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Abstract

Designing a language feature often requires a choice between
several, similarly expressive possibilities. Given that user
studies are generally impractical, we propose using stability
as a way of making such decisions. Stability is a measure
of whether the meaning of a program alters under small,
seemingly innocuous changes in the code (e.g., inlining).

Directly motivated by a need to pin down a feature in
GHC/Haskell, we apply this notion of stability to analyse
four approaches to the instantiation of polymorphic types,
concluding that the most stable approach is lazy (instantiate
a polytype only when absolutely necessary) and shallow
(instantiate only top-level type variables, not variables that
appear after explicit arguments).
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1 Introduction

Programmers naturally wish to get the greatest possible
utility from their work. They thus embrace polymorphism:
the idea that one function can work with potentially many
types. A simple example is const ::V a b.a — b — a, which
returns its first argument, ignoring its second. The question
then becomes: what concrete types should const work with
at a given call site? For example, if we say const True ’x’,
then a compiler needs to figure out that a should become
Bool and b should become Char. The process of taking a
type variable and substituting in a concrete type is called
instantiation. Choosing a correct instantiation is important;
for const, the choice of a — Bool means that the return type
of const True *x’ is Bool. A context expecting a different
type would lead to a type error.

In the above example, the choices for a and b in the type
of const were inferred. Haskell, among other languages, also
gives programmers the opportunity to specify the instanti-
ation for these arguments [9]. For example, we might say
const @Bool @Char True ’x’ (choosing the instantiations
for both a and b) or const @Bool True *x’ (still allowing in-
ference for b). However, once we start allowing user-directed

“This work was partially completed while Bottu was an intern at Tweag.

Haskell 21, August 26-27, 2021, Virtual, Republic of Korea
2021. ACM ISBN 978-1-4503-8615-9/21/08...$15.00
https://doi.org/10.1145/3471874.3472985

Richard A. Eisenberg
Tweag
Paris, France
rae@richarde.dev

instantiation, many thorny design issues arise. For example,
will let f = const in f @Bool True ’x’ be accepted?

Our concerns are rooted in concrete design questions
in Haskell, as embodied by the Glasgow Haskell Compiler
(GHCQ). Specifically, as Haskell increasingly has features in
support of type-level programming, how should its instantia-
tion behave? Should instantiating a type like Int = V a.a —
ayield Int — a — a (where « is a unification variable), or
should instantiation stop at the regular argument of type
Int? This is a question of the depth of instantiation. Suppose
now f :: Int =V a.a — a. Should f 5 have typeV a.a — a
or @ — «a? This is a question of the eagerness of instantiation.
As we explore in Section 3, these questions have real impact
on our users.

Unlike much type-system research, our goal is not simply
to make a type-safe and expressive language. Type-safe in-
stantiation is well understood [e.g., 4, 18]. Instead, we wish
to examine the usability of a design around instantiation.
Unfortunately, proper scientific studies around usability are
essentially intractable, as we would need pools of compa-
rable experts in several designs executing a common task.
Instead of usability, then, we draw a fresh focus to a property
we name stability.

Intuitively, a language is stable if small, seemingly-innoc-
uous changes to the source code of a program do not cause
large changes to the program’s behaviour; we expand on
this definition in Section 3. We use stability as our metric for
evaluating instantiation schemes in GHC.

Our contributions are as follows:

e The introduction of stability properties relevant for ex-
amining instantiation in Haskell, along with examples
of how these properties affect programmer experience.
(Section 3)

e A family of type systems, based on the bidirectional
type-checking algorithm implemented in GHC [9, 16,
20]. It is parameterised over the flavour of type instan-
tiation. (Section 4)

e An analysis of how different choices of instantiation
flavour either respect or do not respect the similarities
we identify. We conclude that lazy, shallow instanti-
ation is the most stable. (Section 5; proofs in Appen-
dix E)

Though we apply stability as the mechanism of studying
instantiation within Haskell, we believe our approach is more
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widely applicable, both to other user-facing design questions
within Haskell and in the context of other languages.

The appendices mentioned in the text can be found in the
extended version at http://arxiv.org/abs/2106.14938.

2 Background

This section describes instantiation in GHC today and sets
our baseline understanding for the remainder of the paper.

2.1 Instantiation in GHC

Visible type application and variable specificity are fixed
attributes of the designs we are considering.

Visible type application. Since GHC 8.0, Haskell has
supported visible instantiation of type variables, based on
the order in which those variables occur [9]. Given const :
YV ab.a— b— a we can write const @Int @Bool, which
instantiates the type variables, giving us an expression of
type Int — Bool — Int.If a user wants to visibly instantiate
a later type parameter (say, b) without choosing an earlier
one, they can write @_ to skip a parameter. The expression
const @_ @Bool has type « — Bool — a, for any type a.

Specificity. Eisenberg et al. [9, Section 3.1] introduce the
notion of type variable specificity. The key idea is that quan-
tified type variables are either written by the user (these
are called specified) or invented by the compiler (these are
called inferred). A specified variable is available for explicit
instantiation using, e.g., @/nt; an inferred variable may not
be explicitly instantiated.

Following GHC, we use braces to denote inferred variables.
Thus, if we have the Haskell program

idi:a— a
idy x = x

idy x = x

then we would write that id; :: V a. a — a (with a specified
a)and idy ::V {a}.a — a (with an inferred a). Accordingly,
idy @Int is a function of type Int — Int, while id; @Int is a
type error.

2.2 Deep vs. Shallow Instantiation

The first aspect of instantiation we seek to vary is its depth,
which type variables get instantiated. Concretely, shallow
instantiation affects only the type variables bound before
any explicit arguments. Deep instantiation, on the other
hand, also instantiates all variables bound after any num-
ber of explicit arguments. For example, consider a function
fuVYaa— (Y bbb - b — V c.c = c A shalow
instantiation of f’s type instantiates only a, whereas deep
instantiation also affects ¢, despite ¢’s deep binding site. Nei-
ther instantiation flavour touches b however, as b is not an
argument of f.
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Versions of GHC up to 8.10 perform deep instantiation, as
originally introduced by Peyton Jones et al. [16], but GHC 9.0
changes this design, as proposed by Peyton Jones [15] and
inspired by Serrano et al. [20]. In this paper, we study this
change through the lens of stability.

2.3 Eager vs. Lazy Instantiation

Our work also studies the eagerness of instantiation, which
determines the location in the code where instantiation hap-
pens. Eager instantiation immediately instantiates a poly-
morphic type variable as soon as it is mentioned. In contrast,
lazy instantiation holds off instantiation as long as possi-
ble until instantiation is necessary in order to, say, allow a
variable to be applied to an argument.
For example, consider these functions:

pair =¥ a.a— VY b.b — (a, b)
pair x y = (x,y)

myPairX x = pair x

What type do we expect to infer for myPairX? With eager
instantiation, the type of a polymorphic expression is in-
stantiated as soon as it occurs. Thus, pair x will have a
type f — (a, B), assuming we have guessed x :: a. (We
use Greek letters to denote unification variables.) With nei-
ther a nor f§ constrained, we will generalise both, and infer
V{a} {b}.a— b — (a b) for myPairX. Crucially, this type
is different than the type of pair.

Let us now replay this process with lazy instantiation. The
variable pair has typeV a.a — V b. b — (a, b). In order to
apply pair of that type to x, we must instantiate the first
quantified type variable a to a fresh unification variable «,
yielding the type @ — V b.b — (a, b). This is indeed a
function type, so we can consume the argument x, yielding
pair x =¥ b.b — (a, b). We have now type-checked the
expression pair x, and thus we take the parameter x into
account and generalise this type to produce the inferred type
myPairX ::V {a}.a — ¥V b.b — (a, b). This is the same as
the type given for pair, modulo the specificity of a.

As we have seen, thus, the choice of eager or lazy instan-
tiation can change the inferred types of definitions. In a lan-
guage that allows visible instantiation of type variables, the
difference between these types is user-visible. With lazy in-
stantiation, myPairX True @Char ’x’ is accepted, whereas
with eager instantiation, it would be rejected.

3 Stability

We have described stability as a measure of how small trans-
formations—call them similarities—in user-written code might
drastically change the behaviour of a program. This section
lays out the specific similarities we will consider with respect
to our instantiation flavours. There are naturally many trans-
formations one might think of applying to a source program.
We have chosen ones that relate best to instantiation; others
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(e.g. does a function behave differently in curried form as
opposed to uncurried form?) do not distinguish among our
flavours and are thus less interesting in our concrete context.
We include examples demonstrating each of these, showing
how instantiation can become muddled. While these exam-
ples are described in terms of types inferred for definitions
that have no top-level signature, many of the examples can
easily be adapted to include a signature. After presenting
our formal model of Haskell instantiation, we check our in-
stantiation flavours against these similarities in Section 5,
with proofs in Appendix E.

We must first define what we mean by the “behaviour”
of a program. We consider two different notions of behaviour,
both the compile time semantics of a program (that is, whether
the program is accepted and what types are assigned to its
variables) and its runtime semantics (that is, what the pro-
gram executes to, assuming it is still well typed). We write,

for example, ER to denote a similarity that we expect to

respect both compile and runtime semantics, whereas é is

one that we expect only to respect runtime semantics, but
_ e C+R

may change compile time semantics. Similarly, —— denotes

a one-directional similarity that we expect to respect both

compile and runtime semantics.

3.1 Similarity 1: Let-Inlining and Extraction

A key concern for us is around let-inlining and -extraction.
That is, if we bind an expression to a new variable and use
that variable instead of the original expression, does our
program change meaning? Or if we inline a definition, does
our program change meaning? These notions are captured
in Similarity 1:!

letx = e ine; g} [er/x] e

Example 1: myld. The Haskell standard library defines
id ::V a.a — a as the identity function. Suppose we made a
synonym of this (using the implicit top-level let of Haskell
files), with the following:

myld = id

Note that there is no type signature. Even in this simple
example, our choice of instantiation eagerness changes the
type we infer:

myld | eager | lazy

deep or shallow ‘ V{a}t.a— a ‘ Vaa—a

Under eager instantiation, the mention of id is immediately
instantiated, and thus we must re-generalise in order to get a
polymorphic type for myld. Generalising always produces in-
ferred variables, and so the inferred type for myld starts with
V {a}, meaning that myld cannot be a drop-in replacement
for id, which might be used with explicit type instantiation.

1A language with a strict let construct will observe a runtime difference
between a let binding and its expansion, but this similarity would still hold
with respect to type-checking.
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On the other hand, lazy instantiation faithfully replicates the
type of id and uses it as the type of myld.

Example 2: myPair. This problem gets even worse if the
original function has a non-prenex type, like our pair, above.
Our definition is now:
myPair = pair

With this example, both design axes around instantiation
matter:

myPair ‘ eager ‘ lazy
Vaa—
deep | Via}{bla—>b—(ab) |\,
Vaa—
shallow | V {a}.a — V b.b — (a, b) V b.b— (a b)

All we want is to define a simple synonym, and yet reason-
ing about the types requires us to consider both depth and
eagerness of instantiation.

Example 3: myPairX. The myPairX example above ac-
quires a new entanglement once we account for specificity.
We define myPairX with this:

myPairX x = pair x

We infer these types:

myPairX ‘ eager ‘ lazy
deep or vV {a} {b}. V{a}.a—
shallow a— b— (ab) YV b.b — (a, b)

Unsurprisingly, the generalised variables end up as inferred,
instead of specified.

3.2 Similarity 2: Signature Property

The second similarity annotates a let binding with the in-
ferred type o of the bound expression e;. We expect this
similarity to be one-directional, as dropping a type anno-
tation may indeed change the compile time semantics of a
program, as we hope programmers expect.

fri=e C_Llﬁ f :0;f 7 = e , where ois the inferred type of f

Example 4: infer. Though not yet implemented, we con-
sider a version of Haskell that includes the ability to abstract
over type variables, the subject of an approved proposal for
GHC [6]. With this addition, we can imagine writing infer:
infer =A @a (x = a) — x
We would infer these types:

infer ‘ eager ‘ lazy
deep or shallow ‘ V{a}.a— a ‘ Vaa— a

Note that the eager variant will infer a type containing an
inferred quantified variable { a}. this is because the expres-
sion A @a (x :: a) — x is instantly instantiated; it is then
let-generalised to get the type in the table above.

If we change our program to include these types as an-
notations, the eager type, with its inferred variable, will be
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rejected. The problem is that we cannot check an abstraction
A @a — ... against an expected type V {a}. ...: the whole
point of having an inferred specificity is to prevent such
behaviour, as an inferred variable should not correspond to
either abstractions or applications in the term.

3.3 Similarity 3: Type Signatures

Changing a type signature should not affect runtime semantics—

except in the case of type classes (or other feature that inter-
rupts parametricity). Because our paper elides type classes,
we can state this similarity quite generally; more fleshed-out
settings would require a caveat around the lack of type-class
constraints.

_—i R _—i
f : Gl;fﬂi =€ <=>f : O'Z;f”i =€

Example 5: swizzle. Suppose we have this function de-
fined?:

undef =V a. Int - a— a
undef = undefined

Now, we write a synonym but with a slightly different type:

swizzle:: Int >V a.a— a
swizzle = undef

Shockingly, undef and swizzle have different runtime be-
haviour: forcing undef diverges (unsurprisingly), but forcing
swizzle has no effect. The reason is that the definition of
swizzle is not as simple as it looks. In the System-F-based core
language used within GHC, we have swizzle = A(n:: Int) —
A(a:: Type) — undef @a n. Accordingly, swizzle is a func-
tion, which is already a value’.

Under shallow instantiation, swizzle would simply be re-
jected, as its type is different than undef’s. The only way
swizzle can be accepted is if it is deeply skolemised (see
Application in Section 4), a necessary consequence of deep
instantiation.

swizzle ‘ eager or lazy
deep converges
shallow | rejected

3.4 Similarity 4: Pattern-Inlining and Extraction

The fourth similarity represents changing variable patterns
(written to the left of the = in a function definition) into A-
binders (written on the right of the =), and vice versa. Here,
we assume the patterns 7 contain only (expression and type)
variables. The three-place wrap relation is unsurprising. It
denotes that wrapping the patterns 7 around the expression

2This example is inspired by Peyton Jones [15].

3Similarly to swizzle, the definition of undef gets translated into A(a ::
Type) — undefined @(Int — a — a). However, this is not a value as GHC
evaluates underneath the A binder. The evaluation relation can be found in
Appendix D.
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e; in lambda binders results in e]. Its definition can be found
in Appendix C.

— . C+R n
letx7T =eine;, &= letx =¢jine,

where wrap (7; e; ~ €])

Example 6: infer2, again. Returning to the infer exam-
ple, we might imagine moving the abstraction to the left of
the =, yielding:

infer2 @a (x ::a) = x

Under all instantiation schemes, infer2 will be assigned the
type V a.a — a. Accordingly, under eager instantiation,
the choice of whether to bind the variables before the = or
afterwards matters.

3.5 Similarity 5: Single vs. Multiple Equations

Our language model includes the ability to define a func-
tion by specifying multiple equations. The type inference
algorithm in GHC differentiates between single and multiple
equation declarations (see Section 5), and we do not want
this distinction to affect types. While normally new equa-
tions for a function would vary the patterns compared to
existing equations, we simply repeat the existing equation
twice; after all, the particular choice of (well-typed) pattern
should not affect compile time semantics at all.

fi_rzeéfi_rze,fﬁze
Example 7: unitld1 and unitld2. Consider these two
definitions:
unitld1 () = id
unitld2 () = id
unitld2 () = id

Both of these functions ignore their input and return the
polymorphic identity function. Let us look at their types:

‘ eager ‘ lazy
unitldi deep or V{a}.() — O—
shallow a—a YVaa— a
unitld2 deep or V{a}. () — V{a}. () —
shallow a—a a—a

The lazy case for UnitldT is the odd one out: we see that the
definition of unitld1has type V a. a — a, do not instantiate it,
and then prepend the () parameter. In the eager case, we see
that both definitions instantiate id and then re-generalise.

