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Abstract
Designing a language feature often requires a choice between

several, similarly expressive possibilities. Given that user

studies are generally impractical, we propose using stability
as a way of making such decisions. Stability is a measure

of whether the meaning of a program alters under small,

seemingly innocuous changes in the code (e.g., inlining).

Directly motivated by a need to pin down a feature in

GHC/Haskell, we apply this notion of stability to analyse

four approaches to the instantiation of polymorphic types,

concluding that the most stable approach is lazy (instantiate

a polytype only when absolutely necessary) and shallow

(instantiate only top-level type variables, not variables that

appear after explicit arguments).

Keywords: instantiation, stability, Haskell

1 Introduction
Programmers naturally wish to get the greatest possible

utility from their work. They thus embrace polymorphism:

the idea that one function can work with potentially many

types. A simple example is const :: ∀ a b. a → b → a, which
returns its first argument, ignoring its second. The question

then becomes: what concrete types should const work with

at a given call site? For example, if we say const True ’x’,
then a compiler needs to figure out that a should become

Bool and b should become Char . The process of taking a

type variable and substituting in a concrete type is called

instantiation. Choosing a correct instantiation is important;

for const , the choice of a ↦→ Bool means that the return type

of const True ’x’ is Bool. A context expecting a different

type would lead to a type error.

In the above example, the choices for a and b in the type

of const were inferred. Haskell, among other languages, also

gives programmers the opportunity to specify the instanti-

ation for these arguments [9]. For example, we might say

const @Bool @Char True ’x’ (choosing the instantiations
for both a and b) or const @Bool True ’x’ (still allowing in-

ference for b). However, once we start allowing user-directed
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instantiation, many thorny design issues arise. For example,

will let f = const in f @Bool True ’x’ be accepted?
Our concerns are rooted in concrete design questions

in Haskell, as embodied by the Glasgow Haskell Compiler

(GHC). Specifically, as Haskell increasingly has features in

support of type-level programming, how should its instantia-

tion behave? Should instantiating a type like Int → ∀ a. a →
a yield Int → 𝛼 → 𝛼 (where 𝛼 is a unification variable), or

should instantiation stop at the regular argument of type

Int? This is a question of the depth of instantiation. Suppose

now f :: Int → ∀ a. a → a. Should f 5 have type ∀ a. a → a
or 𝛼 → 𝛼? This is a question of the eagerness of instantiation.
As we explore in Section 3, these questions have real impact

on our users.

Unlike much type-system research, our goal is not simply

to make a type-safe and expressive language. Type-safe in-

stantiation is well understood [e.g., 4, 18]. Instead, we wish

to examine the usability of a design around instantiation.

Unfortunately, proper scientific studies around usability are

essentially intractable, as we would need pools of compa-

rable experts in several designs executing a common task.

Instead of usability, then, we draw a fresh focus to a property

we name stability.
Intuitively, a language is stable if small, seemingly-innoc-

uous changes to the source code of a program do not cause

large changes to the program’s behaviour; we expand on

this definition in Section 3. We use stability as our metric for

evaluating instantiation schemes in GHC.

Our contributions are as follows:

• The introduction of stability properties relevant for ex-

amining instantiation in Haskell, along with examples

of how these properties affect programmer experience.

(Section 3)

• A family of type systems, based on the bidirectional

type-checking algorithm implemented in GHC [9, 16,

20]. It is parameterised over the flavour of type instan-

tiation. (Section 4)

• An analysis of how different choices of instantiation

flavour either respect or do not respect the similarities

we identify. We conclude that lazy, shallow instanti-

ation is the most stable. (Section 5; proofs in Appen-

dix E)

Though we apply stability as the mechanism of studying

instantiationwithinHaskell, we believe our approach is more
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widely applicable, both to other user-facing design questions

within Haskell and in the context of other languages.

The appendices mentioned in the text can be found in the

extended version at http://arxiv.org/abs/2106.14938.

2 Background
This section describes instantiation in GHC today and sets

our baseline understanding for the remainder of the paper.

2.1 Instantiation in GHC
Visible type application and variable specificity are fixed

attributes of the designs we are considering.

Visible type application. Since GHC 8.0, Haskell has

supported visible instantiation of type variables, based on

the order in which those variables occur [9]. Given const ::
∀ a b. a → b → a, we can write const @Int @Bool, which
instantiates the type variables, giving us an expression of

type Int → Bool → Int . If a user wants to visibly instantiate

a later type parameter (say, b) without choosing an earlier

one, they can write @ to skip a parameter. The expression

const @ @Bool has type 𝛼 → Bool → 𝛼 , for any type 𝛼 .

Specificity. Eisenberg et al. [9, Section 3.1] introduce the

notion of type variable specificity. The key idea is that quan-

tified type variables are either written by the user (these

are called specified) or invented by the compiler (these are

called inferred). A specified variable is available for explicit

instantiation using, e.g., @Int ; an inferred variable may not

be explicitly instantiated.

Following GHC, we use braces to denote inferred variables.

Thus, if we have the Haskell program

id1 :: a → a
id1 x = x

id2 x = x

then we would write that id1 :: ∀ a. a → a (with a specified

a) and id2 :: ∀ {a}. a → a (with an inferred a). Accordingly,
id1 @Int is a function of type Int → Int , while id2 @Int is a
type error.

2.2 Deep vs. Shallow Instantiation
The first aspect of instantiation we seek to vary is its depth,
which type variables get instantiated. Concretely, shallow

instantiation affects only the type variables bound before

any explicit arguments. Deep instantiation, on the other

hand, also instantiates all variables bound after any num-

ber of explicit arguments. For example, consider a function

f :: ∀ a. a → (∀ b. b → b) → ∀ c. c → c. A shallow

instantiation of f ’s type instantiates only a, whereas deep
instantiation also affects c, despite c’s deep binding site. Nei-

ther instantiation flavour touches b however, as b is not an

argument of f .

Versions of GHC up to 8.10 perform deep instantiation, as

originally introduced by Peyton Jones et al. [16], but GHC 9.0

changes this design, as proposed by Peyton Jones [15] and

inspired by Serrano et al. [20]. In this paper, we study this

change through the lens of stability.

2.3 Eager vs. Lazy Instantiation
Our work also studies the eagerness of instantiation, which
determines the location in the code where instantiation hap-

pens. Eager instantiation immediately instantiates a poly-

morphic type variable as soon as it is mentioned. In contrast,

lazy instantiation holds off instantiation as long as possi-

ble until instantiation is necessary in order to, say, allow a

variable to be applied to an argument.

For example, consider these functions:

pair :: ∀ a. a → ∀ b. b → (a, b)
pair x y = (x, y)
myPairX x = pair x

What type do we expect to infer for myPairX? With eager

instantiation, the type of a polymorphic expression is in-

stantiated as soon as it occurs. Thus, pair x will have a

type 𝛽 → (𝛼, 𝛽), assuming we have guessed x :: 𝛼 . (We

use Greek letters to denote unification variables.) With nei-

ther 𝛼 nor 𝛽 constrained, we will generalise both, and infer

∀ {a} {b }. a → b → (a, b) formyPairX . Crucially, this type
is different than the type of pair .

Let us now replay this process with lazy instantiation. The

variable pair has type ∀ a. a → ∀ b. b → (a, b). In order to

apply pair of that type to x , we must instantiate the first

quantified type variable a to a fresh unification variable 𝛼 ,

yielding the type 𝛼 → ∀ b. b → (𝛼, b). This is indeed a

function type, so we can consume the argument x , yielding
pair x :: ∀ b. b → (𝛼, b). We have now type-checked the

expression pair x , and thus we take the parameter x into

account and generalise this type to produce the inferred type

myPairX :: ∀ {a}. a → ∀ b. b → (a, b). This is the same as

the type given for pair , modulo the specificity of a.
As we have seen, thus, the choice of eager or lazy instan-

tiation can change the inferred types of definitions. In a lan-

guage that allows visible instantiation of type variables, the

difference between these types is user-visible. With lazy in-

stantiation, myPairX True @Char ’x’ is accepted, whereas

with eager instantiation, it would be rejected.

3 Stability
We have described stability as a measure of how small trans-

formations—call them similarities—in user-written codemight

drastically change the behaviour of a program. This section

lays out the specific similarities we will consider with respect

to our instantiation flavours. There are naturallymany trans-

formations one might think of applying to a source program.

We have chosen ones that relate best to instantiation; others
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(e.g. does a function behave differently in curried form as

opposed to uncurried form?) do not distinguish among our

flavours and are thus less interesting in our concrete context.

We include examples demonstrating each of these, showing

how instantiation can become muddled. While these exam-

ples are described in terms of types inferred for definitions

that have no top-level signature, many of the examples can

easily be adapted to include a signature. After presenting

our formal model of Haskell instantiation, we check our in-

stantiation flavours against these similarities in Section 5,

with proofs in Appendix E.

We must first define what we mean by the “behaviour”

of a program.We consider two different notions of behaviour,

both the compile time semantics of a program (that is, whether

the program is accepted and what types are assigned to its

variables) and its runtime semantics (that is, what the pro-

gram executes to, assuming it is still well typed). We write,

for example,
𝐶+𝑅⇐=⇒ to denote a similarity that we expect to

respect both compile and runtime semantics, whereas
𝑅⇐⇒ is

one that we expect only to respect runtime semantics, but

may change compile time semantics. Similarly,
𝐶+𝑅
===⇒ denotes

a one-directional similarity that we expect to respect both

compile and runtime semantics.

3.1 Similarity 1: Let-Inlining and Extraction
A key concern for us is around let-inlining and -extraction.

That is, if we bind an expression to a new variable and use

that variable instead of the original expression, does our

program change meaning? Or if we inline a definition, does

our program change meaning? These notions are captured

in Similarity 1:
1

let x = e1 in e2
𝐶+𝑅⇐=⇒ [e1/x] e2

Example 1:myId. The Haskell standard library defines

id :: ∀ a. a → a as the identity function. Suppose we made a

synonym of this (using the implicit top-level let of Haskell
files), with the following:

myId = id

Note that there is no type signature. Even in this simple

example, our choice of instantiation eagerness changes the

type we infer:

myId eager lazy

deep or shallow ∀ {a}. a → a ∀ a. a → a
Under eager instantiation, the mention of id is immediately

instantiated, and thus we must re-generalise in order to get a

polymorphic type formyId . Generalising always produces in-
ferred variables, and so the inferred type formyId starts with

∀ {a}, meaning that myId cannot be a drop-in replacement

for id , which might be used with explicit type instantiation.

1
A language with a strict let construct will observe a runtime difference

between a let binding and its expansion, but this similarity would still hold

with respect to type-checking.

On the other hand, lazy instantiation faithfully replicates the

type of id and uses it as the type of myId .

Example 2:myPair. This problem gets even worse if the

original function has a non-prenex type, like our pair , above.
Our definition is now:

myPair = pair

With this example, both design axes around instantiation

matter:

myPair eager lazy

deep ∀ {a} {b }. a → b → (a, b) ∀ a. a →
∀ b. b → (a, b)

shallow ∀ {a}. a → ∀ b. b → (a, b) ∀ a. a →
∀ b. b → (a, b)

All we want is to define a simple synonym, and yet reason-

ing about the types requires us to consider both depth and

eagerness of instantiation.

Example 3: myPairX. The myPairX example above ac-

quires a new entanglement once we account for specificity.

We define myPairX with this:

myPairX x = pair x

We infer these types:

myPairX eager lazy

deep or

shallow

∀ {a} {b }.
a → b → (a, b)

∀ {a}. a →
∀ b. b → (a, b)

Unsurprisingly, the generalised variables end up as inferred,

instead of specified.

3.2 Similarity 2: Signature Property
The second similarity annotates a let binding with the in-

ferred type 𝜎 of the bound expression e1. We expect this

similarity to be one-directional, as dropping a type anno-

tation may indeed change the compile time semantics of a

program, as we hope programmers expect.

f 𝜋 i = ei
i 𝐶+𝑅
===⇒ f : 𝜎 ; f 𝜋 i = ei

i
, where𝜎 is the inferred type of f

Example 4: infer. Though not yet implemented, we con-

sider a version of Haskell that includes the ability to abstract

over type variables, the subject of an approved proposal for

GHC [6]. With this addition, we can imagine writing infer :

infer = 𝜆 @a (x :: a) → x

We would infer these types:

infer eager lazy

deep or shallow ∀ {a}. a → a ∀ a. a → a
Note that the eager variant will infer a type containing an

inferred quantified variable {a}. this is because the expres-
sion 𝜆 @a (x :: a) → x is instantly instantiated; it is then

let-generalised to get the type in the table above.

If we change our program to include these types as an-

notations, the eager type, with its inferred variable, will be
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rejected. The problem is that we cannot check an abstraction

𝜆 @a → . . . against an expected type ∀ {a}. . . .: the whole
point of having an inferred specificity is to prevent such

behaviour, as an inferred variable should not correspond to

either abstractions or applications in the term.

3.3 Similarity 3: Type Signatures
Changing a type signature should not affect runtime semantics—

except in the case of type classes (or other feature that inter-

rupts parametricity). Because our paper elides type classes,

we can state this similarity quite generally; more fleshed-out

settings would require a caveat around the lack of type-class

constraints.

f : 𝜎1; f 𝜋 i = ei
i 𝑅⇐⇒ f : 𝜎2; f 𝜋 i = ei

i

Example 5: swizzle. Suppose we have this function de-

fined
2
:

undef :: ∀ a. Int → a → a
undef = undefined

Now, we write a synonym but with a slightly different type:

swizzle :: Int → ∀ a. a → a
swizzle = undef

Shockingly, undef and swizzle have different runtime be-

haviour: forcing undef diverges (unsurprisingly), but forcing
swizzle has no effect. The reason is that the definition of

swizzle is not as simple as it looks. In the System-F-based core

language used within GHC, we have swizzle = 𝜆(n :: Int) →
Λ(a :: Type) → undef @a n. Accordingly, swizzle is a func-
tion, which is already a value

3
.

Under shallow instantiation, swizzle would simply be re-

jected, as its type is different than undef ’s. The only way

swizzle can be accepted is if it is deeply skolemised (see

Application in Section 4), a necessary consequence of deep

instantiation.

swizzle eager or lazy

deep converges

shallow rejected

3.4 Similarity 4: Pattern-Inlining and Extraction
The fourth similarity represents changing variable patterns

(written to the left of the = in a function definition) into 𝜆-

binders (written on the right of the =), and vice versa. Here,

we assume the patterns 𝜋 contain only (expression and type)

variables. The three-place wrap relation is unsurprising. It

denotes that wrapping the patterns 𝜋 around the expression

2
This example is inspired by Peyton Jones [15].

3
Similarly to swizzle, the definition of undef gets translated into Λ(a ::

Type) → undefined @(Int → a → a) . However, this is not a value as GHC
evaluates underneath the Λ binder. The evaluation relation can be found in

Appendix D.

e1 in lambda binders results in e′
1
. Its definition can be found

in Appendix C.

let x 𝜋 = e1 in e2
𝐶+𝑅⇐=⇒ let x = e′

1
in e2

where wrap (𝜋 ; e1 ∼ e′
1
)

Example 6: infer2, again. Returning to the infer exam-

ple, we might imagine moving the abstraction to the left of

the =, yielding:

infer2 @a (x :: a) = x

Under all instantiation schemes, infer2 will be assigned the

type ∀ a. a → a. Accordingly, under eager instantiation,
the choice of whether to bind the variables before the = or

afterwards matters.

3.5 Similarity 5: Single vs. Multiple Equations
Our language model includes the ability to define a func-

tion by specifying multiple equations. The type inference

algorithm in GHC differentiates between single and multiple

equation declarations (see Section 5), and we do not want

this distinction to affect types. While normally new equa-

tions for a function would vary the patterns compared to

existing equations, we simply repeat the existing equation

twice; after all, the particular choice of (well-typed) pattern

should not affect compile time semantics at all.

f 𝜋 = e 𝐶⇐⇒ f 𝜋 = e, f 𝜋 = e

Example 7: unitId1 and unitId2. Consider these two

definitions:

unitId1 () = id

unitId2 () = id
unitId2 () = id

Both of these functions ignore their input and return the

polymorphic identity function. Let us look at their types:

eager lazy

unitId1
deep or

shallow

∀ {a}. () →
a → a

() →
∀ a. a → a

unitId2
deep or

shallow

∀ {a}. () →
a → a

∀ {a}. () →
a → a

The lazy case for UnitId1 is the odd one out: we see that the

definition of unitId1 has type∀ a. a → a, do not instantiate it,
and then prepend the () parameter. In the eager case, we see

that both definitions instantiate id and then re-generalise.

However, the most interesting case is the treatment of

unitId2 under lazy instantiation. The reason the type of

unitId2 here differs from that of unitId1 is that the pattern-
match forces the instantiation of id . As each branch of a

multiple-branch pattern-match must result in the same type,

we have to seek the most general type that is still less general

than each branch’s type. Pattern matching thus performs an

instantiation step (regardless of eagerness), in order to find

this common type.

4
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In the scenario of unitId2, however, this causes trouble:
the match instantiates id , and then the type of unitId2 is re-
generalised. This causes unitId2 to have a different inferred

type than unitId1, leading to an instability.

3.6 Similarity 6: 𝜂-Expansion
And lastly, we want 𝜂-expansion not to affect types. (This

change can reasonably affect runtime behaviour, so wewould

never want to assert that 𝜂-expansion maintains runtime

semantics.)

e 𝐶⇐⇒ 𝜆x .e x, where e has a function type

Example 8: eta. Consider these two definitions, where

id :: ∀ a. a → a:

noEta = id
eta = 𝜆x → id x

The two right-hand sides should have identical meaning,

as eta is simply the 𝜂-expansion of noEta. Yet, under lazy
instantiation, these two will have different types:

eager lazy

noEta deep or shallow ∀ {a}. a → a ∀ a. a → a
eta deep or shallow ∀ {a}. a → a ∀ {a}. a → a

The problem is that the 𝜂-expansion instantiates the occur-

rence of id in eta, despite the lazy instantiation strategy.

Under eager instantiation, the instantiation happens regard-

less.

3.7 Stability
The examples in this section show that the choice of instantia-

tion scheme matters—and that no individual choice is clearly

the best. To summarise, each of our possible schemes runs

into trouble with some example; this table lists the numbers

of the examples that witness a problem:

eager lazy

deep 1, 2, 3, 4, 5, 6 5, 7, 8

shallow 1, 2, 3, 4, 6 7, 8

At this point, the best choice is unclear. Indeed, these ex-

amples are essentially where we started our exploration of

this issue—with failures in each quadrant of this table, how

should we design instantiation in GHC?

To understand this better, Section 4 presents a formalisa-

tion of GHC’s type-checking algorithm, parameterised over

the choice of depth and eagerness. Section 5 then presents

properties derived from the similarities of this section and

checks which variants of our type system uphold which

properties. The conclusion becomes clear: lazy, shallow in-

stantiation respects the most similarities.

We now fix the definition of stability we will work toward

in this paper:

Definition (Stability). A language is considered stable when
all of the program similarities above are respected.

We note here that the idea of judging a language by its

robustness in the face of small transformations is not new;

see, for example, Le Botlan and Rémy [12] or Schrijvers et al.

[19], who also consider a similar property. However, we

believe ours is the first work to focus on it as the primary

criterion of evaluation.

Our goal in this paper is not to eliminate instability, which

would likely be too limiting, leaving us potentially with

either the Hindley-Milner implicit type system or a System

F explicit one. Both are unsatisfactory. Instead, our goal is to

make the consideration of stability a key guiding principle

in language design. The rest of this paper uses the lens of

stability to examine design choices around ordered explicit

type instantiation. We hope that this treatment serves as

an exemplar for other language design tasks and provides a

way to translate vague notions of an “intuitive” design into

concrete language properties that can be proved or disproved.

Furthermore, we believe that instantiation is an interesting

subject of study, as any language with polymorphism must

consider these issues, making them less esoteric than they

might first appear.

4 The Mixed Polymorphic 𝜆-Calculus
In order to assess the stability of our different designs, this

section develops a polymorphic, stratified 𝜆-calculus with

both implicit and explicit polymorphism.We call it theMixed

Polymorphic 𝜆-calculus, or MPLC. Our formalisation (based

on Eisenberg et al. [9] and Serrano et al. [20]) features explicit

type instantiation and abstraction, as well as type variable

specificity. In order to support visible type application, even

when instantiating eagerly, we must consider all the argu-

ments to a function before doing our instantiation, lest some

arguments be type arguments. Furthermore, type signatures

are allowed in the calculus, and the bidirectional type sys-

tem [17] permits higher-rank [14] functions. Some other

features, such as local let declarations defining functions

with multiple equations, are added to support some of the

similarities we wish to study.

We have built this system to support flexibility in both of

our axes of instantiation scheme design. That is, the calculus

is parameterised over choices of instantiation depth and

eagerness. In this way, our calculus is essentially a family of

type systems: choose your design, and you can instantiate

our rules accordingly.

4.1 Syntax
The syntax for MPLC is shown in Figure 1. We define two

meta parameters 𝛿 and 𝜖 denoting the depth and eagerness

of instantiation respectively. In the remainder of this paper,

grammar and relations which are affected by one of these

parameters will be annotated as such. A good example of

this are types 𝜙𝛿
and 𝜂𝜖 , as explained below.

5
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𝛿 ::= S | D Depth
𝜖 ::= E | L Eagerness

𝜏 ::= a | 𝜏1 → 𝜏2 | T 𝜏 Monotype
𝜌 ::= 𝜏 | 𝜎 → 𝜙𝛿 Instantiated type
𝜎 ::= 𝜌 | ∀ a.𝜎 | ∀ {a}.𝜎 | 𝜎1 → 𝜎2 Type scheme
𝜙𝛿

::= 𝜌 (𝛿 = D) Instantiated result
| 𝜎 (𝛿 = S)

𝜂𝜖 ::= 𝜌 (𝜖 = E) Synthesised type
| 𝜎 (𝜖 = L)

e ::= h𝑎𝑟𝑔 | 𝜆x .e | Λa.e | let decl in e Expression
h ::= x | K | e : 𝜎 | e Application head
arg ::= e | @𝜎 Application argument

decl ::= x : 𝜎 ; x 𝜋 i = ei
i
| x 𝜋 i = ei

i
Declaration

𝜋 ::= x | K 𝜋 | @𝜎 Pattern

Σ ::= · | Σ, T a | Σ,K : a;𝜎 ; T Static context
Γ,Δ ::= Σ | Γ, x : 𝜎 | Γ, a Context
𝜓 ::= 𝜏 | @a Arg. descriptor

Figure 1. Mixed Polymorphic 𝜆-Calculus (MPLC) Syntax

Keeping all the moving pieces straight can be challenging.

We thus offer some mnemonics to help the reader: In the

remainder of the paper, aspects pertaining to eager instantia-
tion are highlighted in emerald, while lazy features are high-
lighted in lavender. Similarly, instantiation under the shallow
scheme is drawn using a striped line, as in Γ ⊢ 𝜎 inst S

‧‧‧‧‧➡ 𝜌 .

