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A B S T R A C T   

Dry adhesives that rely on surface force mediated adhesion, such as van der Waals forces, are 
important in applications ranging from robotics to manufacturing. The maximum theoretical 
adhesion strength of a contact is achieved when the stress is uniformly distributed over the entire 
contact area as the full potential of all the bonds at the interface is realized in this scenario. Most 
dry adhesive structures are composed of a tip layer that forms contact and a support structure that 
transfers load from the far field to this tip structure. Here, we determine the displacement dis
tribution that must be applied on the tip layer to generate an optimum interfacial stress distri
bution. We realize this through a linear, closed-form optimization framework that uses data 
obtained from finite element analysis for a few basis cases. It was found that adhesion can be 
maximized by applying an optimum displacement on the tip layer that consists of uniform tension 
in the center, a peak tension between the center and the edge, and compression near the edge. The 
displacement applied on the tip layer of a mushroom-shaped, composite, and novel segmented 
composite structures are then analyzed and compared with the optimal case to guide the design of 
dry adhesives.   

1. Introduction 

Structures that provide reversible adhesion to a broad range of substrates via relatively weak surface forces have received sig
nificant interest in recent years because of the unique functionality they provide (Del Campo et al., 2007; Hensel et al., 2018; Murphy 
et al., 2009). Rather than relying on specific bonding via chemistry, these “dry adhesives” exploit structures with engineered geom
etries that enable strong adhesion to be realized despite the relatively weak nature of surface force interactions such as van der Waals 
forces. The versatility, reusability, and repeatability of dry adhesives have led to their use in a broad range of applications, including 
reusable tapes (Bartlett et al., 2012; Kim and Sitti, 2006; King et al., 2014), wearable devices (Drotlef et al., 2017), climbing robots 
(Aksak et al., 2008; Menon et al., 2004; Pope et al., 2017), robotic gripping (Hawkes et al., 2018; Song et al., 2017; Song and Sitti, 
2014; Zhou et al., 2013), and microtransfer printing (Carlson et al., 2012; Kim-Lee et al., 2014; Meitl et al., 2006). 

The maximum theoretical adhesion strength of a contact is achieved when the stress is uniformly distributed over the entire contact 
area as the full potential of all the bonds at the interface is realized in this scenario. However, when a load is applied to an adhered 
interface between two dissimilar materials or two bodies with different geometries, there is almost always a stress concentration near 
the edge of the contact that leads to a highly nonuniform stress distribution. The high, localized stress at the edge facilitates crack 
initiation at the interface and results in an effective adhesion strength that is far less than the theoretical maximum (Khaderi et al., 
2015). Several strategies have been examined to mitigate the effect of this stress concentration and to realize a more uniform stress 
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distribution in order to approach the optimal case. Gao and Yao (2004) identified the optimum tip shape for a single fiber in a fibrillar 
adhesive to realize a uniform stress distribution at the point of pull-off. Their work provided a novel unique strategy to improve 
adhesion strength, but the approach is difficult to implement in practice because it is highly sensitive to small variations in the tip 
shape. Moreover, the optimum tip shape is different for different materials and depends on the elastic modulus and theoretical 
adhesion strength of the material. A challenge with this approach is that the value of the theoretical adhesion strength for a given 
material pair is typically not known. Beyond tip shape, Gao and Yao (2004) and Gao et al. (2005) demonstrated that a uniform stress 
distribution can be achieved irrespective of the shape of the contacting bodies when the size of the contact is smaller than a critical 
length scale, which is on the order of 100 nm for typical materials used in dry adhesives. This approach provides another route to 
maximize adhesion strength, but the fabrication of sub-μm size adhesive structures over large areas is challenging. 

Although a perfectly uniform stress distribution at the interface is difficult to achieve, multiple dry adhesive designs have been 
developed to generate a favorable interfacial stress distribution that results in enhanced adhesion strength. A mushroom-shaped fiber 
that mimics the spatula-shaped tips of the setae on geckos’ feet, as shown in Fig. 1(a), leads to a stress distribution in which the stress is 
elevated in the center of the contact and the stress concentration near the edge is reduced (Aksak et al., 2014; Balijepalli et al., 2016; 
Carbone et al., 2011; Kim et al., 2020). Mushroom-shaped fibers have been experimentally demonstrated to have high adhesion 
strength relative to cylindrical fibers on both the micrometer (Hensel et al., 2018; Kim et al., 2012) and millimeter (Gorb and Var
enberg, 2007) scales. Similarly, a composite fiber with a stiff core and compliant shell (Fig. 1(b)) also has a reduced stress concen
tration near the edge of the contact and thus has enhanced adhesion compared to a homogenous fiber (Balijepalli et al., 2017; Fischer 
et al., 2017; Minsky and Turner, 2017, 2015; Tatari et al., 2018). 

There has been extensive work to improve the adhesion strength of dry adhesives by optimizing the design of mushroom-shaped 
and composite fibrillar structures. Most of these studies have done this through parametric studies in which finite element analysis is 
used to explore a prescribed parametric space (Aksak et al., 2014; Balijepalli et al., 2017, 2016; Benvidi and Bacca, 2021; Carbone and 
Pierro, 2012; Minsky and Turner, 2017, 2015; Zhang et al., 2021). Recently, deep learning techniques have also been applied to 
optimize the shape of fibers with flared ends by using 2 × 105 finite element simulations to train a neural network and then using this 
trained network to search through an extensive design space (Kim et al., 2020). Though mushroom-shaped and composite fibrillar 
structures have been studied extensively, they are neither the only nor the optimum dry adhesive design that can lead to a favorable 
interface stress distribution that results in enhanced adhesion. 

The design of a single fiber in a fibrillar dry adhesive or adhesive stamp for a process such as microtransfer printing (Carlson et al., 
2011; Luo and Turner, 2020; Sen et al., 2018), including mushroom-shaped and composite structures, can be decomposed into two 
sections as shown in Fig. 1(a) and (b). First, there is a tip layer that has sufficient smoothness and compliance to achieve conformal 
contact with another surface. Second, there is a support structure above the tip layer that transfers loads to the tip layer and applies a 
specific displacement (or corresponding traction) boundary condition on the top of the tip layer. Although various shapes of the tip (e. 
g. flat, spherical) have been studied, a flat tip that makes contact over its entire projected area has been the predominant shape used as 

Fig. 1. (a) Schematic of a mushroom-shaped adhesive structure. (b) Schematic of a composite adhesive structure (the dark gray region is stiffer than 
the light gray region). (c) Schematic of a flat layer adhered to a flat substrate with a displacement, U(x), applied on its top surface (plane strain). 
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it results in higher contact areas and higher adhesion strengths than other shapes (Micciché et al., 2014; Tan et al., 2020; Tang et al., 
2005). For a fixed tip geometry, the ability to modify the interfacial stress distribution lies in the design of the support structure above 
the tip layer (Aksak et al., 2011; Bacca et al., 2016; Khungura and Bacca, 2021; Kim et al., 2007; Long et al., 2008). A support structure 
that transfers load in a manner that results in a low stress concentration and a uniform stress distribution at the interface will lead to 
higher effective adhesion strength. Recent developments in compliant mechanisms and architected materials have demonstrated the 
ability to design structures that have prescribed mechanical responses (Howell et al., 2013; Surjadi et al., 2019; Yu et al., 2018). 
Moreover, techniques like 3D printing and two-photon lithography have enabled fabrication of more complex and precise structures 
(Anscombe, 2010; Salonitis, 2014; Thiel and Hermatschweiler, 2011). The advances in these fields provide the opportunity to realize 
adhesives with support structures that generate a prescribed displacement boundary condition on the top of the tip layer to produce a 
near optimal stress distribution at the interface. To design such a support structure, one must first determine the displacement 
boundary condition on the top surface of the tip layer that will generate an optimal stress distribution at the interface. 

We present an optimization framework to find the practical optimum displacement boundary condition on the top surface of a flat 
elastic tip layer that yields an interfacial stress distribution with: (1) the minimum deviation from a uniform stress distribution, and (2) 
no tensile stress concentration at the edge. This is determined under the assumptions of linear elasticity and the displacement boundary 
condition is practical because it is determined subject to the constraint that the strains are within the elastic limit of the tip material. 
Different from many of the previous optimization studies, the optimization framework here is solved in a linear closed form using data 
obtained from finite element analysis for a few basis cases. 