However, the most interesting case is the treatment of
unitld2 under lazy instantiation. The reason the type of
unitld2 here differs from that of unitld7 is that the pattern-
match forces the instantiation of id. As each branch of a
multiple-branch pattern-match must result in the same type,
we have to seek the most general type that is still less general
than each branch’s type. Pattern matching thus performs an
instantiation step (regardless of eagerness), in order to find
this common type.
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In the scenario of unitld2, however, this causes trouble:
the match instantiates id, and then the type of unitld2 is re-
generalised. This causes unitld2 to have a different inferred
type than unitld1, leading to an instability.

3.6 Similarity 6: y-Expansion

And lastly, we want n-expansion not to affect types. (This
change can reasonably affect runtime behaviour, so we would
never want to assert that n-expansion maintains runtime
semantics.)

e & Ax.ex, where e has a function type

Example 8: eta. Consider these two definitions, where
id:Vaa— a
nofEta = id
eta =Ax—idx
The two right-hand sides should have identical meaning,

as eta is simply the n-expansion of noEta. Yet, under lazy
instantiation, these two will have different types:

‘ eager ‘ lazy
noEta deep or shallow | V {a}.a— a|Yaa— a
eta deep or shallow | V {a}.a—> a |V {a}.a—> a

The problem is that the n-expansion instantiates the occur-
rence of id in eta, despite the lazy instantiation strategy.
Under eager instantiation, the instantiation happens regard-
less.

3.7 Stability

The examples in this section show that the choice of instantia-
tion scheme matters—and that no individual choice is clearly
the best. To summarise, each of our possible schemes runs
into trouble with some example; this table lists the numbers
of the examples that witness a problem:

‘ eager ‘ lazy
deep 1,2,3,4,5,6 | 5,7, 8
shallow | 1, 2,3,4,6 7,8

At this point, the best choice is unclear. Indeed, these ex-
amples are essentially where we started our exploration of
this issue—with failures in each quadrant of this table, how
should we design instantiation in GHC?

To understand this better, Section 4 presents a formalisa-
tion of GHC’s type-checking algorithm, parameterised over
the choice of depth and eagerness. Section 5 then presents
properties derived from the similarities of this section and
checks which variants of our type system uphold which
properties. The conclusion becomes clear: lazy, shallow in-
stantiation respects the most similarities.

We now fix the definition of stability we will work toward
in this paper:

Definition (Stability). A language is considered stable when
all of the program similarities above are respected.
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We note here that the idea of judging a language by its
robustness in the face of small transformations is not new;
see, for example, Le Botlan and Rémy [12] or Schrijvers et al.
[19], who also consider a similar property. However, we
believe ours is the first work to focus on it as the primary
criterion of evaluation.

Our goal in this paper is not to eliminate instability, which
would likely be too limiting, leaving us potentially with
either the Hindley-Milner implicit type system or a System
F explicit one. Both are unsatisfactory. Instead, our goal is to
make the consideration of stability a key guiding principle
in language design. The rest of this paper uses the lens of
stability to examine design choices around ordered explicit
type instantiation. We hope that this treatment serves as
an exemplar for other language design tasks and provides a
way to translate vague notions of an “intuitive” design into
concrete language properties that can be proved or disproved.
Furthermore, we believe that instantiation is an interesting
subject of study, as any language with polymorphism must
consider these issues, making them less esoteric than they
might first appear.

4 The Mixed Polymorphic A-Calculus

In order to assess the stability of our different designs, this
section develops a polymorphic, stratified A-calculus with
both implicit and explicit polymorphism. We call it the Mixed
Polymorphic A-calculus, or MPLC. Our formalisation (based
on Eisenberg et al. [9] and Serrano et al. [20]) features explicit
type instantiation and abstraction, as well as type variable
specificity. In order to support visible type application, even
when instantiating eagerly, we must consider all the argu-
ments to a function before doing our instantiation, lest some
arguments be type arguments. Furthermore, type signatures
are allowed in the calculus, and the bidirectional type sys-
tem [17] permits higher-rank [14] functions. Some other
features, such as local let declarations defining functions
with multiple equations, are added to support some of the
similarities we wish to study.

We have built this system to support flexibility in both of
our axes of instantiation scheme design. That is, the calculus
is parameterised over choices of instantiation depth and
eagerness. In this way, our calculus is essentially a family of
type systems: choose your design, and you can instantiate
our rules accordingly.

4.1 Syntax

The syntax for MPLC is shown in Figure 1. We define two
meta parameters 6 and € denoting the depth and eagerness
of instantiation respectively. In the remainder of this paper,
grammar and relations which are affected by one of these
parameters will be annotated as such. A good example of
this are types ¢° and ¢, as explained below.
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§ =8|D Depth
€ u= 6L Eagerness
T w=aln-on|TT Monotype
p u=1|0o—¢° Instantiated type
o u= pl|Vao] Vm.a | o1 — o Type scheme
$° = p (5=D) Instantiated result
| o (6=S8)
n¢ = p (e=8) Synthesised type
| o (e=1)
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e u:= harg | Ax.e | Aa.e | letdecline Expression
h =x|Kle:o]e Application head
arg == e| @o Application argument
decl == x:0;x7m; = eil | x7; = e,-l Declaration
T = x|K7w| @0 Pattern
> =-|2Ta|XK:a0T Static context
IA == 3 |I,x:0|T,a Context
Y u=1|@a Arg. descriptor

Figure 1. Mixed Polymorphic A-Calculus (MPLC) Syntax

Keeping all the moving pieces straight can be challenging.
We thus offer some mnemonics to help the reader: In the
remainder of the paper, aspects pertaining to eager instantia-
tion are highlighted in emerald, while lazy features are high-

lighted in lavender. Similarly, instantiation under the shallow
inst S

scheme is drawn using a striped line, asinI' + o 225 > P

Types. Our presentation of the MPLC contains several
different type categories, used to constrain type inference.
Monotypes 7 represent simple ground types without any
polymorphism, while type schemes ¢ can be polymorphic,
including under arrows. In contrast, instantiated types p can-
not have any top-level polymorphism. However, depending
on the depth § of instantiation, a p-type may or may not
feature nested foralls on the right of function arrows. This
dependency on the depth § of type instantiation is denoted
using an instantiated result type ¢° on the right of the func-
tion arrow. Instantiating shallowly, ¢ is a type scheme o,
but deep instantiation sees ¢? as an instantiated type p.
This makes sense: Int — V a.a — a is a fully instantiated
type under shallow instantiation, but not under deep. We
also have synthesised types 1€ to denote the output of the
type synthesis judgement I' + e = 7¢, which infers a type
from an expression. The shape of this type depends on the
eagerness € of type instantiation: under lazy instantiation
(L), inference can produce full type schemes o; but under
eager instantiation (&), synthesised types n¢ are always in-
stantiated types p: any top-level quantified variable would
have been instantiated away.

Finally, an argument descriptor i/ represents a type synthe-
sised from analysing a function argument pattern. Descrip-
tors are assembled into type schemes o with the type (J; oy ~
0) judgement, in Figure 5.

Expressions. Expressions e are mostly standard; we ex-
plain the less common forms here.

As inspired by Serrano et al. [20], applications are mod-
elled as applying a head h to a (maximally long) list of argu-
ments arg. The main idea is that under eager instantiation,
type instantiation for the head is postponed until it has been
applied to its arguments. A head h is thus defined to be either

a variable x, a data constructor K, an annotated expression
e : o or a simple expression e. This last form will not be
typed with a type scheme under eager instantiation—that
is, we will not be able to use explicit instantiation—but is
required to enable application of a lambda expression. As we
feature both term and type application, an argument arg is
defined to be either an expression e or a type argument @o.

Our syntax additionally includes explicit abstractions over
type variables, written with A. Though the design of this fea-
ture (inspired by Eisenberg et al. [7, Appendix B]) is straight-
forward in our system, its inclusion drives some of the chal-
lenge of maintaining stability.

Lastly, let-expressions are modelled on the syntax of
Haskell. These contain a single (non-recursive) declaration
decl, which may optionally have a type signature x : o, fol-

lowed by the definition x 7; = ¢; ' The patterns 7 on the left
of the equals sign can each be either a simple variable x, type
@o or a saturated data constructor K 7.

Contexts. Typing contexts I' are entirely standard, stor-
ing both the term variables x with their types and the type
variables a in scope; these type variables may appear in both
terms (as the calculus features explicit type application) and
types. The type constructors and data constructors are stored
in a static context ¥, which forms the basis of typing con-
texts I'. This static context contains the data type definitions
by storing both type constructors T a and data constructors
K :a;0; T. Data constructor types contain the list of quanti-
fied variables @, the argument types o, and the resulting type
T;when K : @;0; T, then the use of K in an expression would
have type Va.c — T a, abusing syntax slightly to write a
list of types o to the left of an arrow.

4.2 Type System Overview

Table 1 provides a high-level overview of the different typing
judgements for the MPLC. The detailed rules can be found in
Figures 2-5. The starting place to understand our rules is in
Figure 2. These judgements implement a bidirectional type
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H-Var
x:0€l

rlx=o
H-ANN
l'tes=o

Itfle:o=0

TMm-INFABS
Ix:tFe=>n;

(Head Type Synthesis)

H-Con
K:a,0;,Tel

rvf Kx=>vasc—Ta

H-INF
I're=n°

Il e = p¢

(Term Type Synthesis)

TM-INFAPP
Irt"h=so
r‘argeo=o

y inst 8 e

'ro' —Sp

I'tAxe=1 — 15

TM-INFLET
I't+decl =T’

I're=np°

T+ letdecline = n°

Tm-CHECKABS
skol S

I'ro 2250 sy 01 = oy

rl,XZO_1|'€¢O'2

[+ harg = n°
TM-INFTYABS
Tate=nf
TrV anf inst & ’7;

'+ Aae= n;

(Term Type Checking)

Tm-CHECKLET
T+ decl =T’

INreso

I'rAx.e=o

Tm-CHECKINF

I'ro ke oy

Ii+e=n°
rl E Ue’ inst &

e £ A A, let

Il'res=o

rY*arg o= o

ARG-EMPTY

I'tletdecline = o

TM—CHETYABS
oc=V{a}.Vao
INaare<so

I'rAaes=o

(Argument Type Checking)

ARG-Arp

T'ree oy
Irarge=o, =0

. co=0¢

ARG-TYArpr

Itearg=o, — o =0

T I—Aa_rg<= [o1/a] o3 = 03

r+4 @oy,arg =V a.o, = o3

ARG-INST

r+4 e arg < o, = 03

05 = [r1/a] oy

ARG-INFINST
o=VY{a}l.o;
Irarg <o, = o3
0, = [t1/a] o

T+4 e, arg =Va.op, = o3

FFAarg<=O'=>O'3

Figure 2. Term Typing for Mixed Polymorphic A-Calculus
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T+decl =T’

DEcL-NOANNSINGLE _
I’ 7= y;A
ILAre=n

type (Y;n€ ~ o) a=f,(o)\ dom(T)

Fkxﬁ:ezr,xzvm.a

(Declaration Checking)

DEcCL-NOANNMULTI
i>1 TH 7= A

- @ @00
F,Ai Fe = I]le

1

i

LA + ’71( inst & p type (J,‘D_NG)
a=f,(o) \ dom(I) o' =V{a}.o

—_i
I'txwi=e¢ =TI,x:0

DEecL-ANN
— i i
TP 7mi=o=0A T,Aire o]

—_—i
I'tx:o;xmi=¢ =I,x:0

Figure 3. Declaration Typing for Mixed Polymorphic A-
Calculus

Table 1. Relation Overview

Fig.2 Tre=17p Synthesise type 1€ for e

Fig.2 Treso Check e against type o

Fig.2 THih=o0 Synthesise type o for head h

Fig.2 T +*arg & 0 = o’ Check arg against o,
resulting in type o’

Fig.3 Tt del =T’ Extend context with a decl.

Fig.4 T’z > J; A Synthesise types J for
patterns 7, binding context A

Fig.4 T tH' 7 <o = o’;A CheckT against o, with
residual type o”, binding A

Fig.5 Ttro _inst 3, P Instantiate o to p

Fig.5 Ttro _skol &, p; T’ Skolemise o to p, binding I'

Extract type var. binders a
and residual p from o
Bind patterns 7 in e, to get e,

App. C binders (o) = a; p

App. C wrap (T; e, ~ )

system, fairly standard with the exception of their treatment
of a list of arguments all at once®.

Understanding this aspect of the system hinges on rule Tm-
INFAPP, which synthesises the type of the head h and uses
its type to check the arguments arg. The argument-checking
judgement I +4 arg & o = o’ (inspired by Dunfield and
Krishnaswami [5]) uses the function’s type o to learn what

“This is a well-known technique to reduce the number of traversals through
the applications, known as spine form [2].
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r-*z= J; A (Pattern Synthesis)

PAT-INFVAR

PAT-INFEMPTY T,x:1 R N J; A

r+f = kax,ﬁﬁrl,xﬁ;x:rl,A

PAT-INFCON
K:ay;00; T €T
I W' 7 <= [61,70/a] (0 = Tay) = TT: A
LA 7 = g0,
I+’ (K@, 7)., 7 = TT.y; A, Ay

PAT-INFTYVAR .
Latl 7= ¢ A

r+P @a, 1 = @a,@;a,A

IYr7e=0=0;A ‘ (Pattern Checking)

PAaT-CHECKEMPTY

I . =o=o0;-

PAT-CHECKVAR
Ox:oH T o= oA

T x7Te0, > 0= 0x:0,A

PaT-CHECKCON
K:Gso0;TeT Tro ™2 p
It 7 < [61,70/a] (Go — Ta) = p1; Ay
F,Al |—P E, & 09 = O'Z’;Az

T |-P (K@El ﬁ),ﬁl &0 D 0y = Gz,;Al,Ag

PaT-CHECKFORALL
Tat! 7=0= oA
T# -and7 # @0, 7T

IrY7eVao= o;aA

PAT-CHECKTYVAR
Tat’ 7 < [a/b]l o1 = 033 A

I+ @a T =Vbo = o0 A

PAT-CHECKINFFORALL
Tat! Teo=0 A T#-

Ir'7ev{a.oc=o;aA

Figure 4. Pattern Typing for Mixed Polymorphic A-Calculus

type is expected of each argument; after checking all argu-
ments, the judgement produces a residual type ¢’. The judge-
ment’s rules walk down the list, checking term arguments
(rule ArG-Arp), implicitly instantiating specified variables
where necessary (rule ARG-INsT, which spots a term-level

Gert-Jan Bottu and Richard A. Eisenberg

inst &

r-c%p (Type instantiation)

INST-INST
binders® (o) = ap

Tro ™9 (7/a] p

TFo skol & p;r’

(Type skolemisation)

SKoL-SkoL
binders® (o) = a,p

T+ dﬂ,p;r,a

type (E; o~o0o) (Telescope Type Construction)

TyPE-VAR _
Type-EMPTY type (¥; 05 ~ 03)
type (;0 ~ o) type (11, ;02 ~ 11 — 03)
Type-TYVAR

type (Y30 ~ o’)
type (@a, ;0 ~ ¥V a.0”)

Figure 5. Type Instantiation and Skolemisation

argument e but does not consume it), uses type arguments
for instantiation (rule ArRG-TYAPP), and eagerly instantiates
inferred type arguments (rule ARG-INFINST).

Our type system also includes let-declarations, which al-
low for the definition of functions, with or without type
signatures, and supporting multiple equations defined by
pattern-matching. Checking declarations and dealing with
patterns is accomplished by the judgements in Figures 3
and 4, respectively, although the details may be skipped on
a first reading: we include these rules for completeness and
as the basis of our stability-oriented evaluation (Section 5).
These rules do not directly offer insight into our treatment
of instantiation.

Instead, the interesting aspects of our formulation are in
the instantiation and skolemisation judgements.