Types. Our presentation of the MPLC contains several

different type categories, used to constrain type inference.

Monotypes 𝜏 represent simple ground types without any

polymorphism, while type schemes 𝜎 can be polymorphic,

including under arrows. In contrast, instantiated types 𝜌 can-

not have any top-level polymorphism. However, depending

on the depth 𝛿 of instantiation, a 𝜌-type may or may not

feature nested foralls on the right of function arrows. This

dependency on the depth 𝛿 of type instantiation is denoted

using an instantiated result type 𝜙𝛿
on the right of the func-

tion arrow. Instantiating shallowly, 𝜙S
is a type scheme 𝜎 ,

but deep instantiation sees 𝜙D
as an instantiated type 𝜌 .

This makes sense: Int → ∀a.a → a is a fully instantiated

type under shallow instantiation, but not under deep. We

also have synthesised types 𝜂𝜖 to denote the output of the

type synthesis judgement Γ ⊢ e ⇒ 𝜂𝜖 , which infers a type

from an expression. The shape of this type depends on the

eagerness 𝜖 of type instantiation: under lazy instantiation

(L), inference can produce full type schemes 𝜎 ; but under

eager instantiation (E), synthesised types 𝜂𝜖 are always in-

stantiated types 𝜌 : any top-level quantified variable would

have been instantiated away.

Finally, an argument descriptor𝜓 represents a type synthe-

sised from analysing a function argument pattern. Descrip-

tors are assembled into type schemes𝜎 with the type (𝜓 ;𝜎0 ∼
𝜎) judgement, in Figure 5.

Expressions. Expressions e are mostly standard; we ex-

plain the less common forms here.

As inspired by Serrano et al. [20], applications are mod-

elled as applying a head h to a (maximally long) list of argu-

ments 𝑎𝑟𝑔. The main idea is that under eager instantiation,

type instantiation for the head is postponed until it has been

applied to its arguments. A head h is thus defined to be either

a variable x, a data constructor K , an annotated expression

e : 𝜎 or a simple expression e. This last form will not be

typed with a type scheme under eager instantiation—that

is, we will not be able to use explicit instantiation—but is

required to enable application of a lambda expression. As we

feature both term and type application, an argument arg is

defined to be either an expression e or a type argument @𝜎 .

Our syntax additionally includes explicit abstractions over

type variables, written with Λ. Though the design of this fea-

ture (inspired by Eisenberg et al. [7, Appendix B]) is straight-

forward in our system, its inclusion drives some of the chal-

lenge of maintaining stability.

Lastly, let-expressions are modelled on the syntax of

Haskell. These contain a single (non-recursive) declaration

decl, which may optionally have a type signature x : 𝜎 , fol-

lowed by the definition x 𝜋 i = ei
i
. The patterns 𝜋 on the left

of the equals sign can each be either a simple variable x, type
@𝜎 or a saturated data constructor K 𝜋 .

Contexts. Typing contexts Γ are entirely standard, stor-

ing both the term variables x with their types and the type

variables a in scope; these type variables may appear in both

terms (as the calculus features explicit type application) and

types. The type constructors and data constructors are stored

in a static context Σ, which forms the basis of typing con-

texts Γ. This static context contains the data type definitions
by storing both type constructors T a and data constructors

K : a;𝜎 ; T . Data constructor types contain the list of quanti-

fied variables a, the argument types 𝜎 , and the resulting type

T ; when K : a;𝜎 ; T , then the use of K in an expression would

have type ∀ a.𝜎 → T a, abusing syntax slightly to write a

list of types 𝜎 to the left of an arrow.

4.2 Type System Overview
Table 1 provides a high-level overview of the different typing

judgements for the MPLC. The detailed rules can be found in

Figures 2–5. The starting place to understand our rules is in

Figure 2. These judgements implement a bidirectional type

6
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Γ ⊢𝐻 h ⇒ 𝜎 (Head Type Synthesis)
H-Var

x : 𝜎 ∈ Γ

Γ ⊢𝐻 x ⇒ 𝜎

H-Con

K : a;𝜎 ; T ∈ Γ

Γ ⊢𝐻 K ⇒ ∀ a.𝜎 → T a

H-Ann

Γ ⊢ e ⇐ 𝜎

Γ ⊢𝐻 e : 𝜎 ⇒ 𝜎

H-Inf

Γ ⊢ e ⇒ 𝜂𝜖

Γ ⊢𝐻 e ⇒ 𝜂𝜖

Γ ⊢ e ⇒ 𝜂𝜖 (Term Type Synthesis)

Tm-InfAbs

Γ, x : 𝜏1 ⊢ e ⇒ 𝜂𝜖
2

Γ ⊢ 𝜆x .e ⇒ 𝜏1 → 𝜂𝜖
2

Tm-InfApp

Γ ⊢𝐻 h ⇒ 𝜎

Γ ⊢𝐴 𝑎𝑟𝑔 ⇐ 𝜎 ⇒ 𝜎 ′

Γ ⊢ 𝜎 ′ inst 𝛿−−−−→𝜂𝜖

Γ ⊢ h𝑎𝑟𝑔 ⇒ 𝜂𝜖

Tm-InfLet

Γ ⊢ decl ⇒ Γ′

Γ′ ⊢ e ⇒ 𝜂𝜖

Γ ⊢ let decl in e ⇒ 𝜂𝜖

Tm-InfTyAbs

Γ, a ⊢ e ⇒ 𝜂𝜖
1

Γ ⊢ ∀ a.𝜂𝜖
1

inst 𝛿−−−−→𝜂𝜖
2

Γ ⊢ Λa.e ⇒ 𝜂𝜖
2

Γ ⊢ e ⇐ 𝜎 (Term Type Checking)
Tm-CheckAbs

Γ ⊢ 𝜎 skol S
‧‧‧‧‧➡ 𝜎1 → 𝜎2; Γ1

Γ1, x : 𝜎1 ⊢ e ⇐ 𝜎2

Γ ⊢ 𝜆x .e ⇐ 𝜎

Tm-CheckLet

Γ ⊢ decl ⇒ Γ′

Γ′ ⊢ e ⇐ 𝜎

Γ ⊢ let decl in e ⇐ 𝜎

Tm-CheckInf

Γ ⊢ 𝜎 skol 𝛿−−−−→ 𝜌 ; Γ1
Γ1 ⊢ e ⇒ 𝜂𝜖

Γ1 ⊢ 𝜂𝜖 inst 𝛿−−−−→ 𝜌

𝑒 ≠ 𝜆,Λ, let

Γ ⊢ e ⇐ 𝜎

Tm-CheckTyAbs

𝜎 = ∀ {a}.∀ a.𝜎 ′

Γ, a, a ⊢ e ⇐ 𝜎 ′

Γ ⊢ Λa.e ⇐ 𝜎

Γ ⊢𝐴 𝑎𝑟𝑔 ⇐ 𝜎 ⇒ 𝜎 ′ (Argument Type Checking)

Arg-Empty

Γ ⊢𝐴 · ⇐ 𝜎 ⇒ 𝜎

Arg-App

Γ ⊢ e ⇐ 𝜎1

Γ ⊢𝐴 𝑎𝑟𝑔 ⇐ 𝜎2 ⇒ 𝜎 ′

Γ ⊢𝐴 e, 𝑎𝑟𝑔 ⇐ 𝜎1 → 𝜎2 ⇒ 𝜎 ′

Arg-TyApp

Γ ⊢𝐴 𝑎𝑟𝑔 ⇐ [𝜎1/a] 𝜎2 ⇒ 𝜎3

Γ ⊢𝐴 @𝜎1, 𝑎𝑟𝑔 ⇐ ∀ a.𝜎2 ⇒ 𝜎3

Arg-Inst

Γ ⊢𝐴 e, 𝑎𝑟𝑔 ⇐ 𝜎 ′
2
⇒ 𝜎3

𝜎 ′
2
= [𝜏1/a] 𝜎2

Γ ⊢𝐴 e, 𝑎𝑟𝑔 ⇐ ∀ a.𝜎2 ⇒ 𝜎3

Arg-InfInst

𝜎 = ∀ {a}.𝜎2
Γ ⊢𝐴 𝑎𝑟𝑔 ⇐ 𝜎 ′

2
⇒ 𝜎3

𝜎 ′
2
= [𝜏1/a] 𝜎2

Γ ⊢𝐴 𝑎𝑟𝑔 ⇐ 𝜎 ⇒ 𝜎3

Figure 2. Term Typing for Mixed Polymorphic 𝜆-Calculus

Γ ⊢ decl ⇒ Γ′ (Declaration Checking)
Decl-NoAnnSingle

Γ ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ
Γ,Δ ⊢ e ⇒ 𝜂𝜖

type (𝜓 ;𝜂𝜖 ∼ 𝜎) a = fv (𝜎) \ dom (Γ)
Γ ⊢ x 𝜋 = e ⇒ Γ, x : ∀ {a}.𝜎

Decl-NoAnnMulti

i > 1 Γ ⊢𝑃 𝜋 i ⇒ 𝜓 ;Δi

i

Γ,Δi ⊢ ei ⇒ 𝜂𝜖i
i

Γ,Δi ⊢ 𝜂𝜖i
inst 𝛿−−−−→ 𝜌

i
type (𝜓 ; 𝜌 ∼ 𝜎)

a = fv (𝜎) \ dom (Γ) 𝜎 ′ = ∀ {a}.𝜎

Γ ⊢ x 𝜋 i = ei
i
⇒ Γ, x : 𝜎 ′

Decl-Ann

Γ ⊢𝑃 𝜋 i ⇐ 𝜎 ⇒ 𝜎 ′
i ;Δi

i
Γ,Δi ⊢ ei ⇐ 𝜎 ′

i
i

Γ ⊢ x : 𝜎 ; x 𝜋 i = ei
i
⇒ Γ, x : 𝜎

Figure 3. Declaration Typing for Mixed Polymorphic 𝜆-

Calculus

Table 1. Relation Overview

Fig. 2 Γ ⊢ e ⇒ 𝜂𝜖 Synthesise type 𝜂𝜖 for e
Fig. 2 Γ ⊢ e ⇐ 𝜎 Check e against type 𝜎
Fig. 2 Γ ⊢𝐻 h ⇒ 𝜎 Synthesise type 𝜎 for head h
Fig. 2 Γ ⊢𝐴 𝑎𝑟𝑔 ⇐ 𝜎 ⇒ 𝜎 ′

Check 𝑎𝑟𝑔 against 𝜎 ,

resulting in type 𝜎 ′

Fig. 3 Γ ⊢ decl ⇒ Γ′ Extend context with a decl.

Fig. 4 Γ ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ Synthesise types𝜓 for

patterns 𝜋 , binding context Δ
Fig. 4 Γ ⊢𝑃 𝜋 ⇐ 𝜎 ⇒ 𝜎 ′

;Δ Check 𝜋 against 𝜎 , with

residual type 𝜎 ′
, binding Δ

Fig. 5 Γ ⊢ 𝜎 inst 𝛿−−−−→ 𝜌 Instantiate 𝜎 to 𝜌

Fig. 5 Γ ⊢ 𝜎 skol 𝛿−−−−→ 𝜌 ; Γ′ Skolemise 𝜎 to 𝜌 , binding Γ′

App. C binders𝛿 (𝜎) = a; 𝜌 Extract type var. binders a
and residual 𝜌 from 𝜎

App. C wrap (𝜋 ; e1 ∼ e2) Bind patterns 𝜋 in e1 to get e2

system, fairly standard with the exception of their treatment

of a list of arguments all at once
4
.

Understanding this aspect of the system hinges on rule Tm-

InfApp, which synthesises the type of the head h and uses

its type to check the arguments 𝑎𝑟𝑔. The argument-checking

judgement Γ ⊢𝐴 𝑎𝑟𝑔 ⇐ 𝜎 ⇒ 𝜎 ′
(inspired by Dunfield and

Krishnaswami [5]) uses the function’s type 𝜎 to learn what

4
This is a well-known technique to reduce the number of traversals through

the applications, known as spine form [2].
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Γ ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ (Pattern Synthesis)

Pat-InfEmpty

Γ ⊢𝑃 · ⇒ ·; ·

Pat-InfVar

Γ, x : 𝜏1 ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ

Γ ⊢𝑃 x, 𝜋 ⇒ 𝜏1,𝜓 ; x : 𝜏1,Δ

Pat-InfCon

K : a0;𝜎0; T ∈ Γ
Γ ⊢𝑃 𝜋 ⇐ [𝜎1, 𝜏0/a0] (𝜎0 → T a0) ⇒ T 𝜏 ;Δ1

Γ,Δ1 ⊢𝑃 𝜋 ′ ⇒ 𝜓 ;Δ2

Γ ⊢𝑃 (K @𝜎1 𝜋), 𝜋 ′ ⇒ T 𝜏,𝜓 ;Δ1,Δ2

Pat-InfTyVar

Γ, a ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ

Γ ⊢𝑃 @a, 𝜋 ⇒ @a,𝜓 ; a,Δ

Γ ⊢𝑃 𝜋 ⇐ 𝜎 ⇒ 𝜎 ′
;Δ (Pattern Checking)
Pat-CheckEmpty

Γ ⊢𝑃 · ⇐ 𝜎 ⇒ 𝜎 ; ·

Pat-CheckVar

Γ, x : 𝜎1 ⊢𝑃 𝜋 ⇐ 𝜎2 ⇒ 𝜎 ′
;Δ

Γ ⊢𝑃 x, 𝜋 ⇐ 𝜎1 → 𝜎2 ⇒ 𝜎 ′
; x : 𝜎1,Δ

Pat-CheckCon

K : a0;𝜎0; T ∈ Γ Γ ⊢ 𝜎1 inst 𝛿−−−−→ 𝜌1

Γ ⊢𝑃 𝜋 ⇐ [𝜎1, 𝜏0/a0] (𝜎0 → T a0) ⇒ 𝜌1;Δ1

Γ,Δ1 ⊢𝑃 𝜋 ′ ⇐ 𝜎2 ⇒ 𝜎 ′
2
;Δ2

Γ ⊢𝑃 (K @𝜎1 𝜋), 𝜋 ′ ⇐ 𝜎1 → 𝜎2 ⇒ 𝜎 ′
2
;Δ1,Δ2

Pat-CheckForall

Γ, a ⊢𝑃 𝜋 ⇐ 𝜎 ⇒ 𝜎 ′
;Δ

𝜋 ≠ · and 𝜋 ≠ @𝜎, 𝜋 ′

Γ ⊢𝑃 𝜋 ⇐ ∀ a.𝜎 ⇒ 𝜎 ′
; a,Δ

Pat-CheckTyVar

Γ, a ⊢𝑃 𝜋 ⇐ [a/b] 𝜎1 ⇒ 𝜎2;Δ

Γ ⊢𝑃 @a, 𝜋 ⇐ ∀ b.𝜎1 ⇒ 𝜎2; a,Δ

Pat-CheckInfForall

Γ, a ⊢𝑃 𝜋 ⇐ 𝜎 ⇒ 𝜎 ′
;Δ 𝜋 ≠ ·

Γ ⊢𝑃 𝜋 ⇐ ∀{a}.𝜎 ⇒ 𝜎 ′
; a,Δ

Figure 4. Pattern Typing for Mixed Polymorphic 𝜆-Calculus

type is expected of each argument; after checking all argu-

ments, the judgement produces a residual type 𝜎 ′
. The judge-

ment’s rules walk down the list, checking term arguments

(rule Arg-App), implicitly instantiating specified variables

where necessary (rule Arg-Inst, which spots a term-level

Γ ⊢ 𝜎 inst 𝛿−−−−→ 𝜌 (Type instantiation)

Inst-Inst

binders𝛿 (𝜎) = a; 𝜌

Γ ⊢ 𝜎 inst 𝛿−−−−→[𝜏/a] 𝜌

Γ ⊢ 𝜎 skol 𝛿−−−−→ 𝜌 ; Γ′ (Type skolemisation)

Skol-Skol

binders𝛿 (𝜎) = a; 𝜌

Γ ⊢ 𝜎 skol 𝛿−−−−→ 𝜌 ; Γ, a

type (𝜓 ;𝜎 ∼ 𝜎 ′) (Telescope Type Construction)

Type-Empty

type (·;𝜎 ∼ 𝜎)

Type-Var

type (𝜓 ;𝜎2 ∼ 𝜎 ′
2
)

type (𝜏1,𝜓 ;𝜎2 ∼ 𝜏1 → 𝜎 ′
2
)

Type-TyVar

type (𝜓 ;𝜎 ∼ 𝜎 ′)
type (@a,𝜓 ;𝜎 ∼ ∀ a.𝜎 ′)

Figure 5. Type Instantiation and Skolemisation

argument e but does not consume it), uses type arguments

for instantiation (rule Arg-TyApp), and eagerly instantiates

inferred type arguments (rule Arg-InfInst).

Our type system also includes let-declarations, which al-

low for the definition of functions, with or without type

signatures, and supporting multiple equations defined by

pattern-matching. Checking declarations and dealing with

patterns is accomplished by the judgements in Figures 3

and 4, respectively, although the details may be skipped on

a first reading: we include these rules for completeness and

as the basis of our stability-oriented evaluation (Section 5).

These rules do not directly offer insight into our treatment

of instantiation.

Instead, the interesting aspects of our formulation are in

the instantiation and skolemisation judgements.

4.3 Instantiation and Skolemisation
Whenwe are type-checking the application of a polymorphic

function, we must instantiate its type variables: this changes
a function id :: ∀ a. a → a into id :: 𝜏 → 𝜏 , where 𝜏 is any

monotype. On the other hand, when we are type-checking

the body of a polymorphic definition, we must skolemise its
type variables: this changes a definition (𝜆x → x) ::∀ a. a →
a so that we assign x to have type a, where a is a skolem
constant—a fresh type, unequal to any other. These constants
are bound in the context returned from the skolemisation

judgement.

8
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Naturally, the behaviour of both instantiation and skolemi-

sation depend on the instantiation depth; see Figure 5. Both

rule Inst-Inst and rule Skol-Skol use the binders helper
function: binders𝛿 (𝜎) = a; 𝜌 extracts out bound type vari-

ables a and a residual type 𝜌 from a polytype 𝜎 . The depth,

though, is key: the shallow (S) version of our type system,

binders gathers only type variables bound at the top, while

the deep (D) version looks to the right past arrows. As ex-

amples, we have bindersS (∀a.a → ∀ b.b → b) = a; a →
∀ b.b → b and bindersD (∀a.a → ∀ b.b → b) = a, b; a →
b → b. The full definition (inspired by Peyton Jones et al.

[16, Section 4.6.2]) is in Appendix C.

Some usages of these relations happen only for certain

choices of instantiation flavour. For example, see rule Tm-

InfApp. We see the last premise instantiates the result of

the application—but its emerald colour tells us that this in-

stantiation happens only under the eager flavour
5
. Indeed,

this particular use of instantiation is the essence of eager

instantiation: even after a function has been applied to all

of its arguments, the eager scheme continues to instantiate.

Similarly, rule Tm-InfTyAbs instantiates eagerly in the eager

flavour.

The lazy counterpart to the eager instantiation in rule Tm-

InfApp is the instantiation in rule Tm-CheckInf. This rule is

the catch-all case in the checking judgement, and it is used

when we are checking an application against an expected

type, as in the expression f a b c :: T Int Bool. In this

example, if f a b c still has a polymorphic type, then we

will need to instantiate it in order to check the type against

the monomorphic T Int Bool. This extra instantiation would

always be redundant in the eager flavour (the application is

instantiated eagerly when inferring its type) but is vital in

the lazy flavour.

Several other rules interact with instantiation in interest-

ing ways:

𝜆-expressions. Rule Tm-CheckAbs checks a 𝜆-expression
against an expected type 𝜎 . However, this expected type may

be a polytype. We thus must first skolemise it, revealing a

function type 𝜎1 → 𝜎2 underneath (if this is not possible,

type checking fails). In order to support explicit type ab-

straction inside a lambda binder 𝜆x .Λa.e, rule Tm-CheckAbs
never skolemises under an arrow: note the fixed S visible in

the rule. As an example, this is necessary in order to accept

(𝜆x @b (y :: b) → y) ::∀ a. a → ∀ b. b → b, where it would
be disastrous to deeply skolemise the expected type when

examining the outer 𝜆.

Declarations without a type annotation. Rule Decl-

NoAnnMulti is used for synthesising a type for a multiple-

equation function definition that is not given a type signature.

5
We can also spot this fact by examining the metavariables. Instantiation

takes us from a 𝜎-type to a 𝜌-type, but the result in rule Tm-InfApp is a

𝜂𝜖 -type: a 𝜌-type in the eager flavour, but a 𝜎-type in the lazy flavour.

When we have multiple equations for a function, we might

imagine synthesising different polytypes for each equation.

We could then imagine trying to find some type that each

equation’s type could instantiate to, while still retaining as

much polymorphism as possible. This would seem to be

hard for users to predict, and hard for a compiler to imple-

ment. Our type system here follows GHC in instantiating

the types of all equations to be a monotype, which is then re-

generalised. This extra instantiation is not necessary under

eager instantiation, which is why it is coloured in lavender.

For a single equation (rule Decl-NoAnnSingle), synthe-

sising the original polytype, without instantiation and re-

generalisation is straightforward, and so that is what we do

(also following GHC).

5 Evaluation
This section evaluates the impact of the type instantiation

flavour on the stability of the programming language. To

this end, we define a set of eleven properties, based on the

informal definition of stability from Section 3. Every property

is analysed against the four instantiation flavours, the results

of which are shown in Table 2, which also references the

proof appendix for each of the properties, in the column

labeled App.

We do not investigate the type safety of our formalism, as

the MPLC is a subset of System F. We can thus be confident

that programs in our language can be assigned a sensible

runtime semantics without going wrong.

5.1 Contextual Equivalence
Following the approach of GHC, rather than providing an

operational semantics of our type system directly, we instead

define an elaboration of the surface language presented in

this paper to explicit System F, our core language. It is im-

portant to remark that elaborating deep instantiation into

this core language involves semantics-changing 𝜂-expansion.

This allows us to understand the behaviour of Example 5,

swizzle, which demonstrates a change in runtime seman-

tics arising from a type signature. This change is caused by

𝜂-expansion, observable only in the core language.

The definition of this core language and the elaboration

from MPLC to core are in Appendix D. The meta variable

t refers to core terms, and ⇝ denotes elaboration. In the

core language, 𝜂-expansion is expressed through the use of

an expression wrapper ṫ, an expression with a hole, which

retypes the expression that gets filled in. The full details

can be found in Appendix D. We now provide an intuitive

definition of contextual equivalence in order to describe what

it means for runtime semantics to remain unchanged.

Definition 1 (Contextual Equivalence). Two core expressions
t1 and t2 are contextually equivalent, written t1 ≃ t2, if there
does not exist a context that can distinguish them. That is, t1
and t2 behave identically in all contexts.