2. Analysis framework 

The analysis in this paper examines the design of adhesive structures by considering the stress distribution at the interface and 
analysis of the stress singularity at the edge, with assumptions that are consistent with linear elastic fracture mechanics (LEFM). 
Similar assumptions and approaches have been widely used to analyze dry adhesives (Balijepalli et al., 2017, 2016; Benvidi and Bacca, 
2021; Khaderi et al., 2015; Minsky and Turner, 2017, 2015). We consider a thin elastic layer in 2D (plane strain) with half width L and 
thickness t adhered to a rigid substrate and subjected to a prescribed displacement on the top surface (Fig. 1(c)). By symmetry, the 
region 0 <x<L is analyzed and a symmetry boundary condition is assumed at x = 0. The layer is traction free at x = L. The elastic layer 
is adhered to a rigid flat substrate at z = 0 and no-slip is assumed at this interface. A displacement, U(x), is applied at z = t. The layer is 
assumed to be homogenous, linear elastic, isotropic, and nearly incompressible with a Poisson’s ratio ν = 0.49, which is representative 
of many elastomers used in dry adhesives. This leads to dundurs parameters α = -1, β ≈ 0 at the interface (Hutchinson and Suo, 1991). 
The results are presented in nondimensional form and are independent of the value of the modulus E. All the configurations and 
structures studied in this paper are assumed to be in plane strain unless otherwise stated (we present results for axisymmetric cases 
with the same boundary conditions and elastic properties as the plane strain cases in Appendices B and G). 

The normal stress distribution at the interface, σzz/σzz-avg (σzz-avg is the average normal stress) is critical in determining the effective 
adhesion strength of an interface (Gao et al., 2005; Gao and Yao, 2004). The effective adhesion strength is maximized when the 
deviation of the normal stress from the average normal stress is minimized and the tensile stress singularity at the edge is suppressed. 
The goal of the optimization study is to determine the prescribed displacement U(x) that minimizes the stress non-uniformity and edge 
singularity subject to the constraint the U(x) does not introduce strains that exceed the elastic limit of the layer. 

2.1. Linear superposition 

Shear displacements on the top surface of the tip layer only have a small effect on the normal stress distribution at the interface, 
thus we assume the shear displacement to be zero and focus on the case where only normal displacement is applied on the top surface 
of the tip layer. Assuming U(x) is continuous and differentiable at x > 0, it can be expressed as a polynomial series. Keeping poly
nomials up to order n, the components of U(x) can be expressed as: 

Uz

(x
L

)
=

∑n

i=0
ai ⋅ δi

z

(x
L

)

Ux

(x
L

)
= 0

(1)  

where Uz and Ux are the normal and shear components of U(x), respectively. δz
i is the polynomial basis of order i (0≤ i ≤n) (e.g., 

δz
0=0.095(σzz-avgt/E*), δz

1=0.22(σzz-avgt/E*)(x/L), δz
2=0.38(σi,avgt/E*)(x/L)2 for t/L=0.1, where E*=E/(1-ν2)) and ai is a coefficient 

(0≤ i ≤n). As a higher order polynomial basis has a higher maximum magnitude of displacement (e.g., δz
0
max=0.095(σzz-avgt/E*), 

δz
1
max=0.22(σzz-avgt/E*), δz

2
max=0.38(σi,avgt/E*) for t/L=0.1), we do not include higher order polynomials (e.g. n>10 for t/L=0.1) that 

will lead to an optimal U(x) that exceeds the elastic limit of the tip layer (as shown later in Fig. 3). Polynomials are used in this paper 
not only because they are a commonly used basis function, but also because: (1) a higher-order polynomial basis function has a higher 
maximum magnitude of displacement as the above examples show, which allows us to limit the displacements (i.e. to avoid physically 
unreasonable solutions) by cutting off higher order polynomials; (2) We expect the pattern of the optimal displacement applied on the 
top surface of the tip layer to be a relatively uniform tension in the center and a region of concentrated displacement variation near the 
edge, and a polynomial basis is a basis that allows sharp variation near the edge as its gradient increases as x increases (for n > 1). 
Assuming linear elasticity, the principle of linear superposition allows the stress distribution at the adhered interface to be expressed as 
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a summation of the stresses generated by each δz
i: 

σzz

(x
L

)
=

∑n

i=0
ai ⋅ σi

z

(x
L

)

σxz

(x
L

)
=

∑n

i=0
ai ⋅ τi

z

(x
L

)
(2)  

where σzz and σxz are the normal and shear stresses at the interface generated by displacements Uz. σz
i and τz

i are the normal and shear 
stress distributions generated by normal displacement δz

i. Finite element (FE) analysis was performed to find the normal stress dis
tribution (σz

i) and shear stress distribution (τz
i) generated by each polynomial basis (δz

i). 
For the configuration shown in Fig. 1(c), a stress concentration in the form of a stress singularity is present near the edge and this 

facilitates crack initiation and reduces the effective adhesion strength (Akisanya and Fleck, 1997; Balijepalli et al., 2017; Khaderi et al., 
2015). For a nearly incompressible material, the stress within the stress singularity dominated region near the edge is (Balijepalli et al., 
2017; Khaderi et al., 2015): 

σzz = H(L − x)
−0.41

σrz = −0.51H(L − x)
−0.41 (3)  

where H is the magnitude of stress singularity. Eq. (2) holds within the stress singularity dominated region and substitution of Eq. (3) 
into Eq. (2) gives the overall magnitude of the stress singularity as a linear summation of the magnitudes of the stress singularities 
resulting from δz

i: 

H =
∑n

i=0
ai ⋅ Hi

z (4)  

where Hz
i is the magnitude of the stress singularity generated by normal displacement δz

i. 
The stress distribution for each of the polynomial bases is obtained from FE. The overall stress distribution at the adhered interface 

for an arbitrary displacement given by Eq. (1) can be calculated from Eq. (2). It is convenient to have σzz-avg = 1 in the analysis, thus all 
the polynomial bases (δz

i) are chosen in normalized forms such that the average normal stress generated by each basis is 1 (i.e. the 
average of σz

i is 1). The average of σzz given by Eq. (2) with σzz-avg = 1 yields: 

∑n

i=0
ai = 1 (5)  

2.2. Objective function 

A completely uniform normal stress distribution cannot be achieved due to the presence of a stress singularity near the edge. Thus, 
the goal is to minimize the deviation from a uniform stress distribution. The deviation from a uniform stress distribution is quantified as 
the integral of stress deviation squared over the contact area (referred to as “squared deviation”); for the plane strain case is: 

Dev(σzz) =
1
L

∫L

x=0

(
σzz − σzz−avg

)2dx (6) 

A similar definition of the squared deviation for the axisymmetric case is given in the Appendix Eq. (B2). For the squared deviation 
defined in Eq. (6) to be meaningful, the integration of Eq. (6) needs to be bounded in the stress singularity dominated region near the 
edge where the stress distribution is given by Eq. (3). Assuming the length of the stress singularity dominated region is ε, the squared 
deviation in plane strain condition in the stress singularity dominated region near the edge is: 

1
L

∫L

x=L−ε

(
H(L − x)

−0.41
− 1

)2dx =
1
L

(
50
9

H2ε0.18 −
200
59

Hε0.59 + ε
)

(7)  

which is bounded. Generally, when two elastic materials are adhered together, the stress singularity near the edge takes the form σzz =

H(L-x)λ, where λ is the order of stress singularity (which is -0.41 for a nearly incompressible material adhered to a rigid material that is 
studied in this work). λ lies in the range [-0.5, 0], so -1 ≤ 2λ ≤ 0. Except for λ = 0.5, the squared deviation in plane strain condition is 
always bounded. A smaller squared deviation indicates a more uniform normal stress distribution. The squared deviation is used as the 
objective function in our analysis, and we minimize the squared deviation to obtain the normal stress distribution that deviates the 
least from a uniform stress distribution. 

