SYMMETRY IN STATIONARY AND
UNIFORMLY ROTATING SOLUTIONS
OF ACTIVE SCALAR EQUATIONS

JAVIER GOMEZ-SERRANO, JAEMIN PARK, JIA SHI, and YAO YAO

Abstract

We study the radial symmetry properties of stationary and uniformly rotating solu-
tions of the 2D Euler and gSQG equations, both in the smooth setting and the patch
setting. For the 2D Euler equation, we show that any smooth stationary solution with
compactly supported and nonnegative vorticity must be radial, without any assump-
tions on the connectedness of the support or the level sets. For the 2D Euler equation
in the patch setting, we show that every uniformly rotating patch D with angular
velocity Q2 <0 or Q > % must be radial, where both bounds are sharp. For the gSQG
equation, we obtain a similar symmetry result for 2 < 0 or Q > Qg (with the bounds
being sharp), under the additional assumption that the patch is simply connected.
These results settle several open questions posed by Hmidi, de la Hoz, Hassainia,
and Mateu on uniformly rotating patches. Along the way, we close a question by
Choksi, Neumayer, and Topaloglu on overdetermined problems for the fractional
Laplacian, which may be of independent interest. The main new ideas come from a
calculus-of-variations point of view.

1. Introduction

Let us start by considering the initial value problem for the 2-dimensional incom-
pressible Euler equation in vorticity form. Here the evolution of the vorticity w is
given by

dw+u-Vo=0 inR? xRy,
u(,t)=-VH(=A)"lw(,t) inR2, (1.1)
w(-,0) = wg in R?,
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where V1 := (—0y,, dy,). Note that we can express u as u(-,t) = VX(w(-, 1) * N),
where N (x) := % In|x| is the Newtonian potential in two dimensions. More gen-
erally, the 2D Euler equation belongs to the following family of active scalar equa-
tions indexed by a parameter «, (0 < @ < 2), known as the generalized surface quasi-
geostrophic (gSQG) equations:

dw+u-Vo=0 inR? xRy,
u(,t) = —-Vt(=A)""*5p(,1) inR2, (1.2)
w(-,0) = wy in R2.

Here we can also express the Biot—Savart law as
u(,t) = V(o) * Ky), (1.3)
where K|, is the fundamental solution for —(—A)_H'%; that is,

%ln|x| fora =0,

(1.4)
—Cy|x|™* fora €(0,2),

Ko(x) = {

where C, = %#Z)_%)

We will focus here on establishing radial symmetry properties for stationary and
uniformly rotating solutions to equations (1.1) and (1.2). We either work with the
patch setting, where w(-,t) = 1p(, is an indicator function of a bounded set that
moves with the fluid, or the smooth setting, where w(:,¢) is smooth and compactly
supported in x. (For well-posedness results for patch solutions, see the global well-
posedness results in [7] and [20] for (1.1), and the local well-posedness results in
[26], [35], [60], and [77] for (1.2) with & € (0, 2).)

Let us begin with the definition of a stationary/uniformly rotating solution in the
patch setting. For a bounded open set D C R?, we say that w = 1p is a stationary
patch solution to (1.2) for some « € [0,2) if u(x) -7i(x) = 0 on dD, with u given by
(1.3). This leads to the integral equation

is a positive constant only depending on «.

Ip*x Key=C; onaD, (1.5)

where the constant C; can differ on different connected components of dD. And if
w(x,t) = 1p(Rq:x) is a uniformly rotating patch solution with angular velocity 2
(where Rq, x rotates a vector x € R? counterclockwise by angle Q¢ about the origin),
then 1p becomes stationary in the rotating frame with angular velocity €2; that is,
(VE(1p * Kg) — Qx1) - 7i(x) = 0 on dD. This is equivalent to V:-(1p % Ky —
%|x|2) -7i(x) = 0 on 3D, and as a result we have

Q
1D*J<a—5|x|zzci on D, (1.6)
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where C; again can take different values along different connected components of
dD. Note that a stationary patch D also satisfies (1.6) with 2 = 0, and it can be
considered as a special case of uniformly rotating patch with zero angular velocity.
Likewise, in the smooth setting, if w(x,t) = wo(Rgx) is a uniformly rotating
solution of (1.2) with angular velocity €2 (which becomes a stationary solution in the
2 = 0 case), then we have (VJ-(a)o * Ky)— QxL) -Vwg = 0. As aresult, wq satisfies

Q
wo * Ko — —|x|2 =C;
2
on each connected component of a regular level set of wy, (1.7)

where C; can be different if a regular level set {wy = ¢} has multiple connected com-
ponents.

Clearly, every radially symmetric patch/smooth function automatically satisfies
(1.6)/(1.7) for all Q2 € R. The goal of this article is to address the complementary
question, which can be roughly stated as follows.

QUESTION 1
In the patch or smooth setting, under what condition must a stationary/uniformly
rotating solution be radially symmetric?

Below we summarize the previous literature related to this question, and state
our main results. We will first discuss the 2D Euler equation in the patch and smooth
settings, respectively. Then we will discuss the gSQG equation with « € (0, 2).

1.1. 2D Euler in the patch setting

Let us deal with the patch setting first. So far, affirmative answers to Question | have
only been obtained for simply connected patches, for angular velocities 2 =0, Q2 <0
(under some additional convexity assumptions), and 2 = % For stationary patches
(2 = 0), Fraenkel [33, Chapter 4] proved that if D satisfies (1.6) (where Ko = N)
with the same constant C on the whole dD, then D must be a disk. The idea is that
in this case the stream function ¥ = 1p * N solves a semilinear elliptic equation
Ay = g(¥) in R? with g(y) = ¢y <C}» where the monotonicity of the discontinu-
ous function g allows one to apply the moving-plane method developed in [40] and
[80] to obtain the symmetry of . As a direct consequence, every simply connected
stationary patch must be a disk. But if D is not simply connected, (1.6) gives that
¥ = C; on different connected components of dD, and thus ¥ might not solve a
single semilinear elliptic equation in R2. Even if y satisfies Ay = g(¥), g might
not have the right monotonicity. For these reasons, whether a nonsimply connected
stationary patch must be radial still remains an open question.
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For © < 0, Hmidi [49] used the moving-plane method to show that if a simply
connected, uniformly rotating patch D satisfies some additional convexity assumption
(which is stronger than star-shapedness but weaker than convexity), then D must be a
disk. In the special case 2 = %, Hmidi [49] also showed that a simply connected, uni-
formly rotating patch D must be a disk, using the fact that 1p * N — % |x|? becomes
a harmonic function in D when Q2 = %

On the other hand, it is known that there can be nonradial uniformly rotating
patches for © € (0, %). The first example dates back to the Kirchhoff ellipse in [59],
where it was shown that any ellipse D with semiaxes a, b is a uniformly rotating patch

with angular velocity —22

Deem and Zabusky [31] numerically found families of

a+b)?’
patch solutions of (1.1) with m-fold symmetry by bifurcating from a disk at explicit
angular velocities Q9 = ”5—;11, and they coined the term V-states. Further numerics

were done in [32], [69], [78], and [90]. Burbea [9] gave the first rigorous proof of
their existence by using (local) bifurcation theory arguments close to the disk. There
have been many recent developments in a series of works by Hmidi, Mateu, Verdera,
and de la Hoz (see [30], [52], [53]) in different settings and directions (regularity
of the boundary, different topologies, and so forth). In particular, [30] showed the
existence of m-fold doubly connected nonradial patches bifurcating at any angular
velocity 2 € (0, %) from some annulus of radii b € (0,1) and 1.

There are many other interesting perspectives of the V-states, which we briefly
review below, although they are not directly related to Question 1. Hassainia, Mas-
moudi, and Wheeler [48] were able to perform global bifurcation arguments and study
the whole branch of V-states. Other scenarios such as the bifurcation from ellipses
instead of disks have also been studied: first numerically by Kamm [56] and later
theoretically by Castro, Cérdoba, and Gémez-Serrano [17] and by Hmidi and Mateu
[50]. See also the work of Carrillo, Mateu, Mora, Rondi, Scardia, and Verdera [15] for
variational techniques applied to other anisotropic problems related to vortex patches.
Love [65] established linear stability for ellipses of aspect ratio bigger than % and
linear instability for ellipses of aspect ratio smaller than % Most of these efforts have
been devoted to establishing nonlinear stability and instability in the range predicted
by the linear part. Wan [87] and Tang [84] proved the nonlinear stable case, whereas
Guo, Hallstrom, and Spirn [43] settled the nonlinear unstable one (see also [25]). In
[86], Turkington considered N vortex patches rotating around the origin in the varia-
tional setting, yielding solutions of the problem which are close to point vortices.

Our first main result is summarized below in Theorem A, which gives a complete
answer to Question | for 2D Euler in the patch setting. Note that D is allowed to be
disconnected, and each connected component can be nonsimply connected. Figure 1
illustrates a comparison of our result (in red color) with the previous results (in black
color).



SYMMETRY OF STATIONARY AND ROTATING SOLUTIONS 2961

all patches must be radial j > > all patches must be radial

>
convex patch 0 1 299 0

must be a disk

simply connected patch simply connecte~d patch
must be a disk must be a disk

Figure 1. (Color online) For 2D Euler in the patch setting, previous results on Question 1 are
summarized in black color. Our results in Theorem A are colored in red.

THEOREM A (= Corollary 2.10, Theorems 2.12 and 2.14)

Let D C R? be a bounded open set with CYY boundary. Assume that D is a station-
ary/uniformly rotating patch of (1.1), in the sense that D satisfies (1.6) (with K, =
N) for some Q € R. Then D must be radially symmetric if Q € (—o0,0) U [%, 0),
and radially symmetric up to a translation if Q2 = 0.

Remark 1.1

The C' boundary regularity is not optimal and can be pushed down to Lipschitz.
We have outlined the necessary modifications to make Theorem A work in Remarks
2.4 and 2.7, which also apply to Corollary 2.10 and Theorems 2.12 and 2.14.

1.2. 2D Euler in the smooth setting
One of the main motivations of this paper is to find sufficient rigidity conditions in
terms of the vorticity, such that the only stationary/uniformly rotating solutions are
radial ones. Heuristically speaking, this belongs to the broader class of the “Liou-
ville theorem” type of results, which shows that solutions satisfying certain conditions
must have a simpler geometric structure, such as being constant (in one direction, or
all directions) or being radial. We were unable to find any conditions on 2D Euler
in the literature that lead to radial symmetry, although several other Liouville-type
results have been established for 2D fluid equations. For 2D Euler, Hamel and Nadi-
rashvili [44], [45] proved that any stationary solution without a stagnation point must
be a shear flow. (But note that this result does not apply to our setting (1.7), since the
velocity field u associated with any compactly supported wy must have a stagnation
point. See also the Liouville theorem by Koch, Nadirashvili, Seregin, and Sverak [61]
for the 2D Navier—Stokes equations.)

Let us briefly review some results on the characterization of stationary solu-
tions to 2D Euler, although they are not directly related to Question |. Nadirashvili
[74] studied the geometry and the stability of stationary solutions, following the
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works of Arnold [3]-[5]. Izosimov and Khesin [54] characterized stationary solu-
tions of 2D Euler on surfaces. Choffrut and Sverak [21] showed that locally near
each stationary smooth solution there exists a manifold of stationary smooth solu-
tions transversal to the foliation, and Choffrut and Székelyhidi [22] showed that there
is an abundant set of stationary weak (L°°) solutions near a smooth stationary one.
Luo-Shvydkoy in [67] and [68] classified the set of stationary smooth solutions of the
form v = VL (r¥ f(w)), where (r,w) are polar coordinates. In a different direction,
Turkington [85] used variational methods to construct stationary vortex patches of a
prescribed area in a bounded domain, imposing that the patch is a characteristic func-
tion of the set {W > 0}, and also studied the asymptotic limit of the patches tending to
point vortices. Long, Wang, and Zeng [64] studied their stability, as well as the reg-
ularity in the smooth setting (see also [12]). For other variational constructions close
to point vortices, we refer to the work of Cao, Liu, and Wei [10], Cao, Peng, and Yan
[11], and Smets and van Schaftingen [82]. Musso, Pacard, and Wei [73] constructed
nonradial smooth stationary solutions without compact support in . The (nonlinear
L) stability of circular patches was proved by Wan and Pulvirenti [88] (a shorter
proof was later given by Sideris and Vega [81]). See also Beichman and Denisov [6]
for similar results on the strip.