9
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Table 2. Property Overview

E L
Sim. Property Phase App. S D S D
1 1 Let inl. 𝐶 E.1 ✓ ✓ ✓ ✓

2 Let extr. 𝐶 E.1 ✗ ✗ ✓ ✓
3 𝑅 E.3 ✓ ✗ ✓ ✗

2 4 Signature prop 𝐶 ✗ ✗ ✗ ✗
4b restricted E.4 ✗ ✗ ✓ ✓
5 𝑅 E.4 ✓ ✗ ✓ ✗

3 6 Type sign. 𝑅 E.4 ✓ ✗ ✓ ✗
4 7 Pattern inl. 𝐶 E.5 ✗ ✗ ✓ ✓

8 𝑅 E.5 ✓ ✗ ✓ ✓
9 Pattern extr. 𝐶 E.5 ✗ ✗ ✓ ✓

5 10 Single/multi 𝐶 E.6 ✓ ✓ ✗ ✗
6 11 𝜂-expansion 𝐶 ✗ ✗ ✗ ✗

11b restricted E.7 ✗ ✓ ✗ ✗

Here, we understand a context to be a core expression with

a hole, similar to an expression wrapper, which instantiates

the free variables of the expression that gets filled in. More

concretely, the expression built by inserting t1 and t2 to the

context should either both evaluate to the same value, or

both diverge. A formal definition of contextual equivalence

can be found in Appendix E.2.

5.2 Properties
let-inlining and extraction. We begin by analysing Sim-

ilarity 1, which expands to the three properties described in

this subsection.

Property 1 (Let Inlining is Type Preserving).
• Γ ⊢ let x = e1 in e2 ⇒ 𝜂𝜖 ⊃ Γ ⊢ [e1/x] e2 ⇒ 𝜂𝜖

• Γ ⊢ let x = e1 in e2 ⇐ 𝜎 ⊃ Γ ⊢ [e1/x] e2 ⇐ 𝜎

Property 2 (Let Extraction is Type Preserving).
• Γ ⊢ [e1/x] e2 ⇒ 𝜂𝜖

2
∧ Γ ⊢ e1 ⇒ 𝜂𝜖

1

⊃ Γ ⊢ let x = e1 in e2 ⇒ 𝜂𝜖
2

• Γ ⊢ [e1/x] e2 ⇐ 𝜎2 ∧ Γ ⊢ e1 ⇒ 𝜂𝜖
1

⊃ Γ ⊢ let x = e1 in e2 ⇐ 𝜎2

Property 3 (Let Inlining is Runtime Semantics Preserving).

• Γ ⊢ let x = e1 in e2 ⇒ 𝜂𝜖 ⇝ t1
∧ Γ ⊢ [e1/x] e2 ⇒ 𝜂𝜖 ⇝ t2 ⊃ t1 ≃ t2

• Γ ⊢ let x = e1 in e2 ⇐ 𝜎 ⇝ t1
∧ Γ ⊢ [e1/x] e2 ⇐ 𝜎 ⇝ t2 ⊃ t1 ≃ t2

As an example for why Property 2 does not hold under

eager instantiation, consider id@Int. Extracting the id func-

tion into a new let-binder fails to type check, because id will

be instantiated and then re-generalised. This means that ex-

plicit type instantiation can no longer work on the extracted

definition.

The runtime semantics properties (both these and later

ones) struggle under deep instantiation. This is demonstrated

by Example 5, swizzle, where we see that non-prenex quan-
tification can cause 𝜂-expansion during elaboration and thus

change runtime semantics.

Signature Property. Similarity 2 gives rise to these prop-

erties about signatures.

Property 4 (Signature Property is Type Preserving).
Γ ⊢ x 𝜋 i = ei

i
⇒ Γ′ ∧ x : 𝜎 ∈ Γ′

⊃ Γ ⊢ x : 𝜎 ; x 𝜋 i = ei
i
⇒ Γ′

As an example of how this goes wrong under eager in-

stantiation, consider the definition x = Λa.𝜆y.(y : a). An-
notating x with its inferred type ∀ {a}.a → a is rejected,

because rule Tm-CheckTyAbs requires a specified quantified

variable, not an inferred one.

However, similarly to eager evaluation, even lazy instanti-

ation needs to instantiate the types at some point. In order

to type a multi-equation declaration, a single type needs

to be constructed that subsumes the types of every branch.

In our type system, rule Decl-NoAnnMulti simplifies this

process by first instantiating every branch type (following

the example set by GHC), thus breaking Property 4. We thus

introduce a simplified version of this property, limited to

single equation declarations. This raises a possible avenue

of future work: parameterising the type system over the

handling of multi-equation declarations.

Property 4b (Signature Property is Type Preserving (Single

Equation)).
Γ ⊢ x 𝜋 = e ⇒ Γ′ ∧ x : 𝜎 ∈ Γ′ ⊃ Γ ⊢ x : 𝜎 ; x 𝜋 = e ⇒ Γ′

Property 5 (Signature Property is Runtime Semantics Pre-

serving).
Γ ⊢ x 𝜋 i = ei

i
⇒ Γ′ ⇝ x : 𝜎 = t1

∧ Γ ⊢ x : 𝜎 ; x 𝜋 i = ei
i
⇒ Γ′ ⇝ x : 𝜎 = t2 ⊃ t1 ≃ t2

Type Signatures. Similarity 3 gives rise to the following

property about runtime semantics.

Property 6 (Type Signatures are Runtime Semantics Pre-

serving).
Γ ⊢ x : 𝜎1; x 𝜋 i = ei

i
⇒ Γ1 ⇝ x : 𝜎1 = t1

∧ Γ ⊢ x : 𝜎2; x 𝜋 i = ei
i
⇒ Γ1 ⇝ x : 𝜎2 = t2

∧ Γ ⊢ 𝜎1 inst 𝛿−−−−→ 𝜌 ⇝ ṫ1 ∧ Γ ⊢ 𝜎2 inst 𝛿−−−−→ 𝜌 ⇝ ṫ2
⊃ ṫ1 [t1] ≃ ṫ2 [t2]

Consider let x : ∀ a.Int → a → a; x = undefined in x ‘seq‘ (),
which diverges. Yet under deep instantiation, this version ter-

minates: let x : Int → ∀ a.a → a; x = undefined in x ‘seq‘ ().
Under shallow instantiation, the second program is rejected,

because undefined cannot be instantiated to the type Int →
∀ a.a → a, as that would be impredicative. You can find the

typing rules for undefined and seq in Appendix D.1.

10
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Pattern Inlining and Extraction. The properties in this
section come from Similarity 4. Like in that similarity, we

assume that the patterns are just variables (either implicit

type variables or explicit term variables).

Property 7 (Pattern Inlining is Type Preserving).
Γ ⊢ x 𝜋 = e1 ⇒ Γ′ ∧ wrap (𝜋 ; e1 ∼ e2) ⊃ Γ ⊢ x = e2 ⇒ Γ′

The failure of pattern inlining under eager instantiation

will feel similar: if we take id@a x = x : a, we will infer a
type ∀ a.a → a. Yet if we write id = Λa.𝜆x .(x : a), then eager
instantiation will give us the different type ∀ {a}.a → a.

Property 8 (Pattern Inlining / Extraction is Runtime Seman-

tics Preserving).
Γ ⊢ x 𝜋 = e1 ⇒ Γ′ ⇝ x : 𝜎 = t1 ∧ wrap (𝜋 ; e1 ∼ e2)
∧ Γ ⊢ x = e2 ⇒ Γ′ ⇝ x : 𝜎 = t2 ⊃ t1 ≃ t2

Property 9 (Pattern Extraction is Type Preserving).
Γ ⊢ x = e2 ⇒ Γ′ ∧ wrap (𝜋 ; e1 ∼ e2) ⊃ Γ ⊢ x 𝜋 = e1 ⇒ Γ′

Single vs.multiple equations. Similarity 5 says that there

should be no observable change between the case for a single

equation and multiple (redundant) equations with the same

right-hand side. That gets formulated into the following

property.

Property 10 (Single/multiple Equations is Type Preserving).

Γ ⊢ x 𝜋 = e ⇒ Γ, x : 𝜎 ⊃ Γ ⊢ x 𝜋 = e, x 𝜋 = e ⇒ Γ′

This property favours the otherwise-unloved eager flavour.

Imagine f = pair . Under eager instantiation, this defini-
tion is accepted as type synthesis produces an instantiated

type. Yet if we simply duplicate this equation under lazy

instantiation (realistic scenarios would vary the patterns on

the left-hand side, but duplication is simpler to state and ad-

dresses the property wewant), then rule Decl-NoAnnMulti

will reject as it requires the type to be instantiated.

𝜂-expansion. Similarity 6 leads to the following property.

Property 11 (𝜂-expansion is Type Preserving).
• Γ ⊢ e ⇒ 𝜂𝜖 ∧ numargs(𝜂𝜖 ) = 𝑛 ⊃ Γ ⊢ 𝜆x𝑛 .e x𝑛 ⇒ 𝜂𝜖

• Γ ⊢ e ⇐ 𝜎 ∧ numargs(𝜌) = 𝑛 ⊃ Γ ⊢ 𝜆x𝑛 .e x𝑛 ⇐ 𝜎

Here, x𝑛 represents 𝑛 variables. We use numargs(𝜎) to
count the number of explicit arguments an expression can

take, possibly instantiating any intervening implicit argu-

ments. A formal definition can be found in Figure 7 in the

appendix. However, in synthesis mode this property fails for

every flavour: 𝜂𝜖 might be a function type 𝜎1 → 𝜎2 taking a

type scheme 𝜎1 as an argument, while we only synthesise

monotype arguments. We thus introduce a restricted version

of Property 11, with the additional premise that 𝜂𝜖 can not

contain any binders to the left of an arrow.

Property 11b (𝜂-expansion is Type Preserving (Monotype

Restriction)).

• Γ ⊢ e ⇒ 𝜂𝜖 ∧ numargs(𝜂𝜖 ) = 𝑛 ∧ Γ ⊢ 𝜂𝜖 inst 𝛿−−−−→𝜏

⊃ Γ ⊢ 𝜆x𝑛 .e x𝑛 ⇒ 𝜂𝜖

• Γ ⊢ e ⇐ 𝜎 ∧ numargs(𝜌) = 𝑛 ⊃ Γ ⊢ 𝜆x𝑛 .e x𝑛 ⇐ 𝜎

This (restricted) property fails for all but the eager/deep

flavour as 𝜂-expansion forces other flavours to instantiate

arguments they otherwise would not have.

5.3 Conclusion
A brief inspection of Table 2 suggests howwe should proceed:

choose lazy, shallow instantiation. While this configuration

does not respect all properties, it is the clear winner—even

more so when we consider that Property 11b (one of only

two that favour another mode) must be artificially restricted

in order for any of our flavours to support the property.

We should note here that we authors were surprised by

this result. This paper arose from the practical challenge of

designing instantiation in GHC. After considerable debate

among the authors of GHC, we were unable to remain com-

fortable with any one decision—as we see here, no choice

is perfect, and so any suggestion was met with counter-

examples showing how that suggestion was incorrect. Yet

we had a hunch that eager instantiation was the right de-

sign. We thus formulated the similarities of Section 3 and

went about building a formalisation and proving proper-

ties. Crucially, we did not select the similarities to favour

a particular result, though we did choose to avoid reason-

able similarities that would not show any difference between

instantiation flavours. At an early stage of this work, we

continued to believe that eager instantiation was superior. It

was only through careful analysis, guided by our proofs and

counter-examples, that we realised that lazy instantiation

was winning. We are now convinced by our own analysis.

6 Instantiation in GHC
Given the connection between this work and GHC, we now

turn to examine some practicalities of how lazy instantiation

might impact the implementation.

6.1 Eagerness
GHC used eager instantiation from the beginning, echoing

Damas and Milner [4]. However, the GHC 8 series, which

contains support for explicit type application, implements

an uneasy truce, sometimes using lazy instantiation (as ad-

vocated by Eisenberg et al. [9]), and sometimes eager. In

contrast, GHC 9.0 uses eager instantiation everywhere. This

change was made for practical reasons: eager instantiation

simplifies the code somewhat. If we went back to using lazy

instantiation, the recent experience in going from lazy to

eager suggests we will have to combat these challenges:

Displaying inferred types. The types inferred for func-

tions are more exotic with lazy instantiation. For example,

defining f = 𝜆 → id would infer f ::∀ {a}. a → ∀ b. b → b.
11
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These types, which could be reported by tools (including

GHCi), might be confusing for users.

Monomorphism restriction. Eager instantiation makes

the monomorphism restriction easier to implement, because

relevant constraints are instantiated.

The monomorphism restriction is a peculiarity of Haskell,

introduced to avoid unexpected runtime evaluation
6
. It po-

tentially applies whenever a variable is defined without a

type annotation and without any arguments to the left of the

=: such a definition is not allowed to infer a type constraint.

Eager instantiation is helpful in implementing themonomor-

phism restriction, as the implementation of let-generalisation
can look for unsolved constraints and default the type if nec-

essary. With lazy instantiation, on the other hand, we would

have to infer the type and then make a check to see whether

it is constrained, instantiating it if necessary. Of course, the

monomorphism restriction itself introduces instability in the

language (note that plus and (+) have different types), and
so perhaps revisiting this design choice is worthwhile.

Type applicationwithun-annotated variables. For sim-

plicity, we want all variables without type signatures not

to work with explicit type instantiation. (Eisenberg et al. [9,

Section 3.1] expands on this point.) Eager instantiation ac-

complishes this, because variables without type signatures

would get their polymorphism via re-generalisation. On the

other hand, lazy instantiation would mean that some user-

written variables might remain in a variable’s type, like in

the type of f , just above.
Yet even with eager instantiation, if instantiation is shal-

low, we can still get the possibility of visible type application
on un-annotated variables: the specified variables might sim-

ply be hiding under a visible argument. Consider myPair
from Example 2: under eager shallow instantiation, it gets

assigned the type ∀ {a}. a → ∀ b. b → (a, b). This allows
for visible type application despite the lack of a signature:

myPair True @Char .

6.2 Depth
From the introduction of support for higher-rank types in

GHC 6.8, GHC has done deep instantiation, as outlined by

Peyton Jones et al. [16], the paper describing the higher-

rank types feature. However, deep instantiation has never

respected the runtime semantics of a program; Peyton Jones

[15] has the details. In addition, deep instantiation is required

in order to support covariance of result types in the type

subsumption judgement ([16, Figure 7]). This subsumption

judgement, though, weakens the ability to do impredicative

type inference, as described by Serrano et al. [21] and Serrano

et al. [20]. GHC has thus, for GHC 9.0, changed to use shallow

subsumption and shallow instantiation.

6
The full description is in the Haskell Report, Section 4.5.5 [13].

6.3 The Situation Today: Quick Look
Impredicativity Has Arrived

A recent innovation within GHC (due for release in the

next version, GHC 9.2) is the implementation of the Quick

Look algorithm for impredicative type inference [20]. The

design of that algorithm walks a delicate balance between

expressiveness and stability. It introduces new instabilities:

for example, if f x y requires impredicative instantiation,

(let unused = 5 in f ) x y will fail. Given that users who

opt into impredicative type inference are choosing to lose

stability properties, we deemed it more important to study

type inference without impredicativity in analysing stability.

While our formulation of the inference algorithm is easily in-

tegrated with the Quick Look algorithm, we leave an analysis

of the stability of the combination as future work.

7 Conclusion
This work introduces the concept of stability as a proxy for

the usability of a language that supports both implicit and ex-

plicit arguments
7
. We believe that designers of all languages

supporting this mix of features need to grapple with how

to best mix these features; those other designers may wish

to follow our lead in formalising the problem to seek the

most stable design. While stability is uninteresting in lan-

guages featuring pure explicit or pure implicit instantiation,

it turns out to be an important metric in the presence of

mixed behaviour.

Other work on type systems tends to focus on other prop-

erties; there is thus little related work beyond the papers we

have already cited.

We introduced a family of type systems, parameterised

over the instantiation flavour, and featuring a mix of ex-

plicit and implicit behaviour; these systems are inspired by

Peyton Jones et al. [16], Eisenberg et al. [9], and Serrano

et al. [20]. Using this family, we then evaluated the differ-

ent flavours of instantiation, against a set of formal stability

properties. The results are surprisingly unambiguous: (a)

lazy instantiation achieves the highest stability for the com-

pile time semantics, and (b) shallow instantiation results in

the most stable runtime semantics.
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A Instabilities around instantiation beyond Haskell
The concept of stability is important in languages that have a mix of implicit and explicit features—a very common

combination, appearing in Coq, Agda, Idris, modern Haskell, C++, Java, C#, Scala, F#, and Rust, among others.

This appendix walks through how a mixing of implicit and explicit features in Idris
8
and Agda

9
causes instability,

alongside the features of Haskell we describe in the main paper. We use these languages to show how the issues

we describe are likely going to arise in any language mixing implicit and explicit features—and how stability is a

worthwhile metric in examining these features—not to critique these languages in particular.

A.1 Explicit Instantiation
Our example languages feature explicit instantiation of implicit arguments, allowing the programmer to manually

instantiate a polymorphic type, for example. Explicit instantiation broadly comes in two flavours: ordered or named

parameters.

A.2 Idris
Idris supports named parameters. If we define const : {a, b : Type } → a → b → a (this syntax is the Idris equivalent
of the Haskell type ∀ a b. a → b → a), then we can write const {b = Bool } to instantiate only the second type

parameter or const {a = Int } {b = Bool } to instantiate both. Order does not matter; const {b = Bool } {a = Int }
works as well as the previous example. Named parameters may be easier to read than ordered parameters and are

robust to the addition of new type variables.

Idris’s approach suffers from an instability inherent with named parameters. Unlike Haskell, the order of quantified

variables does not matter. Yet now, the choice of names of the parameters naturally does matter. Thus const : c →
d → c (taking advantage of the possibility of omitting explicit quantification in Idris) has a different interface than

const : a → b → a, despite the fact that the type variables scope over only the type signature they appear in.

A.3 Agda
Agda accepts both ordered and named parameters. After defining const : {a b : Set } → a → b → a, we can

write expressions like const { Int } (instantiating only a), const {b = Bool }, or const { } {Bool }. Despite using
named parameters, order does matter: we cannot instantiate earlier parameters after later ones. Naming is useful

for skipping parameters that the user does not wish to instantiate. Because Agda requires explicit quantification

of variables used in types (except as allowed for in implicit generalisation, below), the ordering of variables must

be fixed by the programmer. However, like Idris, Agda suffers from the fact that the choice of name of these local

variables leaks to clients.

A.4 Explicit Abstraction
Binding implicit variables in named function definitions. If we sometimes want to explicitly instantiate an

implicit argument, we will also sometimes want to explicitly abstract over an implicit argument. A classic example

of why this is useful is in the replicate function for length-indexed vectors, here written in Idris:

replicate : {n : Nat } → a → Vect n a
replicate {n = Z } = [ ]
replicate {n = S } x = x :: replicate x

Because a length-indexed vector Vect includes its length in its type, we need not always pass the desired length of a

vector into the replicate function: type inference can figure it out. We thus decide here to make the n :Nat parameter

to be implicit, putting it in braces. However, in the definition of replicate, we must pattern-match on the length to

decide what to return. The solution is to use an explicit pattern, in braces, to match against the argument n.
Idris and Agda both support explicit abstraction in parallel to their support of explicit instantiation: when writing

equations for a function, the user can use braces to denote the abstraction over an implicit parameter. Idris requires

8
We work with Idris 2, as available from https://github.com/idris-lang/Idris2, at commit a7d5a9a7fdfbc3e7ee8995a07b90e6a454209cd8.

9
We work with Agda 2.6.0.1.
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such parameters to be named, while Agda supports both named and ordered parameters, just as the languages do

for instantiation. The challenges around stability are the same here as they are for explicit instantiation.

Haskell has no implemented feature analogous to this. Its closest support is that for scoped type variables, where

a type variable introduced in a type signature becomes available in a function body. For example:

const :: ∀ a b. a → b → a
const x y = (x :: a)
The ∀ a b brings a and b into scope both in the type signature and in the function body. This feature in Haskell

means that, like in Idris and Agda, changing the name of an apparently local variable in a type signature may

affect code beyond that type signature. It also means that the top-level ∀ in a type signature is treated specially. For

example, neither of the following examples are accepted by GHC:

const1 :: ∀.∀ a b. a → b → a
const1 x y = (x :: a)
const2 :: (∀ a b. a → b → a)
const2 x y = (x :: a)
In const1, the vacuous ∀. (which is, generally, allowed) stops the scoped-type variables mechanism from bringing a
into scope; in const2, the parentheses around the type serve the same function. Once again, we see how Haskell is

unstable: programmers might reasonably think that syntax like ∀ a b. is shorthand for ∀ a.∀ b. or that outermost

parentheses would be redundant, yet neither of these facts is true.

Binding implicit variables in an anonymous function. Sometimes, binding a type variable only in a function

declaration is not expressive enough, however—we might want to do this in an anonymous function in the middle

of some other expression.

Here is a (contrived) example of this in Agda, where ∋ allows for prefix type annotations:

_∋_ : (A : Set) → A → A
A ∋ x = x

ChurchBool : Set1
ChurchBool = {A : Set } → A → A → A

churchBoolToBit : ChurchBool → N
churchBoolToBit b = b 1 0

one : N
one = churchBoolToBit (𝜆{A} x1 x2 → A ∋ x1)
Here, we bind the implicit variable A in the argument to churchBoolToBit . (Less contrived examples are possible;

see the Motivation section of Eisenberg [6].)

Binding an implicit variable in a 𝜆-expression is subtler than doing it in a function clause. Idris does not support

this feature at all, requiring a named function to bind an implicit variable. Agda supports this feature, as written

above, but with caveats: the construct only works sometimes. For example, the following is rejected:

id : {A : Set } → A → A
id = 𝜆{A} x → A ∋ x

The fact that this example is rejected, but id {A} x = A ∋ x is accepted is another example of apparent instability—

wemight naïvely expect that writing a function with an explicit 𝜆 and using patterns to the left of an = are equivalent.

Another interesting aspect of binding an implicit variable in a 𝜆-abstraction is that the name of the variable is utterly

arbitrary: instead of writing (𝜆{A} x1 x2 → A ∋ x1), we can write (𝜆{anything = A} x1 x2 → A ∋ x1). This is an
attempt to use Agda’s support for named implicits, but the name can be, well, anything. This would appear to be a

concession to the fact that the proper name for this variable, A as written in the definition of ChurchBool, can be

arbitrarily far away from the usage of the name, so Agda is liberal in accepting any replacement for it.
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An accepted proposal [6] adds this feature to Haskell, though it has not been implemented as of this writing. That

proposal describes that the feature would be available only when we are checking a term against a known type,

taking advantage of GHC’s bidirectional type system [9, 16]. One of the motivations that inspired this paper was to

figure out whether we could relax this restriction. After all, it would seem plausible that we should accept a definition

like id = 𝜆 @a (x :: a) → a without a type signature. (Here, the @a syntax binds a to an otherwise-implicit type

argument.) It will turn out that, in the end, we can do this only when we instantiate lazily—see Section 5.