From Eqs. (2) and (5) with σzz-avg = 1 we obtain: 
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Dev(σzz) =
1
L

∫L

x=0

(
∑n

i=0
ai ⋅

(
σi

z − 1
)
)2

dx (8)  

which can be rewritten as: 

Dev(σzz) =
∑n

i=0

∑n

j=0
Aij ⋅ aiaj (9)  

where: 

Aij =
1
L

∫L

x=0

(
σi

z − 1
)(

σj
z − 1

)
dx. (10) 

Aij is calculated from σz
i obtained from FE and these values are constants for a given geometry (i.e. a given t/L). The goal is to 

minimize the squared deviation. 

min
ai

Dev(σzz) (11)  

and the minimum is obtained when its partial derivative with respect to each independent coefficient (ai) is 0: 

Fig. 2. Optimization results for minimizing the squared deviation under the constraint H = 0 for various n with t/L = 0.1 (plane strain). (a) 
Minimum squared deviation achieved as a function of n. (b) Normal stress distribution at the adhered interface for different n. (c) Shear stress 
distribution at the adhered interface for different n. (d) The required normal displacement to achieve the optimal stress distribution for different n. 
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∂Dev
∂ai

= 0. (12) 

From Eq. (9), it is clear that Dev(σzz) is a quadratic function of ai, so Eq. (12) is a set of linear equations about ai, and the ai cor
responding to the minimum squared deviation for a given order of polynomial series (n) can be determined by solving Eq. (12). 

2.3. Constraint 

While minimizing the squared deviation leads to a normal stress distribution that has minimum deviation from a uniform stress 
distribution over the entire contact area, it does not explicitly address the stress concentration locally near the edge. The interface may 
still fail from the edge due to the presence of a stress concentration (Appendix C). A constraint is added to avoid a reduction in the 
effective adhesion strength due to stress concentration near the edge. This constraint requires that the normal stress at a point x0 very 
close to edge be equal to 0: 

σzz(x0 → L) =
∑n

i=0
ai ⋅ σi

z(x0 → L) = 0 (13) 

In implementation, x0/L is chosen to be 0.99991. Since this point is very close to the edge and is within the stress singularity 
dominated region (Balijepalli et al., 2017; Luo and Turner, 2020), expressing the normal stress at x0 in terms of Eq. (3) yields: 

σzz(x0) = H(L − x0)
−0.41

= 0 (14)  

Fig. 3. Optimization results for minimizing the squared deviation under the constraint H = 0 for large n with t/L = 0.1 (plane strain). (a) Normal 
stress distribution at the adhered interface for n = 10, 15 and 20. (b) Shear stress distribution at the adhered interface for n = 10, 15 and 20. (c) The 
required normal displacement to achieve the optimal stress distribution for n = 10, 15 and 20. 
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which indicates that the constraint of Eq. (13) implies that the magnitude of the stress singularity (H) near the edge equals to 0. 
With the constraint above, the optimization is conducted first by substituting Eq. (13) into Eq. (9) to obtain a quadratic equation 

with n independent coefficients, then the partial derivatives of Eq. (9) are taken with respect to remaining n independent coefficients 
and equating them to 0 (Eq. (12)). By solving the n linear equations for n independent coefficients, the corresponding optimum 
displacement distribution can be determined. For all the practical optimum normal stress distributions found in this study, there is a 
small negative H rather than H = 0 present near the edge (i.e. compressive stress near the edge). This is because the numerical 
calculation has finite accuracy and a small residual H is left. A small negative H indicates compressive stress near the edge and this will 
not adversely impact the adhesion strength. 

2.4. Practical limitation on U(x) 

The analysis above is based on linear elasticity and does not enforce a limitation on the magnitude of U(x) that would ensure the tip 
material remains linear elastic. At high strains, a material could exhibit non-linear elastic or plastic behavior and even rupture. As the 
goal here is to design structures that can be realized in practice, we determine the practical optimum displacement distribution by 
enforcing a limit on the strains within the thin layer. 

The applied normal displacement (Uz) is presented in a normalized form (UzE*)/(tσzz-avg) in this paper, where E*= E/(1-ν2). 
Generally, the theoretical dry adhesion strength, σth, of a material is estimated to be 1–10% of its modulus (Gao and Chen, 2005; Gao 
and Yao, 2004; Tang et al., 2005), thus σzz-avg/E* should be on the order of 0.1 or less. As a result, the strain (Ux/t) that needs to be 
applied to the tip layer in a real system is less than or equal to ~0.1 of the normalized normal displacement (UzE*)/(tσzz-avg) shown in 
this paper. 

The admissible normalized displacement (UzE*)/(tσzz-avg) differs for different materials, and there are two types of materials 

Fig. 4. Practical optimum solutions for layers with different t/L (plane strain). (a) Normal stress distribution at the adhered interface. (b) Shear 
stress distribution at the adhered interface. (c) Ratio of the adhesion achieved by the practical optimum cases to the maximum adhesion achieved by 
a completely uniform normal stress distribution. (d) The required normal displacement to achieve the stress distributions. 
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Fig. 5. (a) Normal stress distribution at the adhered interface for mushroom-shaped adhesive structures with Li/L = 0.7 and 0.9 (plane strain) (the 
maximum value of the y axis is truncated at 3). (b) Normal displacement applied on the top surface of the tip layer for mushroom-shaped structures 
with Li/L = 0.7 and 0.9 (plane strain). (c) Normal stress distribution at the adhered interface for composite structures with Li/L = 0.9 and 1 (plane 
strain) (the maximum value of the y axis is truncated at 3). (d) Normal displacement applied on the top surface of the tip layer for composite 
structures with Li/L = 0.9 and 1 (plane strain). (e) Normal stress distribution at the adhered interface near the edge for mushroom-shaped structures 
and composite structures (plane strain) (the normal stress distribution near the edge for a homogeneous rectangular structure is shown as a dashed 
curve for comparison). 
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commonly found in dry adhesives. The first are soft elastomers, where σth/E* is ~10% (Tang et al., 2005). Polydimethylsiloxane 
(PDMS), a commonly used elastomer, exhibits linear elastic behavior up to strains of ~40% and ruptures at strains of ~80% (Johnston 
et al., 2014; Kim et al., 2011; Schneider et al., 2008; Seghir and Arscott, 2015). Other commonly used elastomers such as Ecoflex (Hsu 
et al., 2013; Ranzani et al., 2015) generally have larger linear elastic strain limits and rupture strains than PDMS, so PDMS is a 
conservative choice as a representative material. Using PDMS as a representative material, with σth/E*≈0.1 and a linear elastic regime 
of -0.4≤Ux/t≤0.4, we find that |(UzE*)/(tσzz-avg)| must be smaller than 4. The other class of materials in dry adhesives are polymers 
with moduli of 1–4 GPa, such as polystyrene or keratin. The polymers typically have σth/E* = 1–2% (Gao and Yao, 2004; Tang et al., 
2005), and are linear elastic up to strains of 5% (higher strains cause plastic deformation) (Swallowe and Lee, 2006). With σth/E *=

0.01–0.02 and a linear elastic range of -0.05≤Ux/t≤0.05, the normalized displacements |(UzE*)/(tσzz-avg)| must be smaller than 2.5–5. 
All the practical optimum displacements presented in this study exhibit normalized magnitudes smaller than 1.8, which corresponds to 
a strain |Ux/t|<0.18 for a soft elastomer tip layer and |Ux/t|<0.036 for a stiff material tip layer. As a result, both the material and the 
geometric deformation are expected to exhibit linear behavior. 