Recently, Gavrilov in [37] and [38] provided a remarkable construction of non-
trivial stationary solutions of 3D Euler with compactly supported velocity. See also
Constantin, La, and Vicol [24] for a simplified proof with extensions to other fluid
equations.

Regarding uniformly rotating smooth solutions (2 # 0) for 2D Euler, Castro,
Coérdoba, and Gémez-Serrano [18] were able to desingularize a vortex patch to pro-
duce a smooth m-fold V-state with 2 ~ ”5—;’1 > 0 for m > 2. Recently, Garcia, Hmidji,
and Soler [36] studied the construction of V-states bifurcating from other radial pro-
files (Gaussians and piecewise quadratic functions).

Our second main result is the following theorem, which gives radial symmetry of
compactly supported stationary/uniformly rotating solutions in the smooth setting for
Q <0, under the additional assumption wy > 0.

THEOREM B (= Theorem 3.5 and Corollary 3.6)

Let wg > 0 be smooth' and compactly supported. Assume that w(x,t) = wo(Rgqsx)
is a stationary/uniformly rotating solution of (1.1) with Q < 0, in the sense that it sat-
isfies (1.7) with Koy = N. Then wy must be radially symmetric if Q < 0, and radially
symmetric up to a translation if Q2 = 0.

'Tt is enough to assume that wg € C 2(R2); see the footnote under Theorem 3.5 for more discussions.
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Note that there exist nonradial nonnegative smooth uniformly rotating solutions
for every €2 > 0: taking the nonradial smooth V-state wg > 0 constructed in [ 18] (with
Q2 > 0) and multiplying it by any A > 0, one obtains a new V-state Awg with angular
velocity A2 > 0.

Although the extra assumption wo > 0 might seem unnatural at first glance, in
a forthcoming work [42] we will show that it is indeed necessary: if we allow wy to
change sign, then by applying bifurcation arguments to sign-changing radial patches,
we are able to show that there exists a compactly supported, sign-changing smooth
stationary vorticity wq that is nonradial.

1.3. The gSOG case (0 <a <2)

Recall that in the patch setting, a stationary/uniformly rotating patch satisfies (1.6)
with K, given in (1.4). Even though the kernels K, are qualitatively similar for all
a € [0,2), there is a key difference on the symmetry versus nonsymmetry results
between the cases @ = 0 and o > 0. For the 2D Euler equation (« = 0), we proved
in Theorem A that any rotating patch D with € < 0 must be radial, even if D is
not simply connected. However, this result is not true for any « € (0,2): de la Hoz,
Hassainia, Hmidi, and Mateu [28] showed that there exist nonradial patches bifur-
cating from annuli at Q < 0 and Gémez-Serrano [41] constructed nonradial, doubly
connected stationary patches (€2 = 0). Therefore, we cannot expect a nonsimply con-
nected rotating patch D with € < 0 to be radial for « € (0, 2).

However, if D is a simply connected stationary patch, then radial symmetry
results were obtained in a series of works for « € [0, 2), which we review below.
These works consider (1.6) in a more general context not limited to dimension 2. Let
K. be the fundamental solution of —(—A)_H% in R for d > 2, given by

Kyg = —Coalx|"?T2 (1.8)

for some Cy 4 > 0; except that in the special case —d +2 —o = 0 it becomes Ky 4 =
C41n|x| for some C; > 0. Note that Ky 4 € L1 (R?) for all & < 2. Consider the

loc
following question.

QUESTION 2
Let o € [0,2). Assume that D C R? is a bounded open set such that

Q
Ka,d*lp—5|x| =const on oD (1.9

for some 2 < 0, where the constant is the same along all connected components of
dD. Must D be a ball in R? ?
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Positive answers to Question 2 were obtained in the 2 = 0 case for o < % in the
following works. As we discussed before, Fraenkel [33] proved that D must be a ball
for « = 0. Also using the moving-plane method, Reichel [75, Theorem 2], Lu and Zhu
[66], and Han, Lu, and Zhu [46] generalized this result to « € [0, 1). Here [66] also
covered generic radially increasing potentials not too singular at the origin (which
include all Riesz potentials K, 4 with « € [0, 1)). Recently, Choksi, Neumayer, and
Topaloglu [23, Theorem 1.3] further pushed the range to « € [0, %), leaving the range
ae [%, 2) an open problem. We point out that in all these results for o > 0, D was
assumed to be at least C 1. All the above results were obtained using the moving-plane
method.

In our third main result, we use a completely different approach to give an affir-
mative answer to Question 2 for all 2 <0 and « € [0,2), under a weaker assumption
on the regularity of 9D.

THEOREM C (= Theorem 4.2)

Let D be a bounded open set in R? with Lipschitz boundary (and if d = 2, then we
only require dD to be rectifiable). If D satisfies (1.9) for some Q <0 and o € [0, 2),
then it must be a ball in R?.

As a direct consequence, Theorem C implies that for the gSQG equation with
a € [0,2), any simply connected rotating patch with < 0 must be a disk (see Theo-
rem 4.4). In addition, in the smooth setting (1.7), we prove a similar result in Corol-
lary 4.7 for uniformly rotating solutions with € < 0 for all @ € [0,2): if the super-
level sets {wg > h} are all simply connected for all 4 > 0, then wy must be radially
decreasing.

Next we review the previous literature on uniformly rotating solutions for the
2SQG equation. Note that the case of « € (0,2) is more challenging than the 2D
Euler case, since the velocity is more singular and this produces obstructions to the
bifurcation theory when it comes to the choice of spaces and the regularity of the func-
tionals involved in the construction. Hassainia and Hmidi [47] showed the existence
of V-states with C* boundary regularity in the case 0 < @ < 1, and in [16], Castro,
Coérdoba, and Gémez-Serrano upgraded the result to show existence and C°° bound-
ary regularity in the remaining open cases: « € [1,2) for the existence, @ € (0,2)

for the regularity. In that case, the solutions bifurcate at angular velocities given

. 1 Ta ra+%) T'(m+%)
by 25, 1= 2" o “)2(1“(2—— I‘(m+1—2%)

sequently improved to analytic in [17]. (See also [51] for another family of rotating
solutions, [28] and [76] for the doubly connected case, and [19] for a construction in
the smooth setting.)

). This boundary regularity was sub-
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2,
a simply connected patch j a simply connected patch

must be a disk (0 <a <2) g must be a disk (0 <a <1)

2, (finite if 0 < o < 1, 2
=+o0if 1 < a <2)

there exists nonradial
non-simply connected patch
simply connected stationary patch
must be a disk for o €[0,3)

Figure 2. (Color online) For gSQG in the patch setting, previous results on Question | are sum-
marized in black color, with our results in Theorems C and D colored in red.

One can check that Q¢ are increasing functions of m for any o, whose limit is a

o
finite number Q% := 2%~! 1"1251—_:))2 g((;fo_%)) for @ € [0, 1), and +o0 if o > 1. It is then
2 2
a natural question to ask whether there exist V-states (with area ) that rotate with
angular velocity faster than Q, for o € (0, 1). Our fourth main theorem answers this

question among all simply connected patches.

THEOREM D (= Theorem 5.1)
For a € (0,1), let 1p be a simply connected V-state of area 7, and let its angular
velocity be Q > Q%. Then D must be the unit disk.

Finally, we illustrate a comparison of our results in Theorems C and D (in red
color) with the previous results (in black color) in Figure 2.

1.4. Structure of the proofs
While all the previous symmetry results on Questions 1 and 2 (see, e.g., [23], [33],
[46], [49], [66], [75]) are done by moving-plane methods, our approaches are com-
pletely different, with more of a variational flavor.

Theorem A is based on computing the first variation of the energy functional

El1p] = —%/}R 1)1 * M)~ 2 Ix1p () dx

in two different ways, as we deform D along a carefully chosen vector field that is
divergence-free in D. On the one hand, we show that the first variation should be
zero if D is a stationary/rotating patch with angular velocity €2; on the other hand, we
show that the first variation must be nonzero if 2 <0 or 2 > %, leading to a contra-
diction. If D is simply connected, we give a very short proof in Section 2.1, where a
rearrangement inequality due to Talenti [83] is crucial to get a sign condition. For a
nonsimply connected patch D, the choice of the right vector field is more involved.
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Since 1p * N — %|x|2 now takes different constant values on different connected
components of 0D, in order to keep the first variation at zero it is necessary to modify
our perturbation vector field such that it also preserves the area of each hole. We then
prove a new version of a rearrangement inequality for this modified vector field in a
similar spirit as Talenti’s result, leading to a nonzero first variation if D is nonradial
andeOorQi%.

The smooth setting in Theorem B is based on a similar idea, but it is techni-
cally more difficult. The point of view is to approximate a smooth function by step
functions and consider the above perturbation in each set where the step function is
constant. To do this, we need to obtain some quantitative (stability) estimates on our
version of Talenti’s rearrangement inequality, particularly in terms of the Fraenkel
asymmetry of the domain in the spirit of Fusco, Maggi, and Pratelli [34].

Theorem C is also based on a variational approach, but we need a different per-
turbation from the vector field in Theorem A, which heavily relies on the Newtonian
potential and also fails for general Riesz potential K. The key ingredient to prove
Theorem C is to perturb D using the continuous Steiner symmetrization in [8], which
has been successfully applied in other contexts by Carrillo, Hittmeir, Volzone, and
Yao [13] (nonlinear aggregation models) or by Morgan [72] (minimizers of the gravi-
tational energy). This method is much more flexible and allows the treatment of more
singular kernels than is possible using moving-plane methods. Due to the low reg-
ularity of the kernels, instead of computing the derivative of the energy under the
perturbation, we work with finite differences instead.

Theorem D uses maximum principles and monotonicity formulas for nonlocal
equations. The idea is to find the smallest disk B(0, R) containing D (which intersects
0D at some xo), then use two different ways to compute V(1p,r)\p * Ko) at xo,
and obtain a contradiction if 2 > Q4 and D is not a disk. The proof works for the
full range of « € [0,2), thus closing the problem raised by Hmidi [49] and by de la
Hoz, Hassainia, Hmidi, and Mateu [29] among all simply connected patches.

1.5. Organization

Our work here is split into sections according to the cases & = 0 (Euler) and o # 0
(gSQG). Sections 2 and 3 are devoted to proving the symmetry results for ¢« = 0 in
the patch setting (Section 2) and in the smooth setting (Section 3). Sections 4 and 5
deal with the gSQG equations with 0 < o < 2. Section 4 is concerned with the case
Q2 <0, whereas Section 5 handles the case 2 > Q..

1.6. Notation
In Sections 2 and 3 of this paper, we use the following notation.
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For a simple closed curve I", denote by int(T") its interior, which is the bounded
connected component of R? separated by the curve I'. Note that the Jordan—
Schoenflies theorem guarantees that int(I") is open and simply connected.

We say that two disjoint simple closed curves I'y and I'; are nested if '} C
int(I";) or vice versa. We say that two domains D, D, are nested if one is contained
in a hole of the other one.

For a bounded domain D C R?, we denote by d,, D its outer boundary. And if
D is doubly connected, then we denote by di, D its inner boundary,

For a set D, we use 1p(x) to denote its indicator function. And for a statement
S, we let

. 1 if S is true,
o if S is false.

(e.g.,1;<3=0). .

For an open set U C R2, in the boundary integral faU - f do, the vector 7 is
taken as the outer normal of the open set U in that integral.

For a countable number of disjoint sets U; C R?, we denote their union by Ui U;
to emphasize the disjointedness.

2. Radial symmetry of steady/rotating patches for the 2D Euler equation
Throughout this section, we work with the 2D Euler equation (1.1) in the patch set-
ting. For a stationary or uniformly rotating patch D with angular velocity 2 € R,
let

Q
fa(x) = (1p % M)() = S |x

Recall that in (1.6) we have shown that fo = C; on each connected component of
aD, where the constants can be different on different connected components.