A.5 Implicit Generalisation
All three languages support some form of implicit generalisation, despite the fact that the designers of Haskell

famously declared that let should not be generalised [22] and that both Idris and Agda require type signatures on

all declarations.

Haskell. Haskell’s let-generalisation is the most active, as type signatures are optional.
10
Suppose we have defined

const x y = x , without a signature. What type do we infer? It could be ∀ a b. a → b → a or ∀ b a. a → b → a.
This choice matters, because it affects the meaning of explicit type instantiations. A natural reaction is to suggest

choosing the former inferred type, following the left-to-right scheme described above. However, in a language with

a type system as rich as Haskell’s, this guideline does not always work. Haskell supports type synonyms (which can

reorder the occurrence of variables), class constraints (whose ordering is arbitrary) [23], functional dependencies

(which mean that a type variable might be mentioned only in constraints and not in the main body of a type) [11],

and arbitrary type-level computation through type families [3, 8]. With all of these features potentially in play, it is

unclear how to order the type variables. Thus, in a concession to language stability, Haskell brutally forbids explicit

type instantiation on any function whose type is inferred; we discuss the precise mechanism in the next section.

Since GHC 8.0, Haskell allows dependency within type signatures [24], meaning that the straightforward left-to-

right ordering of variables—even in a user-written type signature—might not be well-scoped. As a simple example,

consider tr :: TypeRep (a :: k), where TypeRep :: ∀ k . k → Type allows runtime type representation and is part of

GHC’s standard library. A naive left-to-right extraction of type variables would yield ∀ a k . TypeRep (a :: k), which
is ill-scoped when we consider that a depends on k. Instead, we must reorder to ∀ k a. TypeRep (a :: k). In order to

support stability when instantiating explicitly, GHC thus defines a concrete sorting algorithm, called “ScopedSort”,

that reorders the variables; it has become part of GHC’s user-facing specification. Any change to this algorithm

may break user programs, and it is specified in GHC’s user manual.

Idris. Idris’s support for implicit generalisation is harder to trigger; see Appendix B for an example of how to do

it. The problem that arises in Idris is predictable: if the compiler performs the quantification, then it must choose

the name of the quantified type variable. How will clients know what this name is, necessary in order to instantiate

the parameter? They cannot. Accordingly, in order to support stability, Idris uses a special name for generalised

variables: the variable name itself includes braces (for example, it might be {k : 265}) and thus can never be parsed
11
.

Agda. Recent versions of Agda support a new variable keyword12. Here is an example of it in action:

variable
A : Set
l1 l2 : List A

The declaration says that an out-of-scope use of, say, A is a hint to Agda to implicitly quantify over A : Set . The
order of declarations in a variable block is significant: note that l1 and l2 depend on A. However, because explicit

10
Though not relevant for our analysis, some readers may want the details: Without any language extensions enabled, all declarations without signatures are

generalised, meaning that defining id x = x will give id the type ∀ a. a → a. With the MonoLocalBinds extension enabled, which is activated by either of

GADTs or TypeFamilies, local definitions that capture variables from an outer scope are not generalised—this is the effect of the dictum that let should not be

generalised. As an example, the g in f x = let g y = (y, x) in (g ’a’, g True) is not generalised, because its body mentions the captured x . Accordingly, f is

rejected, as it uses g at two different types (Char and Bool). Adding a type signature to g can fix the problem.

11
Idris 1 does not use an exotic name, but still prevents explicit instantiation, using a mechanism similar to Haskell’s specificity mechanism.

12
See https://agda.readthedocs.io/en/v2.6.0.1/language/generalization-of-declared-variables.html in the Agda manual for an description of the feature.
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instantiation by order is possible in Agda, we must specify the order of quantification when Agda does generalisation.

Often, this order is derived directly from the variable block—but not always. Consider this (contrived) declaration:

property : length l2 + length l1 ≡ length l1 + length l2

What is the full, elaborated type of property? Note that the two lists l1 and l2 can have different element types

A. The Agda manual calls this nested implicit generalisation, and it specifies an algorithm—similar to GHC’s

ScopedSort—to specify the ordering of variables. Indeed it must offer this specification, as leaving this part out

would lead to instability; that is, it would lead to the inability for a client of property to know how to order their

type instantiations.

B Example of Implicit Generalisation in Idris
It is easy to believe that a language that requires type signatures on all definitions will not have implicit generalisation.

However, Idris does allow generalisation to creep in, with just the right definitions.

We start with this:

data Proxy : {k : Type } → k → Type where
P : Proxy a

The datatype Proxy here is polymorphic; its one explicit argument can be of any type.

Now, we define poly :

poly : Proxy a
poly = P

We have not given an explicit type to the type variable a in poly’s type. Because Proxy’s argument can be of any

type, a’s type is unconstrained. Idris generalises this type, giving poly the type {k : Type } → {a : k } → Proxy a.
At a use site of poly , we must then distinguish between the possibility of instantiating the user-written a and

the possibility of instantiating the compiler-generated k. This is done by giving the k variable an unusual name,

{k:446} in our running Idris session.

C Type System Details

binders𝛿 (𝜎) = a; 𝜌 (Binders)

Bndr-ShallowInst

bindersS (𝜌) = ·; 𝜌

Bndr-ShallowForall

bindersS (𝜎) = b; 𝜌

bindersS (∀ a.𝜎) = a, b; 𝜌

Bndr-ShallowInfForall

bindersS (𝜎) = b; 𝜌

bindersS (∀ {a}.𝜎) = {a}, b; 𝜌

Bndr-DeepMono

bindersD (𝜏) = ·;𝜏

Bndr-DeepFunction

bindersD (𝜎2) = a; 𝜌2

bindersD (𝜎1 → 𝜎2) = a;𝜎1 → 𝜌2

Bndr-DeepForall

bindersD (𝜎) = b; 𝜌

bindersD (∀ a.𝜎) = a, b; 𝜌

Bndr-DeepInfForall

bindersD (𝜎) = b; 𝜌

bindersD (∀ {a}.𝜎) = {a}, b; 𝜌

wrap (𝜋 ; e1 ∼ e2) (Pattern Wrapping)

PatWrap-Empty

wrap (·; e ∼ e)

PatWrap-Var

wrap (𝜋 ; e1 ∼ e2)
wrap (x, 𝜋 ; e1 ∼ 𝜆x .e2)

PatWrap-TyVar

wrap (𝜋 ; e1 ∼ e2)
wrap (@a, 𝜋 ; e1 ∼ Λa.e2)

In addition to including the figures above, this appendix describes our treatment of let-declarations and patterns:
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Let Binders. A let-expression let decl in e (rule ETm-InfLet and rule ETm-CheckLet) defines a single variable,

with or without a type signature. The declaration typing judgement (Figure 3) produces a new context Γ′, extended
with the binding from this declaration.

Rules Decl-NoAnnSingle andDecl-NoAnnMulti distinguish between a single equationwithout a type signature

and multiple equations. In the former case, we synthesise the types of the patterns using the ⊢𝑃 judgement and

then the type of the right-hand side. We assemble the complete type with type, and then generalise. The multiple-

equation case is broadly similar, synthesising types for the patterns (note that each equation must yield the same
types 𝜓 ) and then synthesising types for the right-hand side. These types are then instantiated (only necessary

under lazy instantiation—eager instantiation would have already done this step). This additional instantiation

step is the only difference between the single-equation case and the multiple-equation case. The reason is that

rule Decl-NoAnnMulti needs to construct a single type that subsumes the types of every branch. Following GHC,

we simplify this process by first instantiating the types.

Rule Decl-Ann checks a declaration with a type signature. It works by first checking the patterns 𝜋 i on the left of

the equals sign against the provided type 𝜎 . The right-hand sides ei are then checked against the remaining type 𝜎 ′
i .

Patterns. The pattern synthesis relation Γ ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ and checking relation Γ ⊢𝑃 𝜋 ⇐ 𝜎 ⇒ 𝜎 ′
;Δ are presented

in Figure 4. As the full type is not yet available, synthesis produces argument descriptors𝜓 and a typing context

extension Δ. When checking patterns, the type to check against 𝜎 is available, and the relation produces a residual

type 𝜎 ′
, along with the typing context extension Δ.

Typing a variable pattern works similarly to expressions. Under inference (rule Pat-InfVar) we construct a

monotype and place it in the context. When checking a variable (rule Pat-CheckVar), its type 𝜎1 is extracted from

the known function type and placed in the context. Type abstraction @a in both synthesis and checking mode

(rule Pat-InfTyVar and rule Pat-CheckTyVar respectively) produces a type argument descriptor @a and extends

the typing environment.

Typing data constructor patterns (rule Pat-InfCon and rule Pat-CheckCon), works by looking up the type

∀ a0.𝜎0 → T a0 of the constructor K in the typing context, and checking the applied patterns 𝜋 against the

instantiated type, and an extended context
13
. The remaining type should be the result type for the constructor,

meaning that the constructor always needs to be fully applied. Note that full type schemes 𝜎1 are allowed in

patterns, where they are used to instantiate the variables a0 (possibly extended with guessed monotypes 𝜏0, if

there are not enough 𝜎1). Consider, for example, f (Just@Int x) = x + 1, where the @Int refines the type of

Just, which in turn assigns x the type Int. Note that pattern checking allows skolemising bound type variables

(rule Pat-CheckInfForall), but only when the patterns are not empty in order not to lose syntax-directedness of

the rules. The same holds for rule Pat-CheckForall, which only applies when no other rules match.

D Core Language
The dynamic semantics of the languages in Section 4 are defined through a translation to System F. While the

target language is largely standard, a few interesting remarks can be made. The language supports nested pattern

matching through case lambdas case𝜋𝐹 i : 𝜓𝐹 → ti
i
, where patterns 𝜋𝐹 include both term and type variables, as

well as nested constructor patterns. Note that while we reuse our type 𝜎 grammar for the core language, System F

does not distinguish between inferred and specified binders.

We also define two meta-language features to simplify the elaboration, and the proofs: Firstly, in order to support

eta-expansion (for translating deep instantiation to System F), we define expression wrappers ṫ, essentially a limited

form of expressions with a hole • in them. An expression t can be filled in for the hole to get a new expression ṫ [t].
One especially noteworthy wrapper construct is 𝜆t1.t2, explicitly abstracting over and handling the expression to be

filled in. Note that, as expression wrappers are only designed to alter the type of expressions through eta-expansion,

there is no need to support the full System F syntax.

Secondly, in order to define contextual equivalence, we introduce contexts M . These are again expressions with a

hole • in them, but unlike expression wrappers, contexts do cover the entire System F syntax. Typing contexts is

13
Extending the context for later patterns is not used in this system, but it would be required for extensions like view patterns.
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performed by the M : Γ1;𝜎1 ↦→ Γ2;𝜎2 relation: “Given an expression t that has type 𝜎1 under typing environment

Γ1, then the resulting expression M [t] has type 𝜎2 under typing environment Γ2”. We will elaborate further on

contextual equivalence in Appendix E.2.

t ::= x | K | t1 t2 | 𝜆x : 𝜎.t | t 𝜎 | Λa.t Expression
| undefined | seq

| case𝜋𝐹 i : 𝜓𝐹 → ti
i
| true | false

v ::= 𝜆x : 𝜎.t | Λa.v | K 𝑡 Value

| case𝜋𝐹 i : 𝜓𝐹 → ti
i

ṫ ::= • | 𝜆x : 𝜎.ṫ | ṫ 𝜎 | Λa.ṫ | 𝜆t1.t2 Expr. Wrapper
M ::= • | 𝜆x : 𝜎.M | M t | t M Context

| Λa.M | M 𝜎

arg𝐹 ::= t | 𝜎 Argument
𝜋𝐹 ::= x : 𝜎 | @a | K 𝜋𝐹 Pattern
𝜓𝐹 ::= 𝜎 | @a Arg. descriptor

Γ ⊢ t : 𝜎 (System F Term Typing)

FTm-Var

x : 𝜎 ∈ Γ

Γ ⊢ x : 𝜎

FTm-Con

K : a;𝜎 ; T ∈ Γ

Γ ⊢ K : ∀ a.𝜎 → T a

FTm-App

Γ ⊢ t1 : 𝜎1 → 𝜎2 Γ ⊢ t2 : 𝜎1
Γ ⊢ t1 t2 : 𝜎2

FTm-Abs

Γ, x : 𝜎1 ⊢ t : 𝜎2
Γ ⊢ 𝜆x : 𝜎1.t : 𝜎1 → 𝜎2

FTm-TyApp

Γ ⊢ t : ∀ a.𝜎1
Γ ⊢ t 𝜎2 : [𝜎2/a] 𝜎1

FTm-TyAbs

Γ, a ⊢ t : 𝜎
Γ ⊢ Λa.t : ∀ a.𝜎

FTm-Undef

Γ ⊢ undefined : ∀ a.a

FTm-True

Γ ⊢ true : Bool

FTm-False

Γ ⊢ false : Bool

FTm-Seq

Γ ⊢ seq : ∀ a.∀ b.a → b → b

FTm-Case

Γ ⊢𝑃 𝜋𝐹 i : 𝜓𝐹 ;Δ
i

Γ,Δ ⊢ ti : 𝜎1
i

type (𝜓𝐹 ;𝜎1 ∼ 𝜎2)

Γ ⊢ case𝜋𝐹 i : 𝜓𝐹 → ti
i
: 𝜎2

Γ ⊢𝑃 𝜋𝐹 : 𝜓𝐹 ;Δ (System F Pattern Typing)

FPat-Empty

Γ ⊢𝑃 · : ·; ·

FPat-Var

Γ, x : 𝜎 ⊢𝑃 𝜋𝐹 : 𝜓𝐹 ;Δ

Γ ⊢𝑃 x : 𝜎, 𝜋𝐹 : 𝜎,𝜓𝐹 ; x : 𝜎,Δ

FPat-TyVar

Γ, a ⊢𝑃 𝜋𝐹 : 𝜓𝐹 ;Δ

Γ ⊢𝑃 @a, 𝜋𝐹 : @a,𝜓𝐹 ; a,Δ

FPat-Con

K : a0;𝜎0; T ∈ Γ
Γ ⊢𝑃 𝜋𝐹 : [𝜎1/a0] 𝜎0;Δ1

Γ,Δ1 ⊢𝑃 𝜋𝐹
′
: 𝜓𝐹 ;Δ2

Γ ⊢𝑃 (K 𝜋𝐹 ), 𝜋𝐹 ′ : T 𝜎1,𝜓𝐹 ;Δ1,Δ2
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M : Γ1;𝜎1 ↦→ Γ2;𝜎2 (System F Context Typing)

FCtx-Hole

• : Γ;𝜎 ↦→ Γ;𝜎

FCtx-Abs

M : Γ1;𝜎2 ↦→ Γ2, x : 𝜎1;𝜎3

𝜆x : 𝜎1.M : Γ1;𝜎2 ↦→ Γ2;𝜎1 → 𝜎3

FCtx-AppR

M1 : Γ1;𝜎1 ↦→ Γ2;𝜎2 → 𝜎3
Γ2 ⊢ t2 : 𝜎2

M1 t2 : Γ1;𝜎1 ↦→ Γ2;𝜎3

FCtx-AppL

Γ2 ⊢ t1 : 𝜎2 → 𝜎3
M2 : Γ1;𝜎1 ↦→ Γ2;𝜎2

t1M2 : Γ1;𝜎1 ↦→ Γ2;𝜎3

FCtx-TyAbs

M : Γ1;𝜎1 ↦→ Γ2, a;𝜎2
Λa.M : Γ1;𝜎1 ↦→ Γ2;∀ a.𝜎2

FCtx-TyApp

M : Γ1;𝜎1 ↦→ Γ2;∀ a.𝜎2
M 𝜎 : Γ1;𝜎1 ↦→ Γ2; [𝜎/a] 𝜎2

FCtx-Case

Γ1 ⊢𝑃 𝜋𝐹 i : 𝜓𝐹 ;Δ
i

Mi : Γ1,Δ;𝜎1 ↦→ Γ2;𝜎2
i

type (𝜓𝐹 ;𝜎2 ∼ 𝜎3)

case𝜋𝐹 i : 𝜓𝐹 → Mi

i
: Γ1;𝜎1 ↦→ Γ2;𝜎3

Evaluation for our System F target language is largely standard and defined below. Note that, following GHC, our

target language evaluates inside type abstractions (rule FEval-TyAbs). Because of this, a type abstraction Λa.t is a
value if and only if t is a value. A more extensive discussion can be found in Breitner et al. [1, Appendix A.3].

match (𝜋𝐹 1 → t1; t2 : 𝜎2) ↩→ 𝜋𝐹 2 → t ′
1

(Core Pattern Matching)

FMatch-Var

match (x : 𝜎, 𝜋𝐹 → t1; t2 : 𝜎) ↩→ 𝜋𝐹 → [t2/x]t1

FMatch-Con

𝜎2 = 𝜓𝐹 1 → 𝜏2 t2 ↩→⇓ K 𝑡

(case𝜋𝐹 1 : 𝜓𝐹 1 → t1) 𝑡 ↩→⇓ v

match ((K 𝜋𝐹 1), 𝜋𝐹 2 → t1; t2 : 𝜎2) ↩→ 𝜋𝐹 2 → v

t1 ↩→ t2 (Core Evaluation)

FEval-App

t1 ↩→ t ′
1

t1 t2 ↩→ t ′
1
t2

FEval-AppAbs

(𝜆x : 𝜎.t1) t2 ↩→ [t2/x]t1

FEval-Seq

t1 ↩→ t ′
1

seq t1 t2 ↩→ seq t ′
1
t2

FEval-SeqVal

seq v1 t2 ↩→ t2

FEval-CaseEmpty

case · : · → ti
i
↩→ t0

FEval-CaseMatch

∀ j ∈ vwhere (match (𝜋𝐹 j → tj ; t2 : 𝜎) ↩→ 𝜋𝐹
′
j → t ′j )

(case𝜋𝐹 i : 𝜎,𝜓𝐹 → ti
i<v

) t2 ↩→ case𝜋𝐹 ′j : 𝜓𝐹 → t ′j
j<w

FEval-TyAbs

t ↩→ t ′

Λa.t ↩→ Λa.t ′

FEval-TyApp

t1 ↩→ t ′
1

t1 𝜎 ↩→ t ′
1
𝜎

FEval-TyAppAbs

(Λa.v1) 𝜎 ↩→ [𝜎/a] v1

FEval-Undef

undefined ↩→ undefined

FEval-TyAbsCase

(case@ai, 𝜋𝐹 i : @a,𝜓𝐹 → ti
i
) 𝜎 ↩→ case [𝜎/a]𝜋𝐹 i : [𝜎/a]𝜓𝐹 → [𝜎/a] ti

i

t ↩→⇓ v (Big Step Evaluation)

FEvalBigStep-Step

t ↩→ t ′ t ′ ↩→⇓ v

t ↩→⇓ v

FEvalBigStep-Done

v ↩→⇓ v
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D.1 Translation from the Mixed Polymorphic 𝜆-calculus

Γ ⊢𝐻 h ⇒ 𝜎 ⇝ t (Head Type Synthesis)
H-Var

x : 𝜎 ∈ Γ

Γ ⊢𝐻 x ⇒ 𝜎 ⇝ x

H-Con

K : a;𝜎 ; T ∈ Γ

Γ ⊢𝐻 K ⇒ ∀ a.𝜎 → T a⇝ K

H-Ann

Γ ⊢ e ⇐ 𝜎 ⇝ t

Γ ⊢𝐻 e : 𝜎 ⇒ 𝜎 ⇝ t

H-Undef

Γ ⊢𝐻 undefined ⇒ ∀ a.a⇝ undefined

H-Seq

Γ ⊢𝐻 seq ⇒ ∀ a.∀ b.a → b → b⇝ seq

H-Inf

Γ ⊢ e ⇒ 𝜂𝜖 ⇝ t

Γ ⊢𝐻 e ⇒ 𝜂𝜖 ⇝ t

Γ ⊢ e ⇒ 𝜂𝜖 ⇝ t (Term Type Synthesis)

Tm-InfAbs

Γ, x : 𝜏1 ⊢ e ⇒ 𝜂𝜖
2
⇝ t1

Γ ⊢ 𝜆x .e ⇒ 𝜏1 → 𝜂𝜖
2
⇝ 𝜆x : 𝜏1.t1

Tm-InfTyAbs

Γ, a ⊢ e ⇒ 𝜂𝜖
1
⇝ t

Γ ⊢ ∀ a.𝜂𝜖
1

inst 𝛿−−−−→𝜂𝜖
2
⇝ ṫ

Γ ⊢ Λa.e ⇒ 𝜂𝜖
2
⇝ ṫ [Λa.t]

Tm-InfApp

Γ ⊢𝐻 h ⇒ 𝜎 ⇝ t
Γ ⊢𝐴 𝑎𝑟𝑔 ⇐ 𝜎 ⇒ 𝜎 ′ ⇝ 𝑎𝑟𝑔𝐹

Γ ⊢ 𝜎 ′ inst 𝛿−−−−→𝜂𝜖 ⇝ ṫ

Γ ⊢ h𝑎𝑟𝑔 ⇒ 𝜂𝜖 ⇝ ṫ [t 𝑎𝑟𝑔𝐹 ]

Tm-InfLet

Γ ⊢ decl ⇒ Γ′ ⇝ x : 𝜎 = t1
Γ′ ⊢ e ⇒ 𝜂𝜖 ⇝ t2

Γ ⊢ let decl in e ⇒ 𝜂𝜖 ⇝ (𝜆x : 𝜎.t2) t1

Tm-InfTrue

Γ ⊢ true ⇒ Bool ⇝ true

Tm-InfFalse

Γ ⊢ false ⇒ Bool ⇝ false

Γ ⊢ e ⇐ 𝜎 ⇝ t (Term Type Scheme Checking)
Tm-CheckAbs

Γ ⊢ 𝜎 skol S
‧‧‧‧‧➡ 𝜎1 → 𝜎2; Γ1 ⇝ ṫ

Γ1, x : 𝜎1 ⊢ e ⇐ 𝜎2 ⇝ t1
Γ ⊢ 𝜆x .e ⇐ 𝜎 ⇝ ṫ [𝜆x : 𝜎1.t1]

Tm-CheckTyAbs

𝜎 = ∀ {a}.∀ a.𝜎 ′

Γ, a, a ⊢ e ⇐ 𝜎 ′ ⇝ t

Γ ⊢ Λa.e ⇐ 𝜎 ⇝ Λa.Λa.t

Tm-CheckLet

Γ ⊢ decl ⇒ Γ′ ⇝ x : 𝜎1 = t1
Γ′ ⊢ e ⇐ 𝜎 ⇝ t2

Γ ⊢ let decl in e ⇐ 𝜎 ⇝ (𝜆x : 𝜎1.t2) t1

Tm-CheckInf

Γ ⊢ 𝜎 skol 𝛿−−−−→ 𝜌 ; Γ1 ⇝ ṫ1
Γ1 ⊢ e ⇒ 𝜂𝜖 ⇝ t

Γ1 ⊢ 𝜂𝜖 inst 𝛿−−−−→ 𝜌 ⇝ ṫ2
𝑒 ≠ 𝜆,Λ, let

Γ ⊢ e ⇐ 𝜎 ⇝ ṫ1 [ṫ2 [t]]