3. Finite element modeling 

FE analysis was used to find the stress distribution (σz
i and τz

i, σx
i and τx

i) at the adhered interface of the tip layer corresponding to 
each polynomial basis (δz

i, δx
i) applied on the top surface of the tip layer. Most of the cases studied are in plane strain condition. A flat 

layer with half width L = 1 mm and thicknesses t = 0.05, 0.1, 0.2 and 0.4 mm (Fig. 1(c)) is modeled. The material has a Young’s 
modulus E = 2 MPa and a Poisson’s ratio ν = 0.49. Only half of the layer is simulated with a symmetric boundary condition applied to 

Fig. 6. (a) Schematic of a segmented composite structure (plane strain) (the dark gray region is 1000 times stiffer than the light gray region). (b) 
Normal displacement applied on the top surface of the tip layer for the segmented composite structure with t/L = 0.1, Li/L = 0.8 and g/L = 0.05. (c) 
Normal stress distribution at the adhered interface for the segmented composite structure with t/L = 0.1, Li/L = 0.8 and g/L = 0.05 (the minimum 
value of the y axis is truncated at -1). 
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the centerline. All displacements at the bottom interface are fixed at 0. For the normal displacement polynomial basis of order i (δz
i), a 

displacement field with Uz = 0.001xi mm and Ux = 0 is applied on the top surface of the tip layer and δz
i = 0.001xi/σzz-avg. Similarly, for 

the shear displacement polynomial basis of order i (δx
i), a displacement field with Uz = 0 and Ux = 0.001xi mm is applied on the top 

surface of the tip layer and δx
i = 0.001xi/ σzz-avg. 

Commercial FE software, Abaqus Standard (Abaqus 2016, Providence, RI), was used to perform the analysis. Plane strain quad
rilateral elements (CPE4RH) were used to mesh the 2D plane strain cases, and axisymmetric quadrilateral elements (CAX4RH) were 
used to mesh the axisymmetric cases. The mesh near the bottom interface and the free edge was refined, and mesh convergence was 
performed with further refinement resulting in less than 0.005% difference in the average normal stress. Approximately 6.15 × 105 to 
8.83 × 105 elements were used over the range of layer thickness studied here. 

4. Results 

4.1. Effect of the order of the polynomial series 

As generally observed in problems solved with series, the results depend on the order of the polynomial series considered (n in Eq. 
(1)) and a sufficient order of the series is needed to reach a converged solution. Fig. 2(a) shows the minimum squared deviation 
obtained as a function of the order of the polynomial series (n) for a layer with t/L = 0.1. The minimum squared deviation obtained 
reduces as n increases and reaches a plateau at n = ~6, and reduces slightly more when n > ~13 (Fig. 2(a)). The corresponding normal 
stress distribution becomes more uniform as n increases and the uniformity is independent of n for 6 ≤ n ≤ 13 (Fig. 2(b)). When n is 

Fig. 7. (a) Normal stress distribution at the adhered interface for segmented composite structures with various Li/L, g/L = 0.05 and t/L = 0.1 (plane 
strain). (b) Normal displacement applied on the top surface of the tip layer for the segmented composite structure with various Li/L, g/L = 0.05 and 
t/L = 0.1 (plane strain). (c) Normal stress distribution at the adhered interface for segmented composite structures with various g/L, Li/L = 0.8 and 
t/L = 0.1 (plane strain). (d) Normal displacement applied on the top surface of the tip layer for the segmented composite structure with various g/L, 
Li/L = 0.8 and t/L = 0.1 (plane strain). 
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increased above 13, there are oscillations in the normal stress distribution (Fig. 3(a)) that are expected to smooth out and converge to 
another stress distribution for sufficiently high n. The converged normal stress distributions corresponding to 6 ≤ n ≤ 13, as seen by the 
plateau in Fig. 2(a), are considered the practical optimum normal stress distributions, since these stress distributions have the minimum 
deviation from a uniform stress distribution and a displacement that ensures the tip layer is within the elastic limit. 

The practical optimum normal stress distribution (n = 7 or 10 in Fig. 2(b)) is highly uniform in the center (σzz/σzz-avg = 1.09); the 
stress starts to decrease at x/L = ~0.85 to a minimum of σzz/σzz-avg = -0.40 and then increases again to 0 at the edge (due to the 
presence of a small negative H induced by numerical residual, the normal stress in the numerical calculation increases to a maximum of 
σzz/σzz-avg = 0.019 at x/L = 0.9997 and reduces again for x/L> 0.9997). Notably, the normal stress for x/L > ~0.85 is always smaller 
than that in the center region and is even in compression in the near edge region. A compressive stress in the near edge region is 
favorable as it suppresses the crack initiation near the edge, where failure initiates for most interfaces. The corresponding shear stress 

Fig. 8. (a) Schematic of a segmented composite structure with a recessed center stalk (plane strain) (the dark gray region is a factor of 1000 stiffer 
than the light gray region). (b) Normal stress distribution at the adhered interface for the recessed-stalk segmented composite structure with various 
w/L, t/L = 0.1, Li/L = 0.8, g/L = 0.05 and m/L = 0.05. (c) Normal displacement applied on the top surface of the tip layer for the recessed-stalk 
segmented composite structure with various w/L, t/L = 0.1, Li/L = 0.8, g/L = 0.05 and m/L = 0.05. (d) Normal stress distribution at the adhered 
interface for the recessed-stalk segmented composite structure with various m/L, t/L = 0.1, Li/L = 0.8, g/L = 0.05 and w/L = 0.6. (e) Normal 
displacement applied on the top surface of the tip layer for the recessed-stalk segmented composite structure with various m/L, t/L = 0.1, Li/L = 0.8, 
g/L = 0.05 and w/L = 0.6. 

Fig. A1. Optimization results for minimizing the squared deviation under the constraint H = 0 for various n with t/L = 0.1 and ν = 0.4 (plane 
strain). (a) Minimum squared deviation achieved as a function of n. (b) Normal stress distribution at the adhered interface for different n. (c) Shear 
stress distribution at the adhered interface for different n. (d) The required normal displacement to achieve the optimal stress distribution for 
different n. 
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(n = 7 or 10 in Fig. 2(c)) is nearly 0 in the center and fluctuates near the edge. Since the center region of the contact experiences the 
highest normal stress and no shear stress, the interface is expected to fail from the center in a mode I failure, and the effective adhesion 
strength achieved, σad, is inversely proportional to the stress level there (Anderson, 2005). Compared to a completely uniform normal 
stress distribution, the normal stress in center for the practical optimum normal stress distribution is 9% higher, indicating an effective 
adhesion strength that is 91% of the maximum adhesion strength expected for a uniform normal stress distribution (σad/σmax = 0.91). A 
comparison of the effective adhesion strength between the practical optimum case and several dry adhesive designs is provided below 
in the Discussion section. 

The normal displacement boundary conditions that correspond to these stress distributions are shown in Fig. 2(d). For the practical 
optimum normal displacement (n = 7 or 10 in Fig. 2(d)), there is uniform tension applied in the center region, an increase in tension 
between the center and the edge, and compression near the edge. Since the center region of the tip layer is not affected by the presence 
of the free edge (x/L = 1), a uniform tension applied on the center of the top surface induces a uniform stress distribution in the center 
of the contact as expected. However, to reach the practical optimum stress distribution near the edge, a specific displacement dis
tribution consisting of the increased tension between the center and the edge and compression near the edge is required. This is evident 
by comparing the n = 4, 7 and 10 cases. When n reduces from 10 to 4, the region near the edge where the normal stress is lower than 
that in center has a larger span and the maximum normal stress observed is higher as shown in Fig. 2(b). This is because the region of 
increased tension and the region of compression near the edge both have smaller maximum magnitudes and are distributed over larger 
areas for n = 4 (Fig. 2(d)). This observation is helpful in guiding the design of dry adhesives. While the normal stress distribution for n 
= 4 in Fig. 2(b) has a higher peak stress compared with the practical optimum stress distribution, the peak stress is only 20% higher and 
the applied displacement becomes less singular (i.e. a less localized displacement boundary condition and a smaller maximum 
magnitude of displacement). This indicates that a favorable stress distribution can be achieved with a less singular displacement 
boundary condition, which allows the feature sizes in the structure above the tip layer to be larger and also reduces the strain applied to 
the tip layer. 

For higher n (n > 13 in Fig. 2(a)) there is a different displacement distribution on the top surface of the tip layer (Fig. 3(c)): Instead 
of compression near the edge, a tensile displacement is observed near the edge, and the magnitude of the tensile displacement increases 
as n increases. Though it is expected to converge to another normal displacement boundary condition for sufficiently high n which 
yields a smaller minimum squared deviation than the practical optimum cases, the maximum magnitude of the displacement applied 
already exceeds the rupture limit of an elastomeric layer and the elastic limit of a stiff layer before it converges (case of n = 20 in Fig. 3 

Fig. A2. (a) Normal stress distribution at the adhered interface for segmented composite structures with various tip layer Poisson’ ratio ν, Li/L =
0.8, g/L = 0.05 and t/L = 0.1 (plane strain). (b) Normal displacement applied on the top surface of the tip layer for the segmented composite 
structure with various tip layer Poisson’ ratio ν, Li/L = 0.8, g/L = 0.05 and t/L = 0.1 (plane strain). 