Our goal in this section is to prove Theorem A, which completely answers Ques-
tion | for 2D Euler patches. As we described in the Introduction, our proof has a
variational flavor, which is done by perturbing D by a carefully chosen vector field,
and computing the first variation of an associated energy functional in two different
ways. In Section 2.1, we will define the energy functional and the perturbation vector
field, and give a one-page proof in Theorem 2.2 that answers Question | among sim-
ply connected patches. (Note that even among simply connected patches, it is an open
question whether every rotating patch with € > % or Q < 0 must be a disk.) In the
following subsections, we further develop this method, and modify our perturbation
vector field to cover nonsimply connected patches.
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2.1. Warm-up: Radial symmetry of simply connected rotating patches

We begin by providing a sketch and some motivations of our approach, and then give a
rigorous proof afterwards in Theorem 2.2. Suppose that D is a C ¥ simply connected
rotating patch with angular velocity €2 that is not a disk. We perturb D in “time” (here
the “time” ¢ is just a name for our perturbation parameter, and is irrelevant with the
actual time in the Euler equation) with a velocity field v(x) € C'(D) N C(D) that is
divergence-free in D, which we will fix later. That is, consider the transport equation

pr + V- (pv) =0

with p(-,0) = 1 p. We then investigate how the “energy functional”

Q
8lo] = — [R 5P M) — 2 |xo(x) dx

changes in time under the perturbation. Formally, we have

d Q
T-Elplli—o =~ A 0 ((pC.0) M) () = S [x[?) dx

3 Q
=—/Dv(x)'V((1D*N)(x)—5|x|2) dx. 2.1)

The above transport equation and the energy functional only serve as our motivation,
and will not appear in the proof. In the actual proof, we only focus on the right-hand
side of (2.1), which is an integral that is well defined by itself:

Jl:=—/Dz7(x)-V((1D*N)(x)—%|x|2)dx=—/Dz7-Vdex. 2.2)

We will use two different ways to compute J, and show that if D is not a disk, then
the two ways lead to a contradiction for 2 <0 or 2 > %

On the one hand, since fq is a constant on dD (denote it by ¢), the divergence
theorem yields the following for every v € C'(D) N C(D) that is divergence-free in
D:

J=—c/ fi-ﬁdo—i—[(v-ﬁ)fgdx
oD D

:—c/V-ﬁdx+/(V-ﬁ)dex:0. (2.3)
D D

On the other hand, we fix v as follows, which is at the heart of our proof. Let v(x) =
—Ve(x) in D, where

|x|? :
o(x):= > + p(x) in D, 2.4)
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with p(x) being the solution to Poisson’s equation

{Ap(x) =-2 inD,

2.5
p(x)=0 on dD. )

Note that ¢ is harmonic in D, thus ¥ is indeed divergence-free in D. This definition
of ¥ is motivated by the fact that among all divergence-free vector fields in D, such
v is the closest one to —x in the L?(D) distance. (In fact, such v is connected to the
gradient flow of |’ D % dx in the metric space endowed by 2-Wasserstein distance,
under the constraint that | D(¢)| must remain constant; see [2], [70], [71].) Formally,
one expects that D becomes “more symmetric” as we perturb it by ¥, which inspires
us to consider the first variation of & under such perturbation.

In the proof we will show that with such choice of ¥, we can compute J in another
way and obtain that d > 0 for 2 <0 and d < 0 for Q2 > % Therefore, in both cases,
we obtain a contradiction with 4 = 0 in (2.3).

Our proof makes use of a rearrangement inequality for solutions to elliptic equa-
tions, which is due to Talenti [83]. Below is the form that we will use; the original
theorem works for a more general class of elliptic equations.

PROPOSITION 2.1 ([83, Theorem 1])

Let D C R? be a bounded open set, and let p be defined as in (2.5). Let B be an open
disk centered at the origin with |B| = | D|, and let pp solve (2.5) in B. Then we have
p* < pp pointwise in B, where p* is the radial decreasing rearrangement of p. This

[ prax= [ pacoax.

Using that pg(x) = 2(r% — |x|?), where wr} = |B| = |D| and [ pp(x) = Zrp it
follows that

leads to

2

1
/pmm§—w
D 47'[

where the equality is achieved if and only if D is an open disk (cf. [58, Theorem 3.1,
Remark 3.1]).

Now we are ready to prove the following theorem, saying that any simply con-
nected stationary/rotating patch with Q <0 or Q > % must be a disk. Interestingly,
the same proof can treat the two disjoint intervals 2 <0 and € > % all at once.

THEOREM 2.2
Let D be a simply connected bounded domain with CY boundary. If D is a rotating
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patch solution with angular velocity €2, where 2 <0 or Q2 > % then D must be a
disk, and it must be centered at the origin unless 2 = 0.

Proof

Let D be a rotating patch with Q € (—o0,0] U [%, o0). As we described above, in this
theorem we will use two different ways to compute the integral 4 defined in (2.2),
where we fix ¥(x) := —Vg(x), with ¢ and p defined as in (2.4) and (2.5).

On the one hand, we have that v is divergence-free in D, and elliptic regularity
theory immediately yields that ¥ € C'(D) N C(D). Using the assumption that D is a
rotating patch, we know fq is a constant on dD. (Note that dD is a connected closed
curve since we assume that D is simply connected). Thus the computation in (2.3)
directly gives that = 0.

On the other hand, we compute d as follows:

J:—/ 5-Vfgdx=/ Vo -V fadx
D D

=[x-Vdex+/ Vp-Vfadx. (2.6)
D D

=4 =:d>

For 41, we have

;= /x V(ID*N)dx—/ x-Qxdx
D

// x-(x = AR dydx—sz/ Ix|2 dx

|x =yl D

_// x'(x_y)_yz'(x_y)dydx—ﬂf |x|* dx
T JpJD lx — ¥ D

1
=—|DP?-Q | |x|?dx, 2.7)
4
us D

where the third equality is obtained by exchanging x with y in the first integral, then
taking the average with the original integral. To compute 5, using the divergence
theorem (and the fact that p = 0 on dD), we have

Jzz—/ pAdexz(ZQ—l)/ pdx. (2.8)
D D
Plugging (2.7) and (2.8) into (2.6) gives

1
J:—|D|2—Q/ |x|2dx+(2sz—1)/ pdx. (2.9)
4 D D
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When © = 0, Proposition 2.1 directly gives that 4 > 0 if D is not a disk, contradicting
d=0.

When Q € (—o00,0) U [%, 00), let B be a disk centered at the origin with the same
area as D. Towards a contradiction, assume that D # B. Among all sets with the
same area as D, the disk B is the unique one that minimizes the second moment. To
see this, denoting by rp the radius of B, we have

/|x|2dx—[ |x|2dx=/ |x|2dx—/ |x|? dx
D B D\B B\D

Z/ r%dx—/ r%dx:O,
D\B B\D

where the last equality follows from |D \ B| = |B \ D|, which is due to |D| = |B|;
and the inequality is strict whenever D # B. Thus, if D # B, then we have

x|?dx > xzdxziD
x|
D B 27‘[

where the last step follows from an elementary computation. Plugging this into (2.9)
gives the following inequality for Q € [%, 0):

2

1 Q 1
J<—|D|2——|D|2+(2Q—1)/ pdx=(1—2Q)(—|D|2—/ pdx)go.
47 2 D 4 D

On the other hand, for 2 € (—o0,0), we have

1 Q 1
d>—|D*>— —=|D|*+(2Q — 1)/ pdx = (1 —252)(—|D|2 —/ pdx) >0,
4 27 D 4 D
and we obtain a contradiction to 4 = 0 in all the cases, thus the proof is finished. [

Remark 2.3

In fact, one can easily check that the proof of Theorem 2.2 applies to a bounded
disconnected patch D = UfV:lDi with C1¥ boundary, as long as each connected
component D; is simply connected, which yields that such a patch cannot be a rotat-
ing solution. Here the proof remains the same, except for one small change. On the
one hand, since now we have fg = ¢; on dD;, (2.3) should be replaced by

J:—i(qLD_ﬁ-ﬁda+/I)_(v-6)dex):0.

i=1

On the other hand, the same argument as in the proof of Theorem 2.2 shows that
J # 0 whenever D contains more than one connected component.
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Remark 2.4

When the domain D is Lipschitz, we no longer have v = —x — Vp € C!(D). Nev-
ertheless, the divergence theorem in the proof of Theorem 2.2 can still be justified,
thanks to the fact that V p € L2(3D) for a Lipschitz domain D, where V p|yp is taken
in the nontangential limit sense, and this follows from [55, Theorem 5.6].

Even in the regime Q € (0, %), where nonradial rotating patches are known to
exist (recall that there exist patches bifurcating from a disk at Q,, = ”;—:nl for all
m > 2), our approach still allows us to obtain the following quantitative estimate,
saying that if a simply connected patch D rotates with angular velocity Q2 € (0, %)
that is very close to %, then D must be very close to a disk, in the sense that their
symmetric difference must be small.

COROLLARY 2.5

Let D be a simply connected bounded domain with C'Y boundary. Assume that D is
a rotating patch solution with angular velocity 2, where Q € (%, %) Let§ := % — Q.
Then we have

|DAB| <2+25|D],

where B is the disk centered at the origin with the same area as D.

Proof
In the proof of Theorem 2.2, combining the equation 4 = 0 and (2.9) together, we
have that

1
SoP=a [ pPax—a-22) [ par=o
4 D D

Dividing both sides by 2 and rearranging the terms, we obtain

1 1-2Q /1 28| D|?
2 2 2
xPdx — —I|D? = — D> — dx) < ’

where in the inequality we used that 26 := 1 — 2, Q > i, and fD pdx >0.
Since [ |x|?> dx = 5-|D|?, the above inequality implies that

28| D|?
[ |x|2dx—/ |x]?dx < D] . (2.10)
D\B B\D T

Since D and B have the same area, let us denote § :=|D \ B| = |B \ D|. Among all
sets U C B¢ with area B, [y, |x|*dx is minimized when U is an annulus with area
B and inner circle coinciding with dB. To see this, let Uy be such an annulus, and
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denote by ri, and r, its inner and outer radius (note that r;, is also the radius of B).
Then we have

/ |x|2dx—[ |x|2dx=/ |x|2dx—/ |x|?dx
U Uo U\Uy Uo\U

> f r2, dx —/ rl dx =0,
U\Uy Up\U

where the inequality follows from U \ Uy C B¢ \ Uy C B(0, rou)¢ (recall that U C
B¢), and the last equality follows from |U \ Up| = |Up \ U|, which is due to |U| =
|Uol

Thus an elementary computation gives

/ X[Pdx> inf /|x|2 LlBHﬁ)
D\B UcCB<,|U|=B

Likewise, among all sets V C B with area f8, [}, |x|*>dx is maximized when V is an
annulus with area 8 and outer circle coinciding with 0B, thus

/ |x|2dx§ sup /|x|2 7'(3(2'3' 'B).
B\D VCB,|V|=8

Subtracting these two inequalities yields

2
/ |x|2dx—/ wPdxz P,
D\B B\D T

and combining this with (2.10) immediately gives
B> <28|DJ,

thus |[DAB| =28 <2+25|D|. O

2.2. Radial symmetry of nonsimply connected stationary patches
In this subsection, we aim to prove the radial symmetry of a connected rotating patch
D with Q <0, where D is allowed to be nonsimply connected. Let D C R2 be a
bounded domain with C1-¥ boundary. Assume that D has n holes with n > 0, and
then let Ay, ..., h, C R? denote the n holes of D (each A; is a bounded open set).
Note that dD has n + 1 connected components: they include the outer boundary of
D, which we denote by 0Dy, and the inner boundaries 0k; fori = 1,...,n. We orient
oh; the opposite way as dDy.

To begin with, we point out that even for the steady patch case 2 = 0, the proof
of Theorem 2.2 cannot be directly adapted to the nonsimply connected patch. If we
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define ¥ in the same way, then the second way to compute J still goes through (since
Proposition 2.1 still holds for nonsimply connected D), and leads to 4 > 0 if D is not
a disk. But the first way to compute J no longer gives 4 = 0: if D is stationary and
not simply connected, then f(x):= (1p * N )(x) may take different constant values
on different connected components of dD, thus the identity (2.3) no longer holds.

In order to fix this issue, we still define v = —V¢ = —V(% + p), but mod-
ify the definition of p in the following lemma. Compared to the previous definition
(2.5), the difference is that p now takes different values 0O,cy,...,c, on each con-
nected component of dD. The lemma shows that there exist values of {c;}7_, such
that [, on; Vp-iido = —2|h;| along the boundary of each hole. As we will see later,
this leads to fahi v-indo =0fori =1,...,n, which ensures that 4 = 0. (Of course,
with p defined in the new way, the second way of computing 4 no longer follows
from Proposition 2.1, and we will take care of this later in Proposition 2.8.)

LEMMA 2.6
Let D, h;, and 0Dg be given as in the first paragraph of Section 2.2. Then there exist
positive constants {c; }7_, such that the solution p : D — R to the Poisson equation

Ap=-2 inD,
p=ci on oh; fori =1,...,n, (2.11)
p=0 on dDy,

satisfies

/ Vp-iido ==2|h;| fori=1,...,n. (2.12)
o,

Here |h;| is the area of the domain h; C R2.