4.3 Instantiation and Skolemisation

When we are type-checking the application of a polymorphic
function, we must instantiate its type variables: this changes
a function id ::V a.a — ainto id :: T — 7, where 7 is any
monotype. On the other hand, when we are type-checking
the body of a polymorphic definition, we must skolemise its
type variables: this changes a definition (Ax — x) =V a.a —
a so that we assign x to have type a, where a is a skolem
constant—a fresh type, unequal to any other. These constants
are bound in the context returned from the skolemisation
judgement.
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Naturally, the behaviour of both instantiation and skolemi-
sation depend on the instantiation depth; see Figure 5. Both
rule INST-INST and rule Skor-Skor use the binders helper
function: binders®(c) = a; p extracts out bound type vari-
ables @ and a residual type p from a polytype o. The depth,
though, is key: the shallow (S) version of our type system,
binders gathers only type variables bound at the top, while
the deep (D) version looks to the right past arrows. As ex-
amples, we have bindersS (WVaa > Vbb—> b)) =aa—
Vb.b — band binders®(Ya.a — Vb.b > b) = a,b;a —
b — b. The full definition (inspired by Peyton Jones et al.
[16, Section 4.6.2]) is in Appendix C.

Some usages of these relations happen only for certain
choices of instantiation flavour. For example, see rule Tm-
INFAPP. We see the last premise instantiates the result of
the application—but its emerald colour tells us that this in-
stantiation happens only under the eager flavour®. Indeed,
this particular use of instantiation is the essence of eager
instantiation: even after a function has been applied to all
of its arguments, the eager scheme continues to instantiate.
Similarly, rule TM-INFTYABs instantiates eagerly in the eager
flavour.

The lazy counterpart to the eager instantiation in rule Tm-
INFAPP is the instantiation in rule TM-CHECKINF. This rule is
the catch-all case in the checking judgement, and it is used
when we are checking an application against an expected
type, as in the expression f a b ¢ :: T Int Bool. In this
example, if f a b c still has a polymorphic type, then we
will need to instantiate it in order to check the type against
the monomorphic T /nt Bool. This extra instantiation would
always be redundant in the eager flavour (the application is
instantiated eagerly when inferring its type) but is vital in
the lazy flavour.

Several other rules interact with instantiation in interest-
ing ways:

A-expressions. Rule TM-CHECKABs checks a A-expression
against an expected type 0. However, this expected type may
be a polytype. We thus must first skolemise it, revealing a
function type o1 — o7 underneath (if this is not possible,
type checking fails). In order to support explicit type ab-
straction inside a lambda binder Ax.Aa.e, rule TM-CHECKABS
never skolemises under an arrow: note the fixed S visible in
the rule. As an example, this is necessary in order to accept
(Ax @b (y:=:b) > y):Vaa—V b.b— b, where it would
be disastrous to deeply skolemise the expected type when
examining the outer A.

Declarations without a type annotation. Rule DEcL-
NoANNMuLTI is used for synthesising a type for a multiple-
equation function definition that is not given a type signature.

SWe can also spot this fact by examining the metavariables. Instantiation
takes us from a o-type to a p-type, but the result in rule TM-INFAPP is a
n€-type: a p-type in the eager flavour, but a o-type in the lazy flavour.
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When we have multiple equations for a function, we might
imagine synthesising different polytypes for each equation.
We could then imagine trying to find some type that each
equation’s type could instantiate to, while still retaining as
much polymorphism as possible. This would seem to be
hard for users to predict, and hard for a compiler to imple-
ment. Our type system here follows GHC in instantiating
the types of all equations to be a monotype, which is then re-
generalised. This extra instantiation is not necessary under
eager instantiation, which is why it is coloured in lavender.

For a single equation (rule DECL-NOANNSINGLE), synthe-
sising the original polytype, without instantiation and re-
generalisation is straightforward, and so that is what we do
(also following GHC).

5 Evaluation

This section evaluates the impact of the type instantiation
flavour on the stability of the programming language. To
this end, we define a set of eleven properties, based on the
informal definition of stability from Section 3. Every property
is analysed against the four instantiation flavours, the results
of which are shown in Table 2, which also references the
proof appendix for each of the properties, in the column
labeled App.

We do not investigate the type safety of our formalism, as
the MPLC is a subset of System F. We can thus be confident
that programs in our language can be assigned a sensible
runtime semantics without going wrong.

5.1 Contextual Equivalence

Following the approach of GHC, rather than providing an
operational semantics of our type system directly, we instead
define an elaboration of the surface language presented in
this paper to explicit System F, our core language. It is im-
portant to remark that elaborating deep instantiation into
this core language involves semantics-changing -expansion.
This allows us to understand the behaviour of Example 5,
swizzle, which demonstrates a change in runtime seman-
tics arising from a type signature. This change is caused by
n-expansion, observable only in the core language.

The definition of this core language and the elaboration
from MPLC to core are in Appendix D. The meta variable
t refers to core terms, and ~~ denotes elaboration. In the
core language, n-expansion is expressed through the use of
an expression wrapper £, an expression with a hole, which
retypes the expression that gets filled in. The full details
can be found in Appendix D. We now provide an intuitive
definition of contextual equivalence in order to describe what
it means for runtime semantics to remain unchanged.

Definition 1 (Contextual Equivalence). Two core expressions
t; and t; are contextually equivalent, written t; = t,, if there
does not exist a context that can distinguish them. That is, t;
and t, behave identically in all contexts.
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Table 2. Property Overview

& L
Sim. | Property Phase | App. | S | D | S | D
1 1 Let inl. C | E1 S0V
2 Let extr. C|E1 X\ X | V|V
3 R|E3 |V | X |/ | X
2 4 Signature prop C X X | X | X
4b restricted E4 X| X |V |V
5 RI|E4 |V | X |V | X
3 6 Type sign. R|E4 |V | X |V | X
4 7 Pattern inl. C|ES5 X| X | V|V
8 R|E5 |V | X |/ |V
9 Pattern extr. C|E5 X| X |V |V
5 10 Single/multi C|E6 |V |V |X]| X
6 11 p-expansion C X| X | X | X
11b restricted E.7 X\ vV | X| KX

Here, we understand a context to be a core expression with
a hole, similar to an expression wrapper, which instantiates
the free variables of the expression that gets filled in. More
concretely, the expression built by inserting #; and ¢, to the
context should either both evaluate to the same value, or
both diverge. A formal definition of contextual equivalence
can be found in Appendix E.2.

5.2 Properties

let-inlining and extraction. We begin by analysing Sim-
ilarity 1, which expands to the three properties described in
this subsection.

Property 1 (Let Inlining is Type Preserving).

eltletx=¢ine, = n° DT+ [e/x] &a =
eltletx=eine, <=0 DT+ [e;/x] ey &0

Property 2 (Let Extraction is Type Preserving).

oT+[e/x]eg=n5 AT Fe =17
DIkletx=eine = n;

el'r[e/x]lea =0y AT Fe = 0n;
DItletx=¢eine & oy

Property 3 (Let Inlining is Runtime Semantics Preserving).

eTtrletx=eine, = n~ 1

A Fk[el/x]egznfwtz Dh=bh
eltletx=¢ine <o~ f

A Tl—[el/x]eg<=crwt2 D=1

As an example for why Property 2 does not hold under
eager instantiation, consider id @Int. Extracting the id func-
tion into a new let-binder fails to type check, because id will
be instantiated and then re-generalised. This means that ex-
plicit type instantiation can no longer work on the extracted
definition.
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The runtime semantics properties (both these and later
ones) struggle under deep instantiation. This is demonstrated
by Example 5, swizzle, where we see that non-prenex quan-
tification can cause 5-expansion during elaboration and thus
change runtime semantics.

Signature Property. Similarity 2 gives rise to these prop-
erties about signatures.

Property 4 (Signature Property is Type Preserving).
F!—xﬁi=e,~l=>l"’ ANx:oel’
DFI—x:a;xﬁizeil:H“’

As an example of how this goes wrong under eager in-
stantiation, consider the definition x = Aa.Ay.(y : a). An-
notating x with its inferred type V {a}.a — a is rejected,
because rule TM-CHECKTYABS requires a specified quantified
variable, not an inferred one.

However, similarly to eager evaluation, even lazy instanti-
ation needs to instantiate the types at some point. In order
to type a multi-equation declaration, a single type needs
to be constructed that subsumes the types of every branch.
In our type system, rule DEcL-NoANNMuLTI simplifies this
process by first instantiating every branch type (following
the example set by GHC), thus breaking Property 4. We thus
introduce a simplified version of this property, limited to
single equation declarations. This raises a possible avenue
of future work: parameterising the type system over the
handling of multi-equation declarations.

Property 4b (Signature Property is Type Preserving (Single
Equation)).
Trxmt=e=T'" Ax:0cel! DT rx:oxm=e=>T"

Property 5 (Signature Property is Runtime Semantics Pre-
serving).
—_—i
F'rtxmi=¢ =T wx:0=1
—_—1
ATl krx:0;xT = ¢ =>F/Wx102tg D h=bh

Type Signatures. Similarity 3 gives rise to the following
property about runtime semantics.

Property 6 (Type Signatures are Runtime Semantics Pre-
serving).
—i
Trx:opxmi=¢ =1 ~x:01=1
—_—i
ATrx:opxmi=e =11~ x:0,=1
A I“I—Ulﬂ,pw'tl A TI—UZMpw'tZ

D h[h] = t[k]

Considerletx : V a.Int — a — a;x = undefinedin x ‘seq’ (),
which diverges. Yet under deep instantiation, this version ter-
minates: let x : Int — V a.a — a;x = undefinedin x ‘seq’ ().
Under shallow instantiation, the second program is rejected,
because undefined cannot be instantiated to the type Int —
Va.a — a, as that would be impredicative. You can find the
typing rules for undefined and seq in Appendix D.1.
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Pattern Inlining and Extraction. The properties in this
section come from Similarity 4. Like in that similarity, we
assume that the patterns are just variables (either implicit
type variables or explicit term variables).

Property 7 (Pattern Inlining is Type Preserving).
IF'rxm=e=>I" A wrap(m;e; ~e) DIFx=e=T'

The failure of pattern inlining under eager instantiation
will feel similar: if we take id @a x = x : a, we will infer a
type V a.a — a. Yet if we write id = Aa.Ax.(x : a), then eager
instantiation will give us the different type V {a}.a — a.

Property 8 (Pattern Inlining / Extraction is Runtime Seman-
tics Preserving).

Itxmw=e > ~x:0=H A wrap(T;e; ~ )
ATrx=e=>IT"~x:0=t D h=h

Property 9 (Pattern Extraction is Type Preserving).
F'rtx=e=T" A wrap(me;~e) DT rxm=¢ =T’

Single vs. multiple equations. Similarity 5 says that there
should be no observable change between the case for a single
equation and multiple (redundant) equations with the same
right-hand side. That gets formulated into the following

property.
Property 10 (Single/multiple Equations is Type Preserving).

Trtxm=e=>T,x:0 DT rxm=exm=e=>T’

This property favours the otherwise-unloved eager flavour.
Imagine f _ = pair. Under eager instantiation, this defini-
tion is accepted as type synthesis produces an instantiated
type. Yet if we simply duplicate this equation under lazy
instantiation (realistic scenarios would vary the patterns on
the left-hand side, but duplication is simpler to state and ad-
dresses the property we want), then rule DEcL-NOANNMULTI
will reject as it requires the type to be instantiated.

n-expansion. Similarity 6 leads to the following property.

Property 11 (7-expansion is Type Preserving).
eT+e=n® A numargs(n®)=n D T+ Ax".ex" = ¢
elree=o A numargs(p) =n D THAX".ex" <o

Here, X" represents n variables. We use numargs(o) to
count the number of explicit arguments an expression can
take, possibly instantiating any intervening implicit argu-
ments. A formal definition can be found in Figure 7 in the
appendix. However, in synthesis mode this property fails for
every flavour: ¢ might be a function type o; — o, taking a
type scheme o7 as an argument, while we only synthesise
monotype arguments. We thus introduce a restricted version
of Property 11, with the additional premise that ¢ can not
contain any binders to the left of an arrow.

Property 11b (y-expansion is Type Preserving (Monotype
Restriction)).
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eTre=n A numargs(n)=n A T Fpe ™9 ¢
DT HAX"ex" = n°
eTre<=o A numargs(p)=n D THAX".ex" <o

This (restricted) property fails for all but the eager/deep
flavour as n-expansion forces other flavours to instantiate
arguments they otherwise would not have.

5.3 Conclusion

A brief inspection of Table 2 suggests how we should proceed:
choose lazy, shallow instantiation. While this configuration
does not respect all properties, it is the clear winner—even
more so when we consider that Property 11b (one of only
two that favour another mode) must be artificially restricted
in order for any of our flavours to support the property.
We should note here that we authors were surprised by
this result. This paper arose from the practical challenge of
designing instantiation in GHC. After considerable debate
among the authors of GHC, we were unable to remain com-
fortable with any one decision—as we see here, no choice
is perfect, and so any suggestion was met with counter-
examples showing how that suggestion was incorrect. Yet
we had a hunch that eager instantiation was the right de-
sign. We thus formulated the similarities of Section 3 and
went about building a formalisation and proving proper-
ties. Crucially, we did not select the similarities to favour
a particular result, though we did choose to avoid reason-
able similarities that would not show any difference between
instantiation flavours. At an early stage of this work, we
continued to believe that eager instantiation was superior. It
was only through careful analysis, guided by our proofs and
counter-examples, that we realised that lazy instantiation
was winning. We are now convinced by our own analysis.

6 Instantiation in GHC

Given the connection between this work and GHC, we now
turn to examine some practicalities of how lazy instantiation
might impact the implementation.

6.1 Eagerness

GHC used eager instantiation from the beginning, echoing
Damas and Milner [4]. However, the GHC 8 series, which
contains support for explicit type application, implements
an uneasy truce, sometimes using lazy instantiation (as ad-
vocated by Eisenberg et al. [9]), and sometimes eager. In
contrast, GHC 9.0 uses eager instantiation everywhere. This
change was made for practical reasons: eager instantiation
simplifies the code somewhat. If we went back to using lazy
instantiation, the recent experience in going from lazy to
eager suggests we will have to combat these challenges:

Displaying inferred types. The types inferred for func-
tions are more exotic with lazy instantiation. For example,

defining f = A_ — id would infer f::V {a}.a —> V b. b — b.
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These types, which could be reported by tools (including
GHCi), might be confusing for users.

Monomorphism restriction. Eager instantiation makes
the monomorphism restriction easier to implement, because
relevant constraints are instantiated.

The monomorphism restriction is a peculiarity of Haskell,
introduced to avoid unexpected runtime evaluation®. It po-
tentially applies whenever a variable is defined without a
type annotation and without any arguments to the left of the
=: such a definition is not allowed to infer a type constraint.

Eager instantiation is helpful in implementing the monomor-
phism restriction, as the implementation of let-generalisation
can look for unsolved constraints and default the type if nec-
essary. With lazy instantiation, on the other hand, we would
have to infer the type and then make a check to see whether
it is constrained, instantiating it if necessary. Of course, the
monomorphism restriction itself introduces instability in the
language (note that plus and (+) have different types), and
so perhaps revisiting this design choice is worthwhile.

Type application with un-annotated variables. For sim-
plicity, we want all variables without type signatures not
to work with explicit type instantiation. (Eisenberg et al. [9,
Section 3.1] expands on this point.) Eager instantiation ac-
complishes this, because variables without type signatures
would get their polymorphism via re-generalisation. On the
other hand, lazy instantiation would mean that some user-
written variables might remain in a variable’s type, like in
the type of f, just above.

Yet even with eager instantiation, if instantiation is shal-
low, we can still get the possibility of visible type application
on un-annotated variables: the specified variables might sim-
ply be hiding under a visible argument. Consider myPair
from Example 2: under eager shallow instantiation, it gets
assigned the type V {a}.a — V b.b — (a, b). This allows
for visible type application despite the lack of a signature:
myPair True @Char.