Fig. B1. Schematic of a circular layer adhered to a flat substrate with displacement, U(r), applied on its top surface (axisymmetric).  
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(c)). Such a solution is impractical for real systems. This also suggests that an analytic solution that contains infinite terms of poly
nomial series results in an impractical displacement boundary condition too. The practical optimum normal stress distribution (n = 7 
or 10 in Fig. 2(b)) is thus the optimum normal stress distribution that can be achieved with an admissible displacement boundary 
condition for a real system. Since most elastomers exhibit Poisson’s ratio ν = 0.475−0.49 (Benvidi and Bacca, 2021), we investigate the 
case of a flat layer of the same thickness t/L = 0.1 with Poisson’s ratio ν = 0.4 as a bounding case to understand the effect of Poisson’s 
ratio, and the results are summarized in Appendix Fig. A1. When the Poisson’s ratio is reduced from 0.49 to 0.4, the practical optimum 
normal stress distributions are nearly the same, which suggests that the variation of the Poisson’s ratio of common elastomers has little 
effect on the practical optimum stress distribution that can be achieved. However, the magnitude of the corresponding tensile 
displacement that needs to be applied in the center region to generate the same magnitude of average interfacial stress is ~7 times 
higher for the case with ν = 0.4 compared to the case with ν = 0.49, which indicates that the center region of a nearly incompressible 
thin layer exhibits higher tensile stiffness. This is not unexpected since a higher Poisson’s ratio leads to more confinement in the center 
region of a thin layer. 

The case of an axisymmetric circular flat layer (Appendix B) with t/R = 0.1 is also investigated for comparison. The results are 
summarized in Appendix Fig. B2. Similar to the plane strain case, the minimum squared deviation reduces as n increases and reaches a 
plateau at n = 6 and reduces again when n > 9 as shown in Appendix Fig. B2(a). The converged cases corresponding to n within the 
plateau region (6 ≤ n ≤9) in Appendix Fig. B2(a) are deemed the practical optimum cases and n > 9 leads to an impractical applied 
displacement. The practical optimum normal stress distribution and the corresponding applied displacement (n = 9 in 
Appendix Fig. B2(b) and (d)) are similar to those in a plane strain condition. It should be noted that while the trend and the optimum 
case shown in Appendix Fig. B2 appear similar to those of the plane strain case, the minimum squared deviation is larger in an 

Fig. B2. Optimization results for minimizing the squared deviation under the constraint H = 0 for various n for a circular layer with t/R = 0.1 
(axisymmetric). (a) Minimum squared deviation achieved as a function of n. (b) Normal stress distribution at the adhered interface for different n. 
(c) Shear stress distribution at the adhered interface for different n. (d) The required normal displacement to achieve the optimal stress distribution 
for different n. 
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axisymmetric condition for a given n. In the plane strain case, the area is linearly proportional to x, while the area of a layer in 
axisymmetric condition scales quadratically with r, so the fluctuation in the normal stress near the edge results in a larger squared 
deviation in the axisymmetric case. This also leads to a higher stress in the center region of the axisymmetric case (σzz/σzz-avg = 1.22) 
compared to the plane strain case, as the region near the edge with low stress occupies more area and force equilibrium must be 
maintained. 

4.2. Effect of layer thickness 

The practical optimum stress distributions were determined for various layer thicknesses (t/L) and results are shown in Fig. 4. All 
the practical optimum cases in Fig. 4 are cases where the solution is insensitive to n (Appendix D). The practical optimum stress 
distributions (Fig. 4(a)) have similar forms to the results shown in Fig. 2: the normal stress is nearly uniform in the center and decreases 
near the edge. However, the size of the central uniform region is smaller for higher t/L: x/L < ~0.90 for t/L = 0.05, x/L < ~0.85 for t/L 
= 0.1, x/L < ~0.71 for t/L = 0.2 and x/ L< ~0.47 for t/L = 0.4. As t/L increases, the displacement applied on the top surface of the tip 
layer is further away from the adhered interface, and its ability to modify the normal stress distribution at the adhered interface decays 
with increasing distance from the interface, especially in the near edge region. As the center region of the uniform stress distribution 
becomes smaller for larger t/L, σzz/σzz-avg in the center region becomes higher due to force equilibrium (σzz/σzz-avg = ~1.05 for t/L =
0.05, σzz/σzz-avg = ~1.09 for t/L = 0.1, σzz/σzz-avg = ~1.22 for t/L = 0.2 and σzz/σzz-avg = ~1.60 for t/L = 0.4). For the corresponding 
shear stress distributions (Fig. 4(b)), the shear stress is zero in the center and fluctuates near the edge. Thus, the interface is expected to 
fail from the center via a mode I failure for all the t/L studied. Fig. 4(c) summarizes the ratio of the effective adhesion achieved by the 

Fig. C1. Optimization results for minimizing the squared deviation for various n with t/L = 0.1 (plane strain). (a) Minimum squared deviation 
achieved as a function of n. (b) Normal stress distribution at the adhered interface for different n (the maximum value of the y-axis is truncated at 
1.5). (c) Normal stress distribution at the adhered interface near the edge for different n. (d) The required normal displacement to achieve the 
optimal stress distribution for different n. 
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practical optimum cases to the maximum adhesion achieved by a completely uniform normal stress distribution for various t/L, and it 
is clear that the adhesion achieved by practical optimum cases reduces as t/L increases. While these results suggest that a thinner tip 
layer will result in higher effective adhesion strength, it is important to note that there is a minimum t/L required for the layer to 
deform to accommodate surface roughness and achieve conformal contact. The applied displacement distributions (Fig. 4(d)) also have 
similar forms to the results shown in Fig. 2, but the region of increased tension and the region of compression near the edge become 
larger and the maximum magnitudes of tensile and compressive displacements also increase as t/L increases. 

5. Discussion 

As noted earlier, common dry adhesive structures can be regarded as a thin layer at the tip of structure that transfers load from the 
far field to the interface. When the structure is loaded, a specific displacement boundary condition is applied on the top surface of the 
tip layer which generates a specific stress distribution at the adhered interface. In this section, we discuss the design of dry adhesive 
from this perspective with guidance from the optimization results presented above. The normal displacement boundary condition on 
the top surface of the tip layer and the normal stress distribution at the adhered interface are investigated and compared with the 
practical optimum cases. All cases discussed in this section assume plane strain (axisymmetric cases are included in the appendices). 

5.1. Mushroom-shaped and composite adhesive structures 

As the most investigated dry adhesive structures, mushroom-shaped structures and composite structures (Fig. 1(a) and (b)) are 
considered first. The mushroom-shaped structure is treated as a flat tip layer with t/L = 0.1, and a stalk with half width Li/ L= 0.7 or 0.9 

Fig. D1. Optimization results for minimizing the squared deviation under the constraint H = 0 for different t/L (plane strain). (a) Minimum squared 
deviation achieved as a function of n. (b) Normal stress distribution at the adhered interface for t/L = 0.05 for different n. (b) Normal stress dis
tribution at the adhered interface for t/L = 0.2 for different n. (c) Normal stress distribution at the adhered interface for t/L = 0.4 for different n. 
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connected to the tip layer. The composite structure has a tip layer with t/L = 0.1, and a stiff core with half width Li/L = 0.9 or 1 
connected to the tip layer. The stiff core has a Young’s modulus Es/E = 1000, and Poisson’s ratio νs = 0.3 (Minsky and Turner, 2017), 
where E is the modulus of the tip layer and shell. 