Proof
Let u satisfy that

Au=-2 in D,
u=~0 on dD.

Furthermore, let the function v; for j = 1,...,n be the solution to

Av; =0 inD,
v;=0 ondD\dh;,

vi=1 ondh;,
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where v; € C2(D) N C'(D) by elliptic regularity. Now we consider the following
linear equation,

Ax = b, (2.13)

where A; ;j = fah,- Vv, -rido and b; = —2|h;| _fah,- Vu -1 do. We argue that (2.13)
has a unique solution. Thanks to the divergence theorem, we have

n
0:/ Avjdx:/ ij-ﬁda—Z/ V; -iido.
D dDg i=1 0h;

Therefore,

n
ZAI-,_; =/ Vv;-iido <0, (2.14)
i=1 Do

where the last inequality follows from the Hopf lemma (see [57]) since v; attains its
minimum value 0 on dDg, and v; # 0 on dD. A similar argument gives that A4; ; >
0 for i # j and A;; < 0. Thus A is invertible by the Gershgorin circle theorem
(see [39]), leading to a unique solution of (2.13). Let us denote the solution by x =
(¢1,...,¢n)". Then the function p defined by

n
pi=u +Zc,~v,-
i=1

satisfies the desired properties (2.12).
Now we prove that ¢; > 0 for i > 1. Suppose that ¢;4 := min; ¢; < 0. Then by
the minimum principle, p attains its minimum on d4;+. Therefore,

05/ Vp-iido = =2|h;ix| <0,
i
which is a contradiction. O

Remark 2.7

In order to push the regularity of the domain down to Lipschitz, to prove (2.14),
instead of the Hopf Lemma, we may use the following observation in two dimensions
(see [1, pp. 935-936]. Let D C R? be a Lipschitz domain, and let ¥ C D be rela-
tively open with respect to dD. Let v; be a harmonic function in D and continuous
in D. If v; vanishes on ¥ and its normal derivative vanishes in a subset of ¥ with
positive surface measure, then v; = 0 in D. In addition, the use of the divergence
theorem is justified by the same argument as in Remark 2.4.
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Next we prove a parallel version of Talenti’s theorem for the function p con-
structed in Lemma 2.6. We will use this result throughout Sections 2 and 3.

PROPOSITION 2.8

Let D C R? be a bounded domain with CYV boundary. Assume that D has n holes
withn > 0, and denote by hy, ..., h, C R? the holes of D (each h; is a bounded open
set). Let p : D — R be the function constructed in Lemma 2.6. Then the following
two estimates hold:

supp < — (2.15)
D 2
and
D 2
/ p(x)dx < u (2.16)
D 47

Furthermore, for each of the two inequalities above, the equality is achieved if and
only if D is either a disk or an annulus.

Proof

The proof is divided into two parts. In step 1 we prove the two inequalities (2.15) and
(2.16), and in step 2 we show that equality can be achieved if and only if D is a disk
or an annulus.

Step 1. When D is simply connected, (2.15) and (2.16) directly follow from Tal-
enti’s theorem Proposition 2.1. Next we consider a nonsimply connected domain
D, and prove that these inequalities also hold when p : D — R is defined as in
Lemma 2.6.

For k € R, let us denote Dy :={x € D : p(x) >k}, g(k):=|Dy| and Dy :=
DkU(U {i:ci>k}h_i)' Elliptic regularity theory gives that p € C*°(D), thus by Sard’s
theorem, k is a regular value for almost every k € (0, supp p), thatis, |V p(x)| > 0 on
{xeD: p(x)=k}. Thus {x € D: p(x) =k} is a union of smooth simple closed
curves and equal to 9Dy, for almost every k € (0, sup pD)-

Since Dy = aDkO(U{i:ci>k}8hi) for k ¢ {c1,...,cn}, we compute

1 1
g(k)z——/ Ap(x)dxz——/ Vp-ido
2 Jpy 2 Jap,

1/ - 1 .
=—= | Vp-ndo+ Z Vp-ndo
2 Joby 2{i:c,~>k} Oh;

1/ -
=—= Vp-ndo— |hil,
2 85k Z l

{i:c;>k}
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where the last identity is due to (2.12). Therefore, it follows that

1 1
k) + h; =——/ \Y% -ﬁdaz—/ Vp|do, (2.17)
gk)+ > |kl 2 )5, 77 25197

(izc; >k} Dy

where the last equality follows from the fact that V p is perpendicular to the tangent
vector on the level set.
On the other hand, the coarea formula yields that

1 o0 1
g(k)=[f 1 —dods=/ / ——daods.
wJon, CF1Vp « Jab, IV

Therefore, it follows that for almost every k € (0, supp p),

1
(k) = — —do. 2.18
(k) /aD oo 2.18)

Thus it follows from (2.17) and (2.18) that

fw(etr+ 3 ml)==5([ 1oldo)([  odo)

{i:ci>k}
L i 2
E—EP(Dk) ; (2.19)
where P (E) denotes the perimeter of a rectifiable curve dE . Note that the last inequal-

ity becomes equality if and only if |V p| is a constant on dDy. Also, the isoperimetric
inequality gives that

P(Dy)? = 4m|Dl. (2.20)
where equality holds if and only if Dy, is a disk. This yields that
g (gt + Y Inil) = 27Dl =27 (g) + Y Imil). @21

{i:c;>k} {izci>k}

Therefore, g’(k) < —2m for almost every k € (0, supp p). Combining it with the fact
that g(0) = | D|, we have

g(k) < (g(0) —27k), = (|D| —2mk), for almost every k > 0.

This proves that supz p < %. It follows that

1D| 1D|
2 2w
[ pwrar=[ [T ppepakar= [ 7 g
D DJo 0
1D|
i |D|?
D|—-2nk), dx = ——.
< [T (p1-27k)  ax =12
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Step 2. Now we show that for the two inequalities (2.15) and (2.16), the equality is
achieved if and only if D is either a disk or an annulus. First, if D is either a disk or an
annulus centered at some xo € R?, then uniqueness of solution to Poisson’s equation

gives that p is radially symmetric about xg. Since we have Ap = —2in D and p =0
on the outer boundary of D, this gives an explicit formula p(x) = —W + RTZ

for x € D, where R is the outer radius of D. For either a disk or an annulus, one can
explicitly compute supp p and | p P dx to check that equalities in (2.15) and (2.16)
are achieved.

To prove the converse, assume that either (2.15) or (2.16) achieves equality, and
we aim to show that D is either a disk or an annulus. In order for either equality to be
achieved, (2.21) needs to achieve equality at almost every k € (0,supp p). In addi-
tion, g(k) needs to be continuous in k since g(k) is decreasing. Since (2.21) follows
from a combination of the Cauchy-Schwarz inequality in (2.19) and the isoperimetric
inequality in (2.20), we need to have all the three conditions below in order for either
(2.15) or (2.16) to achieve equality:

(1) |V p| is a constant on each level set Dy, for almost every k € (0, supp p);

2) Dy, is a disk for almost every k € (0,supp p);

3) g(k) = | Dg| is continuous in k; as a result, |Dy| is continuous in k at all
k # ¢;, with ¢; > 0 defined as in (2.11).

Next we will show that if these three conditions are satisfied, then D must be an
annulus or disk. First, note that by sending k£ \, 0 in condition (2), and combining it
with the continuity of |Dy| as k \ 0, it already gives that the outer boundary of D
must be a circle. Therefore, if D is simply connected, then it must be a disk.

If D is nonsimply connected, using condition (2) and (3), we claim that D can
have only one hole, which must be a disk, and p must achieve its maximum value in
D on the boundary of the hole. To see this, let 4; be any hole of D, and recall that
Plan; = ci. As we consider the set limit of Dy as k approaches c; from below and
above, by definition of ﬁk we have

lim Dy = lim D o( ' F).
k/ci k kl\r‘rcli k U /
{Jicj=c;}

By (2) and (3), the left-hand side limy x, Dk is a disk, and the set limg\; D~k on
the right-hand side is also a disk (if the limit is nonempty). But after taking union
with the holes {/; : ¢; = ¢;} (each is a simply connected set), the right-hand side will
be a disk if and only if limg~,., Dy is empty, L.){]-:Cj =c,~}h_j = hy, and h; is a disk.
This implies that ¢; = supp p and ¢; < ¢; for all j # i. But since /; is chosen to be
any hole of D, we know that D can have only one hole (call it /), which is a disk,
and supp, p = p|as. Finally, note that condition (1) gives that all the disks { Dy} are
concentric, and as a result we have that D is an annulus, finishing the proof. O
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Finally, we are ready to show that every connected stationary patch D with C 1
boundary must be either a disk or an annulus.

THEOREM 2.9

Let D C R? be a bounded domain with C'Y boundary. Suppose that w(x) := 1p(x)
is a stationary patch solution to the 2D Euler equation in the sense of (1.5). Then D
is either a disk or an annulus.

Proof
If D has n holes (where n > 0), denote them by hy,...,h,. By (1.5), the function
f :=1p = N is constant on each connected component of dD, and let us denote

fx) = {ai on 0hi. (2.22)

aop on dDy.

le

Let p: D — R be defined as in Lemma 2.6, and let ¢ := + p. Similar to the
proof of Theorem 2.2, we calculate J := [, Vg -V f dx in two different ways. Note
that V f = V(f —ao) in D. Applying the divergence theorem to 4 and using (2.22)
and Ap = 0in D, it follows that

g = /aD(Wpﬁ)(f—ao)do—/DAgo(f—cm)dx

n
=Y (ai —ao) f Vo -iido. (2.23)
i=1 Oh

By definition of ¢, and combining it with the property of p in (2.12), we have

|x|?

/ V(p-fido:/ V(x—)-fid(f—i-/ Vp-iido
ah,' Bh,— 2 ahi
=/ 2dx+/ Vp-iido =0. (2.24)
i oh;
Plugging this into (2.23) gives 4 = 0. On the other hand, we also have
J:/ x-Vfdx—i—/ Vp-Vfdx=:E + E;.
D D

We compute

2
=/x (ID*VN)dx—// L O=0) e = 1P2F (005
21 |x —y|? 4
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where the last equality is obtained by exchanging x with y and taking the average
with the original integral. For E5, the divergence theorem yields that

E2=/ pr-ﬁdo—[pAfdx:/ pr-ﬁda—/pdx.
oD D aD D

Using the property of p in (2.11) and the fact that Af = 0 in k;, the divergence
theorem yields that

n n
/ pr-ﬁda:—Z[ pr-ﬁda:—Zc,-[ Afdx=0. (2.26)
D — Jon, = I

As a result, we have EF, = — f pP dx. If D is neither a disk nor an annulus, then
Proposition 2.8 gives
|D|?

J=E1+E2=——/pdx>0,
4 D

contradicting 4 = 0. O

In the next corollary, we generalize the above result to a nonnegative stationary
patch with multiple (disjoint) patches.

COROLLARY 2.10

Let w(x) := Z?:l a;lp;, where a; > 0, each D; is a bounded domain with cly
boundary, and D; N Dj = @ ifi # j. Assume that w is a stationary patch solution,
that is, the function f(x):=w * N satisfies V- f -ii =0o0n dD; foralli =1,...,n.
Then w is radially symmetric up to a translation.

Proof

Following similar notation as the beginning of Section 2.2, we denote the outer bound-
ary of D; by dD;¢, and the holes of each D; (if any) by h;; for k =1,..., N;. Let
pi: E — R be defined as in Lemma 2.6, that is, p; satisfies

Api =-—2 in Di,
pi =Cix  ondhy,
pi =0 on dD;,

where c; is chosen such that fahik Vp; -ndo = —2|hj;|. We then define ¢ :

X

U;’Zl ‘D; — R, such that in each D; we have 0 =q; .= % + pi.
Similar to Theorem 2.9, we compute
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d —/ oV - Vfdx—Z/ o;Vo; -V fdx

i=1

in two different ways. On the one hand, since f = w * N is a constant on each con-
nected component of D;, the same computation of Theorem 2.9 yields that [ D Vo -
V f dx = 0, therefore d = 0. On the other hand, since Vg = x 4+ V p; in each D;, we
break J into

d = Z%Ol]/ x-V(lp, * N)dx + Za,a,/ Vpi-V(p, x N)dx

i,j=1 i,j=1
=:d; + d,.