6.2 Depth

From the introduction of support for higher-rank types in
GHC 6.8, GHC has done deep instantiation, as outlined by
Peyton Jones et al. [16], the paper describing the higher-
rank types feature. However, deep instantiation has never
respected the runtime semantics of a program; Peyton Jones
[15] has the details. In addition, deep instantiation is required
in order to support covariance of result types in the type
subsumption judgement ([16, Figure 7]). This subsumption
judgement, though, weakens the ability to do impredicative
type inference, as described by Serrano et al. [21] and Serrano
etal. [20]. GHC has thus, for GHC 9.0, changed to use shallow
subsumption and shallow instantiation.

The full description is in the Haskell Report, Section 4.5.5 [13].
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6.3 The Situation Today: Quick Look
Impredicativity Has Arrived

A recent innovation within GHC (due for release in the
next version, GHC 9.2) is the implementation of the Quick
Look algorithm for impredicative type inference [20]. The
design of that algorithm walks a delicate balance between
expressiveness and stability. It introduces new instabilities:
for example, if f x y requires impredicative instantiation,
(let unused = 5 in f) x y will fail. Given that users who
opt into impredicative type inference are choosing to lose
stability properties, we deemed it more important to study
type inference without impredicativity in analysing stability.
While our formulation of the inference algorithm is easily in-
tegrated with the Quick Look algorithm, we leave an analysis
of the stability of the combination as future work.

7 Conclusion

This work introduces the concept of stability as a proxy for
the usability of a language that supports both implicit and ex-
plicit arguments’. We believe that designers of all languages
supporting this mix of features need to grapple with how
to best mix these features; those other designers may wish
to follow our lead in formalising the problem to seek the
most stable design. While stability is uninteresting in lan-
guages featuring pure explicit or pure implicit instantiation,
it turns out to be an important metric in the presence of
mixed behaviour.

Other work on type systems tends to focus on other prop-
erties; there is thus little related work beyond the papers we
have already cited.

We introduced a family of type systems, parameterised
over the instantiation flavour, and featuring a mix of ex-
plicit and implicit behaviour; these systems are inspired by
Peyton Jones et al. [16], Eisenberg et al. [9], and Serrano
et al. [20]. Using this family, we then evaluated the differ-
ent flavours of instantiation, against a set of formal stability
properties. The results are surprisingly unambiguous: (a)
lazy instantiation achieves the highest stability for the com-
pile time semantics, and (b) shallow instantiation results in
the most stable runtime semantics.
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A Instabilities around instantiation beyond Haskell

The concept of stability is important in languages that have a mix of implicit and explicit features—a very common
combination, appearing in Coq, Agda, Idris, modern Haskell, C++, Java, C#, Scala, F#, and Rust, among others.
This appendix walks through how a mixing of implicit and explicit features in Idris® and Agda’ causes instability,
alongside the features of Haskell we describe in the main paper. We use these languages to show how the issues
we describe are likely going to arise in any language mixing implicit and explicit features—and how stability is a
worthwhile metric in examining these features—not to critique these languages in particular.

A.1 Explicit Instantiation

Our example languages feature explicit instantiation of implicit arguments, allowing the programmer to manually
instantiate a polymorphic type, for example. Explicit instantiation broadly comes in two flavours: ordered or named
parameters.

A.2 Idris

Idris supports named parameters. If we define const: {a, b: Type} — a — b — a(this syntax is the Idris equivalent
of the Haskell type V a b.a — b — a), then we can write const { b = Bool} to instantiate only the second type
parameter or const {a = Int} {b = Bool} to instantiate both. Order does not matter; const { b = Bool} {a = Int}
works as well as the previous example. Named parameters may be easier to read than ordered parameters and are
robust to the addition of new type variables.

Idris’s approach suffers from an instability inherent with named parameters. Unlike Haskell, the order of quantified
variables does not matter. Yet now, the choice of names of the parameters naturally does matter. Thus const : ¢ —
d — c (taking advantage of the possibility of omitting explicit quantification in Idris) has a different interface than
const : a — b — a, despite the fact that the type variables scope over only the type signature they appear in.

A3 Agda

Agda accepts both ordered and named parameters. After defining const : {a b: Set} — a — b — a, we can
write expressions like const {/nt} (instantiating only a), const {b = Bool}, or const {_} { Bool}. Despite using
named parameters, order does matter: we cannot instantiate earlier parameters after later ones. Naming is useful
for skipping parameters that the user does not wish to instantiate. Because Agda requires explicit quantification
of variables used in types (except as allowed for in implicit generalisation, below), the ordering of variables must
be fixed by the programmer. However, like Idris, Agda suffers from the fact that the choice of name of these local
variables leaks to clients.

A.4 Explicit Abstraction

Binding implicit variables in named function definitions. If we sometimes want to explicitly instantiate an
implicit argument, we will also sometimes want to explicitly abstract over an implicit argument. A classic example
of why this is useful is in the replicate function for length-indexed vectors, here written in Idris:

replicate: {n: Nat} — a — Vect na
replicate {n=27} _=1]]
replicate {n=5 _} x = x = replicate x

Because a length-indexed vector Vect includes its length in its type, we need not always pass the desired length of a
vector into the replicate function: type inference can figure it out. We thus decide here to make the n: Nat parameter
to be implicit, putting it in braces. However, in the definition of replicate, we must pattern-match on the length to
decide what to return. The solution is to use an explicit pattern, in braces, to match against the argument n.

Idris and Agda both support explicit abstraction in parallel to their support of explicit instantiation: when writing
equations for a function, the user can use braces to denote the abstraction over an implicit parameter. Idris requires

8We work with Idris 2, as available from https://github.com/idris-lang/Idris2, at commit a7d5a9a7fdfbc3e7ee8995a07b90e6a454209cds.
9We work with Agda 2.6.0.1.
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such parameters to be named, while Agda supports both named and ordered parameters, just as the languages do
for instantiation. The challenges around stability are the same here as they are for explicit instantiation.

Haskell has no implemented feature analogous to this. Its closest support is that for scoped type variables, where
a type variable introduced in a type signature becomes available in a function body. For example:

const:¥Yab.a— b— a
const x y = (x :: a)

The V a b brings a and b into scope both in the type signature and in the function body. This feature in Haskell
means that, like in Idris and Agda, changing the name of an apparently local variable in a type signature may
affect code beyond that type signature. It also means that the top-level V in a type signature is treated specially. For
example, neither of the following examples are accepted by GHC:

const; :YV.Yab.a— b— a
const; x y = (x :: a)
consty:: (Y ab.a— b — a)
const; x y = (x :: a)

In consty, the vacuous V. (which is, generally, allowed) stops the scoped-type variables mechanism from bringing a
into scope; in const,, the parentheses around the type serve the same function. Once again, we see how Haskell is
unstable: programmers might reasonably think that syntax like V a b. is shorthand for V a.V b. or that outermost
parentheses would be redundant, yet neither of these facts is true.

Binding implicit variables in an anonymous function. Sometimes, binding a type variable only in a function
declaration is not expressive enough, however—we might want to do this in an anonymous function in the middle
of some other expression.

Here is a (contrived) example of this in Agda, where > allows for prefix type annotations:

2 (A:Set) > A—> A
A3 x=x

ChurchBool : Set;
ChurchBool = {A:Set} > A—> A— A

churchBoolToBit : ChurchBool — N
churchBoolToBit b=b10

one : N
one = churchBoolToBit (A{A} x1 x; > A3 xq)

Here, we bind the implicit variable A in the argument to churchBoolToBit. (Less contrived examples are possible;
see the Motivation section of Eisenberg [6].)

Binding an implicit variable in a A-expression is subtler than doing it in a function clause. Idris does not support
this feature at all, requiring a named function to bind an implicit variable. Agda supports this feature, as written
above, but with caveats: the construct only works sometimes. For example, the following is rejected:

id:{A:Set} > A— A
id=AMA} x > A3 x

The fact that this example is rejected, but id { A} x = A 3 x is accepted is another example of apparent instability—
we might naively expect that writing a function with an explicit A and using patterns to the left of an = are equivalent.
Another interesting aspect of binding an implicit variable in a A-abstraction is that the name of the variable is utterly
arbitrary: instead of writing (A{ A} x; x2 = A 3 x;), we can write (A{ anything = A} x; x, = A 3 x1). This is an
attempt to use Agda’s support for named implicits, but the name can be, well, anything. This would appear to be a
concession to the fact that the proper name for this variable, A as written in the definition of ChurchBool, can be
arbitrarily far away from the usage of the name, so Agda is liberal in accepting any replacement for it.
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An accepted proposal [6] adds this feature to Haskell, though it has not been implemented as of this writing. That
proposal describes that the feature would be available only when we are checking a term against a known type,
taking advantage of GHC’s bidirectional type system [9, 16]. One of the motivations that inspired this paper was to
figure out whether we could relax this restriction. After all, it would seem plausible that we should accept a definition
like id = A @a (x :: ) — a without a type signature. (Here, the @a syntax binds a to an otherwise-implicit type
argument.) It will turn out that, in the end, we can do this only when we instantiate lazily—see Section 5.

A.5 Implicit Generalisation

All three languages support some form of implicit generalisation, despite the fact that the designers of Haskell
famously declared that let should not be generalised [22] and that both Idris and Agda require type signatures on
all declarations.

Haskell. Haskell’s let-generalisation is the most active, as type signatures are optional.’ Suppose we have defined
const x y = x, without a signature. What type do we infer? It couldbeV a b.a - b — aorV ba.a— b — a
This choice matters, because it affects the meaning of explicit type instantiations. A natural reaction is to suggest
choosing the former inferred type, following the left-to-right scheme described above. However, in a language with
a type system as rich as Haskell’s, this guideline does not always work. Haskell supports type synonyms (which can
reorder the occurrence of variables), class constraints (whose ordering is arbitrary) [23], functional dependencies
(which mean that a type variable might be mentioned only in constraints and not in the main body of a type) [11],
and arbitrary type-level computation through type families [3, 8]. With all of these features potentially in play, it is
unclear how to order the type variables. Thus, in a concession to language stability, Haskell brutally forbids explicit
type instantiation on any function whose type is inferred; we discuss the precise mechanism in the next section.

Since GHC 8.0, Haskell allows dependency within type signatures [24], meaning that the straightforward left-to-
right ordering of variables—even in a user-written type signature—might not be well-scoped. As a simple example,
consider tr:: TypeRep (a:: k), where TypeRep :: ¥V k. k — Type allows runtime type representation and is part of
GHC’s standard library. A naive left-to-right extraction of type variables would yield V a k. TypeRep (a:: k), which
is ill-scoped when we consider that a depends on k. Instead, we must reorder to V k a. TypeRep (a :: k). In order to
support stability when instantiating explicitly, GHC thus defines a concrete sorting algorithm, called “ScopedSort”,
that reorders the variables; it has become part of GHC’s user-facing specification. Any change to this algorithm
may break user programs, and it is specified in GHC’s user manual.

Idris. Idris’s support for implicit generalisation is harder to trigger; see Appendix B for an example of how to do
it. The problem that arises in Idris is predictable: if the compiler performs the quantification, then it must choose
the name of the quantified type variable. How will clients know what this name is, necessary in order to instantiate
the parameter? They cannot. Accordingly, in order to support stability, Idris uses a special name for generalised
variables: the variable name itself includes braces (for example, it might be { k:265}) and thus can never be parsed'’.

Agda. Recent versions of Agda support a new variable keyword!?. Here is an example of it in action:

variable
A Set
I, L : List A

The declaration says that an out-of-scope use of, say, A is a hint to Agda to implicitly quantify over A: Set. The
order of declarations in a variable block is significant: note that [; and [, depend on A. However, because explicit

19Though not relevant for our analysis, some readers may want the details: Without any language extensions enabled, all declarations without signatures are
generalised, meaning that defining id x = x will give id the type V a. a — a. With the MonoLocalBinds extension enabled, which is activated by either of
GADTs or TypeFamilies, local definitions that capture variables from an outer scope are not generalised—this is the effect of the dictum that let should not be
generalised. As an example, the gin f x =let g y = (y, x) in (g ’a’, g True) is not generalised, because its body mentions the captured x. Accordingly, f is
rejected, as it uses g at two different types (Char and Bool). Adding a type signature to g can fix the problem.

H1dris 1 does not use an exotic name, but still prevents explicit instantiation, using a mechanism similar to Haskell’s specificity mechanism.

12See https://agda.readthedocs.io/en/v2.6.0.1/language/generalization-of-declared-variables.html in the Agda manual for an description of the feature.
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instantiation by order is possible in Agda, we must specify the order of quantification when Agda does generalisation.
Often, this order is derived directly from the variable block—but not always. Consider this (contrived) declaration:

property : length [, + length [; = length [; + length [,

What is the full, elaborated type of property? Note that the two lists [; and [, can have different element types
A. The Agda manual calls this nested implicit generalisation, and it specifies an algorithm—similar to GHC’s
ScopedSort—to specify the ordering of variables. Indeed it must offer this specification, as leaving this part out
would lead to instability; that is, it would lead to the inability for a client of property to know how to order their
type instantiations.

B Example of Implicit Generalisation in Idris
It is easy to believe that a language that requires type signatures on all definitions will not have implicit generalisation.

However, Idris does allow generalisation to creep in, with just the right definitions.
We start with this:

data Proxy : {k: Type} — k — Type where
P: Proxy a

The datatype Proxy here is polymorphic; its one explicit argument can be of any type.
Now, we define poly:

poly : Proxy a
poly = P

We have not given an explicit type to the type variable a in poly’s type. Because Proxy’s argument can be of any
type, a’s type is unconstrained. Idris generalises this type, giving poly the type {k: Type} — {a: k} — Proxy a.

At a use site of poly, we must then distinguish between the possibility of instantiating the user-written a and
the possibility of instantiating the compiler-generated k. This is done by giving the k variable an unusual name,
{k:4463} in our running Idris session.

C Type System Details

binders® (o) = a;p (Binders)
BNDR-SHALLOWFORALL BNDR-SHALLOWINFFORALL
BNDR-SHALLOWINST binderss(()') — Z; p bindersS(O') — E; p BNDR-DEEPMONO
bindersS (p)=-p binders® (Va.0) = a, E;p bindersS (V {a}.c) = {a}, I_a;p binders? (1) = 1
BNDR-DEEPFUNCTION BNDR-DEEPFORALL BNDR-DEEPINFFORALL
binders® (a;) = @; p; binders® (o) = b; p binders? (o) = b; p
binders? (61 — 03) = @ 0p — o binders? (Va.c) = G, Z;p binders? (¥ {a}.0) = {a}, E;p
‘ wrap (T; e; ~ e;) ‘ (Pattern Wrapping)
PATWRAP-VAR PATWRAP-TYVAR
PATWRAP-EMPTY wrap (561 ~ €) wrap (T, e; ~ e;)
wrap (-; e ~ e) wrap (x, T; e; ~ Ax.ep) wrap (@a, T; e; ~ Aa.ep)

In addition to including the figures above, this appendix describes our treatment of let-declarations and patterns:
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Let Binders. A let-expression let declin e (rule ETM-INFLET and rule ETM-CHECKLET) defines a single variable,
with or without a type signature. The declaration typing judgement (Figure 3) produces a new context I'’, extended
with the binding from this declaration.

Rules DEcL-NOANNSINGLE and DEcL-NoANNMuULTI distinguish between a single equation without a type signature
and multiple equations. In the former case, we synthesise the types of the patterns using the ¥ judgement and
then the type of the right-hand side. We assemble the complete type with type, and then generalise. The multiple-
equation case is broadly similar, synthesising types for the patterns (note that each equation must yield the same
types ) and then synthesising types for the right-hand side. These types are then instantiated (only necessary
under lazy instantiation—eager instantiation would have already done this step). This additional instantiation
step is the only difference between the single-equation case and the multiple-equation case. The reason is that
rule DEcL-NOANNMULTI needs to construct a single type that subsumes the types of every branch. Following GHC,
we simplify this process by first instantiating the types.

Rule DecL-ANN checks a declaration with a type signature. It works by first checking the patterns 7; on the left of
the equals sign against the provided type o. The right-hand sides e; are then checked against the remaining type o;.