Γ ⊢𝐴 𝑎𝑟𝑔 ⇐ 𝜎 ⇒ 𝜎 ′ ⇝ 𝑎𝑟𝑔𝐹 (Argument Type Checking)

Arg-Empty

Γ ⊢𝐴 · ⇐ 𝜎 ⇒ 𝜎 ⇝ ·

Arg-App

Γ ⊢ e ⇐ 𝜎1 ⇝ t
Γ ⊢𝐴 𝑎𝑟𝑔 ⇐ 𝜎2 ⇒ 𝜎 ′ ⇝ 𝑎𝑟𝑔𝐹

Γ ⊢𝐴 e, 𝑎𝑟𝑔 ⇐ 𝜎1 → 𝜎2 ⇒ 𝜎 ′ ⇝ t, 𝑎𝑟𝑔𝐹

Arg-Inst

Γ ⊢𝐴 e, 𝑎𝑟𝑔 ⇐ 𝜎 ′
2
⇒ 𝜎3 ⇝ 𝑎𝑟𝑔𝐹

𝜎 ′
2
= [𝜏1/a] 𝜎2

Γ ⊢𝐴 e, 𝑎𝑟𝑔 ⇐ ∀ a.𝜎2 ⇒ 𝜎3 ⇝ 𝑎𝑟𝑔𝐹

Arg-TyApp

Γ ⊢𝐴 𝑎𝑟𝑔 ⇐ [𝜎1/a] 𝜎2 ⇒ 𝜎3 ⇝ 𝑎𝑟𝑔𝐹

Γ ⊢𝐴 @𝜎1, 𝑎𝑟𝑔 ⇐ ∀ a.𝜎2 ⇒ 𝜎3 ⇝ 𝜏1, 𝑎𝑟𝑔𝐹

Arg-InfInst

𝜎 = ∀ {a}.𝜎2
Γ ⊢𝐴 𝑎𝑟𝑔 ⇐ 𝜎 ′

2
⇒ 𝜎3 ⇝ 𝑎𝑟𝑔𝐹

𝜎 ′
2
= [𝜏1/a] 𝜎2

Γ ⊢𝐴 𝑎𝑟𝑔 ⇐ 𝜎 ⇒ 𝜎3 ⇝ 𝑎𝑟𝑔𝐹
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Γ ⊢ 𝜎 inst 𝛿−−−−→ 𝜌 ⇝ ṫ (Type Instantiation)

InstT-SInst

Γ ⊢ 𝜌
inst S
‧‧‧‧‧➡ 𝜌 ⇝ •

InstT-SForall

Γ ⊢ [𝜏/a] 𝜎 inst S
‧‧‧‧‧➡ 𝜌 ⇝ ṫ

Γ ⊢ ∀ a.𝜎 inst S
‧‧‧‧‧➡ 𝜌 ⇝ 𝜆t .(ṫ [t 𝜏])

InstT-SInfForall

Γ ⊢ [𝜏/a] 𝜎 inst S
‧‧‧‧‧➡ 𝜌 ⇝ ṫ

Γ ⊢ ∀ {a}.𝜎 inst S
‧‧‧‧‧➡ 𝜌 ⇝ 𝜆t .(ṫ [t 𝜏])

InstT-Mono

Γ ⊢ 𝜏 inst D−−−−−→𝜏 ⇝ •

InstT-Function

Γ ⊢ 𝜎2 inst D−−−−−→ 𝜌2 ⇝ ṫ

Γ ⊢ 𝜎1 → 𝜎2
inst D−−−−−→𝜎1 → 𝜌2 ⇝ 𝜆t .𝜆x : 𝜎1.(ṫ [t x])

InstT-Forall

Γ ⊢ [𝜏/a] 𝜎 inst D−−−−−→ 𝜌 ⇝ ṫ

Γ ⊢ ∀ a.𝜎 inst D−−−−−→ 𝜌 ⇝ 𝜆t .(ṫ [t 𝜏])

InstT-InfForall

Γ ⊢ [𝜏/a] 𝜎 inst D−−−−−→ 𝜌 ⇝ ṫ

Γ ⊢ ∀ {a}.𝜎 inst D−−−−−→ 𝜌 ⇝ 𝜆t .(ṫ [t 𝜏])

Γ ⊢ 𝜎 skol 𝛿−−−−→ 𝜌 ; Γ′ ⇝ ṫ (Type Skolemisation)

SkolT-SInst

Γ ⊢ 𝜌
skol S
‧‧‧‧‧➡ 𝜌 ; Γ ⇝ •

SkolT-SForall

Γ, a ⊢ 𝜎 skol S
‧‧‧‧‧➡ 𝜌 ; Γ1 ⇝ ṫ

Γ ⊢ ∀ a.𝜎 skol S
‧‧‧‧‧➡ 𝜌 ; Γ1 ⇝ Λa.ṫ

SkolT-SInfForall

Γ, a ⊢ 𝜎 skol S
‧‧‧‧‧➡ 𝜌 ; Γ1 ⇝ ṫ

Γ ⊢ ∀ {a}.𝜎 skol S
‧‧‧‧‧➡ 𝜌 ; Γ1 ⇝ Λa.ṫ

SkolT-Mono

Γ ⊢ 𝜏 skol D−−−−−→𝜏 ; Γ ⇝ •

SkolT-Function

Γ ⊢ 𝜎2 skol D−−−−−→ 𝜌2; Γ1 ⇝ ṫ

Γ ⊢ 𝜎1 → 𝜎2
skol D−−−−−→𝜎1 → 𝜌2; Γ1 ⇝ 𝜆t .𝜆x : 𝜎1.(ṫ [t x])

SkolT-Forall

Γ, a ⊢ 𝜎 skol D−−−−−→ 𝜌 ; Γ1 ⇝ ṫ

Γ ⊢ ∀ a.𝜎 skol D−−−−−→ 𝜌 ; Γ1 ⇝ Λa.ṫ

SkolT-InfForall

Γ, a ⊢ 𝜎 skol D−−−−−→ 𝜌 ; Γ1 ⇝ ṫ

Γ ⊢ ∀ {a}.𝜎 skol D−−−−−→ 𝜌 ; Γ1 ⇝ Λa.ṫ
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Γ ⊢ decl ⇒ Γ′ ⇝ x : 𝜎 = t (Declaration Checking)

Decl-NoAnnSingle

Γ ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ⇝ 𝜋𝐹 : 𝜓𝐹

Γ,Δ ⊢ e ⇒ 𝜂𝜖 ⇝ t
type (𝜓 ;𝜂𝜖 ∼ 𝜎) a = fv (𝜎) \ dom (Γ)

Γ ⊢ x 𝜋 = e ⇒ Γ, x : ∀ {a}.𝜎 ⇝ x : ∀ {a}.𝜎 = case𝜋𝐹 : 𝜓𝐹 → t

Decl-NoAnnMulti

i > 1 Γ ⊢𝑃 𝜋 i ⇒ 𝜓 ;Δi ⇝ 𝜋𝐹 i : 𝜓𝐹

i

Γ,Δi ⊢ ei ⇒ 𝜂𝜖i ⇝ ti
i

Γ,Δi ⊢ 𝜂𝜖i
inst 𝛿−−−−→ 𝜌 ⇝ ṫi

i
type (𝜓 ; 𝜌 ∼ 𝜎)

a = fv (𝜎) \ dom (Γ) 𝜎 ′ = ∀ {a}.𝜎

Γ ⊢ x 𝜋 i = ei
i
⇒ Γ, x : 𝜎 ′ ⇝ x : 𝜎 ′ = case𝜋𝐹 i : 𝜓𝐹 → ṫi [ti]

i

Decl-Ann

Γ ⊢𝑃 𝜋 i ⇐ 𝜎 ⇒ 𝜎 ′
i ;Δi ⇝ 𝜋𝐹 i : 𝜓𝐹

i
Γ,Δi ⊢ ei ⇐ 𝜎 ′

i ⇝ ti
i

Γ ⊢ x : 𝜎 ; x 𝜋 i = ei
i
⇒ Γ, x : 𝜎 ⇝ x : 𝜎 = case𝜋𝐹 i : 𝜓𝐹 → ti

i

Γ ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ⇝ 𝜋𝐹 : 𝜓𝐹 (Pattern Synthesis)

Pat-InfEmpty

Γ ⊢𝑃 · ⇒ ·; ·⇝ · : ·

Pat-InfVar

Γ, x : 𝜏1 ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ⇝ 𝜋𝐹 : 𝜓𝐹

Γ ⊢𝑃 x, 𝜋 ⇒ 𝜏1,𝜓 ; x : 𝜏1,Δ⇝ x : 𝜏1, 𝜋𝐹 : 𝜏1,𝜓𝐹

Pat-InfCon

K : a0;𝜎0; T ∈ Γ

Γ ⊢𝑃 𝜋 ⇐ [𝜎1, 𝜏0/a0] (𝜎0 → T a0) ⇒ T 𝜏 ;Δ1 ⇝ 𝜋𝐹 1 : 𝜓𝐹 1

Γ,Δ1 ⊢𝑃 𝜋 ′ ⇒ 𝜓 ;Δ2 ⇝ 𝜋𝐹 2 : 𝜓𝐹 2

Γ ⊢𝑃 (K @𝜎1 𝜋), 𝜋 ′ ⇒ T 𝜏,𝜓 ;Δ1,Δ2 ⇝ (K 𝜋𝐹 1), 𝜋𝐹 2 : T 𝜏,𝜓𝐹 2

Pat-InfTyVar

Γ, a ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ⇝ 𝜋𝐹 : 𝜓𝐹

Γ ⊢𝑃 @a, 𝜋 ⇒ @a,𝜓 ; a,Δ⇝ @a, 𝜋𝐹 : @a,𝜓𝐹

Γ ⊢𝑃 𝜋 ⇐ 𝜎 ⇒ 𝜎 ′
;Δ⇝ 𝜋𝐹 : 𝜓𝐹 (Pattern Checking)

Pat-CheckEmpty

Γ ⊢𝑃 · ⇐ 𝜎 ⇒ 𝜎 ; ·⇝ · : ·

Pat-CheckVar

Γ, x : 𝜎1 ⊢𝑃 𝜋 ⇐ 𝜎2 ⇒ 𝜎 ′
;Δ⇝ 𝜋𝐹 : 𝜓𝐹

Γ ⊢𝑃 x, 𝜋 ⇐ 𝜎1 → 𝜎2 ⇒ 𝜎 ′
; x : 𝜎1,Δ⇝ x : 𝜎1, 𝜋𝐹 : 𝜎1,𝜓𝐹

Pat-CheckCon

K : a0;𝜎0; T ∈ Γ Γ ⊢ 𝜎1 inst 𝛿−−−−→ 𝜌1 ⇝ ṫ
Γ ⊢𝑃 𝜋 ⇐ [𝜎1, 𝜏0/a0] (𝜎0 → T a0) ⇒ 𝜌1;Δ1 ⇝ 𝜋𝐹 1 : 𝜓𝐹 1

Γ,Δ1 ⊢𝑃 𝜋 ′ ⇐ 𝜎2 ⇒ 𝜎 ′
2
;Δ2 ⇝ 𝜋𝐹 2 : 𝜓𝐹 2

Γ ⊢𝑃 (K @𝜎1 𝜋), 𝜋 ′ ⇐ 𝜎1 → 𝜎2 ⇒ 𝜎 ′
2
;Δ1,Δ2 ⇝ (K 𝜋𝐹 1), 𝜋𝐹 2 : 𝜎1,𝜓𝐹 2
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Pat-CheckForall

Γ, a ⊢𝑃 𝜋 ⇐ 𝜎 ⇒ 𝜎 ′
;Δ⇝ 𝜋𝐹 : 𝜓𝐹

𝜋 ≠ · and 𝜋 ≠ @𝜎, 𝜋 ′

Γ ⊢𝑃 𝜋 ⇐ ∀ a.𝜎 ⇒ 𝜎 ′
; a,Δ⇝ 𝜋𝐹 : @a,𝜓𝐹

Pat-CheckTyVar

Γ, a ⊢𝑃 𝜋 ⇐ [a/b] 𝜎1 ⇒ 𝜎2;Δ⇝ 𝜋𝐹 : 𝜓𝐹

Γ ⊢𝑃 @a, 𝜋 ⇐ ∀ b.𝜎1 ⇒ 𝜎2; a,Δ⇝ 𝜋𝐹 : @a,𝜓𝐹

Pat-CheckInfForall

Γ, a ⊢𝑃 𝜋 ⇐ 𝜎 ⇒ 𝜎 ′
;Δ⇝ 𝜋𝐹 : 𝜓𝐹 𝜋 ≠ ·

Γ ⊢𝑃 𝜋 ⇐ ∀{a}.𝜎 ⇒ 𝜎 ′
; a,Δ⇝ 𝜋𝐹 : @a,𝜓𝐹

E Proofs
This section provides the proofs for the properties discussed in Section 5.

E.1 Let-Inlining and Extraction
Property 1 (Let Inlining is Type Preserving).
• If Γ ⊢ let x = e1 in e2 ⇒ 𝜂𝜖 then Γ ⊢ [e1/x] e2 ⇒ 𝜂𝜖

• If Γ ⊢ let x = e1 in e2 ⇐ 𝜎 then Γ ⊢ [e1/x] e2 ⇐ 𝜎

Before proving Property 1, we first introduce a number of helper lemmas:

Lemma E.1 (Expression Inlining is Type Preserving (Synthesis)).
If Γ1 ⊢ e1 ⇒ 𝜂𝜖

1
and Γ1, x : ∀ {a}.𝜂𝜖

1
, Γ2 ⊢ e2 ⇒ 𝜂𝜖

2
where a = fv (𝜂𝜖1) \ dom (Γ1)

then Γ1, Γ2 ⊢ [e1/x] e2 ⇒ 𝜂𝜖
2

Lemma E.2 (Expression Inlining is Type Preserving (Checking)).
If Γ1 ⊢ e1 ⇒ 𝜂𝜖

1
and Γ1, x : ∀ {a}.𝜂𝜖

1
, Γ2 ⊢ e2 ⇐ 𝜎2 where a = fv (𝜂𝜖1) \ dom (Γ1)

then Γ1, Γ2 ⊢ [e1/x] e2 ⇐ 𝜎2

Lemma E.3 (Head Inlining is Type Preserving).
If Γ1 ⊢ e1 ⇒ 𝜂𝜖

1
and Γ1, x : ∀ {a}.𝜂𝜖

1
, Γ2 ⊢𝐻 h ⇒ 𝜎2 where a = fv (𝜂𝜖1) \ dom (Γ1)

then Γ1, Γ2 ⊢𝐻 [e1/x] h ⇒ 𝜎2

Lemma E.4 (Argument Inlining is Type Preserving).
If Γ1 ⊢ e1 ⇒ 𝜂𝜖

1
and Γ1, x : ∀ {a}.𝜂𝜖

1
, Γ2 ⊢𝐴 𝑎𝑟𝑔 ⇐ 𝜎1 ⇒ 𝜎2 where a = fv (𝜂𝜖1) \ dom (Γ1)

then Γ1, Γ2 ⊢𝐴 [e1/x] 𝑎𝑟𝑔 ⇐ 𝜎1 ⇒ 𝜎2

Lemma E.5 (Declaration Inlining is Type Preserving).
If Γ1 ⊢ e1 ⇒ 𝜂𝜖

1
and Γ1, x : ∀ {a}.𝜂𝜖

1
, Γ2 ⊢ decl ⇒ Γ3 where a = fv (𝜂𝜖1) \ dom (Γ1)

then Γ1, Γ2 ⊢ [e1/x] decl ⇒ Γ3

Figure 6 shows the dependencies between the different relations, and by extension the different helper lemmas.

An arrow from 𝐴 to 𝐵 denotes that 𝐵 depends on 𝐴. Note that these 5 lemmas need to be proven through mutual

induction. The proof proceeds by structural induction on the second typing derivation. While the number of cases

gets quite large, each case is entirely trivial.

Using these additional lemmas, we then continue proving Property 1. By case analysis on the premise (rule Tm-

InfLet or rule Tm-CheckLet, followed by rule Decl-NoAnnSingle), we learn that Γ ⊢ x = e1 ⇒ Γ, x : ∀ {a}.𝜂𝜖
1
,

Γ ⊢ e1 ⇒ 𝜂𝜖
1
, and either Γ, x : ∀ {a}.𝜂𝜖

1
⊢ e2 ⇒ 𝜂𝜖 or Γ, x : ∀ {a}.𝜂𝜖

1
⊢ e2 ⇐ 𝜎 . Both parts of the goal now follow

trivially from Lemma E.1 and E.2 respectively. □

Property 2 (Let Extraction is Type Preserving).
• If Γ ⊢ [e1/x] e2 ⇒ 𝜂𝜖

2
and Γ ⊢ e1 ⇒ 𝜂𝜖

1
then Γ ⊢ let x = e1 in e2 ⇒ 𝜂𝜖

2

• If Γ ⊢ [e1/x] e2 ⇐ 𝜎2 and Γ ⊢ e1 ⇒ 𝜂𝜖
1
then Γ ⊢ let x = e1 in e2 ⇐ 𝜎2

Similarly to before, we start by introducing a number of helper lemmas:
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Γ ⊢ e ⇒ 𝜂𝜖 Γ ⊢ e ⇐ 𝜎

Γ ⊢𝐻 h ⇒ 𝜎

Γ ⊢𝐴 𝑎𝑟𝑔 ⇐ 𝜎1 ⇒ 𝜎2 Γ ⊢ decl ⇒ Γ′

Figure 6. Relation dependencies

Lemma E.6 (Expression Extraction is Type Preserving (Synthesis)).
If Γ ⊢ e1 ⇒ 𝜂𝜖

1
and Γ ⊢ [e1/x] e2 ⇒ 𝜂𝜖

2

then Γ, x : ∀ {a}.𝜂𝜖
1
⊢ e2 ⇒ 𝜂𝜖

2
where a = fv (𝜂𝜖1) \ dom (Γ)

Lemma E.7 (Expression Extraction is Type Preserving (Checking)).
If Γ ⊢ e1 ⇒ 𝜂𝜖

1
and Γ ⊢ [e1/x] e2 ⇐ 𝜎2

then Γ, x : ∀ {a}.𝜂𝜖
1
⊢ e2 ⇐ 𝜎2 where a = fv (𝜂𝜖1) \ dom (Γ)

Lemma E.8 (Head Extraction is Type Preserving).
If Γ ⊢ e1 ⇒ 𝜂𝜖

1
and Γ ⊢𝐻 [e1/x] h ⇒ 𝜎2

then Γ, x : ∀ {a}.𝜂𝜖
1
⊢𝐻 h ⇒ 𝜎2 where a = fv (𝜂𝜖1) \ dom (Γ)

Lemma E.9 (Argument Extraction is Type Preserving).
If Γ ⊢ e1 ⇒ 𝜂𝜖

1
and Γ ⊢𝐴 [e1/x] 𝑎𝑟𝑔 ⇐ 𝜎1 ⇒ 𝜎2

then Γ, x : ∀ {a}.𝜂𝜖
1
⊢𝐴 𝑎𝑟𝑔 ⇐ 𝜎1 ⇒ 𝜎2 where a = fv (𝜂𝜖1) \ dom (Γ)

Lemma E.10 (Declaration Extraction is Type Preserving).
If Γ ⊢ e1 ⇒ 𝜂𝜖

1
and Γ ⊢ [e1/x] decl ⇒ Γ, Γ′

then Γ, x : ∀ {a}.𝜂𝜖
1
⊢ decl ⇒ Γ, x : ∀ {a}.𝜂𝜖

1
, Γ′ where a = fv (𝜂𝜖1) \ dom (Γ)

In addition to these helper lemmas, we also introduce two typing context lemmas:

Lemma E.11 (Environment Variable Shifting is Type Preserving).
• If Γ1, x1 : 𝜎1, x2 : 𝜎2, Γ2 ⊢ e ⇒ 𝜂𝜖 then Γ1, x2 : 𝜎2, x1 : 𝜎1, Γ2 ⊢ e ⇒ 𝜂𝜖

• If Γ1, x1 : 𝜎1, x2 : 𝜎2, Γ2 ⊢ e ⇐ 𝜎 then Γ1, x2 : 𝜎2, x1 : 𝜎1, Γ2 ⊢ e ⇐ 𝜎

Lemma E.12 (Environment Type Variable Shifting is Type Preserving).
• If Γ1, a, x : 𝜎, Γ2 ⊢ e ⇒ 𝜂𝜖 and · = fv (𝜎) \ dom (Γ1) then Γ1, x : 𝜎, a, Γ2 ⊢ e ⇒ 𝜂𝜖

• If Γ1, a, x : 𝜎, Γ2 ⊢ e ⇐ 𝜎 and · = fv (𝜎) \ dom (Γ1) then Γ1, x : 𝜎, a, Γ2 ⊢ e ⇐ 𝜎

• If Γ1, x : 𝜎, a, Γ2 ⊢ e ⇒ 𝜂𝜖 then Γ1, a, x : 𝜎, Γ2 ⊢ e ⇒ 𝜂𝜖

• If Γ1, x : 𝜎, a, Γ2 ⊢ e ⇐ 𝜎 then Γ1, a, x : 𝜎, Γ2 ⊢ e ⇐ 𝜎

Lemmas E.11 and E.12 are folklore, and can be proven through straightforward induction.

Now we can go about proving Lemmas E.6 till E.10. Similarly to the Property 1 helper lemmas, they have to be

proven using mutual induction. Most cases are quite straightforward, and we will focus only on Lemma E.8. We

start by performing case analysis on h:
Case h = y where y = x
By evaluating the substitution, we know from the premise that Γ ⊢ e1 ⇒ 𝜂𝜖

1
and Γ ⊢𝐻 e1 ⇒ 𝜎2, while the goal

remains Γ, x : ∀ {a}.𝜂𝜖
1
⊢𝐻 x ⇒ 𝜎2. It is clear from rule H-Var that in order for the goal to hold, 𝜎2 = ∀ {a}.𝜂𝜖

1
. We

proceed by case analysis on the second derivation:
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case rule H-Var e1 = x ′ : The rule premise tells us that x ′ : 𝜎2 ∈ Γ. The goal follows directly under lazy

instantiation. However, under eager instantiation, rule Tm-InfApp instantiates the type Γ ⊢ 𝜎2 inst 𝛿−−−−→𝜂𝜖
1
making the

goal invalid.

case rule H-Con e1 = K , rule H-Ann e1 = e3 : 𝜎3, rule H-Inf e1 = e1, rule H-Undef e1 = undefined, or
rule H-Seq e1 = seq :
Similarly to the previous case, the goal is only valid under eager instantiation.

Case h = y where y ≠ x
This case is trivial, as the substitution [e1/x] does not alter h. The result thus follows from weakening.

Case h = K , h = undefined, or h = seq
Similarly to the previous case, as the substitution does not alter h, the result thus follows from weakening.