For 4, we compute

) = Z “"“f([ x-V(lp, *,N)dx—i-/ x-V(ip, *N)dx>
D; D

ij=1 2
=ZO"'“"(// X (= ddx—i—/ / add G dydx)
=1 2 Mo Jp; 2wl — 2mlx —yP? 27lx — y?
" o;0;
1
=UZ_1 1 |DilID; . (227)

where we exchanged i with j to get the first equality. For J,, we have
Jr = Za / Vpi-V(lp; * N)dx + Za,a,/ Vpi-V(p; * N)dx
i=1 i#j Di
=:1z1 + I2.
By the same computation for E» in the proof of Theorem 2.9, we have
Ly = Za / pidx. (2.28)
i=1

For i # j, we denote j < i if D; is contained in a hole of D;. (And if D; is
not contained in any hole of D;, we say j 4 i.) Using this notation, the divergence
theorem directly yields that

N;
[ in(lpj*dV)-ﬁd(T:—Z/ in(IDj*JV)'ﬁdO'
aD; k=1 0hik

=0 ifj Ai. (2.29)
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And if j < i, then the divergence theorem and (2.15) in Proposition 2.8 yield

- 1 e
/ piV(p, * N)-ndo >—sup p;|D;|>——|D;||D;| ifj=<i. (2.30)
D; ! aD; ‘ 2n
Hence it follows that
o o
D2z =) 1< HIDilIDjl = =) (< + L) EIDilID; | 231)
i#]j i#]

where the last step is obtained by exchanging 7, j and taking the average with the
original sum. Note that we have 1;-; + 1;<; <1 forany i # j. From (2.27), (2.28),
and (2.31), we obtain

n
|D;|? |Di||D;|
JzZaiz( 47’1 —/D'p,-dx)—i- Z aiaj#. (2.32)

i=1 jAiandiAj
i#j

Since we already know that 4 = 0 and all the summands in (2.32) are nonnegative, it
follows that

D42
%:/;) pidx foralli=1,....nand {(i,j):i # j,iAjand j Ai}=0.

Therefore, every D; is either a disk or an annulus by Proposition 2.8 and they are
nested. By relabeling the indices, we can assume thati <i + 1 fori =1,...,n —1.

Next we prove that all D;’s are concentric by induction. For k > 1, suppose that
D1, ..., Dy are known to be concentric about some o € R2. To show that Dy is
also centered at o, we break f into

k n
f:Z(ailDi)*eN-i- Z (ilp;) * N.

i=1 i=k+1

In the first sum, each D; is centered at o for i < k; thus Lemma 2.11(a) (which
we prove right after this theorem) yields that Zle (ilp;) * N = % In|x —o| on
0inDg 41, where C = Zle a;|D;i| > 0. In the second sum, for each i > k + 1, since
each D; is an annulus with di, Dy _; in its hole, Lemma 2.11(b) gives that 1 p, * N =
const on diy Dy for all i > k 4 1. Thus, overall, we have f = % In|lx —o|+ C,
on 0;y Dy 41 for C > 0. Combining it with the assumption that f is a constant on
0in Dy 41, we know that Dy, ; must also be centered at o, finishing the induction
step. U

Now we state and prove the lemma used in the proof of Corollary 2.10, which
follows from standard properties of the Newtonian potential.
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LEMMA 2.11

Assume that g € L (R?) is radially symmetric about some o € R?, and is compactly

supported in B(o, R). Then n:= g x N satisfies the following:

(a) n(x) = /Rzg In|x — o] for all x € B(0, R)¢;

(b) ifin addztlon we have g =0 in B(o,r) for some r € (0, R), then n = const in
B(o,r).

Proof
To show (a), we take any x € B(o, R)¢ and consider the circle I 5 x centered at o.
By radial symmetry of 1 about o and the divergence theorem, we have

X 1 . 1 x)dx
—:—/Vr;-nda:— Andx:M,
lx| T Jr IT| Jini(r) 27 |x — o]

_/gdx

V-

which implies 7(x) = In|x —o| + C. To show that C = 0, for |x| sufficiently

large we have

cl=|[,,, , BN = =0

= ||g||L°°(R2) sup |=/V(X —0)—N(x—
y€B(o,R)

and by sending |x| — oo we have C = 0, which gives (a). To show (b), it suffices to

prove that Vi =0 in B(o,r). Take any x € B(o,r), and consider the circle I'; > x

centered at 0. Again, symmetry and the divergence theorem yield that

1 A g(x)dx
‘Vn(x)| = indo = Andx = 7fmt(r) =0,
|T2| T2l Jinrs) T
finishing the proof of (b). O

2.3. Radial symmetry of nonsimply connected rotating patches with Q < 0
In this subsection, we show that a nonnegative uniformly rotating patch solution (with
multiple disjoint patches) must be radially symmetric if the angular velocity 2 < 0.

THEOREM 2.12

Fori =1,...,n, let D; be a bounded domain with C ¥ boundary, and assume that
DiND;=0fori#j. Ifo= Z?:l a;1p; is a nonnegative rotating patch solution
with a; > 0 and angular velocity Q < 0, then @ must be radially symmetric.

Proof
In this proof, let
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fox):=w*x N — %|x|2.
In each D;, let us define p; as in Lemma 2.6. Let ¢; := % + p;i ineach D;. As in
Theorem 2.12, we compute J := Y 7_ | o; fo Vi -V fodx in two different ways.
Since fq is a constant on each connected component of dD; and V; is divergence-
free in D;, we still have 4 = 0 as in the proof of Theorem 2.9.

On the other hand, we have

Jzia,-/

i=1 D; (V) Vo N)dx +\(_Q) Zai / ,(X + Vpi)-xdx

>y i=t 7D
=01+ (—Q)da.

As in the proof of Corollary 2.10, we have

n
D;|? DD
J1=Zai2(|4;| —/D_pidx)+ > a,-aj% > (. (2.33)

jAiandiAj
i#j

i=

Note that ; = 0 as long as all D;’s are nested annuli/disks, even if they are not
concentric. For J;, using the Cauchy—Schwarz inequality in the second step, and
Lemma 2.13 in the third step (which we will prove right after this theorem), we have

n

J2=Zai(/D' |x|2dx—|—/D'Vpi-xdx)

i=1

ZXn:ai(/D |x|2dx—(/D |Vp,-|2dx)1/2(/D |x|2dx)1/2)20. (2.34)
i=1 i i i

Combining (2.33) and (2.34) gives us 4 > 0. If there is any D; that is not a disk or
annulus centered at the origin, Lemma 2.13 would give a strict inequality in the last
step of (2.34), which leads to 4 > 0 and thus contradicts with 4 = 0. O

Now we state and prove the lemma that is used in the proof of Theorem 2.12.

LEMMA 2.13
Let D be a bounded domain with C Y boundary, and let p be as in Lemma 2.6. Then

—/ Vp-xdxz/ |Vp|2dx§/ |x|?dx. (2.35)
D D D

Furthermore, in the inequality, “=""is achieved if and only if D is a disk or annulus

we have

centered at the origin.



SYMMETRY OF STATIONARY AND ROTATING SOLUTIONS 2985

Proof
We compute

/|Vp|2dx=/ pr-ﬁdG—{—/Zpdx
D oD D

=—/ px-ﬁd0+/2pdx,
D D

where in the last equality we use that p is constant along each dh;, as well as the
following identity due to (2.12) and the divergence theorem (here 7 is the outer normal
of h;):

2
/ Vp~ﬁdo:—2|h,-|=—/ Aﬁdx:—/ x-ndo.
oh; no 2 oh

i

On the other hand, the divergence theorem yields

—/ Vp-xdx:—/ px-ﬁda+[2pdx.
D aD D

Therefore, using Young’s inequality —V p - x < 1|V p|? 4+ 1|x|? (where the equality
is achieved if and only if —V p = x), we have

1 1
f|Vp|2dx=—/ Vp'xdxf—/ |Vp|2dx+—/ |x|?dx,
D D 2Jp 2Jp

which proves (2.35). Here the equality is achieved if and only if —Vp = x in D,
which is equivalent with p + % being a constant in D, and it can be extended to D
due to continuity of p. By our construction of p in Lemma 2.6, p is already a constant
on each connected component of dD, implying that % is constant on each piece of
dD; hence D must be a family of circles centered at the origin. By the assumption
that D is connected, it must be either a disk or annulus centered at the origin. O

2.4. Radial symmetry of nonsimply connected rotating patches with 2 > %
In this final subsection for patches, we consider a bounded open set D with C1”
boundary. The set D can have multiple connected components, and each connected
component can be nonsimply connected. If 1p is a rotating patch solution to the Euler
equation with angular velocity € > %, then we will show that D must be radially
symmetric and centered at the origin.

To do this, one might be tempted to proceed as in Theorem 2.2 and replace p :
D — R by the function defined in Lemma 2.6. Here the first way of computing J =
[p(x 4+ Vp) -V fodx still yields d = 0, but the second way gives some undesired
terms caused by the holes 4;:
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dB(0,R)

Figure 3. (Color online) For a set D C B(0, Rg) (the whole yellow region on the left), the middle
figure illustrates the definition of Do g (the blue region), {U;} (the gray regions), and the right
figure illustrates V' = Bg \ Do, g (the green region).

1 n
J=—|D|2—S2/ |x|2dx+(2sz—1)/ pdx+22 " plon,hil.
4 D D i1

Due to the last term on the right-hand side, we are unable to show that 4 < 0 when
Q> % as we did before in Theorem 2.2. For this reason, we take a different approach
in the next theorem. Instead of defining p as a function in D and 4 as an integral in
D, we want to define them in D¢. But since D€ is unbounded, we define pR and J
in a truncated set B(0, R) \ D¢, and then use two different ways to compute J g. By
sending R — oo, we will show that the two ways give a contradiction unless D is
radially symmetric.

THEOREM 2.14

For a bounded open set D with CY7 boundary, assume that 1p is a rotating patch
solution to the Euler equation with angular velocity Q2 > % Then D is radially sym-
metric and centered at the origin.

Proof

Since D is bounded, let us choose Rg > 0 such that B, O D. For any R > Ry,
consider the open set Bg \ D, which may have multiple connected components. We
denote the component touching dBg by Dy g, and name the other connected compo-
nents by Uy, ..., U,. Throughout this proof, we assume that » > 1: if not, then each
connected component of D is simply connected, which has already been treated in
Theorem 2.2 and Remark 2.3. We also define V := Bg \ Dy, g, which is the union of
D and all its holes. Note that V' may have multiple connected components, but each
must be simply connected. (See Figure 3 for an illustration of Dg g, {U;}7_, and V)
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To prove the theorem, the key idea is to define p® and g in Bg \ D, instead of
in D. Let po,r and p; be defined as in Lemma 2.6 in Dg, g and U;, respectively, then

set @o,R =POR+|| in Dy g, and ¢; .=p,+|x‘ in U; fori =1,...,n. Finally,
define p® and R .R2—>Ras

n n
pR:= Po.R1Dg & —i_X:pilUi7 (pR:z(pO’RID&R +Z§0i1U,—-
i=1 i=1

Since 1p rotates with angular velocity 2 > %, we know that fo :=1p * N —
%|x |2 is constant on each connected component of dD. Next we will compute

Jr ::/ _ Vi -VeRdx (2.36)
BRr\D

in two different ways. If some connected component of dD is not a circle, then we
will derive a contradiction by sending R — co. We point out that as we increase R,
the domain Dy g will change, but the sets {U;}_, and V' all remain unchanged.

On the one hand, we break J g into

JRZ/ Vfa- V(PORdx+Z/ V fa - Vi X—JR+J2
Do.r i=1

Since fq is constant on each connected component of dU;, the same computation
as (2.23)—(2.24) gives J% = 0. For J}Q, note that although fq is a constant along
the boundary of each hole of Dy g, it is not a constant along douDo,g = 0BRg. Thus
similar computations as (2.23)—(2.24) now give

Q
1 _ 8y =
JR—/BBR(ID*N 2R)V¢0’R ndo
=/33 ((Ap * N)(x) — |D|N (x)) Vo, - i do(x), (2.37)
R

where in the second equality we used [, Br Vgo,r -1 do = 0 and the fact that N (x)
is constant on dBg. For any x € 9Bg, since D C Bg, and R > Ry, we can control
(1p * N)(x) — |D|N(x) as
(1 * M) )| DIV ()] = —/ log | — | —Tog || dy
< (1 (1 R")‘ 9B (2.38)
—|lo - — on . .
27r BT R K

We introduce the following lemma to control |V g - 7i| on dBg. The proof is post-
poned to the end of this subsection.
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LEMMA 2.15
Let D C B, be an open set with C LY boundary. For any R > Ry, let Do.r, V, po.Rr,
and @o R be defined as in the proof of Theorem 2.14. Then we have

NR}

v R0 9B, 239
Voor il = S g kR " OBR (2.39)

where N > 0 is the number of connected components of V (and is independent of R).