Patterns. The pattern synthesis relation T +¥ 7 = J; A and checking relation T ¥ 7 & ¢ = ¢”; A are presented
in Figure 4. As the full type is not yet available, synthesis produces argument descriptors J and a typing context
extension A. When checking patterns, the type to check against o is available, and the relation produces a residual
type ¢’, along with the typing context extension A.

Typing a variable pattern works similarly to expressions. Under inference (rule PAT-INFVAR) we construct a
monotype and place it in the context. When checking a variable (rule PAT-CHECKVAR), its type o7 is extracted from
the known function type and placed in the context. Type abstraction @a in both synthesis and checking mode
(rule PAT-INFTYVAR and rule PAT-CHECKTYVAR respectively) produces a type argument descriptor @a and extends
the typing environment.

Typing data constructor patterns (rule PAT-INFCoN and rule PaT-CHECKCON), works by looking up the type
Vay.0p — Tap of the constructor K in the typing context, and checking the applied patterns 7 against the
instantiated type, and an extended context!'®. The remaining type should be the result type for the constructor,
meaning that the constructor always needs to be fully applied. Note that full type schemes &; are allowed in
patterns, where they are used to instantiate the variables a; (possibly extended with guessed monotypes 7y, if
there are not enough 7). Consider, for example, f (Fust @Int x) = x + 1, where the @Int refines the type of
Just, which in turn assigns x the type Int. Note that pattern checking allows skolemising bound type variables
(rule PAT-CHECKINFFORALL), but only when the patterns are not empty in order not to lose syntax-directedness of
the rules. The same holds for rule PAT-CHECKFORALL, which only applies when no other rules match.

D Core Language

The dynamic semantics of the languages in Section 4 are defined through a translation to System F. While the

target language is largely standard, a few interesting remarks can be made. The language supports nested pattern
i

matching through case lambdas case 7F; : % — t; , where patterns zp include both term and type variables, as
well as nested constructor patterns. Note that while we reuse our type ¢ grammar for the core language, System F
does not distinguish between inferred and specified binders.

We also define two meta-language features to simplify the elaboration, and the proofs: Firstly, in order to support
eta-expansion (for translating deep instantiation to System F), we define expression wrappers , essentially a limited
form of expressions with a hole o in them. An expression ¢ can be filled in for the hole to get a new expression #[¢].
One especially noteworthy wrapper construct is At;.t,, explicitly abstracting over and handling the expression to be
filled in. Note that, as expression wrappers are only designed to alter the type of expressions through eta-expansion,
there is no need to support the full System F syntax.

Secondly, in order to define contextual equivalence, we introduce contexts M. These are again expressions with a
hole o in them, but unlike expression wrappers, contexts do cover the entire System F syntax. Typing contexts is

3Extending the context for later patterns is not used in this system, but it would be required for extensions like view patterns.
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performed by the M : I'; o1 +— Iy; 0, relation: “Given an expression t that has type o7 under typing environment
I, then the resulting expression M|[t] has type o, under typing environment I,”. We will elaborate further on
contextual equivalence in Appendix E.2.

t 2= x| K|ty | Ax:0.t| to| Aat Expression
undefined | seq

]
case7Tr; : Yp — t; | true | false
v u= Ax:o.t|Aav]| Kt Value
_—
case7ip; : Yr — 1

t = e |Ax:o0.t|to|Aat|Aty.t;  Expr. Wrapper

M = e|Ax:oM|Mt|tM Context
| AaM|Mo

argp = t|o Argument

np = x:0| @a| K7np Pattern

Yp u= 0| @a Arg. descriptor

(System F Term Typing)

FTMm-VAr FTm-Con FTm-Arp FTm-ABs
x:0€Tl K:a,0;,TeT 'rt:01 > 0y I'riy:0 ILx:o1Ft:0y
'tx:o 'K :Yaoc—> Ta T'ktty: o IF'tAx:o01.t:01 > 0y
FTm-TyApp FTm-TyYABs
Trt:Yao Tart:o FTM-UNDEF FTM-TRUE FTM-FALSE
I'Ftoy:[oy/a] oy I'Aat:Vao I' + undefined : V a.a I + true : Bool I' + false : Bool
FTm-CASE )
—_———— i
TP 7 Yps A
TAF o
FTM-SEQ type (Yr; 01 ~ 02)
—_— i
I'tseg:VaVba—b—b I'tcaseZr;:Yr > t; 0
TP 77 %; A (System F Pattern Typing)
FPaT-CoN
K:ay;00; T €T
P —_— S —_— —
FPAT-VAR - FPAT-TYVAR - L'+ 7p: o1/ a(i 005 Ay
FPAT-EMPTY I,x:ot 75 Ur; A T,at? 77 : Ur; A A HP 7 Ur; As

| (L FFPX:O',JT_F:G,%;XZO',A r+f @a,ﬂ_pz@a,%;a,A r+P (Kﬂ_p),ﬂ_F':Tgl,%;Al,Ag
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M :Ty;01 - In; oy

FCTx-ABs

FCrx-HoLe M:Ty;00 > I, x: 01503

Gert-Jan Bottu and Richard A. Eisenberg

(System F Context Typing)

FCrx-ApPR FCrx-ArrPL
M : 1101 = 1,00 — 03 ILrt 00— 03
Lrt:oo M, : 1101 — I 00

e:Io—TI;0o Ax: o.M :T;00 = In;op — 03

FCtx-TYABs
M :Ty;01 > I, a;09

FCtx-TyArp

M:Tj;01 > I3 Vao,

Mty : 501 = Iy;03 h My :Th;00 > ;03

FCtx-CASE )
—_—
LHP 7R YA
1
M;: T, Aso = Ty 00

type (%; oy ~ 03)

1

Aa.M: F1;0'1 d rz;va.O'z

MG:rl;CTl |—>F2;[0'/a] (o]

CaSCTL'_Fi : ],bF e Mi : Tl;al [ F2;0'3

Evaluation for our System F target language is largely standard and defined below. Note that, following GHC, our
target language evaluates inside type abstractions (rule FEvVAL-TYABs). Because of this, a type abstraction Aa.t is a
value if and only if ¢ is a value. A more extensive discussion can be found in Breitner et al. [1, Appendix A.3].

match (Tp; — ti; by 2 02) < Tpy — 1]

FMATCH-VAR

match(x: 0,7 — t1; b : 0) — 7F — [b/x]t

(Core Pattern Matching)

FMartcH-CoN .
0'2:¢F1—>T2 tZHUKE

(caseTry : Y, — 1)t =t v

match ((K 7tp1), Try — tist2 2 02) < TFg — vV

H >t (Core Evaluation)
FEvAL-App FEvAL-SEQ
ot FEvAL-APPABS et FEVAL-SEQVAL FEvAL-CAsEEMPTY

hty — tl, tr (AXIO'.H) Iy — [tz/X]tl

FEvaL-CASEMATCH

seqty ty — seqt] b

—_—i
seqvi ty — Iy case-: - —>t; > Ik

(case 7r; : a,% -t

Vj € vwhere (match (7p; — tj;t; : 0) < 7} — t]) FEvaL-TvABs FEvaL-TyApe
i<v —_—j<w t—t h = tl
)tzf—>case7t_F]f:¢F—> tf Aa.t — Aa.t’ ho<—to
FEvAL-TYAPPABS FEvAL-UNDEF
(Aa.vy) o = [o/a] v undefined — undefined
FEvAL-TYABSCASE
— i — i
(case @a, 77 : @a, Jir — i ) 0 <> case [o/al7F, - [/l yr — [o/al &
(Big Step Evaluation)

FEvALBIGSTEP-STEP
t—t by

t‘—)“v
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D.1 Translation from the Mixed Polymorphic A-calculus

TH  h= o~ t (Head Type Synthesis)
H-Var H-Con H-ANN
x:0€Tl K:a0;TeTl T'reso~t
It x=o0~x rfx=svac—>Ta~K It e:o= 0t
H-INF
H-UNDEF H-SEQ Tre= ’76 ~ t
T v undefined = V a.a ~ undefined I+ seg=VaVba— b— b~ seq T e = € st

er:newt‘

TM-INFTYABS
lare=n]~t

TMm-INFABS s
ILx:mmre=n; ~t T+VYans 20 pe s i
FHAxe= 1 > 05 ~ Ax: 1. I'+ Aa.e = n; ~ t[Aa.t]
TMm-INFLET
F'rdecl =T ~x:0=1t
I're= ’76 ~ b Tm-INFTRUE
[+ letdecline = n ~ (Ax: 0.tr) I' + true = Bool ~ true

erco‘wt‘

(Term Type Synthesis)

Tm-INFAPP
T h= o~ t
I+ arg = 0 = o ~ argr

Tro inst & erf

'+ harg = n° ~ t[targr]

TMm-INFFALSE

I' + false = Bool ~~ false

(Term Type Scheme Checking)

Tm-CHECKABS Tm-CHECKTYABS TM-CHECKLET

Cro kS, o1 — oy ~ ¢ c=V{a}.Yaoc

I,x:o1Fe&s oy~ 4 INgares=o ~t

I'tdecl =T ~x:01=1

I'reso~t

'+ Ax.e =0~ t[Ax: 01.4] '+ Aa.e = 0 ~ Aa.Aa.t I'+letdecline = o ~ (Ax: 01.15) t

Tm-CHECKINF

Fkaikfﬁ)p;l"lwi‘l

Iire=n"~t

rl F ’76 inst & P~ .tz

e+ AL A let
I'te<s o~ bi[t]t]]

I+ arg & 0 = o' ~ argr

(Argument Type Checking)

ARG-ApP ARG-INST

Il're=oy ~t

ARrG-EmPTY T |_A W =0y = o~ W

I+ e arg & o) = o3 ~ argr

0y = [t1/a] o2

T+t == 0~ - I‘I—Ae,arg<:01—>0'2za'wt,argp I‘I—Ae,argc‘v’a.ozﬁogwargp

ARG-INFINST

o=V{a}.op

A —— -
ARrG-TyArp I'+% arg & o) = 03 ~> argr

r I—Aa_rg & [o1/a] o3 = 03 ~~ argr

02/ = [r1/a] oy

r+4 @oy,arg &<V a.oy = 03 ~+ 11, argr r+4 arg < o = 03 ~ argr

21



Haskell °21, August 26-27, 2021, Virtual, Republic of Korea

Fi—cr_iritipw.t

INSTT-SFORALL
INSTT-SINST

INsTT-FUNCTION
INsTT-MoNO inst D
—_

T'koy pz“"-?t

Gert-Jan Bottu and Richard A. Eisenberg

(Type Instantiation)

INSTT-SINFFORALL

INSTT-FORALL
T+ [T/a]cr_"igpwi‘

inst D

Frrr "7~ 0 1D

INSTT-INFFORALL

Tr[r/a)o ™2, psit

o1 — py ~ AtAx : op.(E[t x])

T'FVYao ™2 s At(it1])

T+V{a}.oc ™2, psAt(t[t1])

Tro K0 T s b

SKOLT-SFORALL

skol S

SKOLT-SINST Tar o X2 > piTy~

SkoLT-FuncTioN

TrVYao kLS, p;Ty ~ Aa.t

(Type Skolemisation)

SKOLT-SINFFORALL
skol S

skol D Pz;rl ~ }

SkorLT-Mono TFo,
Trr %D 1T s e Tro — oy 2 5

SkOLT-FORALL

I“,al—o-M,p;I’lw't

— po; 1 ~ At Ax : o1.(H[t x])

SKOLT-INFFORALL

skol D

Tato 2=, p;Ty ~ t

'k Va.aM}p;I} ~ Aa.t

22
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F'rdecl=>T" ~x:0=t (Declaration Checking)

DECL-NOANNSINGLE _ L
T T = YA~ 75 2 Y
INAre= r]e ~s t
type (Y;n€ ~ o) a=f,(0)\ dom(T)

Fl—xﬁ=eﬁr,x:vm.awx:V@.a=caseﬂ_F:%—>t

DecL-NOANNMULTI

— —1i
i>1 r'-Pﬁiﬁlp;AiWEi:l//F

i
F,Aikei:qfwti

F,Ail—r]fMPWfi type(@'va)
a=f(0)\dom(I) o =V{a}o

i

_—l —_ .
Trx7mi=¢ = ,x:0 ~ x:0 =casenr; : Yr — t;[4]

DEcL-ANN
I nico=0Ai~7r:yr T,Aive=o~t

i

_—i PR
F'tx:0;xmi=¢ =T, x:0~> x:0=casenp;: Yr — I

T T = ;A ~ 75 - Yp (Pattern Synthesis)
PAT-INFVAR . e
PAT-INFEMPTY [x:1 = Ui A~ TR 2 Y
Tl o= et T+ X7 =T, x T, A~ x0T, TR T, U
PaT-INFCON
K :ay;00;T €T
p_ T - _ I
I' " 7 & [01,To/a0] (00 —lTao) = TT;Al ~ TTF1 YR, PAT-INFTYVAR _ o
LA T = YAy ~ Try - Upy Tat’ T = ¢, A ~ 75 : Yp

I+’ (K@o, 7)., 7 = TT, ;A1 Ay ~ (K75, 7Tpo : TT Y,y I'tf @a7= @a ;a0 A~ @a7F: @a U

TP T e=0= 0 A~ 75 Y (Pattern Checking)

PAT-CHECKVAR
PAT-CHECKEMPTY Lx:o ' Te o= 0 A~ 7 Yr

Tt eo=05 v -0 T xTeoy— 0= 05x:01,A~ x: 00,7 : 01, Y

PaT-CaECKCON
K:306; T€T TFo ™0 oy st
b F 4090, 7= ¢ R
I't" 7 < [01,T0/a] (60 = Tap) = p1; Ay ~ Tp1 < Yy

I,A 7 = 0y = o) My ~ Try - Ury

I+’ (K@o, 7)., 7T < 01 = 0u = 0}; A1, Ay ~ (KTFy), Tra < 01, Yy
23
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PAaT-CHECKFORALL

Tat' Te=o=0;A~ TIF % PaT-CHECKTYVAR o
T#-and T # @0, T Iar’ 7 < [a/b]l oy = o3 A ~ 77 = Y
IrY7eVao=o;aA~ 7 : @ayr It @a,7 & Vbo,= os0A~ 75 : @4, Yr

PAT-CHECKINFFORALL
lat' Te=o=0 A TFr:yr T#-

I’ 7<=V{al.o=o';a A~ 75 : @4 yr

E Proofs

This section provides the proofs for the properties discussed in Section 5.

E.1 Let-Inlining and Extraction

Property 1 (Let Inlining is Type Preserving).

o I[fT +letx=eine, = n° thenT + [e;/x] e = 1°
o [fTrletx=eine, <o thenlT F [e1/x] e &0

Before proving Property 1, we first introduce a number of helper lemmas:

Lemma E.1 (Expression Inlining is Type Preserving (Synthesis)).
IfTy + ey = nf and Ty, x : V{a}.ni, Iz + e, = n; wherea = f,(n]) \ dom (Iy)
thenT', Ty + [e1/x] e; = 15

Lemma E.2 (Expression Inlining is Type Preserving (Checking)).
IfTy + ey = nf and Ty, x : V{a}.ni, Iz + e; & 0o wherea = f,(n]) \ dom (I})
then I, - [el/x] €y & 09

Lemma E.3 (Head Inlining is Type Preserving).
IfTy + ey = nf and Ty, x : V{a}.n{, I 1 h = o, wherea = fv(n7) \ dom (I7)
then I, |-H [61/X] h= (op)

Lemma E.4 (Argument Inlining is Type Preserving).
IfTy + ey = nf and Iy, x : V{a}.n5, I + arg & oy = o0, wherea = f(n7) \ dom (I1)
then I, '-A [el/x] W & 01 = 09

Lemma E.5 (Declaration Inlining is Type Preserving).
IfTy + ey = nf and Iy, x : V{a}.n{, Iz + decl = T3 wherea = f,(n{) \ dom (I)
then T, I + [er/x] decl = T

Figure 6 shows the dependencies between the different relations, and by extension the different helper lemmas.
An arrow from A to B denotes that B depends on A. Note that these 5 lemmas need to be proven through mutual
induction. The proof proceeds by structural induction on the second typing derivation. While the number of cases
gets quite large, each case is entirely trivial.