Case h = e : 𝜎
The result follows by applying Lemma E.7.

Case h = e
The result follows by applying Lemma E.6. □
Using these lemmas, both Property 2 goals follow straightforwardly using rule Decl-NoAnnSingle, in combina-

tion with rule Tm-InfLet and Lemma E.6 or rule Tm-CheckLet and Lemma E.7, respectively. □

E.2 Contextual Equivalence
As we’ve now arrived at properties involving the runtime semantics of the language, we first need to formalise our

definition of contextual equivalence, and introduce a number of useful lemmas.

Definition 2 (Contextual Equavalence).

t1 ≃ t2 ≡ Γ ⊢ t1 : 𝜎1 ∧ Γ ⊢ 𝜎1 inst 𝛿−−−−→ 𝜌3 ⇝ ṫ1

∧ Γ ⊢ t2 : 𝜎2 ∧ Γ ⊢ 𝜎2 inst 𝛿−−−−→ 𝜌3 ⇝ ṫ2
∧ ∀M : Γ; 𝜌3 ↦→ ·;Bool,
∃v : M [ṫ1 [t1]] ↩→⇓ v ∧ M [ṫ2 [t2]] ↩→⇓ v

This definition for contextual equivalence is modified from Harper [10, Chapter 46]. Two core expressions are

thus contextually equivalent, if a common type exists to which both their types instantiate, and if no (closed) context

can distinguish between them. This can either mean that both applied expressions evaluate to the same value v or

both diverge. Note that while we require the context to map to a closed, Boolean expression, other base types, like

Int, would have been valid alternatives as well.

We first introduce reflexivity, commutativity and transitivity lemmas:

Lemma E.13 (Contextual Equivalence Reflexivity).
If Γ ⊢ t : 𝜎 then t ≃ t

The proof follows directly from the definition of contextual equivalence, along with the determinism of System F

evaluation.

Lemma E.14 (Contextual Equivalence Commutativity).
If t1 ≃ t2 then t2 ≃ t1

Trivial proof by unfolding the definition of contextual equivalence.

Lemma E.15 (Contextual Equivalence Transitivity).
If t1 ≃ t2 and t2 ≃ t3 then t1 ≃ t3

Trivial proof by unfolding the definition of contextual equivalence.

Furthermore, we also introduce a number of compatibility lemmas for the contextual equivalence relation, along

with two helper lemmas:
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Lemma E.16 (Compatibility Term Abstraction).
If t1 ≃ t2 then 𝜆x : 𝜎.t1 ≃ 𝜆x : 𝜎.t2

Lemma E.17 (Compatibility Term Application).
If t1 ≃ t2 and t ′1 ≃ t ′

2
then t1 t ′1 ≃ t2 t ′2

Lemma E.18 (Compatibility Type Abstraction).
If t1 ≃ t2 then Λa.t1 ≃ Λa.t2

Lemma E.19 (Compatibility Type Application).
If t1 ≃ t2 then t1 𝜎 ≃ t2 𝜎

Lemma E.20 (Compatibility Case Abstraction).

If ∀ 𝑖 : t1 i ≃ t2 i then case𝜋𝐹 i : 𝜓𝐹 → t1 i
i
≃ case𝜋𝐹 i : 𝜓𝐹 → t2 i

i

Lemma E.21 (Compatibility Expression Wrapper).
If t1 ≃ t2 then ṫ [t1] ≃ ṫ [t2]

Lemma E.22 (Compatibility Helper Forwards).
If M [t1] ↩→⇓ v and t1 ↩→ t2 then M [t2] ↩→⇓ v

Lemma E.23 (Compatibility Helper Backwards).
If M [t2] ↩→⇓ v and t1 ↩→ t2 then M [t1] ↩→⇓ v

The helper lemmas are proven by straightforward induction on the evaluation step derivation. We will prove

Lemma E.18 as an example, as it is non-trivial. The other compatibility lemmas are proven similarly.

We start by unfolding the definition of contextual equivalence in both the premise: Γ ⊢ t1 : 𝜎1, Γ ⊢ 𝜎1 inst 𝛿−−−−→ 𝜌3 ⇝

ṫ1, Γ ⊢ t2 : 𝜎2, Γ ⊢ 𝜎2
inst 𝛿−−−−→ 𝜌3 ⇝ ṫ2, ∀M : Γ; 𝜌3 ↦→ ·;Bool, ∃v : M [ṫ1 [t1]] ↩→⇓ v and M [ṫ2 [t2]] ↩→⇓ v.

Unfolding the definition reduces the goal to be proven to Γ′ ⊢ Λa.t1 : 𝜎 ′
1
, Γ′ ⊢ 𝜎 ′

1

inst 𝛿−−−−→ 𝜌 ′
3
⇝ ṫ ′

1
, Γ′ ⊢ Λa.t2 : 𝜎 ′

2
,

Γ′ ⊢ 𝜎 ′
2

inst 𝛿−−−−→ 𝜌 ′
3
⇝ ṫ ′

2
, ∀M ′

: Γ′; 𝜌 ′
3
↦→ ·;Bool, ∃v ′ : M ′[ṫ ′

1
[Λa.t1]] ↩→⇓ v ′ and M ′[ṫ ′

2
[Λa.t2]] ↩→⇓ v ′.

The typing judgement goals follow directly from rule FTm-TyAbs, where we take 𝜎 ′
1
= ∀a.𝜎1, 𝜎 ′

2
= ∀a.𝜎2 and

Γ′ = [𝜏/a] Γ for some 𝜏 .

As we know Γ ⊢ 𝜎1
inst 𝛿−−−−→ 𝜌3 ⇝ ṫ1, it is easy to see that [𝜏/a] Γ ⊢ [𝜏/a] 𝜎1 inst 𝛿−−−−→[𝜏/a] 𝜌3 ⇝ [𝜏/a] ṫ1, and

similarly for [𝜏/a] 𝜎2. Using this, the instantiation goals follow from rule InstT-SForall and rule InstT-Forall

with 𝜌 ′
3
= [𝜏/a] 𝜌3, ṫ ′1 = 𝜆t .( [𝜏/a] ṫ1 [t 𝜏]) and ṫ ′

2
= 𝜆t .( [𝜏/a] ṫ2 [t 𝜏]).

Finally, by inlining the definitions, the first halve of the third goal becomesM ′[(𝜆t .( [𝜏/a] ṫ1 [t 𝜏])) [Λa.t1]] ↩→⇓ v ′.
This reduces to M ′[[𝜏/a] ṫ1 [(Λa.t1) 𝜏]] ↩→⇓ v ′. By lemma E.22 (note that we can consider the combination of

a context and an expression wrapper as a new context): M ′[[𝜏/a] ṫ1 [[𝜏/a] t1]] ↩→⇓ v ′. We can now bring the

substitutions to the front, and reduce the goal (by Lemma E.23) M ′′[ṫ1 [t1]] ↩→⇓ v ′ where we define M ′′ =

𝜆t .M ′[(Λa.t) 𝜏] (note that we use 𝜆𝑡 as meta-notation here, to simplify our definition of M ′′
). We perform the same

derivation for the second halve of the goal: M ′′[ṫ2 [t2]] ↩→⇓ v ′. As M ′′
: Γ; 𝜌3 ↦→ ·;Bool, the goal follows directly

from the unfolded premise, where v ′ = v. □
We introduce an additional lemma stating that instantiating the type of expressions does not alter their behaviour:

Lemma E.24 (Type Instantiation is Runtime Semantics Preserving).
If Γ ⊢ t : 𝜎 and Γ ⊢ 𝜎 inst 𝛿−−−−→ 𝜌 ⇝ ṫ then t ≃ ṫ [t]

The proof proceeds by induction on the instantiation relation:

Case rule InstT-SInst ṫ = • :
Trivial case, as ṫ [t] = t, the goal follows directly from Lemma E.13.

Case rule InstT-SForall ṫ = 𝜆t1.(ṫ ′[t1 𝜏]) :
We know from the first premise, along with rule FTm-TyApp that Γ ⊢ t 𝜏 : [𝜏/a] 𝜎 ′

where 𝜎 = ∀ a.𝜎 ′
. By applying

the induction hypothesis we get t 𝜏 ≃ ṫ ′[t 𝜏]. The goal to be proven is t ≃ (𝜆t1.(ṫ ′[t1 𝜏])) [t], which reduces to
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t ≃ ṫ ′[t 𝜏]. By unfolding the definition of contextual equivalence in both the goal and the induction hypothesis

result (using Lemma E.15), the remaining goals are:

• Γ ⊢ t : 𝜎1 : follows directly from the first premise.

• Γ ⊢ ∀ a.𝜎 ′ inst S
‧‧‧‧‧➡ 𝜌 ′ ⇝ ṫ1 and Γ ⊢ 𝜌 ′ inst S

‧‧‧‧‧➡ 𝜌 ⇝ ṫ2 : follows directly from the premise if we take 𝜌 ′ = 𝜌 , ṫ1 = ṫ
and ṫ2 = •.

• M [ṫ1 [t]] ↩→⇓ v and M [ṫ [t]] ↩→⇓ v : trivial as both sides are identical and evaluation is deterministic.

Case rule InstT-SInfForall ṫ = 𝜆t1.(ṫ ′[t1 𝜏]) :
The proof follows analogously to the previous case. We have thus proven Lemma E.24 under shallow instantiation.

Case rule InstT-Mono ṫ = • :
Trivial case, as ṫ [t] = t, the goal follows directly from Lemma E.13.

Case rule InstT-Function ṫ = 𝜆t1.𝜆x : 𝜎1.(ṫ ′[t1 x]) :
It is clear that the goal does not hold in this case. Under deep instantiation, full eta expansion is performed, which

alters the evaluation behaviour. Consider for example undefined and its expansion 𝜆x : 𝜎.undefined x. □
Finally, we introduce a lemma stating that evaluation preserves contextual equivalence. However, in order to

prove it, we first need to introduce the common preservation lemma:

Lemma E.25 (Preservation).
If Γ ⊢ t : 𝜎 and t ↩→ t ′ then Γ ⊢ t ′ : 𝜎
The preservation proof for System F is folklore, and proceeds by straightforward induction on the evaluation

relation.

Lemma E.26 (Evaluation is Contextual Equivalence Preserving).
If t1 ≃ t2 and t2 ↩→ t ′

2
then t1 ≃ t ′

2

The proof follows by Lemma E.25 (to cover type preservation) and Lemma E.22 (to cover the evaluation aspect).

E.3 Let-Inlining and Extraction, Continued
Property 3 (Let Inlining is Runtime Semantics Preserving).
• If Γ ⊢ let x = e1 in e2 ⇒ 𝜂𝜖 ⇝ t1 and Γ ⊢ [e1/x] e2 ⇒ 𝜂𝜖 ⇝ t2 then t1 ≃ t2
• If Γ ⊢ let x = e1 in e2 ⇐ 𝜎 ⇝ t1 and Γ ⊢ [e1/x] e2 ⇐ 𝜎 ⇝ t2 then t1 ≃ t2

We first need typing preservation lemmas before we can prove Property 3.

Lemma E.27 (Expression Typing Preservation (Synthesis)).
If Γ ⊢ e ⇒ 𝜂 ⇝ t then Γ ⊢ t : 𝜂
Lemma E.28 (Expression Typing Preservation (Checking)).
If Γ ⊢ e ⇐ 𝜎 ⇝ t then Γ ⊢ t : 𝜎
Lemma E.29 (Head Typing Preservation).
If Γ ⊢𝐻 h ⇒ 𝜎 ⇝ t then Γ ⊢ t : 𝜎
Lemma E.30 (Argument Typing Preservation).
If Γ ⊢𝐴 𝑎𝑟𝑔 ⇐ 𝜎 ⇒ 𝜎 ′ ⇝ 𝑎𝑟𝑔𝐹 then ∀ti ∈ 𝑎𝑟𝑔𝐹 : Γ ⊢ ti : 𝜎i
Lemma E.31 (Declaration Typing Preservation).
If Γ ⊢ decl ⇒ Γ′ ⇝ x : 𝜎 = t then Γ ⊢ t : 𝜎
Similarly to the helper lemmas for Property 1, these lemmas need to be proven using mutual induction. The

proofs follow through straightforward induction on the typing derivation.

We continue by introducing another set of helper lemmas:

Lemma E.32 (Expression Inlining is Runtime Semantics Preserving (Synthesis)).
If Γ1, x : ∀ {a}.𝜂𝜖

1
, Γ2 ⊢ e2 ⇒ 𝜂𝜖

2
⇝ t2, Γ1 ⊢ e1 ⇒ 𝜂𝜖

1
⇝ t1 and Γ1, Γ2 ⊢ [e1/x] e2 ⇒ 𝜂𝜖

2
⇝ t3 where a =

fv (𝜂𝜖1) \ dom (Γ1) then t3 ≃ (𝜆x : ∀ a.𝜂𝜖
1
.t2) t1
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Lemma E.33 (Expression Inlining is Runtime Semantics Preserving (Checking)).
If Γ1, x : ∀ {a}.𝜂𝜖

1
, Γ2 ⊢ e2 ⇐ 𝜎2 ⇝ t2, Γ1 ⊢ e1 ⇒ 𝜂𝜖

1
⇝ t1 and Γ1, Γ2 ⊢ [e1/x] e2 ⇐ 𝜎2 ⇝ t3 where a =

fv (𝜂𝜖1) \ dom (Γ1) then t3 ≃ (𝜆x : ∀ a.𝜂𝜖
1
.t2) t1

Lemma E.34 (Head Inlining is Runtime Semantics Preserving).
If Γ1, x : ∀ {a}.𝜂𝜖

1
, Γ2 ⊢𝐻 h ⇒ 𝜎 ⇝ t2, Γ1 ⊢ e1 ⇒ 𝜂𝜖

1
⇝ t1 and Γ1, Γ2 ⊢𝐻 [e1/x] h ⇒ 𝜎 ⇝ t3 where a =

fv (𝜂𝜖1) \ dom (Γ1) then t3 ≃ (𝜆x : ∀ a.𝜂𝜖
1
.t2) t1

Lemma E.35 (Argument Inlining is Runtime Semantics Preserving).
If Γ1, x : ∀ {a}.𝜂𝜖

1
, Γ2 ⊢𝐴 𝑎𝑟𝑔 ⇐ 𝜎1 ⇒ 𝜎2 ⇝ 𝑎𝑟𝑔𝐹 1, Γ1 ⊢ e1 ⇒ 𝜂𝜖

1
⇝ t1

and Γ1, Γ2 ⊢𝐴 [e1/x] 𝑎𝑟𝑔 ⇐ 𝜎1 ⇒ 𝜎2 ⇝ 𝑎𝑟𝑔𝐹 2 where a = fv (𝜂𝜖1) \ dom (Γ1)
then ∀ti ∈ 𝑎𝑟𝑔𝐹 1, t

′
i ∈ 𝑎𝑟𝑔𝐹 2 : t ′i ≃ (𝜆x : ∀ a.𝜂𝜖

1
.ti) t1

Lemma E.36 (Declaration Inlining is Runtime Semantics Preserving).
If Γ1, x : ∀ {a}.𝜂𝜖

1
, Γ2 ⊢ decl ⇒ Γ3 ⇝ y : 𝜎2 = t2, Γ1 ⊢ e1 ⇒ 𝜂𝜖

1
⇝ t1 and Γ1, Γ2 ⊢ [e1/x] decl ⇒ Γ3 ⇝ y : 𝜎2 = t3

where a = fv (𝜂𝜖1) \ dom (Γ1) then t3 ≃ (𝜆x : ∀ a.𝜂𝜖
1
.t2) t1

As is probably clear by now, these lemmas are proven through mutual induction. The proof proceeds by structural

induction on the first typing derivation. We will focus on the non-trivial cases:

Case rule H-Var h = y where y = x :
The goal reduces to t1 ≃ (𝜆x : ∀ a.𝜂𝜖

1
.x) t1, which follows directly from Lemmas E.13 and E.26.

Case rule H-Var h = y where y ≠ x :
The goal reduces to y ≃ (𝜆x : ∀ a.𝜂𝜖

1
.y) t1. Since (𝜆x : ∀ a.𝜂𝜖

1
.y) t1 ↩→ y, the goal follows directly from Lemmas E.13

and E.26.

Case rule Tm-InfAbs e2 = 𝜆y.e4 :
The premise tells us Γ1, x : ∀ {a}.𝜂𝜖

1
, Γ2, y : 𝜏1 ⊢ e4 ⇒ 𝜂𝜖

4
⇝ t4 and Γ1, Γ2, y : 𝜏1 ⊢ [e1/x] e4 ⇒ 𝜂𝜖

4
⇝ t5. Applying

the induction hypothesis gives us t5 ≃ (𝜆x : ∀ a.𝜂𝜖
1
.t4) t1. The goal reduces to 𝜆y : 𝜏1.t5 ≃ (𝜆x : ∀ a.𝜂𝜖

1
.𝜆y : 𝜏1.t4) t1.

In order not to clutter the proof too much, we introduce an additional helper lemma E.37. The goal then follows

from Lemmas E.16 and E.37.

Case rule Tm-InfTyAbs e2 = Λa.e4 :
The premise tells us Γ1, x : ∀ {a}.𝜂𝜖

1
, Γ2, a ⊢ e4 ⇒ 𝜂𝜖

4
⇝ t4, Γ1, Γ2, a ⊢ [e1/x] e4 ⇒ 𝜂𝜖

4
⇝ t5 and Γ1, Γ2 ⊢

∀a.𝜂𝜖
4

inst 𝛿−−−−→𝜂𝜖
5
⇝ ṫ. Applying the induction hypothesis gives us t5 ≃ (𝜆x : ∀ a.𝜂𝜖

1
.t4) t1. The goal reduces to

ṫ [Λa.t5] ≃ (𝜆x : ∀ a.𝜂𝜖
1
.ṫ [Λa.t4]) t1. Similarly to before, we avoid cluttering the proof by introducing an additional

helper lemma E.38. The goal then follows from Lemmas E.18, E.24 and E.38. □

Lemma E.37 (Property 3 Term Abstraction Helper).
If Γ ⊢ 𝜆x : 𝜎2.((𝜆y : 𝜎1.t2) t1) : 𝜎3 and Γ ⊢ t1 : 𝜎1 then 𝜆x : 𝜎2.((𝜆y : 𝜎1.t2) t1) ≃ (𝜆y : 𝜎1.𝜆x : 𝜎2.t2) t1
Lemma E.38 (Property 3 Type Abstraction Helper).
If Γ ⊢ Λa.((𝜆x : 𝜎1.t2) t1) : 𝜎2 and a ∉ fv (𝜎1) then Λa.((𝜆x : 𝜎1.t2) t1) ≃ (𝜆x : 𝜎1.Λa.t2) t1
Both lemmas follow from the definition of contextual equivalence.

We now return to proving Property 3. By case analysis (Either rule Tm-InfLet or rule Tm-CheckLet, followed

by rule Decl-NoAnnSingle) we know Γ, x : ∀ {a}.𝜂𝜖
1
⊢ e2 ⇒ 𝜂𝜖 ⇝ t3 or Γ, x : ∀ {a}.𝜂𝜖

1
⊢ e2 ⇐ 𝜎 ⇝ t3 where

t1 = (𝜆x : ∀ a.𝜂𝜖
1
.t3) t4, Γ ⊢ e1 ⇒ 𝜂𝜖

1
⇝ t4 and a = fv (𝜂𝜖1) \ dom (Γ). The goal thus follows directly from Lemma E.32

or E.33. However, as Lemma E.24 only holds under shallow instantiation, we cannot prove Property 3 under deep

instantiation. □

E.4 Type Signatures
Property 4b (Signature Property is Type Preserving).
If Γ ⊢ x 𝜋 = e ⇒ Γ′ and x : 𝜎 ∈ Γ′ then Γ ⊢ x : 𝜎 ; x 𝜋 = e ⇒ Γ′

Before proving Property 4b, we first introduce a number of helper lemmas:
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Lemma E.39 (Skolemisation Exists).
If fv (𝜎) ∈ Γ then ∃𝜌, Γ′ such that Γ ⊢ 𝜎 skol 𝛿−−−−→ 𝜌 ; Γ′

The proof follows through careful examination of the skolemisation relation.

Lemma E.40 (Skolemisation Implies Instantiation).
If Γ ⊢ 𝜎 skol 𝛿−−−−→ 𝜌 ; Γ′ then Γ′ ⊢ 𝜎 inst 𝛿−−−−→ 𝜌

The proof follows by straightforward induction on the skolemisation relation. Note that as skolemisation binds

all type variables in Γ′, they can then be used for instantiation.

Lemma E.41 (Inferred Type Binders Preserve Expression Checking).
If Γ ⊢ e ⇐ 𝜎 then Γ ⊢ e ⇐ ∀{a}.𝜎
The proof follows by straightforward induction on the typing derivation.

Lemma E.42 (Pattern Synthesis Implies Checking).
If Γ ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ then ∀𝜎 ′, ∃𝜎 : Γ ⊢𝑃 𝜋 ⇐ 𝜎 ⇒ 𝜎 ′

;Δ where type (𝜓 ;𝜎 ′ ∼ 𝜎)
The proof follows by straightforward induction on the pattern typing derivation.

Lemma E.43 (Expression Synthesis Implies Checking).
If Γ ⊢ e ⇒ 𝜂𝜖 then Γ ⊢ e ⇐ 𝜂𝜖

The proof follows by induction on the typing derivation. We will focus on the non-trivial cases below:

Case rule Tm-InfAbs e = 𝜆x .e′ :
We know from the premise of the typing rule that Γ, x : 𝜏1 ⊢ e′ ⇒ 𝜂𝜖

2
where 𝜂𝜖 = 𝜏1 → 𝜂𝜖

2
. By rule Tm-

CheckAbs, the goal reduces to Γ ⊢ 𝜏1 → 𝜂𝜖
2

skol S
‧‧‧‧‧➡ 𝜏1 → 𝜂𝜖

2
; Γ (which follows directly by rule SkolT-SInst) and

Γ, x : 𝜏1 ⊢ e′ ⇐ 𝜂𝜖
2
(which follows by the induction hypothesis).

Case rule Tm-InfTyAbs e = Λa.e′ :
The typing rule premise tells us that Γ, a ⊢ e′ ⇒ 𝜂𝜖

1
and Γ ⊢ ∀a.𝜂𝜖

1

inst 𝛿−−−−→𝜂𝜖
2
. By rule Tm-CheckTyAbs, the

goal reduces to 𝜂𝜖
2
= ∀ {a}.∀a.𝜎 ′

and Γ, {a}, a ⊢ e′ ⇐ 𝜎 ′
. It is now clear that this property can never hold under

eager instantiation, as the forall type in ∀a.𝜂𝜖
1
would always be instantiated away. We will thus focus solely on

lazy instantiation from here on out, where 𝜂𝜖
2
= ∀a.𝜂𝜖

1
. In this case, the goal follows directly from the induction

hypothesis.