Once we have this lemma, plugging (2.39) and (2.38) into (2.37) yields

N|D|R? R C(D,R
|J}e|5%‘10g(1—?0)‘(10g(R/R0)) |D|(7glg) —0 as R — oo.
Combining this with 4% = 0 gives

lim dg =0. (2.40)
R—o0

1xI2
4
function in BR, and thus is equal to some constant Cg in Bg. Using this fact, we can

rewrite fq as

Next we compute J g in another way. Note that 1p, * N — is a radial harmonic

_ Q 5 Q 1 5
fa=1pxN = ZIx=(1p—1p) ¥ ¥ = (5 =7 )IxP + Cx.

As aresult, J g can be rewritten as
22 -1)

x-VoRdx
2 Br\D

IR =—[ _V(1BR\5*N)-V¢Rdx—
BR\D

2Q—1)

gy O @an
Next we will show that § ., % > 0, leading to d g < 0. Let us start with §%. Applying

Lemma 2.13 to each of Do g and {U; }7_, immediately gives

5‘?32/ x> + Vpor- de—i—Z/ |x|*> + Vpi - xdx
Do,r

i=1

n
= Tor+ Y _Ti >0. (2.42)
i=1
Note that the 7;’s are independent of R for i = 1,...,n, and we know that 7; > 0
with equality is achieved if and only if U; is an annulus or a disk centered at the
origin. This will be used later to show that all {U; }?_, are centered at the origin in the
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Q> % case. (When 2 = %, the coefficient of ¢ Ize becomes 0 in (2.41), thus a different
argument is needed in this case.)
We now move on to 3’}2. We first break it into

glle:/;R\EV(IBR\ﬁ*N)-xdx—i—/BR\EV(lBR\B*,/V).VdeX =:Ji1+ J1z2.

An identical computation as (2.25) gives J1; = ﬁ(|D05R| + Z?=1 |U;|)2. For Ji2,
the same computation as (2.28)—(2.30) gives the following (where we used that each
U; liesinahole of Do g fori =1,...,n):

n
Ui ||U; |
hzz—/ Po,RAX — [ pidx — |Ui| sup po.r — —
- 2 [, prdx= 2 il sup >

i=1 1<i<n 1<i,j<n
j=<i

Adding up the estimates for J;; and J;,, we obtain

1 1
1>(—D 2—/ d E:U‘)(—D -
Ir= 4n| o,R| . RPO,R X)-i-( |Ui | 2n| 0.R| g:)lﬂpo,R)

0. 1<i<n
n
1 1
(Ul [ max)+ ¥ il .43
i=1 ! jAiandiAj
i#j

By Proposition 2.8, all terms on the right-hand side are nonnegative. But note that only
the two terms in the second line are independent of R. Plugging (2.43) and (2.42) into
(2.41) gives the following (where we only keep the terms independent of R on the
right-hand side):

- ol

liminf(~1 ) ;(Ew -/ i)

n

1 2Q —1
+ ,Z. 3 UlU+ Zn > 0.
jAiandiAj i=1
i#j
Combining this with the previous limit (2.40), we know that U; must be an annulus or
a disk fori = 1,...,n, and they must be nested in each other. In addition, if 2 > %,
then we have 7; = 0 fori = 1,...,n, implying that each U; is centered at the origin.

The radial symmetry of Do g is more difficult to obtain. Although the first two
terms on the right-hand side of (2.43) are both strictly positive if Do g is not an
annulus, we need some uniform-in-R lower bound to get a contradiction in the R —
oo limit. Between these two terms, it turns out the second term is easier to control.
This is done in the next lemma, whose proof we postpone to the end of this subsection.
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LEMMA 2.16

Let D C Bg,, be an open set with CY boundary. For any R > Ry, let Do,r, V, and
Do,r be given as in the proof of Theorem 2.14. If V is not a single disk, then there
exists some constant C(V') > 0 depending only on V such that

1
]iminf(—|D0,R| ~ sup po,R) >C(V)>0.
R—o0 \21 Do.Rr

If V is not a disk, then Lemma 2.16 gives liminfrooo 5 > (31 <j<p [Ui]) X
C(V) > 0. (Recall that in the beginning of this proof we assume that 21_ <l-_<n |Ui| >
0, and it is independent of R.) This implies that liminfgr_ oo (—dR) z_C_(V) > 0,
contradicting (2.40).

So far we have shown that 0D is a union of nested circles, and it remains to
show that they are all centered at 0. For the Q2 > % case, we already showed that all
{U;}7_, are centered at 0, so it suffices to show that the outermost circle 9V (denoted
by B(0,7)) is also centered at 0. By definition of {U;}7_,, we have D = B(0,7) \
(U:’Zl U;). Note that 1 g5 7) % N = % + C for some constant C, and 1U?=1 v, ¥ N
is radially increasing. Therefore, fq can be written as
[x -4
—

where g is radially symmetric, and strictly increasing in the radial variable. Since both

Q
fg:lB(g,;)*N—lu:j:lUi *N—E|x|2: —g(x),

fao and @ are known to take constant values on dB(0, ), it implies that g must
be constant on dB(0, 7) too, and the fact that g is a radially increasing function gives
that 0 = 0. This finishes the proof for > %

For Q = %, we do not yet know whether {U; }}'_, are centered at 0. Denote by U
the innermost one. Then we have
x> 0-x

|x —of?
—1,-n N——= - + const  for x € 0o, U1, (2.44)

fQ(x): 4 Uiy Us * 4

where the second equality follows from Lemma 2.11(b), where we used that 1 < j for
all 2 < j < n. Combining (2.44) with the fact that fo = const on o, U; gives 0 =0,
that is, the outermost circle must be centered at 0. This leads to fo = — Z;’zl ly, *
N . Since fq = const on each connected component of dU;, we can apply the last part
in the proof of Corollary 2.10 to show that the {U;}7_, are all concentric. Denoting
their center by 01, we can show that 01 = 0: Lemma 2.11(a) gives fo(x) =ClIn|x —
01| for some C < 0 on dB(0,7), and since we have f = const on dB(0,7) and 6 =0,
it implies that 0; = 0, finishing the proof. O

Proof of Lemma 2.15
For notational simplicity, we shorten po r, Do r, and ¢o g into pr, Dg, and ¢g
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throughout this proof. Recall that dDg = dBg U dV. Clearly we have pgp = RTZ on
0BR, due to pr = 0 on doyy Dgr = dBR. We claim that
NR} R?

RZ
<gp—— <= ondV, (2.45)
2 2 = 2

where N > 1 is the number of connected components of V. Once it is proved, we
. . . 2
apply the comparison principle to the functions ¢g — RT and +g, where

) NR2 o R
X)) = ——————m —_—
& 210g(R/Ro) & x|’

Note that g = 0 on dBg, and g > R° on dV since AV C Bg,. If 0 ¢ Dpg, then the

functions g — RT and +g are all harmomc in DR, their values on dBg are all 0, and

their boundary values on dV are ordered due to (2.45). The comparison principle in
Dr then yields

R2
—g(x) <gr(x)— 5 = g(x) in Dg. (2.46)

NR2
Since g — &~ = g =0 on 0Bg, (2.46) gives |Vog - 1| < |Vg-i| = Wlé)/l?o)

0BR, Wthh is the desired estimate (2.39). And if 0 € Dg, then (2.46) still holds in
Dr \ B¢ for all sufficiently small € > 0 by applying the comparison principle in this
set, and (2.39) again follows as a consequence.

In the rest of the proof we will show (2.45). Its second inequality is straightfor-

on

ward:

R* _R? R
2

2
QR — — < =2 +Sup pr — 57" on aV.
Dp

2 2

Here the first inequality follows from the definition of ¢ and the fact that V' C Bg,,
and the second inequality is due to supp— pr < |D d < R in Proposition 2.8.

It remains to prove the first inequality of (2. 45) Let us fix any R > Ry. Denote
the N connected components of dV by {I'; }1_1, and let [y := dBg. This notation
leads to 0D = Ui=0 Ii.Fori =0,...,N,let L; C R be the range of pgp — RTZ on
I';. By continuity of ¢g, each L; is a closed bounded interval, which can be a single
point. Clearly, Lo = {0} due to pr|sp, = RTZ. Towards a contradiction, suppose that

(pR—7 = — > — 3§ forsomed >0. (2.47)

VUmin := min inf L; —1nf
1<i<N

( R2) N|Ro?

As for the maximum value, since Lo = {0}, we have
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Umax -= max supL; > 0. (2.48)

0<i<N

Fori =1,...,N,using prlr, = const, pr = pr + ‘x‘ ,and I'; C Bp,, the length of
each interval L; satisfies
x| _ RS .
|L;|=o0scr; — < — fori=1,...,N. (2.49)
2 2
Comparing (2.49) with (2.47)—(2.48), we know that the union of {L; }lN= o cannot
fully cover the interval [Upmin, Umax], thus they can be separated in the following sense:
there exists a nonempty proper subset S C {0,..., N} such that the range of L; for
indices in § and S¢ :={0,..., N} \ S are strictly separated by at least §, that is,
min;es inf L; > max;egec sup L; + 8. In terms of g, we have

for > S. 2.50
m1§111r)l @R > {nzgxn}awa + (2.50)

Since @g is harmonic in D g, whose boundary is UlN=o I';, itis a standard comparison
principle exercise to show that (2.50) implies

Z/ Vg -iido >0, (2.51)

ieS

where 7 denotes the outer normal of D g. But on the other hand, we have

/ Ver-iido =0 fori=0,...,N. (2.52)
T;

To see this, the cases i = 1,..., N can be done by an identical computation as (2.24),
and the i = 0 case follows from [, ¢r-7fido = [, Apgrdx =0 and the fact that

dDg = UzN=o I';. Thus we have obtained a contradiction between (2.51) and (2.52),
completing the proof. U

Proof of Lemma 2.16

Assume that V' has N connected components {Vj}ﬁy=1 for N > 1. For notational
simplicity, we shorten Do r, po,r, and ¢o g into Dg, pr, and ¢g in this proof.
Let eg := 1 ~|DR| — supp , pr, which is nonnegative by Proposition 2.8. Towards
a contradlctlon assume that there exists a diverging subsequence {R;}?°, such that
lim; o €g; = 0.

Define ¢g; := gr; — =-. We claim that {¢g, }72, has a subsequence that con-
verges locally uniformly to some bounded harmonic function @s, in R%\ V.
To show this, we will first obtain a uniform bound of {¢g; }72,. Note that (2.45)

2
gives that supyy |@g, | < % for all i € N*. Since ¢g, =0 on dBg, foralli € N*,
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the maximum principle for harmonic functions gives supp & PR | < NTR‘% foralli e
N,

For any R > 2Ry, we will obtain a uniform gradient estimate for {¢g, } in Dg
for all R; > 2R. First note that since dBg is in the interior of Dg, (due to R; >
2R), the interior estimate for harmonic functions (together with the above uniform
bound) gives that [|@g; | c238 ;) < C(N, Ro). On the other boundary 9V, recall that

Grlov, = EL + ¢, with [ ;] < SEDBS Thus |Gg, lle2ap ) < C(N. Ro) for
all R; > 2R, and the standard elliptic regularity theory gives the uniform gradient
estimate supp, , |[V@g;| < C(V). This allows us to take a further subsequence (which
we still denote by {¢g, }) that converges uniformly in D g to some harmonic function
@00 € C(DR). Since R > 2Ry is arbitrary, we can repeat this procedure (for countably
many times) to obtain a subsequence that converges locally uniformly to a harmonic
function @ in R?\ V, where Poolov; = % +cj with|c;| < w. This finishes
the proof of the claim.
Now define

R P
PR; ‘= PR; 5 = YR, 5
which is known to converge locally uniformly to peo := Poo — % in R2\ V. Note that

Poo is not radially symmetric up to any translation. To see this, recall that peolay; =

c¢;. If poo is radial about some xo, then it must be of the form M + ¢ due to
A pso = —2. As a result, the level sets of p, are all nested circles, thus V must be a
single disk (where we used that each connected component of V' is simply connected).