Using these additional lemmas, we then continue proving Property 1. By case analysis on the premise (rule Tm-
INFLET or rule TM-CHECKLET, followed by rule DECL-NOANNSINGLE), we learn that T - x = e; = T, x : Vm.nf,
I+ e; = 57, and either I, x : Vm.ryf Fe=>n°orT,x: Vm.r]f F e; < o. Both parts of the goal now follow
trivially from Lemma E.1 and E.2 respectively. O

Property 2 (Let Extraction is Type Preserving).
o IfT+ [er/x] eo = n5 andT' + e; = nj thenT + letx = e;ine; = 715
o IfT+ [e/x] eo &= 02 andT + ey = nf thenT kletx = e;ine;, &= o,

Similarly to before, we start by introducing a number of helper lemmas:
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gl g

sy Tre=>n —— lres=o

A =

FI—AW¢01=>02 I'tdecl =T’

U

Figure 6. Relation dependencies

Lemma E.6 (Expression Extraction is Type Preserving (Synthesis)).
IfT +e; = nf andT + [e1/x] e2 = 15
thenT,x : V {a}.n{ + e; = n5 wherea = f,(n7) \ dom (T')

Lemma E.7 (Expression Extraction is Type Preserving (Checking)).
IfT +e; = nf andT + [e;/x] e; & 03

thenT, x : Vm.lﬁ Fe; & oy wherea = f,(n]) \ dom (T')

Lemma E.8 (Head Extraction is Type Preserving).

IfT +e; = nf andT FH [ei/x] h = oy

thenT,x :V{a}.n + h = o, wherea = f,(n%) \ dom (T)

Lemma E.9 (Argument Extraction is Type Preserving).

IfT + ey = n{ andT H [e/x] arg & 01 = oy

thenT,x :V {a}.n{ +H arg & oy = 0, wherea = f,(n5) \ dom(T)

Lemma E.10 (Declaration Extraction is Type Preserving).
IfT + e = nf{ andT + [e;/x] decl = T, T’
thenT,x :V {a}.n] + decl = T, x : V{a}.n{,T" wherea = f,(n7) \ dom (')

In addition to these helper lemmas, we also introduce two typing context lemmas:

Lemma E.11 (Environment Variable Shifting is Type Preserving).
o IfTy,x1: 01,2 : 09, I Fe= € thenI1,% : 09, %1 : 01, F e = ¢
o [fTy,x1 o, % : 00, s Fe=othenly,xy: 00, : 01, Fe&= o

Lemma E.12 (Environment Type Variable Shifting is Type Preserving).

o IfTi,ax:0,+e=nand- = f,(0) \ dom(I}) thenl},x : 0,a I, + e = n°
o Ifli,ax:0+es=oand- = f,(0)\ dom(Iy) thenl,x:0,alhre<=o
o Ifl,x:0,alre=nthenlj,ax:0Fre=p°

o [fTi,x:0,ah re=octhenlj,ax: 0 hres=o

Lemmas E.11 and E.12 are folklore, and can be proven through straightforward induction.

Now we can go about proving Lemmas E.6 till E.10. Similarly to the Property 1 helper lemmas, they have to be
proven using mutual induction. Most cases are quite straightforward, and we will focus only on Lemma E.8. We
start by performing case analysis on h:

Case h = y where y = x

By evaluating the substitution, we know from the premise thatI' - e; = 5{ and I i e, = o5, while the goal
remains I, x : Vm.lyf +Hi x = 0,. It is clear from rule H-VAR that in order for the goal to hold, o, = Vm.ryf. We

proceed by case analysis on the second derivation:
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case rule H-VAR e; = x’ : The rule premise tells us that x’ : 0, € I'. The goal follows directly under lazy

instantiation. However, under eager instantiation, rule TM-INFAPP instantiates the type I' F o, M ni

goal invalid.
case rule H-Con e; = K, rule H-ANN ¢; = e3 : 03, rule H-INF e; = e, rule H-UNDEF e; = undefined, or

rule H-SEQ ¢ = seq:

Similarly to the previous case, the goal is only valid under eager instantiation.

Case h= ywhere y # x

This case is trivial, as the substitution [e;/x] does not alter h. The result thus follows from weakening.

Case h = K, h = undefined, or h = seq

Similarly to the previous case, as the substitution does not alter h, the result thus follows from weakening.

Caseh=¢e:0

The result follows by applying Lemma E.7.

making the

Caseh=¢

The result follows by applying Lemma E.6. O

Using these lemmas, both Property 2 goals follow straightforwardly using rule DEcL-NOANNSINGLE, in combina-
tion with rule TM-INFLET and Lemma E.6 or rule TM-CHECKLET and Lemma E.7, respectively. O

E.2 Contextual Equivalence

As we’ve now arrived at properties involving the runtime semantics of the language, we first need to formalise our
definition of contextual equivalence, and introduce a number of useful lemmas.

Definition 2 (Contextual Equavalence).

tlztzzl“l—tl:oq A rl—O'lins_té>p3Wi'1

ATFty:00 A Fl—azms_ta>p3«»+i‘2

AYM : T; p3 — -; Bool,
Fv:ML[a]] =y A Mlk[e] >ty

This definition for contextual equivalence is modified from Harper [10, Chapter 46]. Two core expressions are
thus contextually equivalent, if a common type exists to which both their types instantiate, and if no (closed) context
can distinguish between them. This can either mean that both applied expressions evaluate to the same value v or
both diverge. Note that while we require the context to map to a closed, Boolean expression, other base types, like
Int, would have been valid alternatives as well.

We first introduce reflexivity, commutativity and transitivity lemmas:

Lemma E.13 (Contextual Equivalence Reflexivity).
IfT Ft:othent~t

The proof follows directly from the definition of contextual equivalence, along with the determinism of System F
evaluation.

Lemma E.14 (Contextual Equivalence Commutativity).
Iftl >~ Iy then b =t

Trivial proof by unfolding the definition of contextual equivalence.

Lemma E.15 (Contextual Equivalence Transitivity).
Iftl ~ Iy and b ~ I3 then h =13

Trivial proof by unfolding the definition of contextual equivalence.
Furthermore, we also introduce a number of compatibility lemmas for the contextual equivalence relation, along

with two helper lemmas:
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Lemma E.16 (Compatibility Term Abstraction).
Iftl ~ [y then Ax : o.h ~ Ax - (o)

Lemma E.17 (Compatibility Term Application).
Ifti ~tyand t] =t then ty t] ~ tp t,

Lemma E.18 (Compatibility Type Abstraction).
Ift; ~ t, then Aa.t; ~ Aa.t

Lemma E.19 (Compatibility Type Application).
Iftl ~ Iy thentla: o
Lemma E.20 (Compatibility Case Abstraction).

i

IfVi:t;; = ty; then case 7ip; :%—> l1; = caseTlf; :%—> to;
Lemma E.21 (Compatibility Expression Wrapper).
Ift; =t then t[#] = t[t;]

Lemma E.22 (Compatibility Helper Forwards).
IfM[t] =Y vand t; < t, then M[t;] —! v

Lemma E.23 (Compatibility Helper Backwards).
IfM[t;] =Y vand t; < t, then M[t;] —! v

The helper lemmas are proven by straightforward induction on the evaluation step derivation. We will prove

Lemma E.18 as an example, as it is non-trivial. The other compatibility lemmas are proven similarly.

We start by unfolding the definition of contextual equivalence in both the premise: I + t; : 01, T+ oy _inst 8, p3 ~

tLT F 09, T F azms_té>p3 ~s 1y, VM : T;ps = - Bool, Av : M[t;[t;]] —=! v and M[t,[t,]] —! v.

Unfolding the definition reduces the goal to be proven to I'" + Aa.t; : o[, T" + 0 _inst 3 p; ~ 1, T F Aaty : 0y,

I+ o, Mpg ~ by, VM 1 T7; ps > +; Bool, 3v' : M’[#][Aa.ty]] b v and M'[#)[Aa.ty]] =t v

The typing judgement goals follow directly from rule FTm-TyAss, where we take o] = Y a.01, 0, = V a.0, and
I =[z/a]T for some .

As we know T’ + oy ins_“s)p3 ~> By, it is easy to see that [t/a]T + [7/a] o3 ms_t‘s>[r/a] p3 ~ [t/a] t;, and
similarly for [7/a] o;. Using this, the instantiation goals follow from rule INSTT-SFORALL and rule INSTT-FORALL
with p} = [7/a] p3, 1 = At.([t/a] h1[t7]) and ¥, = At.([z/a] E[t 7]).

Finally, by inlining the definitions, the first halve of the third goal becomes M’ [(At.([z/a] t,[t7]))[Aa.t;]] <! v'.
This reduces to M’[[7/a] t;[(Aa.t;) T]] <! v. By lemma E.22 (note that we can consider the combination of
a context and an expression wrapper as a new context): M’[[z/a] ;[[z/a] t;]] <! /. We can now bring the
substitutions to the front, and reduce the goal (by Lemma E.23) M"[#;[t;]] <! v/ where we define M"" =
At.M’[(Aa.t) 7] (note that we use At as meta-notation here, to simplify our definition of M”’). We perform the same
derivation for the second halve of the goal: M"'[#,[t;]] <! v'. As M"" : T; ps +> -; Bool, the goal follows directly
from the unfolded premise, where v' = v. ]

We introduce an additional lemma stating that instantiating the type of expressions does not alter their behaviour:

Lemma E.24 (Type Instantiation is Runtime Semantics Preserving).
ITrt:oandTF o ™0 p st thent ~ i[1]

The proof proceeds by induction on the instantiation relation:
Case rule INSTT-SINST £ = ® :
Trivial case, as #[t] = t, the goal follows directly from Lemma E.13.
Case rule INSTT-SForaLL t = At;.(#'[t; 7]) :
We know from the first premise, along with rule FTM-TyArpp that T  t 7 : [7/a] o’ where o =V a.c’. By applying
the induction hypothesis we get t 7 ~ #'[t7]. The goal to be proven is t ~ (At;.(#'[t; 7]))[¢], which reduces to
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t ~ t'[tr]. By unfolding the definition of contextual equivalence in both the goal and the induction hypothesis
result (using Lemma E.15), the remaining goals are:

o I' + t: 07 : follows directly from the first premise.
eT+Vao ™5, p ~tyand T p’ st S . p s 1y : follows directly from the premise if we take p’ = p, t; = ¢
and t; = e.
o M[#[t]] = vand M[#[t]] <! v : trivial as both sides are identical and evaluation is deterministic.
Case rule INSTT-SINFFORALL ¢ = Aty. ([t 7]) :
The proof follows analogously to the previous case. We have thus proven Lemma E.24 under shallow instantiation.
Case rule INsTT-MonoO { = e :
Trivial case, as #[t] = t, the goal follows directly from Lemma E.13.
Case rule INSTT-FUNCTION t = At;.Ax : 01.(+ [t x]) :
It is clear that the goal does not hold in this case. Under deep instantiation, full eta expansion is performed, which
alters the evaluation behaviour. Consider for example undefined and its expansion Ax : o.undefined x. O
Finally, we introduce a lemma stating that evaluation preserves contextual equivalence. However, in order to
prove it, we first need to introduce the common preservation lemma:

Lemma E.25 (Preservation).
IfTrt:oandt — t' thenT +t' : 0

The preservation proof for System F is folklore, and proceeds by straightforward induction on the evaluation
relation.

Lemma E.26 (Evaluation is Contextual Equivalence Preserving).
Ifty =~ ty and ty — t) then t; ~ t;

The proof follows by Lemma E.25 (to cover type preservation) and Lemma E.22 (to cover the evaluation aspect).

E.3 Let-Inlining and Extraction, Continued

Property 3 (Let Inlining is Runtime Semantics Preserving).

o I[fTFletx=eine, =~ t; andT F [e1/x] e = 1€ ~> ty then t; ~ 1,
o I[flTrletx=eine, <o~ tyandl' + [e;/x| e =0~ tythenty = 1

We first need typing preservation lemmas before we can prove Property 3.

Lemma E.27 (Expression Typing Preservation (Synthesis)).
IfTre=n~>tthenT'rt:p

Lemma E.28 (Expression Typing Preservation (Checking)).
IfTvre=o~tthenl'+t: 0o

Lemma E.29 (Head Typing Preservation).
IfT+?" h= o~ tthenT+t: 0o

Lemma E.30 (Argument Typing Preservation).
IfT I—AW':: o= o0’ ~>argr thenVt;€argr: T+ t;: 0;

Lemma E.31 (Declaration Typing Preservation).
IfT v decl=> 1" ~»x:0=tthenT+t:0o

Similarly to the helper lemmas for Property 1, these lemmas need to be proven using mutual induction. The
proofs follow through straightforward induction on the typing derivation.
We continue by introducing another set of helper lemmas:

Lemma E.32 (Expression Inlining is Runtime Semantics Preserving (Synthesis)).
IfTy,x - V{a}pi, o F eg = n5 ~ to, [T F eg = nf ~ tp and 1,1z + [er/x] ey = n5 ~ t3 wherea =
fr(ny) \ dom (Ty) then t3 ~ (Ax :Vani.t) 4
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Lemma E.33 (Expression Inlining is Runtime Semantics Preserving (Checking)).
IfTy,x - V{a}p{,.Io + e & 03 ~ t, [T + e = nf ~ tp and 1,1z + [ei/x] e, & 03 ~ t3 where
fr(n7) \ dom (Iy) then t3 ~ (Ax :Vani.t) t

Ql
Il

Lemma E.34 (Head Inlining is Runtime Semantics Preserving).
If Ty, x = V{a}.ni, I I h = 6~ b I F g = ny ~ t and I, I FH e /x]h = o ~» t3 where
fv(n9) \ dom (I) then ts = (Ax :Vani.t) t

Ql
Il

Lemma E.35 (Argument Inlining is Runtime Semantics Preserving).
IfTy, x : Vm.iyf,rg I—AW¢ 01 = 0y ~ argry, [T ke =) ~ 1

and Ty, T, +4 [e1/x] arg & o1 = o ~ argr, wherea = f,(n7) \ dom (I1)
thenVt; € argr,, t] € argr, : t/ = (Ax:Vani.t)t

Lemma E.36 (Declaration Inlining is Runtime Semantics Preserving).
IfT,x:V{a}ni, o b decl > I3 ~ y: oy =1, T1 +eg = nf ~ tpand I, T + [ej/x]decl = T3 ~ y oy =13
wherea = f,(n7) \ dom (I1) then t; = (Ax : Va.n{.t;)

As is probably clear by now, these lemmas are proven through mutual induction. The proof proceeds by structural
induction on the first typing derivation. We will focus on the non-trivial cases:

Case rule H-VAR h = y where y = x:

The goal reduces to #; = (Ax : Va.n{.x) t;, which follows directly from Lemmas E.13 and E.26.

Case rule H-VAR h = y where y # x:

The goal reduces to y ~ (Ax : Va.p{.y) t;.Since (Ax : Va.ni.y) t; < y, the goal follows directly from Lemmas E.13
and E.26.

Case rule TM-INFABS e; = Ay.eq :

The premise tells us Iy, x : V{T}.ryf, Lyy:mibres=n; ~ tgand 1,15,y : 11 F [e1/x] e = 1§ ~ t5. Applying
the induction hypothesis gives us t5 ~ (Ax : Va.n{.ts) t;. The goal reduces to Ay : 71.t5 = (Ax : Va.n{.Ay: 11.ty) 1.
In order not to clutter the proof too much, we introduce an additional helper lemma E.37. The goal then follows
from Lemmas E.16 and E.37.