Case rule Tm-InfApp e = h𝑎𝑟𝑔 :
We know from the typing rule premise that Γ ⊢𝐻 h ⇒ 𝜎 , Γ ⊢𝐴 𝑎𝑟𝑔 ⇐ 𝜎 ⇒ 𝜎 ′

and Γ ⊢ 𝜎 ′ inst 𝛿−−−−→𝜂𝜖 . Note that

as we assume lazy instantiation, 𝜂𝜖 = 𝜎 ′
. By rule Tm-CheckInf, the goal reduces to Γ ⊢ 𝜂𝜖 skol 𝛿−−−−→ 𝜌 ; Γ′ (follows by

Lemma E.39), Γ′ ⊢ h𝑎𝑟𝑔 ⇒ 𝜂𝜖
1
(follows by performing environment weakening on the premise, with 𝜂𝜖

1
= 𝜂𝜖 ) and

Γ′ ⊢ 𝜂𝜖
1

inst 𝛿−−−−→ 𝜌 (given that 𝜂𝜖
1
= 𝜂𝜖 , this follows by Lemma E.40). □

We now proceed with proving Property 4b, through case analysis on the declaration typing derivation (rule Decl-

NoAnnSingle):

We know from the typing rule premise that Γ ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ, Γ,Δ ⊢ e ⇒ 𝜂𝜖 , type (𝜓 ;𝜂𝜖 ∼ 𝜎1) and 𝜎 = ∀ {a}.𝜎1
where a = fv (𝜎1) \ dom (Γ). By rule Decl-Ann, the goal reduces to Γ ⊢𝑃 𝜋 ⇐ ∀{a}.𝜎1 ⇒ 𝜎2;Δ2 and Γ,Δ2 ⊢ e ⇐ 𝜎2.

We know from Lemma E.42 that Γ ⊢𝑃 𝜋 ⇐ 𝜎1 ⇒ 𝜎3;Δ where type (𝜓 ;𝜎3 ∼ 𝜎1). Furthermore, from Lemma E.43 we

get Γ,Δ ⊢ e ⇐ 𝜂𝜖 . Note that we thus only prove Property 4b under lazy instantiation. We now proceed by case

analysis on 𝜋 :

Case 𝜋 = · :
The first goal now follows trivially by rule Pat-CheckEmpty with 𝜎2 = ∀ {a}.𝜎1, 𝜎1 = 𝜂𝜖 and Δ = Δ2 = ·. The

second goal follows by Lemma E.41.

Case 𝜋 ≠ · :
The first goal follows by repeated application of rule Pat-CheckInfForall with 𝜎2 = 𝜎3 = 𝜂𝜖 . The second goal

then follows directly from Lemma E.43. □
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Property 5 (Signature Property is Runtime Semantics Preserving).
If Γ ⊢ x 𝜋 i = ei

i
⇒ Γ′ ⇝ x : 𝜎 = t1 and Γ ⊢ x : 𝜎 ; x 𝜋 i = ei

i
⇒ Γ′ ⇝ x : 𝜎 = t2 then t1 ≃ t2

We start by introducing a number of helper lemmas:

Lemma E.44 (Pattern Typing Mode Preserves Translation).
If Γ ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ⇝ 𝜋𝐹 1 : 𝜓𝐹 1 and Γ ⊢𝑃 𝜋 ⇐ 𝜎 ⇒ 𝜎 ′

;Δ⇝ 𝜋𝐹 2 : 𝜓𝐹 2 where type (𝜓 ;𝜎 ′ ∼ 𝜎)
then 𝜋𝐹 1 = 𝜋𝐹 2 and𝜓𝐹 1 = 𝜓𝐹 2

The proof follows by straightforward induction on the pattern type inference derivation.

Lemma E.45 (Compatibility One-Sided Type Abstraction).
If t1 ≃ t2 then t1 ≃ Λa.t2
The proof follows by the definition of contextual equivalence. Note that while the left and right hand sides have

different types, they still instantiate to a single common type.

Lemma E.46 (Partial Skolemisation Preserves Type Checking and Runtime Semantics).
If Γ ⊢ e ⇐ ∀{a}.𝜎 ⇝ t1 then Γ, a ⊢ e ⇐ 𝜎 ⇝ t2 where t1 ≃ t2.

The proof proceeds by induction on the type checking derivation. Note that every case performs a (limited) form

of skolemisation. Every case proceeds by applying the induction hypothesis, followed by Lemma E.45.

Lemma E.47 (Typing Mode Preserves Runtime Semantics).
If Γ ⊢ e ⇒ 𝜂𝜖 ⇝ t1 and Γ ⊢ e ⇐ 𝜎 ⇝ t2 where Γ ⊢ 𝜂𝜖 inst 𝛿−−−−→ 𝜌 ⇝ ṫ1 and Γ ⊢ 𝜎 inst 𝛿−−−−→ 𝜌 ⇝ ṫ2
then t1 ≃ t2
The proof proceeds by induction on the first typing derivation. Each case follows straightforwardly by applying

the induction hypothesis, along with the corresponding compatibility lemma (Lemmas E.16 till E.20).

We now turn to proving property 5, through case analysis on the first declaration typing derivation:

Case rule Decl-NoAnnSingle :
We know from the premise of the first derivation that Γ ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ ⇝ 𝜋𝐹 1 : 𝜓𝐹 1, Γ,Δ ⊢ e ⇒ 𝜂𝜖 ⇝ t ′

1
,

type (𝜓 ;𝜂𝜖 ∼ 𝜎1), t1 = case𝜋𝐹 1 : 𝜓𝐹 1 → t ′
1
and 𝜎 = ∀ {a}.𝜎1 where a = fv (𝜎1) \ dom (Γ). By case analysis on the

second derivation (rule Decl-Ann), we get Γ ⊢𝑃 𝜋 ⇐ ∀{a}.𝜎1 ⇒ 𝜎2;Δ⇝ 𝜋𝐹 2 : 𝜓𝐹 2, Γ,Δ ⊢ e ⇐ 𝜎2 ⇝ t ′
2
and t2 =

case𝜋𝐹 2 : 𝜓𝐹 2 → t ′
2
.

We proceed by case analysis on the patterns 𝜋 :

case 𝜋 = · : We know from rule Pat-InfEmpty, rule Pat-CheckEmpty and rule Type-Empty that 𝜎2 =

∀ {a}.𝜎1 = ∀ {a}.𝜂𝜖 . By applying Lemma E.46, we get Γ, a ⊢ e ⇐ 𝜂𝜖 ⇝ t3 where t ′2 ≃ t3. The goal now follows by

Lemma E.47 (after environment weakening, where 𝜎 = 𝜌 = 𝜂𝜖 ), and Lemma E.15.

case 𝜋 ≠ · : By case analysis on the pattern checking derivation (rule Pat-CheckInfForall), we know

that Γ, a ⊢𝑃 𝜋 ⇐ 𝜎1 ⇒ 𝜎2;Δ
′ ⇝ 𝜋𝐹 2 : 𝜓𝐹

′
2
where Δ = a,Δ′

and 𝜓𝐹 2 = @a,𝜓𝐹

′
2
. By Lemma E.42 (where we

take 𝜎 = 𝜎1), we know that type (𝜓 ;𝜎2 ∼ 𝜎1). This thus means that 𝜎2 = 𝜂𝜖 . By Lemma E.44, the goal reduces to

case𝜋𝐹 1 : 𝜓𝐹 1 → t ′
1
≃ case𝜋𝐹 1 : 𝜓𝐹 1 → t ′

2
. Applying Lemma E.20 reduces this goal further to t ′

1
≃ t ′

2
. This follows

directly from Lemma E.47 (where 𝜎 = 𝜌 = 𝜂𝜖 ).

Case rule Decl-NoAnnMulti :
We know from the premise of the first derivation that ∀𝑖 : Γ ⊢𝑃 𝜋 i ⇒ 𝜓 ;Δi ⇝ 𝜋𝐹 i : 𝜓𝐹 , Γ,Δi ⊢ ei ⇒ 𝜂𝜖i ⇝ ti

and Γ,Δi ⊢ 𝜂𝜖i
inst 𝛿−−−−→ 𝜌 ′ ⇝ ṫi. Furthermore, t1 = case𝜋𝐹 i : 𝜓𝐹 → ṫi [ti]

i
, type (𝜓 ; 𝜌 ′ ∼ 𝜎 ′) and 𝜎 = ∀ {a}.𝜎 ′

where

a = fv (𝜎 ′) \ dom (Γ). By case analysis on the second derivation (rule Decl-Ann), we know that ∀𝑖 : Γ ⊢𝑃 𝜋 i ⇐

∀{a}.𝜎 ′ ⇒ 𝜎i;Δi ⇝ 𝜋𝐹
′
i : 𝜓𝐹

′
, Γ,Δi ⊢ ei ⇐ 𝜎i ⇝ t ′i and t2 = case𝜋𝐹 ′i : 𝜓𝐹

′ → t ′i
i
.

We again perform case analysis on the patterns 𝜋 :

case 𝜋 = · : Similarly to last time, we know that 𝜎 ′ = 𝜌 ′
and ∀𝑖 : 𝜎i = ∀ {a}.𝜌 ′

. We know by Lemma E.46 that

∀𝑖 : Γ, a ⊢ ei ⇐ 𝜌 ′ ⇝ t ′′i where t ′i ≃ t ′′i . The goal now follows by Lemma E.47 (where we take 𝜎 = 𝜌 = 𝜌 ′
) and

Lemma E.15.
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case 𝜋 ≠ · : Similarly to the previous case, we can derive that ∀𝑖 : Γ, a ⊢𝑃 𝜋 ⇐ 𝜎 ′ ⇒ 𝜎i;Δ
′
i ⇝ 𝜋𝐹

′
i : 𝜓𝐹

′′

where Δi = a,Δ′
i and 𝜓𝐹

′
= @a,𝜓𝐹

′′
. We again derive by Lemma E.42 that type (𝜓 ;𝜎i ∼ 𝜎 ′) and thus that 𝜎i = 𝜌 ′

.

By Lemma E.44, the goal reduces to case𝜋𝐹 i : 𝜓𝐹 → ṫi [ti]
i
≃ case𝜋𝐹 i : 𝜓𝐹 → t ′i

i
. We reduce this goal further by

applying Lemma E.20 to ∀𝑖 : ṫi [ti] ≃ t ′i . This follows directly from Lemma E.47 (where 𝜎 = 𝜌 = 𝜌 ′
).

Note however, that as Lemma E.47 only holds under shallow instantiation, that the same holds true for Property 5.

□

Property 6 (Type Signatures are Runtime Semantics Preserving).
If Γ ⊢ x : 𝜎1; x 𝜋 i = ei

i
⇒ Γ1 ⇝ x : 𝜎1 = t1 and Γ ⊢ x : 𝜎2; x 𝜋 i = ei

i
⇒ Γ1 ⇝ x : 𝜎2 = t2 where Γ ⊢ 𝜎1

inst 𝛿−−−−→ 𝜌 ⇝

ṫ1 and Γ ⊢ 𝜎2 inst 𝛿−−−−→ 𝜌 ⇝ ṫ2 then ṫ1 [t1] ≃ ṫ2 [t2]
We start by introducing a number of helper lemmas:

Lemma E.48 (Substitution in Expressions is Type Preserving (Synthesis)).
If Γ, a ⊢ e ⇒ 𝜂𝜖 ⇝ t then Γ ⊢ [𝜏/a] e ⇒ [𝜏/a] 𝜂𝜖 ⇝ [𝜏/a] t
Lemma E.49 (Substitution in Expressions is Type Preserving (Checking)).
If Γ, a ⊢ e ⇐ 𝜎 ⇝ t then Γ ⊢ [𝜏/a] e ⇐ [𝜏/a] 𝜎 ⇝ [𝜏/a] t
Lemma E.50 (Substitution in Heads is Type Preserving).
If Γ, a ⊢𝐻 h ⇒ 𝜎 ⇝ t then Γ ⊢𝐻 [𝜏/a] h ⇒ [𝜏/a] 𝜎 ⇝ [𝜏/a] t
Lemma E.51 (Substitution in Arguments is Type Preserving).
If Γ, a ⊢𝐴 𝑎𝑟𝑔 ⇐ 𝜎 ⇒ 𝜎 ′ ⇝ 𝑎𝑟𝑔𝐹 then Γ ⊢𝐴 [𝜏/a] 𝑎𝑟𝑔 ⇐ [𝜏/a] 𝜎 ⇒ [𝜏/a] 𝜎 ′ ⇝ [𝜏/a] 𝑎𝑟𝑔𝐹
Lemma E.52 (Substitution in Declarations is Type Preserving).
If Γ, a ⊢ decl ⇒ Γ, a, x : 𝜎 ⇝ x : 𝜎 = t then Γ ⊢ [𝜏/a] decl ⇒ Γ, x : [𝜏/a] 𝜎 ⇝ x : 𝜎 = [𝜏/a] t
The proof proceeds by mutual induction on the typing derivation. While the number of cases gets pretty large,

each is quite straightforward.

Lemma E.53 (Type Instantiation Produces Equivalent Expressions (Synthesis)).
If Γ1 ⊢ e ⇒ 𝜂𝜖

1
⇝ t1, Γ2 ⊢ e ⇒ 𝜂𝜖

2
⇝ t2 and ∃ a ⊆ fv (𝜂𝜖1) ∪ fv (𝜂𝜖2)

such that Γ′ = [𝜏/a] Γ1 = [𝜏/a] Γ2 and Γ′ ⊢ ∀ a.𝜂𝜖
1

inst 𝛿−−−−→ 𝜌 ⇝ ṫ1 and Γ′ ⊢ ∀ a.𝜂𝜖
2

inst 𝛿−−−−→ 𝜌 ⇝ ṫ2
then ṫ1 [Λa.t1] ≃ ṫ2 [Λa.t2]
Lemma E.54 (Type Instantiation Produces Equivalent Expressions (Checking)).
If Γ1 ⊢ e ⇐ 𝜎1 ⇝ t1 and Γ2 ⊢ e ⇐ 𝜎2 ⇝ t2 and ∃ a ⊆ fv (𝜎1) ∪ fv (𝜎2)
such that Γ′ = [𝜏/a] Γ1 = [𝜏/a] Γ2 and Γ′ ⊢ ∀ a.𝜎1 inst 𝛿−−−−→ 𝜌 ⇝ ṫ1 and Γ′ ⊢ ∀ a.𝜎2 inst 𝛿−−−−→ 𝜌 ⇝ ṫ2
then ṫ1 [Λa.t1] ≃ ṫ2 [Λa.t2]
Lemma E.55 (Type Instantiation Produces Equivalent Expressions (Head Judgement)).
If Γ1 ⊢𝐻 h ⇒ 𝜎1 ⇝ t1, Γ2 ⊢𝐻 h ⇒ 𝜎2 ⇝ t2 and ∃ a ⊆ fv (𝜂𝜖1) ∪ fv (𝜂𝜖2)
such that Γ′ = [𝜏/a] Γ1 = [𝜏/a] Γ2 and Γ′ ⊢ ∀ a.𝜎1 inst 𝛿−−−−→ 𝜌 ⇝ ṫ1 and Γ′ ⊢ ∀ a.𝜎2 inst 𝛿−−−−→ 𝜌 ⇝ ṫ2
then ṫ1 [Λa.t1] ≃ ṫ2 [Λa.t2]
Note that we define [𝜏/a] Γ as removing a from the environment Γ and substituting any occurrence of a in types

bound to term variables. Furthermore, we use a1 ∪ a2 as a shorthand for list concatenation, removing duplicates.

The proof proceeds by induction on the first typing derivation. Note that Lemmas E.53, E.54 and E.55 have to be

proven using mutual induction. However, the proof for Lemma E.55 is trivial, as every case besides rule H-Inf is

deterministic. As usual, we will focus on the non-trivial cases:

Case rule Tm-CheckAbs e = 𝜆x .e′ :
We know from the premise of the first and second (as the relation is syntax directed) typing derivation that

Γ1 ⊢ 𝜎1 skol S
‧‧‧‧‧➡ 𝜎4 → 𝜎5; Γ

′
1
⇝ ṫ ′

1
, Γ2 ⊢ 𝜎2 skol S

‧‧‧‧‧➡ 𝜎 ′
4
→ 𝜎 ′

5
; Γ′

2
⇝ ṫ ′

2
, Γ′

1
, x : 𝜎4 ⊢ e′ ⇐ 𝜎5 ⇝ t3 and Γ′

2
, x : 𝜎 ′

4
⊢ e′ ⇐

𝜎 ′
5
⇝ t4, where t1 = ṫ ′

1
[𝜆x : 𝜎4.t3] and t2 = ṫ ′

2
[𝜆x : 𝜎 ′

4
.t4].
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At this point, it is already clear that Lemma E.54 can not hold under deep instantiation, as instantiation performs

full eta expansion. We will thus focus on shallow instantiation from here on out.

By case analysis on the skolemisation and instantiation premises, it is clear that Γ′
1
= Γ1, a1, Γ′2 = Γ2, a2 and

𝜌 = [𝜏1/a1] (𝜎4 → 𝜎5) = [𝜏2/a2] (𝜎 ′
4
→ 𝜎 ′

5
) = 𝜎3 → 𝜎 ′

3
. In order to apply the induction hypothesis, we take a′ as

a∪a1∪a2. Note that this does not alter the instantiation to 𝜌 in any way, as these variables would already have been

instantiated. We apply the induction hypothesis with Γ1 ⊢ ∀ a′.𝜎5 inst 𝛿−−−−→𝜎 ′
3
⇝ ṫ3 and Γ2 ⊢ ∀ a′.𝜎 ′

5

inst 𝛿−−−−→𝜎 ′
3
⇝ ṫ4

(after weakening), producing ṫ3 [Λa′.t3] ≃ ṫ4 [Λa′.t4]. Under shallow instantiation, these two instantiations follow

directly from the premise with ṫ3 = ṫ1 and ṫ4 = ṫ2.
The goal reduces to ṫ1 [Λa.ṫ ′1 [𝜆x : 𝜎4.t3]] ≃ ṫ2 [Λa.ṫ ′2 [𝜆x : 𝜎 ′

4
.t4]]. By the definition of skolemisation, this further

reduces to ṫ1 [Λa.Λa1.𝜆x : 𝜎4.t3] ≃ ṫ2 [Λa.Λa2.𝜆x : 𝜎 ′
4
.t4]. Finally, the goal follows by the induction hypothesis and

compatibility Lemmas E.18, E.16 and E.21, along with transitivity Lemma E.15.

Case rule Tm-CheckTyAbs e = Λa.e′ :
We know the premise of the typing derivation that 𝜎1 = ∀ {a}

1
.∀a.𝜎 ′

1
, 𝜎2 = ∀ {a}.∀a.𝜎 ′

2
, Γ1, a1, a ⊢ e′ ⇐

𝜎 ′
1
⇝ t ′

1
, Γ2, a2, a ⊢ e′ ⇐ 𝜎 ′

2
⇝ t ′

2
, t1 = Λa1.Λa.t ′1 and t2 = Λa2.Λa.t ′2. By case analysis on the type instantiation

(rule InstT-SForall and rule InstT-SInfForall), we get Γ′ ⊢ [𝜏1/a] [𝜏 ′1/a1] [𝜏1/a] 𝜎 ′
1

inst 𝛿−−−−→ 𝜌 ⇝ ṫ ′
1
and Γ′ ⊢

[𝜏2/a] [𝜏 ′2/a2] [𝜏2/a] 𝜎 ′
2

inst 𝛿−−−−→ 𝜌 ⇝ ṫ ′
2
where ṫ1 = 𝜆t .(ṫ ′

1
[t 𝜏1 𝜏 ′1 𝜏1]) and ṫ2 = 𝜆t .(ṫ ′

2
[t 𝜏2 𝜏 ′2 𝜏2]).

The goal to be proven is ṫ1 [Λa.Λa1.Λa.t ′1] ≃ ṫ2 [Λa.Λa2.Λa.t ′2]. This reduces to ṫ ′
1
[(Λa.Λa1.Λa.t ′1) 𝜏1 𝜏

′
1
𝜏1] ≃

ṫ ′
2
[(Λa.Λa2.Λa.t ′2) 𝜏2 𝜏

′
2
𝜏2].

We now define a substitution 𝜃 = [𝜏1/a] .[𝜏2/a] .[𝜏 ′1/a1] .[𝜏 ′2/a2] .[𝜏1/a] .[𝜏2/a]. From the instantiation relation

(and the fact that both types instantiate to the same type 𝜌 , we conclude that if [𝜏i/a] ∈ 𝜃 and [𝜏j/a] ∈ 𝜃 that

𝜏i = 𝜏j . By applying Lemma E.49, we transform the premise to [𝜏1/a] Γ1 ⊢ 𝜃 e′ ⇐ 𝜃 𝜎 ′
1
⇝ 𝜃 t ′

1
and [𝜏2/a] Γ2 ⊢ 𝜃 e′ ⇐

𝜃 𝜎 ′
2
⇝ 𝜃 t ′

2
.

By applying the induction hypothesis, we get that ṫ ′
1
[𝜃 t ′

1
] ≃ ṫ ′

2
[𝜃 t ′

2
]. The goal follows directly from the definition

of 𝜃 .

Case rule Tm-CheckInf :
We know from the premise of the typing derivation that Γ1 ⊢ 𝜎1

skol 𝛿−−−−→ 𝜌1; Γ
′
1
⇝ ṫ ′

1
, Γ2 ⊢ 𝜎2

skol 𝛿−−−−→ 𝜌2; Γ
′
2
⇝ ṫ ′

2
,

Γ′
1
⊢ e ⇒ 𝜂𝜖

1
⇝ t ′

1
, Γ′

2
⊢ e ⇒ 𝜂𝜖

2
⇝ t ′

2
, Γ′

1
⊢ 𝜂𝜖

1

inst 𝛿−−−−→ 𝜌1 ⇝ ṫ ′′
1
, Γ′

2
⊢ 𝜂𝜖

2

inst 𝛿−−−−→ 𝜌2 ⇝ ṫ ′′
2
, t1 = ṫ ′

1
[ṫ ′′

1
[t ′
1
]] and

t2 = ṫ ′′
2
[ṫ ′
2
[t ′
2
]]. The goal to be proven is thus ṫ1 [Λa.ṫ ′1 [ṫ

′′
1
[t ′
1
]]] ≃ ṫ2 [Λa.ṫ ′2 [ṫ

′′
2
[t ′
2
]]].

From the definition of shallow skolemisation, we know that Γ′
1
= Γ1, a1, Γ′2 = Γ2, a2, ṫ

′
1
= 𝜆t .Λa1.t and ṫ

′
2
= 𝜆t .Λa2.t.