The normal stress distributions for mushroom-shaped structures are shown in Fig. 5(a). Although the normal stress distribution is 
uniform in the center, two stress concentrations are observed: one underneath the edge of the stalk and another near the edge of the tip 
layer. The peaks in normal stress seen can be understood by the normal displacement applied on the top surface of the tip layer as 
shown in Fig. 5(b). Similar to the practical optimum case, the normal displacement applied on the top surface of the tip layer for 
mushroom-shaped structures is a uniform tension in the center, followed by an increase in tension to a local peak and a subsequent 
decrease in tension as x/L increases. The magnitude and position of this local peak in normal displacement is not as optimized as in the 
practical optimum case, which leads to the stress concentration underneath the edge of the stalk. A more important difference is the 
normal displacement applied near the edge. As opposed to the practical optimum case where the normal displacement continually 
decreases near the edge, the normal displacement on the top surface of the tip layer for a mushroom-shaped structure starts to increase 
near the edge. This increase in normal displacement leads to the high stress concentration near the edge and may limit the adhesion 
strength. 

For composite structures, the normal stress in the center region is higher than that of the practical optimum case, and the stress 
concentration near the edge still exists (Fig. 5(c)). For Li/L = 0.9, the normal displacement is uniform in the center and becomes slightly 
compressive near the edge due to the compliance of the shell (Fig. 5(d)). For Li/L = 1, the normal displacement applied on the top 
surface of the tip layer is a uniform tension over the entire area. This case of Li/L = 1 suggests that even for a thin tip layer (t/L = 0.1) 
that applying a uniform displacement on the top surface of the tip layer is not sufficient to eliminate the stress concentration near the 
edge and obtain an optimized stress distribution. Moreover, as the tip layer thickness increases (but is still not sufficiently thick for the 

Fig. D2. The required normal displacement to achieve the optimal stress distribution for different t/L (plane strain). (a) Normal displacement 
applied on the top surface for t/L = 0.05 for different n. (b) Normal displacement applied on the top surface for t/L = 0.2 for different n. (c) Normal 
displacement applied on the top surface for t/L = 0.4 for different n. 
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displacement distribution applied on the top surface to not affect the stress distribution at the adhered interface), the optimized normal 
displacement deviates more from a uniform displacement as shown Fig. 4 and the deficiency of applying a uniform displacement is 
expected to become more significant. 

To highlight the details of the stress singularity near the edge, the normal stress distributions for mushroom-shaped structures and 
composite structures (Fig. 5(a) and (c)) are replotted on a logarithmic scale in Fig. 5(e). The linear regions in this logarithmic plot 
indicate the edge singularity dominated region, and the intercept of these lines are logH in Eq. (3). Though neither mushroom-shaped 
structures nor composite structures eliminate the stress concentration near the edge completely, they exhibit lower normal stress 
within the stress singularity dominated region compared to a simple homogeneous pillar, and the composite structure with Li/L = 0.9 
has the lowest among them. The effective adhesion strength of the practical optimum case and mushroom-shaped structures and 
composite structures are compared using a linear elastic fracture mechanics-based analysis (Appendix E) and the results are sum
marized in Appendix Fig. E1. The practical optimum case is found to have higher adhesion strength compared to those mushroom- 
shaped structures and composite structures, but the adhesion enhancement of the practical optimum case relative to those struc
tures depends on the ratio of defect (i.e. crack) size to width of the tip layer (Appendix Fig. E1(c)). As the defect size is reduced, both the 
mushroom-shaped structures and composite structures will fail from delamination that initiates at the edge due to the stress con
centration and the adhesion strength of the practical optimum case is higher. A smaller defect size always leads to higher adhesion 
strength (Appendix Fig. E1(b)) and the defect size is expected to decrease with better conformability at the contact. Moreover, it was 
experimentally observed that a cylindrical composite structure with core radius Ri/R = 0.9 and compliant tip layer thickness t/R =
0.13 still failed from the edge (Minsky and Turner, 2017). This suggests that although the stress concentration near the edge is reduced 
for mushroom-shaped structures and composite structures, it can still be the dominant stress concentration that causes failure and 

Fig. E1. (a) ratio of the edge crack failure strength to the internal crack failure strength as a function of the internal crack size for mushroom-shaped 
structures and composite structures. (b) nondimensionalized adhesion strength of mushroom-shaped structures, composite structures and practical 
optimum case as a function of the internal crack size. (c) ratio of the adhesion strength of mushroom-shaped structures and composite structures to 
the adhesion strength of the practical optimum case as a function of the internal crack size. 
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leads to a significant reduction in adhesion compared to the practical optimum case. 

5.2. Segmented composite adhesive structure 

The design of a specific structure above the tip layer that provides the practical optimum displacement boundary condition (e.g. 
Fig. 2) independent of the elastic modulus and theoretical adhesion strength of the material is complex and beyond the scope of the 
current study. However, a relatively simple structure that generates a displacement boundary condition that achieves the key char
acteristics of the practical optimum case is presented. As noted above, a critical limitation of mushroom-shaped structures and 
composite structures is that compressive displacements applied near the edge of the top surface of the tip layer are either absent or not 
sufficient to fully suppress the stress concentration near the edge of the contact. To generate compression near the edge from remote 
tension, we propose and analyze a segmented composite structure (Fig. 6(a)) that is inspired by the practical optimum displacement 
distribution (Fig. 2). The segmented composite structure can be potentially fabricated through a multimaterial 3D printing process 
(Smith et al., 2020). The structure above the compliant tip layer (t/L = 0.1) is comprised of a long stiff center stalk with half width Li/L 
= 0.8 and a stiff edge plate with thickness g/L = 0.05 that covers the rest of the tip layer. Notably, the stiff center stalk and stiff edge 
plate are not connected. The center stalk and the edge plate have Young’s modulus Es/E = 1000, and Poisson’s ratio νs = 0.3, where E is 
the modulus of the tip layer. 

The normal displacement on the top surface of the tip layer for the segmented composite structure is shown in Fig. 6(b). The normal 
displacement underneath the stiff center stalk is a uniform tension, like the composite structure (Fig. 5(d)). Outside of the stalk region, 
the displacement decreases linearly with increasing x/L and is compressive near the edge. The linear decrease in the normal 
displacement is a result of the stiff edge plate rotating downwards at the edge when the center of the tip layer is loaded in tension, 

Fig. F1. (a) Schematic of a rigid plate bonded to an elastic foundation being displaced at one end. (b) Comparison of the normal stress distribution 
at the adhered interface predicted by FE (denoted as F.E.) and the elastic foundation model (denoted as E.F.). (c) Comparison of the normal 
displacement applied on the top surface of the tip layer predicted by FE (denoted as F.E.) and the elastic foundation model (denoted as E.F.). 
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which could be understood qualitatively by considering a rigid plate bonded to an elastic foundation being displaced at one end as 
shown in Appendix F. The corresponding normal stress distribution (Fig. 6(c)) is similar to that of the composite structures (Fig. 5(c)), 
except that the normal stress near the edge is in compression rather than in tension due to the compressive displacement applied on the 
top surface of the tip layer. This compressive stress suppresses failure at the edge and the structure is expected to delaminate from the 
center where the normal stress is highest. Based on the stresses at the center, the segmented composite structure is expected to achieve 
72% of the strength that would be achieved by a uniform normal stress distribution. This is 79% of the adhesion achieved by the 
practical optimum case described above. This design is expected to offer the greatest advantage over mushroom-shaped structures and 
composite structures when defects at the interface are small compared to the width of the tip layer. As Poisson’s ratio of elastomers can 
vary from 0.475 to 0.49 (Benvidi and Bacca, 2021), the effect of the tip layer’s Poisson’s ratio on the interfacial stress distribution of the 
segmented composite structure is also investigated and is shown in Fig. A2(a). When the Poisson’s ratio is reduced from 0.49 to 0.4, the 
normal stress near the edge is still in compression, while the peak stress in the center reduces slightly from 1.38 to 1.20 due to reduced 
confinement of a lower Poisson’s ratio tip layer. The reduction of the peak stress in the center for a composite structure with decreasing 
Poisson’s ratio has also been observed in Benvidi and Bacca (2021). The results here suggest that the segmented composite structure is 
still able to suppress failure at the edge and achieve high adhesion strength when the Poisson’s ratio of tip layer varies from 0.49 to 0.4. 
The corresponding normal displacement on the top surface of the tip layer for the segmented composite structure is shown in Fig. A2 
(b). 