Next we will show that lim; o €g;, = 0 implies that pe, is radial up to a trans-
lation, leading to a contradiction. For k € R, let g; (k) := [{x € Dg; : pg,; (x) > k}|.
In the proof of Proposition 2.8, we have shown that g;(0) = [Dg; |, g; is decreasing
in k, with g (k) < =2z for almost every k € (0, SUPp 5. PR;)- Since SUPp . PR; =

% |DR,;| —€R,;, we can control g; (k) from below and above as follows:
(IDR;| =27k —2mer;), < gi(k) < (|Dg;| —27k), forallk >0.  (2.53)

Likewise, define g;(k) := |[{x € Dg, : pg,;(x) > k}|, and goo(k) =|{x € Dpg, :

Doo(X) > k}|. Since pr;, = pr; — R , we have g; (k) = gi(k + R 5-) forall k > —R—,
thus (2.53) is equivalent to

2
(—IVI =27k —2meg;), <&i(k) < (=|V|-2nk), forallk> —%.

The locally uniform convergence of pg; gives lim; o & = g0, and since we assume
that lim; . €g; = 0, we take the i — oo limit in the above inequality and obtain
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oolk) = (=27k —|V[), forallk eR,
which implies that

Soo(k) =—2m forallk € (—oo, Sup poo). (2.54)
R2\V

Applying the proof of Proposition 2.8 to peo (note that the proof still goes through
even though p, takes negative values, and is defined in an unbounded domain), we
have that (2.54) can happen only if Dy := {poo > k}U(U{j:Cj >k}7]~) is a disk for
almost every k € (—00, Supg2\y Poo), and |V peo| is a constant on almost every dDy.
These two conditions imply that all regular sets of p, are concentric circles, thus p
is radial up to a translation, and we have obtained a contradiction. O

3. Radial symmetry of nonnegative smooth stationary/rotating solutions for 2D
Euler with 2 <0

Let w(x,7) = wo(Rgqrx) be a nonnegative compactly supported stationary/rotating
solution of 2D Euler with angular velocity € < 0. Recall that by (1.7), fo := wg *
N — % |x|? is a constant along each connected component of a regular level set of
wg. In this section, we prove that wy is radial up to a translation for Q = 0, and radial
for 2 < 0. As we discussed in the Introduction, the @ > 0 condition is necessary: in
a forthcoming work [42] we will show that there exists a compactly supported, sign-
changing smooth stationary vorticity g that is nonradial, and the construction also
works for €2 < 0 that is close to 0.

Most of this section is devoted to the proof of Theorem 3.5 in the 2 = 0 case
(the €2 < 0 case is done in Corollary 3.6 as a simple extension). In the proof, the
two key steps are to show that every connected component of a regular level set of w
is a circle, and that these circles are concentric. These are done by approximating
® by a step function w, = Zf-‘i”l a;1p; such that the sets {D;} are disjoint, and
|l — wp||Le = O(1/n). We then define ¢" = % + Zﬁ”l 1p, pi corresponding
to this step function w,, and compute 4, = [ w, V" - V fdx in two ways.

Due to the O(1/n) error in the approximation, the qualitative statement in Propo-
sition 2.8 that “the equality is achieved if and only if D is a disk or an annulus” is no
longer good enough for us. We need to obtain various quantitative versions of (2.15)
for doubly connected domains, and three such versions are stated below.

In Lemma 3.2, the quantitative constant co > 0 depends on the Fraenkel asym-
metry of the outer boundary defined in Definition 3.1.

Definition 3.1 (cf. [34, Section 1.2])
For a bounded open set E C R?, we define the Fraenkel asymmetry A(E) € [0, 1) as
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|EA(xo +71B)|

e 2 _ 2 _
eA(E).—l)g)f{ | xR, rr —|E|},

where B is a unit disk in R2,

LEMMA 3.2

Let D be a doubly connected set. Let us denote the hole of D by an open set h, and
let D := D U h. We define p in D as in Lemma 2.6. Then if A(D) > 0, there is a
constant co > 0 that depends only on A(D) such that

| D]

E(l —Co).

plon <

Lemma 3.2 will be used in the proof of Theorem 3.5 to show that all level sets

of w are circles. To obtain radial symmetry of @, we also need to show that all these

level sets are concentric. To do this, we need to obtain some quantitative lemmas for

a region between two nonconcentric disks. In Lemma 3.3 we consider a thin tubu-

lar region between two nonconcentric disks whose radii are close to each other, and
obtain a quantitative version of (2.15) for such a domain.

LEMMA 3.3
For € > 0, consider two open disks By := B(01,1) and B, = B(03, 1 + €) such that
B1 C Bs,. Suppose that |01 — 03| = ae with a € (0,1), and let p be defined as in

Lemma 2.6 in D := B, \ By. Then if € and a satisfy that 0 < € < ‘;—i, we have

|D]| a?
<2y, 3.1
Plasy = 2 ( 16) G.D

In Lemma 3.4 we consider a region between two nonconcentric disks (that is not
necessarily a thin tubular region), and obtain a quantitative version of (2.15) for such
a domain.

LEMMA 3.4

Consider two open disks B, := B(o1,1) and Br = B(02, R) such that B, C Bg. Let
p be defined as in (2.6) in D := Bg\B;. Suppose that | := |0y — 02| > 0 and there
exist 81 > 0 and 85 > 0 such that 1 <r < R < 8,. Then there exists a constant cg
that depends only on 81, 65, and | such that

|D|
plas, < g(l —¢p).

The proofs of the above quantitative lemmas will be postponed to Section 3.1.
Now we are ready to prove the main theorem.
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THEOREM 3.5
Let @ be a smooth® compactly supported nonnegative stationary solution to the 2D
Euler equation. Then w is radially symmetric up to a translation.

Proof

Note that as mentioned in step 1 of Proposition 2.8, by Sard’s theorem, we have that
for almost every k € (0, |w|z>), @~ '({k}) is a smooth 1-manifold. Furthermore,
since w is compactly supported, each such level set is a disjoint union of a finite
number of simple closed curves. For any such closed curve, we call it a level set
component in this proof.

We split the proof into several steps. Throughout steps 1, 2, and 3, we prove
that all level set components of @ must be circles. In step 4, we will prove that any
two level set components are nested, that is, one is contained in the other. Lastly, we
present the proof that all level set components are concentric in steps 5 and 6.

Step 1. Towards a contradiction, suppose that there is k > 0 that is a regular
value of w, and suppose that @~!({k}) has a connected component I" that differs
from a circle. Recall that int(I") denotes the interior of I", which is open and simply
connected. Since I" is not a circle, we have 4 (int(I")) > 0, with ¢ as in Definition 3.1.

In this step, we investigate level set components near I'. Since & is a regular value,
we can find an open neighborhood U of I" and a constant 1 > 0 such that |Vw| > 5
in U. For any x € I", consider the flow map ®;(x) originating from x, given by

Vo (P (x))

d
4t " = (@, ()1

with initial condition ®¢(x) = x. Since |VVT(U|2 is smooth and bounded in U, we can
choose 61 > 0 so that ®;(I") := {®;(x) : x € '} lies in U for any ¢ € (—§1,8;). Note
that the ®;’s are diffeomorphisms, thus ®,(T") is also a smooth simple closed curve
for t € (—681,61). Then we observe that

Vo (P (x))

d
7@ (@) = Vo (@) - Tt

T =1 for(t,x) € (—61,61) xT. (3.2)

Hence for each t € (—61,61), ®;(I") is a level set component and

(@4, (T)) # (P (T)) ift1 # 1. (3.3)
By continuity of the map (¢, x) — ®;(x), we can find 8, € (0, ;) such that

2In fact, it is sufficient to assume that wy € C2(RR?). In the proof, the application of Sard’s theorem in step 1 is
the step that requires the highest regularity and it is applicable for functions in C 2 (R?). (See [79, Theorem 6.1].)
Therefore, wg € C2(R?) ensures that @ ! ({k}) is a C? 1-manifold for almost every k € (0, ||| L), whose
regularity is sufficient for all the following steps.
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A(int(®;(I))) > %A(int(F)) for any t € (—83,8,). (3.4)

Since two different level sets cannot intersect, we can assume without loss of gener-
ality that int(®_s, (I")) C int(®s, (I')). Then it follows from the intermediate value
theorem and (3.2) that

int(®_s, (")) C @,(T') Cint(Ps,(I')) forany 7 € (=55, 85). (3.9

Lastly, we denote V := int(®s, (I"))\int(P_s, (I')) which is a nonempty open doubly
connected set; therefore | V| > 0.

Step 2. For any integer n > 1, we claim that we can approximate @ by a step
function w, of the form w,(x) = ZIM="1 a;1p, (x), which satisfies all the following
properties:

(a) each D; is a domain with smooth boundary and possibly has a finite number
of holes;

(b) each connected component of dD; is a level set component of w;

(c) DiND;=0ifi #j;

@ lop = ol peog2) < Fll@llLoo@n)-

To construct such w, for a fixed n > 1, let ro = 0 and ry41 = |w|| L. We
pick rq,...,r, to be regular values of w such that 0 <r; <--- <71, < |@| Lo,
and riy1 —r; < Z||lw||goe fori =0,...,n. We denote D; :={x € R? : r; < w(x) <
rig1yfori =1,...,n—1,and let D, := {x € R2: w(x) > rp}. Thus for each i =
1,...,n, D; is a bounded open set with smooth boundary. We can then write it

g
as D; = Ul;lDf for some m; € N, where the Df ’s are connected components of
D;. Then let w,(x) := > ;1 Z;’;’l 1 Dl By relabeling the indices, we rewrite

wn(x) = Ziﬂi"l a;lp,;, where M, = > _ymi, and each &; € {ry,...,ry}. One can
easily check that such w, satisfies properties (a)—(d).
Of course, there are many ways to choose the values ry,...,r,, with each

choice leading to a different w,. From now on, for any n > 1, we fix w,(x) :=
Zf‘i " @i 1p, (x) as any function constructed in the above way. (Note that o; and D;
all depend on 7, but we omit their n dependence for notational simplicity.)

Finally, let us point out that for w, (x) constructed above, if D; C V for some i,
then D; must be doubly connected, since step 1 shows that all level set components
in V are nested curves. We will use this in steps 3 and 5.

Step 3. For any n > 1, let w, (x) = Zf‘i”l a;1p,(x) be constructed as in step 2.
For each D;, we define p! in D; as in Lemma 2.6. We set

pri=00 plp,,
ofi=pi+ 5 inD;, (3.6)

M"
" =319 ;.
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As in Theorem 2.9, let f := w * N, and we will compute

Mﬂ

g = /R (V" () Vf () dx = i;ai [D V') VSWdr G)

in two different ways and derive a contradiction by taking the n — oo limit.
On the one hand, the same computation as in (2.23)—(2.24) yields that

M,
=Y o[ s@vew ido- [ sesdma)=o 68
= aD; D;
On the other hand,

Jn

/wn(x)x-Vf(x)dx—l-/ wp(x)Vp"(x)-Vf(x)dx
R2 R2

T+ 47

Since w,, satisfies property (d) in step 2, it follows that
lim 47 =/ w(x)x-Vf(x)dx.
n—->oo ]Rz

A similar computation as in (2.25) yields that

/ w(x)x - Vf(x)dx——/ / a)(x)a)(y) x X |;}) dxdy
= [, [t axay
_ ﬁ([l;w(x) dx)z, (3.9)

where we used the symmetry of the integration domain to get the second equality.

Now we estimate the limit of 47. By Lemma 2.13, we have fDi |Vpr|2dx <
fDi |x|? dx, hence |wnV p|l L2 g2y is uniformly bounded. Since @, — @ in L, the
bounded convergence theorem yields that

lim wpVp" - V((wp —w) * N)(x)dx =0

n—oo ]R2

Therefore,

liminf 4} = llmlnf/ wp (X)Vp"(x)-V(wy * N)dx.
—> Rz

n—>oo
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From now on, we will omit the n dependence in p}’ for notational simplicity. Let

us break the integral on the right-hand side into

/ wp (X)Vp"(x)-V(wy * N)dx
R2

M,
D;

i,j=1

ZZOliz/ Vpi-V(lp, *N)dx-l—Za,-aj/ Vp,'-V(IDj
— D; — D;
i=1 ! i#j !
=FN+F

For Fy, the divergence theorem yields

My

Fi :Za?(/ piV(lp, *N)-ﬁdo—/ pidx)
; aD; D;

* N)dx

(3.10)

@3.11)

where the second equality follows from an identical computation as in (2.26). Then

by Proposition 2.8, we have

1 My
2112
Flz—E;“HDJ.

For F;, the divergence theorem yields

(3.12)

F2=Za,~ozj([ in(IDj*J\/)-ﬁdo—/ piledx)
oy D, D;

:Z(xio{j/ in(IDj*eN)'ﬁdU,

i oD

where we used property (c) in step 2 to get the last equality.

