Òvn|

2
Æ CL.

Similarly, from (2.1), we have

lim inf 1
2

⁄

⌦
|Òvn|

2
Ø CL, and so 1

2

⁄

⌦
|Òvn|

2
æ CL.

Now suppose there exists „ œ SBV (⌦̄) with „ = 0 on ˆ⌦ and

1
2

⁄

⌦
|Ò(uŒ + „)|2 + H

N≠1(S„ fi �Œ) <
1
2

⁄

⌦
|ÒuŒ|

2 + H
N≠1(�Œ).

This is equivalent to the energy di�erence being negative:
⁄

⌦
ÒuŒ · Ò„ + 1

2

⁄

⌦
|Ò„|

2 + H
N≠1(S„ \ �Œ) =: ÷ < 0. (2.6)

But the left hand side of (2.6) is equal to the limit of
⁄

⌦
Òun · Ò„ + 1

2

⁄

⌦
|Ò„|

2 + H
N≠1(S„ \ �n),

5
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since H
N≠1(�Œ \ �n) æ 0, which means that, for n large enough, since

1
2

⁄

⌦
|Òun|

2
≠

1
2

⁄

⌦
|Òvn|

2
æ 0,

we have
1
2

⁄

⌦
|Ò(un + „)|2 + H

N≠1(S„ fi �n) <
1
2

⁄

⌦
|Òun|

2 + H
N≠1(�n) + ÷

2 <
1
2

⁄

⌦
|Òvn|

2 + H
N≠1(�n),

contradicting the minimality of vn.
Similarly, if „ œ SBV (⌦̄) with „ = 0 on ˆ⌦ and S„ µ �Œ, and

⁄

⌦
Òun · Ò„ æ ÷ ”= 0

then for n large enough
1
2

⁄

⌦
|Ò(un + ⁄„)|2 + H

N≠1(S„ fi �n) <
1
2

⁄

⌦
|Òvn|

2 + H
N≠1(�n),

for ⁄ small enough, and with the correct sign, since the di�erence between the energy of un + ⁄„ and un is

⁄

⁄

⌦
Òun · Ò„ + ⁄

2 1
2

⁄

⌦
|Ò„|

2 + H
N≠1(S„ \ �n),

and the last term goes to zero since S„ µ �Œ. Again, this contradicts the minimality of vn for n large
enough. ⇤

We then address minimizing EN .

Lemma 2.6. uŒ minimizes
EN (u) = 1

2

⁄

⌦
|Òu|

2
≠

⁄

ˆN⌦
fu

over u œ SBV (⌦̄) with u = 0 on ˆD⌦ and Su µ �Œ.

Proof. Let Â œ SBV (⌦̄) with Â = 0 on ˆD⌦ , SÂ µ �Œ, and EN (Â) < Œ. Choose „ œ H
1(⌦) such

that „ = 0 on ˆD⌦ and „ = Â on ˆN⌦ , which is possible because of (2) in the non-failure condition,
dist(�Œ, ˆN⌦) > 0 – because of this condition, Â is an H

1 function in a neighborhood of ˆN⌦ , and so the
extension to „ is straightforward. We also consider „ œ SBV (⌦̄), extending to ˆ⌦ using its trace.

Suppose EN (uŒ + Â) < EN (uŒ), which means
⁄

⌦
ÒuŒ · ÒÂ = “ +

⁄

ˆN⌦
fÂ

for some “ < 0. From the minimality of un, the convergence of un to uŒ, and the fact that „ is an admissible
variation of un for EN , we have

0 =
⁄

⌦
Òun · Ò„ ≠

⁄

ˆN⌦
f„ æ

⁄

⌦
ÒuŒ · Ò„ ≠

⁄

ˆN⌦
f„.

Hence, since Â ≠ „ œ SBV (⌦̄) with (Â ≠ „) = 0 on ˆ⌦ and SÂ≠„ µ �Œ, by Lemma 2.5 we have

0 Ω

⁄

⌦
Òun · Ò(Â ≠ „) æ “ +

⁄

ˆN⌦
fÂ ≠

⁄

ˆN⌦
f„ = “,

a contradiction. ⇤

This completes the proof of Theorem 2.4.
6
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Remark 2.7. A natural question, since we show existence only when there is not failure, is whether failure
is common, or even certain. We note that, as we mentioned in the introduction, every solution u to a pure
Dirichlet problem is also a solution to a mixed problem, as we can designate part of the boundary that
is away from the crack as ˆN⌦ , and set f := ˆ‹u on ˆN⌦ . Then, u is a solution to variational fracture
with boundary load f on ˆN⌦ . This shows that the formulation here is not vacuous. Furthermore, studying
conditions on ⌦ and f guaranteeing existence (or non failure) seems to be an interesting direction to explore.

In addition, we note that part 2 of our failure definition is, for simplicity, a bit unnecessarily strong. It
would be interesting to show that it is su�cient if H

N≠1(�Œ fl ˆN⌦) = 0.

We conclude with some small extensions and further remarks.
Note first that if we replace �Œ with SuŒ in the previous lemmas, there is no e�ect on the energy of uŒ,

but there is an increase in the energy of competitors, or there is a reduction in the class of competitors, so
we have

Lemma 2.8. uŒ minimizes

ED[SuŒ ](u) = 1
2

⁄

⌦
|Òu|

2 + H
N≠1(Su \ SuŒ)

over u œ SBV (⌦̄), u = 0 on ˆD⌦ , u = uŒ on ˆN⌦ .

Lemma 2.9. uŒ minimizes
EN (u) = 1

2

⁄

⌦
|Òu|

2
≠

⁄

ˆN⌦
fu

over u œ SBV (⌦̄) with u = 0 on ˆD⌦ and Su µ SuŒ .

Remark 2.10. We can now claim that uŒ actually does minimize

EF N (u) := 1
2

⁄

⌦
|Òu|

2 + H
N≠1(Su \ �Œ) ≠

⁄

ˆN⌦
fu,

if the class of competitors is restricted to

{u œ SBV (⌦̄) : u = uŒ on ˆ⌦}

€
{u œ SBV (⌦̄) : Su µ �Œ, u = 0 on ˆD⌦}.

That is, competitors are not allowed to simultaneously vary both their boundary data on ˆN⌦ and the crack.
But this is consistent with Gri�th’s idea that cracks compete with elastic energy, not boundary loads.

Note also that in the above minimality, �Œ can be replaced with SuŒ , as before.

Finally, we make the following remark.

Remark 2.11. It might seem natural to instead minimize
;

1
2

⁄

⌦
|Òu|

2 + H
N≠1(Su) : u minimizes

v ‘æ
1
2

⁄

⌦
|Òv|

2
≠

⁄

ˆN⌦
fv, over v in SBV (⌦̄), v = 0 on ˆD⌦ , Sv µ Su

<
.

This would be incorrect, however, since as Su grows, the class of minimizers for EN grows, so EN decreases,
which means the elastic energy increases, by (2.3). The solution to this minimization problem will therefore
necessarily be Su = ?.

7
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