The effect of the key dimensions of the segmented composite structure is studied and summarized in Fig. 7. As the half width of the 
center stalk (Li/L) reduces, the region of tensile displacement on the top surface of the tip layer becomes smaller, and the compressive 

Fig. G1. (a) Normal stress distribution at the adhered interface for segmented composite structures with various Li/L, g/L = 0.05 and t/L = 0.1 
(axisymmetric). (b) Normal displacement applied on the top surface of the tip layer for the segmented composite structure with various Li/L, g/L =
0.05 and t/L = 0.1 (axisymmetric). (c) Normal stress distribution at the adhered interface for segmented composite structures with various g/L, Li/L 
= 0.8 and t/L = 0.1 (axisymmetric). (d) Normal displacement applied on the top surface of the tip layer for the segmented composite structure with 
various g/L, Li/L = 0.8 and t/L = 0.1 (axisymmetric). 

A. Luo and K.T. Turner                                                                                                                                                                                              



Journal of the Mechanics and Physics of Solids 156 (2021) 104610

21

displacement near the edge dominates over larger area (Fig. 7(b)). As a result, the normal stress near the edge changes from tension (Li/ 
L = 0.9) to compression (Li/L = 0.8 and 0.7) and the magnitude of compressive stress increases as Li/L decreases (Fig. 7(a)). The 
thickness of the edge plate (g/L) is found to have no effect on the normal stress distribution at the interface and the normal 
displacement applied on the top surface of the tip layer (Fig. 7(c) and (d)). As long as the edge plate is sufficiently stiff compared to the 
tip layer, it rotates rigidly downwards when the center of the tip layer is loaded and this is not affected significantly by its thickness 
over the range examined. The case of an axisymmetric circular composite segmented structure is also studied and the results are 
summarized in Appendix Fig. G1. The effect of the center stalk radius in axisymmetric condition is similar to the effect of center stalk 
width in the plane strain case. However, the edge plate thickness in axisymmetric condition is found to significantly affect the 
interfacial normal stress distribution and the normal displacement applied on the top surface of the tip layer. The magnitude of the 
compressive displacement near the edge becomes smaller and the corresponding normal stress near the edge becomes tensile as the 
plate thickness increases. This is because the edge plate is a ring in this case, and a hoop constraint that inhibits the edge plate from 
rotating downward becomes more significant as the edge plate thickness increases. 

As discussed above, the compressive stress near the edge is primarily generated by the edge plate rotating downward and is not 
significantly affected by the center stalk design. This allows us to further optimize design of the center stalk while maintaining 
compressive stress near the edge with the edge plate. This idea is demonstrated by a segmented composite structure with a recessed 
center stalk (Fig. 8(a)). Fig. 8 shows that tuning the design of the center stalk leads to a more uniform normal stress distribution and a 
normal displacement on the top surface of the tip layer that is closer to the optimum normal displacement compared to the design 

Fig. G2. (a) Normal stress distribution at the adhered interface for the recessed-stalk segmented composite structure with various w/L, t/L = 0.1, Li/ 
L = 0.8, g/L = 0.05 and m/L = 0.05 (axisymmetric). (b) Normal displacement applied on the top surface of the tip layer for the recessed-stalk 
segmented composite structure with various w/L, t/L = 0.1, Li/L = 0.8, g/L = 0.05 and m/L = 0.05 (axisymmetric). (c) Normal stress distribu
tion at the adhered interface for the recessed-stalk segmented composite structure with various m/L, t/L = 0.1, Li/L = 0.8, g/L = 0.05 and w/L = 0.6 
(axisymmetric). (d) Normal displacement applied on the top surface of the tip layer for the recessed-stalk segmented composite structure with 
various m/L, t/L = 0.1, Li/L = 0.8, g/L = 0.05 and w/L = 0.6 (axisymmetric). 
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shown in Fig. 6(a). Such a design was also considered for the axisymmetric case and the results are similar to those in plane strain 
condition as shown in Appendix Fig. G2. 

Note that the analysis in this paper assumes that the bottom interface of the adhesive layer is perfectly bonded to the substrate; this 
assumption is widely adopted in analyzing dry adhesive structures (Balijepalli et al., 2017, 2016; Fleck et al., 2017; Khaderi et al., 
2015; Luo et al., 2020). Furthermore, the analysis assumes that detachment will initiate at a region of high stress from which an 
interface crack will propagate. Because of the finite strength and finite range of the adhesive forces at the interface, there will a 
cohesive zone at the tip of this crack. The assumptions and analysis in this paper are appropriate as long as the size of the cohesive zone 
is small relative to the size of adhesive structure. Previous work has shown that for adhesive structures below a critical size that the 
behavior of the cohesive zone can dominate and the structure can become shape or flaw insensitive (Gao and Yao, 2004; Jiang et al., 
2014; Tang et al., 2005). While such cases would not be covered by the present analysis, most dry adhesive structures do not fall in this 
regime (Gao and Yao, 2004; Jiang et al., 2014). 

6. Conclusion 

The effective adhesion strength of dry adhesive structures can be enhanced by improving the stress uniformity at the adhered 
interface and suppressing the singular stress concentration at the edge. An optimization approach was developed and used to deter
mine the displacement that must be applied on the top surface of a thin elastic layer to minimize the deviation from a uniform interface 
stress distribution and to suppress the edge stress concentration. The practical optimum displacement was determined to be a dis
tribution in which there is uniform tensile displacement in the center, a peak displacement between the center and the edge, and a 
compressive displacement near the edge. The effective adhesion strength achieved with this practical optimum case increases as the 
layer thickness (t/L) decreases, but the tip layer must be sufficiently thick to allow for conformal contact. 

Several dry adhesive designs were compared to the practical optimum case that was determined. Both mushroom-shaped and 
composite structures provide insufficient compression near the edge to remove the stress concentration. To eliminate the potential for 
edge failure, a segmented composite structure was proposed and analyzed. The support structure for the compliant tip layer for the 
segmented composite structure consists of a stiff center stalk and a stiff edge plate. The segmented composite structure results in a 
normal stress distribution at the adhered interface that is similar to that of composite structures with the key difference that the normal 
stress near the edge is in compression rather than in tension. The segmented composite structure is predicted to have an adhesion 
strength that is 79% of what would be achieved by the practical optimum case. 
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Appendix A. Effect of the Poisson’s ratio 

A thin layer of thickness t/L = 0.1 with Poisson’s ratio ν = 0.4 in plane strain is examined and the results are summarized in Fig. A1. 
The effect of the Poisson’s ratio of the tip layer on the interfacial stress distribution and the normal displacement on the top surface 

of the tip layer of the segmented composite structure is shown in Fig. A2. 

Appendix B. A circular layer in axisymmetric condition 

A circular layer (i.e. axisymmetric case) shown in Fig. B1 is examined and the results are compared with the plane strain case in the 
main manuscript. The elastic properties and boundary conditions are the same as those in the plane strain case. U(r) in axisymmetric 
condition can be expressed as: 

Uz

(r
R

)
=

∑n

i=0
ai ⋅ δi

z

(r
R

)

Ur

(r
R

)
= 0

(B1) 
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The optimization framework is the same as that for plane strain case, except the squared deviation in axisymmetric case is 
calculated by: 

Dev(σzz) =
1

πR2

∫R

r=0

(
σzz − σzz−avg

)2 ⋅ 2πr ⋅ dr (B2) 

Since the form of the stress distribution within the stress singularity dominated region is the same for both plane strain condition 
and axisymmetric condition (Khaderi et al., 2015), the squared deviation in axisymmetric condition in the stress singularity dominated 
region can be calculated by: 

1
πR2

∫R

r=R−ε

(
H(R − r)

−0.41
− 1

)2 ⋅ 2πr ⋅ dr =
1
R2

[
100
531

ε0.18H2(59R − 9ε) +
400
9381

ε0.59H(59ε − 159R) − ε(ε − 2R)

]

(B3)  

which is also bounded. For any λ in the range (-0.5, 0], the squared deviation in axisymmetric condition is bounded. 
The numerical method is almost the same as the method used in plane strain cases, except axisymmetric quadrilateral elements 

(CAX4RH) were used to mesh the axisymmetric cases. The optimal results for a circular layer with t/R = 0.1 are summarized in Fig. B2. 