Case rule TM-INFTYABS e; = Ad.ey :

The premise tells us I, x : V{a}.n{,T,a v e, = n5 ~ ty, [1,5h,a + [e;/x] es = ni ~ t5 and I}, I +
Y a.n; _nsto, ns ~» t. Applying the induction hypothesis gives us 5 =~ (Ax : Va.n$.ty) t;. The goal reduces to
t[Aa.ts] = (Ax : Van$.t[Aa.ty]) t;. Similarly to before, we avoid cluttering the proof by introducing an additional
helper lemma E.38. The goal then follows from Lemmas E.18, E.24 and E.38. ]

Lemma E.37 (Property 3 Term Abstraction Helper).
ITrAx:00.((Ay:o1.ty) ty) tosandT F 1y o7 then Ax : 02.((Ay : 01.6) 1) =~ (Ay : 01.Ax : 0u.12) 1

Lemma E.38 (Property 3 Type Abstraction Helper).
IfF + Aa(()tx : O'1.t2) tl) oy} and a ¢fv(0'1) then Aa((/lx : O'1.t2) tl) = (Ax : O'1.Aa.t2) 51

Both lemmas follow from the definition of contextual equivalence.

We now return to proving Property 3. By case analysis (Either rule TM-INFLET or rule TM-CHECKLET, followed
by rule DEcL-NOANNSINGLE) we know T, x : V@.qf Fe =1~ tzorl,x: Vm.rﬁ F e; & o ~» I3 where
ti = (Ax:Vani.tz) ty, T + e = nf ~ tyand a = f,(n7) \ dom (I'). The goal thus follows directly from Lemma E.32
or E.33. However, as Lemma E.24 only holds under shallow instantiation, we cannot prove Property 3 under deep
instantiation. o

E.4 Type Signatures
Property 4b (Signature Property is Type Preserving).
IfTrxmt=e=>T"andx: 0l thenT +x:0;xm=e=T"’

Before proving Property 4b, we first introduce a number of helper lemmas:
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Lemma E.39 (Skolemisation Exists).
Iff,(o) €T then p, T’ such thatT + ai’ﬂ)p;r'

The proof follows through careful examination of the skolemisation relation.

Lemma E.40 (Skolemisation Implies Instantiation).
IfT + oﬂ)p;r’ thenT’ + 0ms_t(3>p

The proof follows by straightforward induction on the skolemisation relation. Note that as skolemisation binds
all type variables in I'/, they can then be used for instantiation.

Lemma E.41 (Inferred Type Binders Preserve Expression Checking).
IfT+e<=othenT +e<=V{a}l.o

The proof follows by straightforward induction on the typing derivation.

Lemma E.42 (Pattern Synthesis Implies Checking).
IfT +* 7T = ;A thenVo',30 : T ' 7T & 0 = ;A where type (; 0" ~ o)

The proof follows by straightforward induction on the pattern typing derivation.

Lemma E.43 (Expression Synthesis Implies Checking).
IfT+e=ncthenT + e<=n°

The proof follows by induction on the typing derivation. We will focus on the non-trivial cases below:
Case rule TM-INFABs e = Ax.e :

We know from the premise of the typing rule that I, x : 7; + ¢’ = p5 where n° = r; — p5. By rule Tm-

CHECKABS, the goal reduces toI' + 77 — 75 SklS - n5; T’ (which follows directly by rule SkoLT-SINsT) and

[, x: 7 + e < n; (which follows by the induction hypothesis).
Case rule TM-INFTYABS e = Aa.¢’ : '
The typing rule premise tells us that I';a + ¢’ = n{ and T’ + Va.n] _inst 5 15 By rule TmM-CHECKTYABS, the

goal reduces to n; = V{a}.Ya.co' andT,{a},a+ ¢ < o’ It is now clear that this property can never hold under
eager instantiation, as the forall type in V a.n{ would always be instantiated away. We will thus focus solely on
lazy instantiation from here on out, where 5 = V a.n{. In this case, the goal follows directly from the induction
hypothesis.

Case rule TM-INFAPP e = harg :

We know from the typing rule premise that T' + h = 0, T +4 arg & 0 = ¢’ and T + o’ _inst 5 n¢. Note that

as we assume lazy instantiation, n¢ = ¢’. By rule TM-CHECKINF, the goal reduces to T + 1€ kol 5, p; T’ (follows by

Lemma E.39), I'" + harg = n7 (follows by performing environment weakening on the premise, with 77 = 7 ) and
I _inst 5 p (given that n{ = n¢, this follows by Lemma E.40). O

We now proceed with proving Property 4b, through case analysis on the declaration typing derivation (rule Dect-
NOANNSINGLE):

We know from the typing rule premise that T +F' 7 = ; A, T, A + e = 1<, type (Y; 1€ ~ 01) and o = V {a}.oy
where a = f,(o1) \ dom (T). By rule DEcL-ANN, the goal reduces to T 7 e Vm.al = oAy and T, Ay + e & oy
We know from Lemma E.42 that T +¥ 7 < 0y = o03; A where type (J, 03 ~ 01). Furthermore, from Lemma E.43 we
getI', A + e & 5°. Note that we thus only prove Property 4b under lazy instantiation. We now proceed by case
analysis on 7

Casern =-: L

The first goal now follows trivially by rule PAT-CHECKEMPTY with o, = V{a}.01, 01 = n€ and A = A, = -. The
second goal follows by Lemma E.41.

Caserm # -:

The first goal follows by repeated application of rule PAT-CHECKINFFORALL with o3 = g3 = 5°. The second goal
then follows directly from Lemma E.43. O
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Property 5 (Signature Property is Runtime Semantics Preserving).
—_—i B
IfTrxmi=¢ =T ~x:0=tandT +rx:0;xm;=¢ ="~ x:0=1t thent; ~ 1,
We start by introducing a number of helper lemmas:

Lemma E.44 (Pattern Typing Mode Preserves Translation).
IfT =y A ~ TPy 1//F1 andT WP 7T &= 0 = 0/; A ~ Tipy ¢F2 wheretype(¢ o' ~ o)
then mp; = Ty and 1,0]:1 l//Fz

The proof follows by straightforward induction on the pattern type inference derivation.

Lemma E.45 (Compatibility One-Sided Type Abstraction).
Iftl ~ Iy then h =~ Aa.tz

The proof follows by the definition of contextual equivalence. Note that while the left and right hand sides have
different types, they still instantiate to a single common type.

Lemma E.46 (Partial Skolemisation Preserves Type Checking and Runtime Semantics).
IfT+e&=V{a}l.oc~ tythenT,atr e = o~ t, wheret; ~ t,.

The proof proceeds by induction on the type checking derivation. Note that every case performs a (limited) form
of skolemisation. Every case proceeds by applying the induction hypothesis, followed by Lemma E.45.

Lemma E.47 (Typing Mode Preserves Runtime Semantics).

e inst & inst &

IfTre=>n~tandT+res= o~ whereT € 2% p s by andT o 2% p ~s 1y

then Hh=~b

The proof proceeds by induction on the first typing derivation. Each case follows straightforwardly by applying
the induction hypothesis, along with the corresponding compatibility lemma (Lemmas E.16 till E.20).

We now turn to proving property 5, through case analysis on the first declaration typing derivation:

Case rule DECL-NOANNSINGLE : _ .

We know from the premise of the first derivation that T' +F 7 = ;A ~ 75y : Yp, LA + e = 1€ ~ ],

type (J n¢ ~ ay), tj = case 7p; : lﬁpl — tjand o = V{a}.o; where a = fv(o1) \ dom (T'). By case analysis on the
second derivation (rule DEcL-ANN), we get T +¥ 7 < V {a} 01 = 09; A ~> TRy ¢F2, IMAres=oy,~ tyand tp =

case gy : ‘//Fz — t

We proceed by case analysis on the patterns 7:

___case T =-: We know from rule PAT-INFEMPTY, rule PAT-CHECKEMPTY and rule Type-EmpTY that oy =
V{a}.o1 = V{a}.n°. By applying Lemma E.46, we get I', a + e < n° ~» t3 where t, ~ t;. The goal now follows by
Lemma E.47 (after environment weakening, where o = p = ¢ ), and Lemma E.15.

case T # -: By case analysis on the pattern checking derivation (rule PAT-CHECKINFFORALL), we know
thatT,a ' 7 & 01 = o9, A ~» Ty - %; where A = g,A’ and %2 = @E,%;. By Lemma E.42 (where we
take o = 07), we know that type (J, oy ~ 01). This thus means that 0, = n°. By Lemma E.44, the goal reduces to
case 7Tf; : %1 — t] ~ case 7Tf; : %1 — t;. Applying Lemma E.20 reduces this goal further to ¢ ~ t;. This follows
directly from Lemma E.47 (where 0 = p = ).

Case rule DEcL-NOANNMULTT :

We know from the premise of the first derivation that Vi : T P = J; A; ~ TF; % LAk e = nf ~ t
— i — N

and T, A; + ¢ 22, %, p’ ~ ;. Furthermore, t; = case 7r; : Yr — Li[ti] , type (Y;p’ ~ ¢’) and o = VY {a}.0” where
a = f,(c’) \ dom (T'). By case analysis on the second derivation (rule DecL- ANN) we know that Vi : T +¥' 7; &

V{a}O' = 0i;A; ~ T gbp I[LAi+e < o0;~ tand t, = case Ty, : %/ —t] .
We again perform case analysis on the patterns 7:
case 7 = - : Similarly to last time, we know that ¢’ = p’ and Vi : g; = vV {a}. p’. We know by Lemma E.46 that
Vi:T,atr e & p’ ~ t” where t{ ~ t’. The goal now follows by Lemma E.47 (where we take 0 = p = p’) and
Lemma E.15.
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case 7 # - : Similarly to the previous case, we can derive that Vi : T',a 7T < o = oy Al ~~ TTF; %”
where A; = a,A] and lﬁp/ = @aq, l//F”. We again derive by Lemma E.42 that type (¥; 0; ~ ¢’) and thus that o; = p’.

i —_—i

By Lemma E.44, the goal reduces to case 7r; : % — b[t;] =~ caseTp; : % — t/ . We reduce this goal further by
applying Lemma E.20 to Vi : #;[#;] = t/. This follows directly from Lemma E.47 (where o = p = p”).

Note however, that as Lemma E.47 only holds under shallow instantiation, that the same holds true for Property 5.

O

Property 6 (Type Signatures are Runtime Semantics Preserving).

—_—1 — i inst &
Ifl"l—x:crl;xni:ei :>F1wx:alztlandrl—x:az;xnizei :Flwx:agztzwherel“l—alew

i.l andT + O'zins_ta)p ~ i’z then il[tl] = i’z[tz]

We start by introducing a number of helper lemmas:

Lemma E.48 (Substitution in Expressions is Type Preserving (Synthesis)).
IfT,ar e =~ tthenT + [t/a]l e = [t/a] € ~ [t/a] t

Lemma E.49 (Substitution in Expressions is Type Preserving (Checking)).
IfT,are<= o~ tthenT + [t/a]l e &= [t/a] o ~ [r/a] t

Lemma E.50 (Substitution in Heads is Type Preserving).
IfT,at" h= o~ tthenT +1 [r/a]l h = [r/a] o ~ [r/a] t

Lemma E.51 (Substitution in Arguments is Type Preserving).
IfT,a+2 arg < 0 = o’ ~» argr thenT +2 [t/a]arg < [t/al 0 = [r/a] o’ ~ [r/a] argr

Lemma E.52 (Substitution in Declarations is Type Preserving).
IfT,ardecl = T,a,x:0~ x:0=tthenT } [t/aldecl = T,x: [t/al o~ x:0=[7/a] t

The proof proceeds by mutual induction on the typing derivation. While the number of cases gets pretty large,
each is quite straightforward.

Lemma E.53 (Type Instantiation Produces Equivalent Expressions (Synthesis)).
Iflire=ni~t, hre=n ~ b andEl?zgfv(r]f)va(ryg) ‘

such that T’ = [7/a] Ty = [T/@] Ty and T’ + Vant 22, o wo by and T/ + Vans 9, p s 1
then il [AE tl] = 'tz [AE tz]

Lemma E.54 (Type Instantiation Produces Equivalent Expressions (Checking)).
Iflirtes=o~thandre&s=oy,~ tpband3Ia C f, (01) U f, (02)

such thatT’ = [t/a| Ty = [7/a] I, and T’ + YV a.0q _i'itip ~ t andT’ + Ya.oy _i'itip ~ by
then i‘1 [AE tl] = i’z [AE tg]

Lemma E.55 (Type Instantiation Produces Equivalent Expressions (Head Judgement)).
ITitiE h= o1~ t, LHT h= 0y~ pand3a C £,(n$) U £1(n5)

such thatT’ = [t/a| Ty = [7/a] T and T’ + Y a.04 i’ﬁ)p ~ t andT’ + YVa.oy i“_tip ~ by
then i’l [AE tl] = iz [AE tg]

Note that we define [7/a] T as removing a from the environment I' and substituting any occurrence of a in types
bound to term variables. Furthermore, we use a; U @, as a shorthand for list concatenation, removing duplicates.
The proof proceeds by induction on the first typing derivation. Note that Lemmas E.53, E.54 and E.55 have to be
proven using mutual induction. However, the proof for Lemma E.55 is trivial, as every case besides rule H-INF is
deterministic. As usual, we will focus on the non-trivial cases:

Case rule TM-CHECKABS e = Ax.¢’ :

We know from the premise of the first and second (as the relation is syntax directed) typing derivation that

kol ; kol ;
I+ oy _3_0__8_4 oy — 05, ] ~ A P _S_O__S_+ o, = og; ) ~ ty, I[[,x:04+ € =05~ tzand ), x: 0, F e &

ol ~~ ty, where t; = 1{[Ax : 04.13] and t, = 1}, [Ax : 0}.14].
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At this point, it is already clear that Lemma E.54 can not hold under deep instantiation, as instantiation performs
full eta expansion. We will thus focus on shallow instantiation from here on out.

By case analysis on the skolemisation and instantiation premises, it is clear that 1“1’ = I, a4, 1"2' =I5, a, and
p = [t1/a] (04 — 05) = [T2/a2] (0 — 0l) = 05 — 0. In order to apply the induction hypothesis, we take @’ as
aUa; Ua,. Note that this does not alter the instantiation to p in any way, as these variables would already have been

instantiated. We apply the induction hypothesis with Ty + V@05 2™%, o5~ tzand I, F Vad'.0! _inst &, oy~ 1y

(after weakening), producing #3[Ad’.t3] ~ t4[Ad’.t;]. Under shallow instantiation, these two instantiations follow
directly from the premise with 3 = #; and t, = #,.

The goal reduces to # [AG.1; [Ax : 04.13]] =~ b [Aa.t;[Ax : 0].14]]. By the definition of skolemisation, this further
reduces to t;[Aa.Aay.Ax : 0y.13] = ;[ Aa.Aay.Ax : 0.t3]. Finally, the goal follows by the induction hypothesis and
compatibility Lemmas E.18, E.16 and E.21, along with transitivity Lemma E.15.

Case rule TM-CHECKTYABs e = Aa.e’ : L L

We know the premise of the typing derivation that oy = V{a},Va.o[, o0, = V{a}Vao,, I1,a,a + ¢ &
o ~ t,I,a3,ar ¢ & o) ~ t), ty = Aay.Aa.t] and t, = Aay.Aa.t). By case analysis on the type instantiation

(rule INSTT-SFORALL and rule INSTT-SINFFORALL), we get I + [71/a] [7]/a1] [71/a] o] _inst 3 p ~ tand I +

[72/a] [75/az] [72/a] o, instd s t, where t; = At.(#][tT1 7y 11]) and i, = At.(8,[t T2 T, 12]).

The goal to be proven is t;[Aa.Ad;.Aa.t]] = t,[AG.Aa.Aa.t}]. This reduces to #{[(A@.AG.Aa.t]) 71T 11] =
té [(AﬁAazAa té) 7_,'2 ?é Tz] .