We now take a′ = a ∪ a1 ∪ a2. As 𝜎1 and 𝜎2 instantiate to the same type 𝜌 , it is not hard to see from the definition

of skolemisation that Γ′
1
⊢ ∀ a′.𝜂𝜖

1

inst 𝛿−−−−→ 𝜌 ⇝ ṫ3 and Γ′
2
⊢ ∀ a′.𝜂𝜖

2

inst 𝛿−−−−→ 𝜌 ⇝ ṫ4. By applying Lemma E.53, we thus

get ṫ3 [Λa′.t ′1] ≃ ṫ4 [Λa′.t ′2]. The goal follows through careful examination of the skolemisation and instantiation

premises. □

Lemma E.56 (Pattern Checking Implies Synthesis).
If Γ ⊢𝑃 𝜋 ⇐ 𝜎 ⇒ 𝜎 ′

;Δ⇝ 𝜋𝐹 : 𝜓𝐹 then ∃𝜓 : Γ ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ⇝ 𝜋𝐹 : 𝜓𝐹 where type (𝜓 ;𝜎 ′ ∼ 𝜎)

The proof follows by straightforward induction on the pattern typing derivation.

We now go back to proving Property 6, and proceed by case analysis on both typing derivations (rule Decl-Ann).

We know from the premise that Γ ⊢𝑃 𝜋 i ⇐ 𝜎1 ⇒ 𝜎i 1;Δi 1 ⇝ 𝜋𝐹 i : 𝜓𝐹 1, Γ ⊢𝑃 𝜋 i ⇐ 𝜎2 ⇒ 𝜎i 2;Δi 2 ⇝ 𝜋𝐹 i : 𝜓𝐹 2,

Γ,Δi 1 ⊢ ei ⇐ 𝜎i 1 ⇝ ti 1, Γ,Δi 2 ⊢ ei ⇐ 𝜎i 2 ⇝ ti 2, t1 = case𝜋𝐹 i : 𝜓𝐹 1 → ti 1
i
and t2 = case𝜋𝐹 i : 𝜓𝐹 2 → ti 2

i
. The

goal to be proven is ṫ1 [case𝜋𝐹 i : 𝜓𝐹 1 → ti 1
i
] ≃ ṫ2 [case𝜋𝐹 i : 𝜓𝐹 2 → ti 2

i
]. Lemma E.20 reduces this to ∀𝑖 : ṫ1 [ti 1] ≃

ṫ2 [ti 2].
We take ai = dom (Δi 1) ∪ dom (Δi 2) \ dom (Γ), and apply weakening to get Γ, ai ⊢ ei ⇐ 𝜎i 1 ⇝ ti 1 and

Γ, ai ⊢ ei ⇐ 𝜎i 2 ⇝ ti 2. The goal now follows directly from Lemma E.54 with ai = ·, if we can show that

Γ, ai ⊢ 𝜎i 1 inst 𝛿−−−−→ 𝜌 ′ ⇝ ṫ1 and Γ, ai ⊢ 𝜎i 2 inst 𝛿−−−−→ 𝜌 ′ ⇝ ṫ2 for some 𝜌 ′
(Note that Lemma E.54 only holds under shallow

instantiation).
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We know from Lemma E.56 that ∃𝜓𝐹 : Γ ⊢𝑃 𝜋 i ⇒ 𝜓 ;Δi ⇝ 𝜋𝐹 i : 𝜓𝐹 such that type (𝜓 ;𝜎i 1 ∼ 𝜎1) and type (𝜓 ;𝜎i 2 ∼
𝜎2). The remaining goal follows from the definition of the type relation, and shallow instantiation. □

E.5 Pattern Inlining and Extraction
Property 7 (Pattern Inlining is Type Preserving).
If Γ ⊢ x 𝜋 = e1 ⇒ Γ′ and wrap (𝜋 ; e1 ∼ e2) then Γ ⊢ x = e2 ⇒ Γ′

We first introduce a helper lemma to prove pattern inlining in expressions preserves the type:

Lemma E.57 (Pattern Inlining in Expressions is Type Preserving (Synthesis)).
If Γ ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ and Γ,Δ ⊢ e1 ⇒ 𝜂𝜖

1
where wrap (𝜋 ; e1 ∼ e2)

then Γ ⊢ e2 ⇒ 𝜂𝜖
2
and type (𝜓 ;𝜂𝜖

1
∼ 𝜂𝜖

2
)

The proof proceeds by induction on the pattern typing derivation. We will focus on the non-trivial cases below.

Note that the rule Pat-InfCon is an impossible case as wrap (K 𝜋 ; e1 ∼ e2) is undefined.
Case rule Pat-InfVar 𝜋 = x, 𝜋 ′,𝜓 = 𝜏1,𝜓

′
and Δ = x : 𝜏1,Δ

′ :
We know from the rule premise that Γ, x : 𝜏1 ⊢𝑃 𝜋 ′ ⇒ 𝜓

′
;Δ′

. Furthermore, by inlining the definitions of Δ and 𝜋

in the lemma premise, we get Γ, x : 𝜏1,Δ
′ ⊢ e1 ⇒ 𝜂𝜖

1
and wrap (x, 𝜋 ′

; e1 ∼ 𝜆x .e′
2
) and thus (by rule PatWrap-Var)

wrap (𝜋 ′
; e1 ∼ e′

2
). By the induction hypothesis, we get Γ, x : 𝜏1 ⊢ e′2 ⇒ 𝜂𝜖

3
and type (𝜓 ′

;𝜂𝜖
1
∼ 𝜂𝜖

3
). The goal follows

by rule Tm-InfAbs and rule Type-Var.

Case rule Pat-InfTyVar 𝜋 = @a, 𝜋 ′,𝜓 = @a,𝜓
′
and Δ = a,Δ′ :

We know from the rule premise that Γ, a ⊢𝑃 𝜋 ′ ⇒ 𝜓
′
;Δ′

. Again, by inlining the definitions in the lemma premise,

we get Γ, a,Δ′ ⊢ e1 ⇒ 𝜂𝜖
1
and wrap (@a, 𝜋 ′

; e1 ∼ Λa.e′
2
) and thus (by rule PatWrap-TyVar) wrap (𝜋 ′

; e1 ∼ e′
2
). By

the induction hypothesis, we get Γ, a ⊢ e′
2
⇒ 𝜂𝜖

3
and type (𝜓 ′

;𝜂𝜖
1
∼ 𝜂𝜖

3
).

The goal to be proven is Γ ⊢ Λa.e′
2
⇒ ∀a.𝜂𝜖

3
where type (@a,𝜓

′
;𝜂𝜖

1
∼ ∀a.𝜂𝜖

3
) (follows by rule Type-TyVar).

However, under eager instantiation, this goal can never hold as rule Tm-InfTyAbs would instantiate the forall

binder away. We can thus only prove this lemma under lazy instantiation, where the goal follows trivially from

rule Tm-InfTyAbs. □
We now proceed with proving Property 7, through case analysis on the declaration typing relation (rule Decl-

NoAnnSingle). We know from the premise of the first derivation that Γ ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ, Γ,Δ ⊢ e1 ⇒ 𝜂𝜖
1
, type (𝜓 ;𝜂𝜖

1
∼

𝜎) and Γ′ = Γ, x : ∀ {a}.𝜎 where a = fv (𝜎) \ dom (Γ). The goal to be proven thus becomes Γ ⊢𝑃 · ⇒ ·; · (follows
directly from rule Pat-InfEmpty) and Γ ⊢ e2 ⇒ 𝜂𝜖

2
where 𝜂𝜖

2
= 𝜎 (follows from Lemma E.57). Note that as we

require Lemma E.57, we can only prove Property 7 under lazy instantiation. □

Property 9 (Pattern Extraction is Type Preserving).
If Γ ⊢ x = e2 ⇒ Γ′ and wrap (𝜋 ; e1 ∼ e2) then Γ ⊢ x 𝜋 = e1 ⇒ Γ′

We first introduce another helper lemma to prove that pattern extraction from expressions preserves the typing:

Lemma E.58 (Pattern Extraction from Expressions is Type Preserving (Synthesis)).
If Γ ⊢ e2 ⇒ 𝜂𝜖

2
and ∃ e1, 𝜋 such that wrap (𝜋 ; e1 ∼ e2)

then Γ ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ and Γ,Δ ⊢ e1 ⇒ 𝜂𝜖
1
where type (𝜓 ;𝜂𝜖

1
∼ 𝜂𝜖

2
)

The proof proceeds by induction on the e2 typing derivation. As usual, we will focus on the non-trivial cases:

Case rule Tm-InfAbs e2 = 𝜆x .e′
2
and 𝜂𝜖

2
= 𝜏2 → 𝜂𝜖

3
:

We know from the rule premise that Γ, x : 𝜏2 ⊢ e′
2
⇒ 𝜂𝜖

3
. It is clear by case analysis on wrap (𝜋 ; e1 ∼ 𝜆x .e′

2
)

that 𝜋 = x, 𝜋 ′
and wrap (𝜋 ′

; e1 ∼ e′
2
). By applying the induction hypothesis, we get Γ, x : 𝜏2 ⊢𝑃 𝜋 ′ ⇒ 𝜓

′
;Δ′

,

Γ, x : 𝜏2,Δ
′ ⊢ e1 ⇒ 𝜂𝜖

1
and type (𝜓 ′

;𝜂𝜖
1
∼ 𝜂𝜖

3
). The goal thus follows straightforwardly by rule Pat-InfVar and

rule Type-Var.

Case rule Tm-InfTyAbs e2 = Λa.e′
2
:
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We know from the rule premise that Γ, a ⊢ e′
2
⇒ 𝜂𝜖

3
and Γ ⊢ ∀a.𝜂𝜖

3

inst 𝛿−−−−→𝜂𝜖
2
. Furthermore, it is clear by case

analysis on wrap (𝜋 ; e1 ∼ Λa.e′
2
) that 𝜋 = @a, 𝜋 ′

and wrap (𝜋 ′
; e1 ∼ e′

2
). By the induction hypothesis, we get

Γ, a ⊢𝑃 𝜋 ′ ⇒ 𝜓
′
;Δ′

, Γ, a,Δ′ ⊢ e1 ⇒ 𝜂𝜖
1
and type (𝜓 ′

;𝜂𝜖
1
∼ 𝜂𝜖

3
).

The goal to be proven is Γ ⊢𝑃 @a, 𝜋 ′ ⇒ @a,𝜓
′
; a,Δ′

(follows by rule Pat-InfTyVar), Γ, a,Δ′ ⊢ e1 ⇒ 𝜂𝜖
1
(follows

by the induction hypothesis) and type (@a,𝜓
′
;𝜂𝜖

1
∼ 𝜂𝜖

2
). However, it is clear that this final goal does not hold under

eager instantiation, as rule Tm-InfTyAbs instantiates the forall binder away. Under lazy instantiation, the remaining

goal follows directly from the premise.

Case rule Tm-InfApp e2 = h𝑎𝑟𝑔 and 𝑎𝑟𝑔 = · and h = e :
The goal follows directly by the induction hypothesis.

Case rule Tm-InfApp e2 = h𝑎𝑟𝑔 and 𝑎𝑟𝑔 ≠ · or h ≠ e :
It is clear from the definition of wrap (𝜋 ; e1 ∼ h𝑎𝑟𝑔) that 𝜋 = ·. The goal thus follows trivially. □
Wenow return to prove Property 9 by case analysis on the declaration typing derivation (rule Decl-NoAnnSingle).

We know from the derivation premise that Γ ⊢ e2 ⇒ 𝜂𝜖
2
and 𝜎 = ∀ {a}.𝜂𝜖

2
where a = fv (𝜂𝜖2) \ dom (Γ). The goal

follows directly from Lemma E.58. Note that as Lemma E.58 only holds under lazy instantiation, the same holds

true for Property 9. □

Property 8 (Pattern Inlining / Extraction is Runtime Semantics Preserving).
If Γ ⊢ x 𝜋 = e1 ⇒ Γ′ ⇝ x : 𝜎 = t1, wrap (𝜋 ; e1 ∼ e2), and Γ ⊢ x = e2 ⇒ Γ′ ⇝ x : 𝜎 = t2 then t1 ≃ t2
We start by introducing a helper lemma, proving pattern inlining preserves the runtime semantics for expressions.

Lemma E.59 (Pattern Inlining in Expressions is Runtime Semantics Preserving).
If Γ ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ⇝ 𝜋𝐹 : 𝜓𝐹 and Γ,Δ ⊢ e1 ⇒ 𝜂𝜖

1
⇝ t1 and Γ ⊢ e2 ⇒ 𝜂𝜖

2
⇝ t2 where wrap (𝜋 ; e1 ∼ e2)

then case𝜋𝐹 : 𝜓𝐹 → t1 ≃ t2
The proof proceeds by induction on the pattern typing derivation. We will focus on the non-trivial cases. Note

that, as wrap (K 𝜋 ; e1 ∼ e2) is undefined, rule Pat-InfCon is an impossible case.

Case rule Pat-InfVar 𝜋 = x, 𝜋 ′,𝜓 = 𝜏1,𝜓
′
, Δ = x : 𝜏1,Δ

′, 𝜋𝐹 = x : 𝜏1, 𝜋𝐹
′ and𝜓𝐹 = 𝜏1,𝜓𝐹

′
:

We know from the pattern typing derivation premise that Γ, x : 𝜏1 ⊢𝑃 𝜋 ′ ⇒ 𝜓
′
;Δ′ ⇝ 𝜋𝐹

′
: 𝜓𝐹

′
. By inlining the

definitions and rule PatWrap-Var, we get e2 = 𝜆x .e′
2
and wrap (𝜋 ′

; e1 ∼ e′
2
). By case analysis on the e2 typing

derivation (rule Tm-InfAbs), we know Γ, x : 𝜏1 ⊢ e′
2
⇒ 𝜂𝜖

3
⇝ t ′

2
where 𝜂𝜖

2
= 𝜏1 → 𝜂𝜖

3
and t2 = 𝜆x : 𝜏1.t ′2. By applying

the induction hypothesis, we get case𝜋𝐹 ′ : 𝜓𝐹

′ → t1 ≃ t ′
2
. The goal to be proven is 𝜆x : 𝜏1.case𝜋𝐹 ′ : 𝜓𝐹

′ → t1 =
𝜆x : 𝜏1.t ′2, and follows directly from Lemma E.16.

Case rule Pat-InfTyVar 𝜋 = @a, 𝜋 ′,𝜓 = @a,𝜓
′
, Δ = a,Δ′, 𝜋𝐹 = @a, 𝜋𝐹 ′ and𝜓𝐹 = @a,𝜓𝐹

′
:

We know from the pattern typing derivation premise that Γ, a ⊢𝑃 𝜋 ′ ⇒ 𝜓
′
;Δ′ ⇝ 𝜋𝐹

′
: 𝜓𝐹

′
. Similarly to the

previous case, by inlining and rule PatWrap-TyVar, we get e2 = Λa.e′
2
and wrap (𝜋 ′

; e1 ∼ e′
2
). By case analysis on

the e2 typing derivation (rule Tm-InfTyAbs), we get Γ, a ⊢ e′
2
⇒ 𝜂𝜖

3
⇝ t ′

2
, Γ ⊢ ∀ a.𝜂𝜖

3

inst 𝛿−−−−→𝜂𝜖
2
⇝ ṫ and t2 = ṫ [Λa.t ′

2
].

Applying the induction hypothesis tells us that case𝜋𝐹 ′ : 𝜓𝐹

′ → t1 ≃ t ′
2
.

The goal to be proven is Λa.case𝜋𝐹 ′ : 𝜓𝐹

′ → t1 ≃ ṫ [Λa.t ′
2
]. By applying Lemma E.18 to the result of the induction

hypothesis, we getΛa.case𝜋𝐹 ′ : 𝜓𝐹

′ → t1 ≃ Λa.t ′
2
. Under lazy instantiation, the goal follows directly from this result,

as ṫ = •. Under eager deep instantiation, it is clear that the goal does not hold, as ṫ might perform eta expansion,

thus altering the runtime semantics. Under eager shallow instantiation, the goal follows straightforwardly, as ṫ can
only perform type applications. Note that this implies that Λa.case𝜋𝐹 ′ : 𝜓𝐹

′ → t1 and ṫ [Λa.t ′
2
] could thus have

different types, but can always instantiate to the same type. □
We now return to proving Property 8, by case analysis on the first declaration typing relation (rule Decl-

NoAnnSingle). We know from the derivation premise that Γ ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ ⇝ 𝜋𝐹 : 𝜓𝐹 , Γ,Δ ⊢ e1 ⇒ 𝜂𝜖
1
⇝ t ′

1
,

t1 = case𝜋𝐹 : 𝜓𝐹 → t ′
1
, type (𝜓 ;𝜂𝜖

1
∼ 𝜎 ′), 𝜎 = ∀ {a}.𝜎 ′

where a = fv (𝜎 ′) \ dom (Γ). The premise of the second

declaration typing derivations tells us that Γ ⊢ e2 ⇒ 𝜂𝜖
2
⇝ t2. The goal now follows directly from Lemma E.59. Note

that as Lemma E.59 does not hold under eager deep instantiation, the same is true for Property 8. □
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numargs (𝜎) = m (Explicit Argument Counting)

Numargs-TyVar

numargs (a) = 0

Numargs-Con

numargs (T 𝜏) = 0

Numargs-Arrow

numargs (𝜎2) = m

numargs (𝜎1 → 𝜎2) =𝑚 + 1

Numargs-Forall

numargs (𝜎) = m

numargs (∀ a.𝜎) = m

Numargs-InfForall

numargs (𝜎) = m

numargs (∀ {a}.𝜎) = m

Figure 7. Counting Explicit Arguments

E.6 Single vs. Multiple Equations
Property 10 (Single/multiple Equations is Type Preserving).
If Γ ⊢ x 𝜋 = e ⇒ Γ, x : 𝜎 then Γ ⊢ x 𝜋 = e, x 𝜋 = e ⇒ Γ′

The proof proceeds by case analysis on the declaration typing derivation (rule Decl-NoAnnSingle). From

the derivation premise, we get Γ ⊢𝑃 𝜋 ⇒ 𝜓 ;Δ, Γ,Δ ⊢ e ⇒ 𝜂𝜖 , type (𝜓 ;𝜂𝜖 ∼ 𝜎1) and 𝜎 = ∀ {a}
1
.𝜎1 where

a1 = fv (𝜎1) \ dom (Γ). The goal to be proven thus reduces to Γ,Δ ⊢ 𝜂𝜖 inst 𝛿−−−−→ 𝜌 , type (𝜓 ; 𝜌 ∼ 𝜎2) and 𝜎 = ∀ {a}
2
.𝜎2

where a2 = fv (𝜎2) \ dom (Γ). It is clear that the property can not hold under lazy instantiation, as rule Decl-

NoAnnMulti performs an additional instantiation step, thus altering the type. Under eager instantiation, 𝜂𝜖

is already an instantiated type by the type inference relation, making the instantiation in the goal a no-op (by

definition). The goal is thus trivially true. □

E.7 𝜂-expansion
Property 11b (𝜂-expansion is Type Preserving).

• If Γ ⊢ e ⇒ 𝜂𝜖 where numargs(𝜂𝜖 ) = 𝑛 and Γ ⊢ 𝜂𝜖 inst 𝛿−−−−→𝜏 then Γ ⊢ 𝜆x𝑛 .e x𝑛 ⇒ 𝜂𝜖

• If Γ ⊢ e ⇐ 𝜎 where numargs(𝜌) = 𝑛 then Γ ⊢ 𝜆x𝑛 .e x𝑛 ⇐ 𝜎

A formal definition of numargs is shown in Figure 7. We prove Property 11b by first introducing a slightly more

general lemma:

Lemma E.60 (𝜂-expansion is Type Preserving - Generalised).

• If Γ ⊢ e ⇒ 𝜂𝜖 where 0 ⩽ 𝑛 ⩽ numargs(𝜂𝜖 ) and Γ ⊢ 𝜂𝜖 inst 𝛿−−−−→𝜏 then Γ ⊢ 𝜆x𝑛 .e x𝑛 ⇒ 𝜂𝜖

• If Γ ⊢ e ⇐ 𝜎 where 0 ⩽ 𝑛 ⩽ numargs(𝜌) then Γ ⊢ 𝜆x𝑛 .e x𝑛 ⇐ 𝜎

The proof proceeds by induction on the integer 𝑛.

Case 𝑛 = 0 :
This case is trivial, as it follows directly from the premise.

Case 𝑛 =𝑚 + 1 ⩽ numargs(𝜂𝜖 ) :
case synthesis mode : We know from the induction hypothesis that Γ ⊢ 𝜆x𝑚 .e x𝑚 ⇒ 𝜂𝜖 . We perform

case analysis on this result (𝑚 repeated applications of rule Tm-InfAbs) to get Γ, xi : 𝜏i i<m ⊢ e x𝑚 ⇒ 𝜂𝜖
1
where

𝜂𝜖 = 𝜏i
i<m → 𝜂𝜖

1
. Performing case analysis again on this result (rule Tm-InfApp), gives us Γ, xi : 𝜏i i<m ⊢𝐻 e ⇒ 𝜎1,

Γ, xi : 𝜏i i<m ⊢𝐴 x𝑚 ⇐ 𝜎1 ⇒ 𝜎2 and Γ, xi : 𝜏i i<m ⊢ 𝜎2 inst 𝛿−−−−→𝜂𝜖
1
.

The goal to be proven is Γ ⊢ 𝜆x𝑚+1
.e x𝑚+1 ⇒ 𝜂𝜖 , which (by rule TmInfAbs) reduces to Γ, xi : 𝜏i i<m, x : 𝜏 ⊢

e x𝑚+1 ⇒ 𝜂𝜖
2
, where 𝜂𝜖 = 𝜏i

i<m → 𝜏 → 𝜂𝜖
2
.

Note that this requires proving that 𝜂𝜖
1
= 𝜏 → 𝜂𝜖

2
. While we know that𝑚 < numargs(𝜂𝜖 ), we can only prove this

under eager deep instantiation. Under lazy instantiation, type inference does not instantiate the result type at all.

Under eager shallow, it is instantiated, but only up to the first function type. From here on out, we will thus assume
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eager deep instantiation. Furthermore, note that as even deep instantiation does not instantiate argument types, we

need the additional premise that 𝜂𝜖 instantiates into a monotype, in order to prove this goal.

This result in turn (by rule Tm-InfApp) reduces to Γ, xi : 𝜏i i<m, x : 𝜏 ⊢𝐻 e ⇒ 𝜎1 (follows by weakening),

Γ, xi : 𝜏i i<m, x : 𝜏 ⊢𝐴 x, x𝑚 ⇐ 𝜎1 ⇒ 𝜎3 (follows by rule Arg-Inst, rule Arg-App and the fact that 𝜂𝜖
1
= 𝜏 → 𝜂𝜖

2
) and

Γ, xi : 𝜏i i<m, x : 𝜏 ⊢ 𝜎3 inst 𝛿−−−−→𝜂𝜖
2
(follows by the definition of instantiation).

case checking mode : We know from the induction hypothesis that Γ ⊢ 𝜆x𝑚 .e x𝑚 ⇐ 𝜎 . The proof proceeds

similarly to the synthesis mode case, by case analysis on this result (rule Tm-CheckAbs). One additional step is that

rule Tm-CheckInf is applied to type e x𝑚 . The derivation switches to synthesis mode at this point, and becomes

completely identical to the previous case. □
The proof for Property 11b now follows directly by Lemma E.60, by taking 𝑛 = numargs(𝜂𝜖 ). □
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