Appendix C. Minimize the squared deviation without constraint H ¼ 0 

The optimal results corresponding to the minimum squared deviation without constraint H = 0 for a flat layer with t/L = 0.1 are 
summarized in Fig. C1. The minimum squared deviation decreases and the normal stress distribution becomes more uniform as n 
increases, but the normal stress near the edge is still high. To highlight the normal stress distribution within the stress singularity 
dominated region near the edge, the normal stress is replotted in Fig. C1(c) on a logarithmic scale. From Fig. C1(c), it is clear that a 
lower minimum squared deviation obtained from a larger n does not help to reduce the stress within the stress singularity dominated 
region. The delamination may still initiate from the edge due to presence of high stress concentration. 

Appendix D. Results for different t/L as a function of the order of polynomial series 

The results corresponding to the minimum squared deviation under the constraint H = 0 for various n and different t/L are shown in 
Figs. D1 and 2. For t/L = 0.05, the minimum squared deviation reduces as n increases and reaches a plateau at n = 10 as shown in 
Fig. D1(a). For t/ L= 0.2 and 0.4, the minimum squared deviation also decreases, reaching a plateau at n = 4 for t/ L= 0.2 and n = 2 for 
t/L = 0.4, and then continue to reduce when n > 5 for t/L = 0.2 and n > 3 for t/L = 0.4. The cases corresponding to n lying in the first 
plateau in Fig. D1(a) are considered the practical optimum cases for all the t/L studied (n = 10 for t/L = 0.05 in Fig. D1(b), n = 5 for t/L =
0.2 in Fig. D1(c) and n = 3 for t/L = 0.4 in Fig. D1(d)). 

Although an increase in n beyond the first plateau in Fig. D1(a) further reduces the minimum squared deviation (n > 13 for t/L =
0.1, n > 5 for t/L = 0.2, n > 3 for t/L = 0.4; n investigated in this study is not large enough for t/L = 0.05 to further reduce), the normal 
displacement applied near the edge changes from compression to tension and the magnitude of the tensile displacement increases as n 
increases (Fig. D2). For the case of t/L = 0.4 and n = 7, where the maximum normal stress observed is smaller than that of the practical 
optimum case, its maximum normalized tensile displacement applied at the edge is 26.4. Similarly, for the case of t/L = 0.2 and n = 10, 
the maximum normalized tensile displacement applied at the edge is 21.7. The requirement for such large displacements makes those 
normal displacement distributions impractical. 

Appendix E. Analysis of the adhesion strength based on linear elastic fracture mechanics 

In real scenarios, the interface is not perfectly bonded, and there are crack-like defects. The adhesion strength of an interface is 
determined by size of the defect and the local stress at the defect. 

Linear elastic fracture mechanics is assumed. Consider an internal crack-like defect of radius ain, which is assumed to be much 
smaller than the width of the tip layer 2L. The stress σin at an internal crack (i.e. away from the edge) is related to the energy release rate 
as (Yao, 2013): 

σin =

̅̅̅
π
2

√

a−0.5
in

̅̅̅̅̅̅̅̅̅
GE∗

√
(E1)  

where G is the energy release rate and E*=E/(1-ν2). Define f as the ratio of the stress level σin at the crack position to the average stress 
σavg: 

f =
σin

σavg
(E2) 

According to Griffith criterion (G = Gc), the failure strength due to this internal crack is: 
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σin−c =
1.25

f
a−0.5

in

̅̅̅̅̅̅̅̅̅̅̅
GcE∗

√
(E3) 

Assuming the size of the crack ain is the same over the internal region of the contact, the internal position with highest stress level (i. 
e. highest f) will have the lowest failure strength among all internal cracks. Due to presence of a stress concentration and potential 
fabrication defects near the edge, the interface can also fail from an edge crack. Assuming the size of the edge crack aedge is much 
smaller than the width of the tip layer 2L, and is embedded in the stress singularity dominated region near the edge. The failure 
strength due to an edge crack can be calculated by (Balijepalli et al., 2017): 

σedge−c = 0.39
1
k
a−0.094

edge L−0.406
̅̅̅̅̅̅̅̅̅̅̅
GcE∗

√
(E4)  

where k is a dimensionless calibration coefficient that depends on the design of the adhesive, and are found through obtaining intercept 
of the linear region in logarithmic plot Fig. 5(e) for different designs (Balijepalli et al., 2017). 

Whether the interface fails from an internal crack or an edge crack is determined by which one has lower failure strength: 

σedge−c

σin−c
= 0.31

fmax

k
a0.5

in

a0.094
edge L0.406 (E5) 

If σedge-c/σin-c>1, the interface will fail from an internal crack; If σedge-c/σin-c<1, the interface will fail from an edge crack. Generally, 
we expect aedge>ain due to fabrication defect at the edge, but as the exponent of aedge is small, here we make a conservative estimate and 
assume aedge=ain. Eq. (E5) can then be expressed as: 

σedge−c

σin−c
= 0.31

fmax

k

(ain

L

)0.406
. (E6) 

Fig. E1(a) shows σedge-c/σin-c for mushroom-shaped structures and composite structures as a function of ain/L. Since σedge-c/σin-c is a 
monotonic function of ain/L, an edge crack failure is more favorable for small crack size ain/L. 

Since the practical optimum case has no stress concentration near the edge, it is expected to fail from an internal crack, and the 
adhesion strength can be calculated by Eq. (E3). Adhesion strength of those designs and their relative adhesion compared to the 
practical optimum case (σc/σopt-c) as a function of ain/L are summarized in Fig. E1(b) and (c). Complete investigations of the adhesion 
strength and the transition of the crack initiation position from the edge to internal sites for mushroom-shaped structures and com
posite structures can be found in Benvidi and Bacca (2021) and Zhang et al. (2021). 

Appendix F. Understanding of the segmented composite structure design with an elastic foundation model 

The compressive displacement applied to the tip layer near the edge can be understood qualitatively by treating the tip layer as an 
elastic foundation. The elastic foundation has a spring stiffness k = E*/t and is bonded to a stiff edge plate with width l = L-Li near the 
edge as shown in Fig. F1(a). When the segmented composite structure is loaded by a remote tensile displacement y0, the center of the 
tip layer is displaced uniformly by y0 by the stiff center stalk, which results in an interfacial stress of ky0 in the center. As the center of 
the tip layer is displaced by y0, the inner end of the stiff edge plate is also displaced by y0. Consider the stiff edge plate as rigid compared 
to the tip layer, the displacement of the edge plate varies linearly as: 

y = ax + y0. (F1) 

Moment equilibrium requires: 

∫l

0

kyxdx =

∫l

0

k(ax + y0)xdx = 0, (F2) 

From which we can solve a = -3y0/2l, and the displacement and stress is: 

y = −
3y0

2l
x + y0, (F3)  

σzz = k
(

−
3y0

2l
x + y0

)

. (F4) 

Eq. (F3) suggests that when x>2/3l, the displacement applied to the tip layer is compressive, which explains the presence of a 
compressive displacement near the edge in the segmented composite structure design. Note that the elastic foundation model is a one- 
dimensional model and does not take into account the lateral stresses and strains in the tip layer, which are significant for a nearly 
incompressible tip layer (ν = 0.49). Thus it only provides a qualitative understanding on the mechanism of the design. A comparison 
between the prediction of the elastic foundation model and results from FE that simulates the segmented composite structure with a 
zero Poisson’s ratio (ν = 0) tip layer (which minimize the lateral deformation of the tip) is shown in Fig. F1(b) and (c), and there is 
reasonable agreement which justifies the mechanism proposed by the elastic foundation model. 
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Appendix G. Effect of the key dimensions of the segmented composite structure in axisymmetric condition 

The effect of the center stalk radius and edge plate thickness of a circular segmented composite structure in axisymmetric condition 
on the interfacial normal stress distribution and the normal displacement applied on the top surface of the tip layer is summarized in 
Fig. G1. 

A. segmented composite structure with a recessed center stalk in axisymmetric condition 

The effect of w and m of the segmented composite structure with a recessed center stalk in axisymmetric condition is also studied 
and summarized in Fig. G2. 
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