We now define a substitution 0 = [7;/4a].[72/4a].[7]/a1].[73/az2].[71/a].[r2/a]. From the instantiation relation
(and the fact that both types instantiate to the same type p, we conclude that if [7;/a] € 0 and [7;/a] € 0 that
7; = 7;. By applying Lemma E.49, we transform the premise to [7;/a] I} + 0 ¢’ & 0 0] ~» 0t] and [To/a] I F 0 ¢ &
0oy~ 0t

By applying the induction hypothesis, we get that #] [0 /] ~ 1[0 t;]. The goal follows directly from the definition
of 6.

Case rule Tm-CHECKINF :

We know from the premise of the typing derivation that I} + oy _skol 5 p1;I] ~ t, o F oy kol 5 pa; T}~ ty,

I[Fe=nf ~ 1, T, Fe=n5 ~ t,I] Fns _nst &, p1 ~ t{,T] + s _inst 5 p2 ~ 1), 11 = H[1][#]] and

t, = 15 [#5[#;]]. The goal to be proven is thus #; [Aa.t{[#][#]]]] = t2[Aa.t;[ 1) [#]]].

From the definition of shallow skolemisation, we know that I} = I}, @;, I} = I3, @, 1] = At.Ady.t and ¥, = At.AG,.1.
We now take @’ = a U a; U dy. As 07 and o, instantiate to the same type p, it is not hard to see from the definition
of skolemisation that I + Va’.n¢ _inst 3 p ~ t3and T, +Va'.ns _inst 3 p ~> t4. By applying Lemma E.53, we thus
get i3[Ad’.t]] ~ t4[Ad’.t;]. The goal follows through careful examination of the skolemisation and instantiation
premises. m]

Lemma E.56 (Pattern Checking Implies Synthesis). o _
TP T e=0= 0 A~ 7p:YrthenIy : T +¥' T = ;A ~ 75 : Yr where type (;0" ~ o)

The proof follows by straightforward induction on the pattern typing derivation.
We now go back to proving Property 6, and proceed by case analysis on both typing derivations (rule DECL-ANN).
We know from the premise that T' v 7; & 0y = 0113011 ~ 75 : Yrp, D H 7 & 00 = 0105 Aia ~ TF; : Yry,
—_————i —_———i
F,Ail ke & o1 ~ b, F,Aiz F e & ojg ~ Lig, B = CaSCﬂ'_Fi : l//Fl — i1 and b = CaSCﬂ'_Fi : ¢F2 — tig . The

— i —
goal to be proven is #; [case 7F; : Yp, — ti1 | = t2[case TF; : Yr, — tiz |. Lemma E.20 reduces this to Vi : #;[#;1] =
ta[tiz].

We take a; = dom (A;1) U dom(A;2) \ dom (T), and apply weakening to get I',a; + ¢; & 01 ~> t;; and
Ia; + e & 0i3 ~ t3. The goal now follows directly from Lemma E.54 with a; = -, if we can show that

I,a;+ o1 _nst 8, p’ ~ tyandT,q; b 0i2 _nst 8, p’ ~ I for some p’ (Note that Lemma E.54 only holds under shallow

instantiation).
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We know from Lemma E.56 that 3% TH 7 = J; A; ~> TR % such that type (J, o1 ~ 01) and type (J, Oig ~
02). The remaining goal follows from the definition of the type relation, and shallow instantiation. O

E.5 Pattern Inlining and Extraction

Property 7 (Pattern Inlining is Type Preserving).
IfT+x7m=e =T and wrap (m;e; ~ e;) thenT F x=e; = T’

We first introduce a helper lemma to prove pattern inlining in expressions preserves the type:

Lemma E.57 (Pattern Inlining in Expressions is Type Preserving (Synthesis)).
IfT Hr= ;A and T, A+ ey = nf where wrap (7; e; ~ e;)
thenT + e, = n5 and type (Y;n] ~ 15

The proof proceeds by induction on the pattern typing derivation. We will focus on the non-trivial cases below.
Note that the rule PAT-INFCON is an impossible case as wrap (K 7; e; ~ e;) is undefined.

Case rule PAT-INFVAR 77 = x, 70/, | = 71,7 and A=x:1,A:

We know from the rule premise that T, x : 7; ' 7’ = J,; A’. Furthermore, by inlining the definitions of A and 7
in the lemma premise, we get I', x : 7, A’ + e; = 5 and wrap (x, T'e ~ Ax.e;) and thus (by rule PATWRAP-VAR)
wrap (7'; e; ~ e;). By the induction hypothesis, we get I', x : 71 + e, = 75 and type (J’; nT ~ n3). The goal follows
by rule TM-INFABs and rule TYPE-VAR.

Case rule PAT-INFTYVAR 7 = @a, 77, § = @a, J/ and A=qg A’ :

We know from the rule premise that T, a ¥ 7" = 7; A’. Again, by inlining the definitions in the lemma premise,
we get T, a, A’ + e; = n$ and wrap (@a, 7’; e; ~ Aa.e}) and thus (by rule PATWRAP-TYVAR) wrap (7'; e; ~ €}). By
the induction hypothesis, we get I', a - e; = 15 and type (w’; ns ~ns).

The goal to be proven is I' + Aa.ej = V a.n where type (@a, 7; n; ~ Ya.n;3) (follows by rule TypPE-TYVAR).
However, under eager instantiation, this goal can never hold as rule TM-INFTYABs would instantiate the forall
binder away. We can thus only prove this lemma under lazy instantiation, where the goal follows trivially from
rule TM-INFTYABS. ]

We now proceed with proving Property 7, through case analysis on the declaration typing relation (rule DecL-
NOANNSINGLE). We know from the premise of the first derivation that T F* 7 = y; A, T, A F ¢; = ni, type (V; ny ~
o)andI" =T, x: Vm.d where @ = f,(0) \ dom (T'). The goal to be proven thus becomes I' +¥ - = ;- (follows
directly from rule PAT-INFEMPTY) and I + e, = 75 where 5 = o (follows from Lemma E.57). Note that as we
require Lemma E.57, we can only prove Property 7 under lazy instantiation. O

Property 9 (Pattern Extraction is Type Preserving).
IfT +x=e =T  and wrap (7;e; ~ e;) thenT r xm = = I’

We first introduce another helper lemma to prove that pattern extraction from expressions preserves the typing:

Lemma E.58 (Pattern Extraction from Expressions is Type Preserving (Synthesis)).
IfT v e; = n5 and 3 ey, 70 such that wrap (7; e; ~ e3)
thenT H* T = ;A and T, A + e; = n$ where type (7 ~ n$

The proof proceeds by induction on the e, typing derivation. As usual, we will focus on the non-trivial cases:

Case rule TM-INFABs e; = Ax.e; and 15 = 7, — 75 :

We know from the rule premise that I', x : 7, + e, = n5. It is clear by case analysis on wrap (7;e; ~ Ax.ej)
that 7 = x, 7’ and wrap (7';e; ~ €}). By applying the induction hypothesis, we get T, x : , ' 7' = J,; A,
[x:1,A + e = nf and type (J/; ny ~ n3). The goal thus follows straightforwardly by rule PAT-INFVAR and

rule TYPE-VAR.

Case rule Tm-INFTYABS e; = Aa.e; :
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We know from the rule premise that I',a + e; = 55 and I' + Va.n§ _inst 3 1. Furthermore, it is clear by case

analysis on wrap (7;e; ~ Aa.ey) that 7 = @a, 7" and wrap (7’;e; ~ e)). By the induction hypothesis, we get
Lat!' 7 = %;A’, T,a,A F e = n¢ and type (J/;r]f ~75).

The goal to be proven is I’ P @a, 7T = @a, J/; a, A’ (follows by rule PAT-INFTYVAR), I, a, A" + e; = 7 (follows
by the induction hypothesis) and type (@a, J,; n; ~ n5). However, it is clear that this final goal does not hold under
eager instantiation, as rule TM-INFTYABSs instantiates the forall binder away. Under lazy instantiation, the remaining
goal follows directly from the premise.

Case rule TM-INFAPP e; = hargandarg=-and h=e:

The goal follows directly by the induction hypothesis.

Case rule TM-INFAPP ¢; = hargand arg # -or h # e:

It is clear from the definition of wrap (7; e; ~ harg) that 7 = -. The goal thus follows trivially. o

We now return to prove Property 9 by case analysis on the declaration typing derivation (rule DECL-NOANNSINGLE).
We know from the derivation premise that I' + e; = 75 and 0 = Vm.ng where a = f,(n5) \ dom (I'). The goal
follows directly from Lemma E.58. Note that as Lemma E.58 only holds under lazy instantiation, the same holds
true for Property 9. O

Property 8 (Pattern Inlining / Extraction is Runtime Semantics Preserving).
IfTrxmt=e=>T" ~x:0=1, wrap(m;e; ~ e), andT +r x=e, ="~ x:0=1 thent; = f,

We start by introducing a helper lemma, proving pattern inlining preserves the runtime semantics for expressions.

Lemma E.59 (Pattern Inhnmg in Expressions is Runtime Semantics Preserving).
IfT I—Pn:>¢ A~ T : v,bp andT,A+ ey = nf ~ t; and T + e; = n5 ~ t, where wrap (7; e; ~ e;)
then case 7rf : 1//F > h=h

The proof proceeds by induction on the pattern typing derivation. We will focus on the non-trivial cases. Note
that, as wrap (K 7; e; ~ e;) is undefined, rule PAT-INFCON is an impossible case.

Case rule PAT-INFVAR T = x, 7T, J = rl,a JA=x:1,N,7TF =x:1,7F and @ = rl,%, :

We know from the pattern typing derivation premise that T, x : 7, +F 7’ = 1,_0,; N~ T @’. By inlining the
definitions and rule PATWRAP-VAR, we get e; = Ax.ej and wrap (';e; ~ e}). By case analysis on the e, typing
derivation (rule TM-INFABS), we know I, x : 1y i— e, = 15 ~ t; where n5 = 71 — n5 and t; = Ax : 71.1;. By applylng

the 1nduct10n hypothesis, we get case 775’ l//F — t; = t;. The goal to be proven is Ax : 7y.case 75’ mpF - =
Ax : 11.t,, and follows directly from Lemma E.16.
Case rule PAT-INFTYVAR 7T = @a, 77/, | = @a,% ,A=aN,7F = @a, 77 and yp = @a,%’ :
— —
We know from the pattern typing derivation premise that T,a +F 7' = ¢ ; A’ ~ 7z’ : p . Similarly to the

previous case, by inlining and rule PATWRAP-TYVAR, we get e, = Aa.e) and wrap (7'; e; ~ €}). By case analysis on

the e, typing derivation (rule Tm-INFTYABs), we get I, a + e; = 55 ~ 15, ' +V a.nj _inst 5 ns ~ tand t = t[Aa.t]].

Applying the induction hypothesis tells us that case 75" : %/ — b =t

The goal to be proven is Aa.case 77’ : %, — t; ~ t[Aa.t;]. By applying Lemma E.18 to the result of the induction
hypothesis, we get Aa.case 775 : %l — t; = Aa.ty. Under lazy instantiation, the goal follows directly from this result,
as t = . Under eager deep instantiation, it is clear that the goal does not hold, as ¢ might perform eta expansion,
thus altering the runtime semantics. Under eager shallow instantiation, the goal follows straightforwardly, as ¢ can
only perform type applications. Note that this implies that Aa.case 75" : %, — t; and #[Aa.t;] could thus have
different types, but can always instantiate to the same type. O

We now return to proving Property 8, by case analysis on the first declaration typing relation (rule DEct-
NOANNSINGLE). We know from the derivation premise that T +¥ 7 = ;A ~> 77 : Y, TLA F €, = ny ~ t,
t, = case7F : ¢F — ], type (1,&,171 ~ ¢’), 0 = V{a}.0’ where a = fu(c’) \ dom (T'). The premise of the second
declaration typing derivations tells us that I' - e; = 55 ~~ t,. The goal now follows directly from Lemma E.59. Note

that as Lemma E.59 does not hold under eager deep instantiation, the same is true for Property 8. O
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‘ numargs (o) = m ‘ (Explicit Argument Counting)
NUMARGS-ARROW NUMARGS-FORALL
NUMARGS-TYVAR NuMARGs-CoN numargs (03) =m numargs (o) =
numargs (a) = 0 numargs (T7) =0 numargs (o; — 03) =m+1 numargs (VY a.o) =

NUMARGS-INFFORALL
numargs (o) = m

numargs (V{a}.c) = m
Figure 7. Counting Explicit Arguments

E.6 Single vs. Multiple Equations

Property 10 (Single/multiple Equations is Type Preserving).
IfTrxmt=e=>I,x:0then'rxT=exm=e=1T’

The proof proceeds by case analysis on the declaration typing derivation (rule DEcL- NOANNSINGLE) From

the derivation premise, we get T +¥ 7T = ¢;A, T,A + e = 5¢, type(Y;n¢ ~ o1) and o = V{a},.0; where
e inst S

@ = f,(01) \ dom (T). The goal to be proven thus reduces to T, A + ¢ ™%, p type (Y;p ~ 03) and ¢ = V {a},.0»
where a, = f,(02) \ dom (T). It is clear that the property can not hold under lazy instantiation, as rule DEcL-
NoANNMuLTI performs an additional instantiation step, thus altering the type. Under eager instantiation, n¢
is already an instantiated type by the type inference relation, making the instantiation in the goal a no-op (by
definition). The goal is thus trivially true. ]

E.7 n-expansion

Property 11b (n-expansion is Type Preserving).

o IfT + e = n° where numargs(n®) = n andT + 1€ ™%, ¢ thenT r AX".eX" =

e IfT + e & o where numargs(p) = n thenT + Ax".eX" & o

A formal definition of numargs is shown in Figure 7. We prove Property 11b by first introducing a slightly more
general lemma:

Lemma E.60 (n-expansion is Type Preserving - Generalised).

o IfT + e = n° where 0 < n < numargs(n®) andT + n€ ™%, ¢ thenT r AX".e X" = n°
o IfT'+ e < o where0 < n < numargs(p) thenT F Ax".ex" = o

The proof proceeds by induction on the integer n.
Casen=0:
This case is trivial, as it follows directly from the premise.
Case n=m+1 < numargs(n®) :
case synthesis mode : We know from the induction hypothesis that T + Ax™.ex™ = n¢. We perform

case analysis on this result (m repeated applications of rule TM-INFABs) to get T, X : 7; - F ex™ = n7 where
—i<m i<m H

N =1 — 1. Performing case analysis again on this result (rule TM-INFAPP), gives us I, x;: 7; FH' e = oy,
LX 5 "X <=0 =o0andl, x5 ""F oy _"itiryl ‘
The goal to be proven is T' + Ax™"!.eX™"! = 7€, which (by rule TMINFABS) reduces to I, 7; ", x : T F

—m+1 —i<
ex"" = ns, where n° =7,""" - 7 — n5.

Note that this requires proving that n{ = 7 — n5. While we know that m < numargs(n€), we can only prove this
under eager deep instantiation. Under lazy instantiation, type inference does not instantiate the result type at all.
Under eager shallow, it is instantiated, but only up to the first function type. From here on out, we will thus assume
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eager deep instantiation. Furthermore, note that as even deep instantiation does not instantiate argument types, we
need the additional premise that n° instantiates into a monotype, in order to prove this goal.

This result in turn (by rule Tm-INFAPP) reduces to I, % 7; ~", x : 7 1 e = oy (follows by weakening),
0L 5 "x: kA x, X" < 0y = 03 (follows by rule ARG-INsT, rule ARG-AppP and the fact that n{ = 7 — 55 ) and

0Lx 5 " x:1F 03 ms_té) n5 (follows by the definition of instantiation).

case checking mode : We know from the induction hypothesis that ' + Ax™.eX™ < o. The proof proceeds
similarly to the synthesis mode case, by case analysis on this result (rule TM-CHECKABS). One additional step is that
rule TM-CHECKINF is applied to type eX™. The derivation switches to synthesis mode at this point, and becomes
completely identical to the previous case. O
The proof for Property 11b now follows directly by Lemma E.60, by taking n = numargs(n°). O
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