For i # j, recall that as in the proof of Corollary 2.10, we denote j < i if D; is

contained in a hole of D;. Then the divergence theorem gives

/ in(lp_i*N)~ﬁd0

1

{:o if j A,

> —supyp, pilDj| if j <i.

(3.13)
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Next we will improve this inequality for j <i and i € L, where L :={i : D; C
V'}. (Note that L depends on wj,, where we omit this dependence for notational sim-
plicity.) From the discussion at the end of step 2, we know that D; has exactly one
hole for all i € L. Using the divergence theorem together with this observation, (3.13)
becomes

=0 if j A1,
/ piV(p,; x N)-iido { > —supp, pi|D;| if j <iandi ¢L, (3.14)
D; ' '

1

= —pils.p;|1Dj| ifj<iandielL.

For the second case on the right-hand side, we simply use the crude bound
SUpp, pi < |Z§| from Proposition 2.8. For the third case, we can have a better bound:
for any i € L, by Lemma 3.2 and (3.4), there exists an € > 0 that depends only on
(int(I")) (and in particular is independent of n) such that p;|, p;, < (% —¢€)|Dj].

Thus (3.14) now becomes

=0 if j A1,
/aD‘in(lo,‘*«N)'ﬁdo > —L|Di|| Dyl if j<iandi ¢ L, (3.15)
’ > (£ —e)|D;||D;| if j <iandi€L.

Now we are ready to estimate F». Let us break it into

F, = Z a,'aj/ in(lpj*e/V)~ﬁdO'
D;

Jj=<i d
G.NELXL
+ Z oel-ozj[ piV(lp, * N)-iido
j<i aD;
(i.j)eLxL
. L DI, (= —)iDilID)]
> — ajo;—|D;||Dj| — Z oo ——e) 11D,
— g T — \2x ne
J=<1 J=i
(. J)ELXL (i.j)eLxL

where the first equality follows from case (1) of (3.15), and the second inequality
follows from cases (2) and (3) of (3.15). Finally, by exchanging i with j and taking
the average with the original inequality, we have

1
F, > “in Z (Li<; +]lj<i)aiaj|Di||Dj|

i#j
(. )ELXL

1 1
- = Z (ﬂi-<j+]lj-<i)aiaj(—_6)|Di||Dj|
2 vy 21
(i.j)EL],XL
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1 1 1
2 X ewgIDillDsl =5 3 e (5 —e)IDillD;]
i#j i#]
. J)ELXL (i.j)eLxL
1 €
=~ 2 jIDillDjI+ 5 Y e Dil|D;l. (3.16)
i#] it
(i,j)eLxL

where the second inequality is due to the fact that for any i # j, at most one of i < j
and j <17 can be true, thus we always have 1, .; +1;<; <1.
Therefore, from (3.12) and (3.16) it follows that

M,
1 n
Fi +FZZ_E Z a;jaj|D;i||Dj|
i,j=1
€ € 2 2
+5 D @iy DillDj] =5 Y e Dil
(i,j)eLxL iel

M,
1 e 2 e 2 e o
“E(E“"D") +5(ieZLa’|D'|) Sy elpl 61

Since we will send n — o0, in the rest of step 3 we will denote L by L” to emphasize
that L depends on w,. (In fact, @; and D; depend on n as well, and we omit the n
dependence for them to avoid overcomplicating the notation.)

Note that Y ;c;» @;1p, converges to wly in L'(R?). Also if i € L", then the
nondegeneracy of |Vw| on V yields that lim, o sup;¢z» | D;| = 0; consequently

lim Y of|D;|* < ||wl|ze lim sup [D;| [ wdx=0.
n_)ooieL" n—=>00 epn R2

Therefore, it follows that
liminfd} = liminf(F; + F2)
n—>oo n—oo

. 1 Mx 2 . € 2
== Jim, o (eI Di) o Jim 5(3 el i)

i=1 ieLn

“g (s 5 ey’ o

Note that o is strictly positive in V, due to |Vw| > 0 in V and @ > 0 in R?. Thus
from (3.8), (3.9), and (3.18), it follows that

n—->oo

2
0= lim 4" > lim J” + liminf 4" > f([ w(x)dx) >0, (3.19)
n—o00 n—o00 2\Jy
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which is a contradiction, and we have proved that any level set component is a circle.

Step 4. In this step, we show that every pair of level set components are nested.
Towards a contradiction, assume that there exist two level set components I'; and I,
that are not nested.

From step 3, we know that I'; and I', are circles. Then the disks int(I";) and
int(I";) are disjoint, and they must be separated by a positive distance since I'; and
I', are level sets of regular values of w. As in step 1, using the flow map ®; originating
from the two circles, we can find disjoint open annuli V; and V, such that I'; C V; for
i = 1,2, and both 9,y V; and 0y, V; are level set components of .

Forany n > 1, let w, (x) = Z?i”l a;1p, (x) be constructed as in step 2, and let

LY:={i:D;cVi} and L5:={i:D; CVa}.

Let p; be defined as in (3.6) of step 3, and let 4" be defined as in (3.7). Then on the
one hand, the same computations as in step 3 give

1 2
lim "=0 and lim 47 = —([ o(x) dx) : (3.20)
n—o00 Rz

n—o00 47

Let F; and F; be given by (3.10). For Fi, the estimate (3.12) still holds. For F5,
using (3.13) and Proposition 2.8, we have
1
Pz > e Di||Dj.

i<jorj<i

Since V; and V; are assumed to be not nested, if (i, j) € L x L}, then neither i < j
nor j < i. Therefore, it follows that

1 1
FZZ_EZaiaj|Dille|+E . Z a;oj|Di|| Dl
i#] @, j)eL1xLa

1
o Y | Di||Dj.
()eL1XLo

Combining the estimates for F; and F, yields

M
1 - 1
Fi+Fz—7— D i | D;i[D;| + E<Z ai|Di|>(Z Oli|Di|)-
L,j=1 ieL! ieLl

As n — 00, since 3 ;cpnailp; and ) ;cpnailp; converge to wly, and wly,,

respectively, in L!(R?), we have
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1 2
liminfd? > lim (F; + F») = ——(/ w(x)dx)
n—o00 n—o00 47 R2

+ %(/V] w(x) dx) (/Vz w(x) dx). (3.2D)

Combining (3.20) and (3.21) gives us a similar contradiction as in (3.19), except that
([ @(x) dx)? is now replaced by %(fv1 w(x) dx)(sz w(x)dx). Thus we com-
plete the proof that level sets are nested.

Step 5. In this step, we aim to show that all level set components are concentric
within the same connected component of {w > 0} := {x € R? : @ > 0}. This immedi-
ately implies that each connected component of {w > 0} is an annulus or a disk, and
o is radially symmetric about its center.

Towards a contradiction, suppose that there are two level set components I'j, and
[oue in the same connected component of {@ > 0}, such that they are nested circles,
but their centers Oj, and O,y do not coincide. We denote their radii by rj, and roy,
and define

U :=int(Toy) \ int(Iy).

For an illustration of Iy, and 'y and U, see Figure 4(a).

We claim that w is uniformly positive in U. Recall that all level set components
of w are nested by step 4. Thus if @ achieves zero in U, then the zero level set
must also be nested between I, and 'y, since it can be taken as a limit of level set
components whose value approaches 0; but this contradicts with the assumption that
Ty and Ty lie in the same connected component of {w > 0}. As a result, we have
Win = infU w>0.

For a sufficiently large n, let w, = Zf‘i"l a;1p, (x) be given as in step 2, where
we further require that both T3, and I’y coincide with some boundary of D;. (This
is allowed in our construction of w, in step 2, since w is regular along both I'j;, and
Ioue.) Let us denote

Bp:={1<i<M,:D; CU},

and note that U := ( J, B, D;. See Figure 4(b) for an illustration of {D; };ep,, -

As before, we denote i < j if D; is nested in D ;. For the integral 4" in (3.7), on
the one hand, we have 4" = 0 for all n > 1 by (3.8). On the other hand, following the
same argument as in step 3 up to (3.13) (where we also use that each D; is already
known to be doubly connected, thus .faD,» piV(lp, x N)-ndo = —pils,p;| D] if
Jj <1i), we have

1 2

1

mint” = imin( = (1)
i=
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out

{Di}ieBn

™\

(@) (b)

Figure 4. (Color online) (a) Illustration of the circles I'j, and ['oy, whose centers are Oj, and
Oout- The set U is colored in blue. (b) For a fixed 7, each open set {D; }; ¢ g,, is colored in yellow.
Note that their union gives exactly the set U.

M,

Yo [ pdv- Y wanln D))

i=1 1<i,j<Mp,j<i

.. 1
ziiminf( Y« (51Dil = pilawn, ) 1D;1)-

1<i,j<My,j<i

=:Ty

where in the last step we used Proposition 2.8.

Note that Proposition 2.8 gives T, > 0, where we have strict positivity, since
Oin # Oy implies that some {D;};cp, must be nonradial. But since the area of
these D;’s may approach 0 as n — oo, in order to derive a contradiction after tak-
ing liminf, ., we need to obtain a quantitative estimate for Proposition 2.8 for a
thin tubular region D; between two circles, which is done in Lemma 3.3.

Next we show that the sets {D;};ep, that are “nonradial to some extent” must
occupy a certain portion of U. For i € B, denote by o} and r! the center and radius
of 0;,D;, and likewise of)m and r(‘;u[ the center and radius of o, D;. Note that if D; is
the innermost set in {D; }; ¢ p,,, then we have ofn = O, and the outermost D; satisfies
0!« = Oou. In addition, if o D; = iy D; for some i, j € By, then o}, = 01{1- Thus
the triangle inequality gives

> o — 0l = [0 — Oou| =1 co > 0. (3.22)

out
i€B),

In order to apply Lemma 3.3 (which requires the region to have inner radius 1),
for each i € By, consider the scaling
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SN i Y=2 ) (i
pi(x) := (rip) " pi (riyx).

Then p; is defined in D,- = (riﬂl)_lDi. Due to the scaling, 13,- has inner radius 1

(denote the hole by h~,~), and outer radius 1 + ¢;, where ¢; := ré“;—,_r‘l" > 0. In addition,

the distance between the centers of 8in5,~ and aombi is a;€;, where

|O;n — Oéut|
i

a; .= s
|rin - rout|

One can also easily check that p; satisfies Aﬁi = —2in D;, and fa}? Vp-iido =

~ 2
—2|h;j| = —2nm.By Lemma 3.3,if 0 < ¢; < 64 ,then pl|ah < ‘D |(1— 1%)- Thus in
terms of p;, we have
<L 2|D;| ifi € By satisfies r! < cra? 3.23
Pi|8inDi—E| il —cia;|D;| ifi € By satisfies r,, — 1, < ca2a;, (3.23)
where ¢ := 32n and ¢, := %‘; are independent of n and i, due to the fact that ri"n >

rin > 0 for all i € B,,. Using the definition of a;, (3.22) can be written as

> ailrh, =il = co. (3.24)

i€By

Note that ) ;g |rl —rl,| satisfies the upper bound

i i < |U| =M 3.25
Z|rin routl— _ ’ ( )

27r;
i€B, mn

which follows from

U1= 2 1Dil = D Iy = roud (i + o)

i€By i€By 21

Combining (3.24) and (3.25) gives
Z ]1 T\ql i“ r(l’ml z Z (ai 2M) in outl = 2 (3.26)
i€By i€By

where the first inequality follows from 1 ~ o> ai — 5 (recall that a; € (0, 1)),

and the second inequality follows from subtractmg times (3.25) from (3.24).
Let

€o
Kn {l € Bn a; > m}
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Using this definition and the fact that | D;| > 27 rin|ri, — r

1 ]> (3.26) can be rewritten
as

D O ADil > 2w Y |rf =l = wrinco. (3.27)

iekK, iekKy,

Now we take a sufficiently large 7, and discuss two cases (note that different » may
lead to different cases).

Case 1. Every i € K, satisfies rl,, — rl, <min{ca(5)>. 2“;60} By definition of
K, we have rl, —ri < c2(57 )2 < cpa? for i € K;,. (The motivation of the second

term in the min function will be made clear later.) Then by (3.23), we have

cieq
4M?2

Since K, is a subset of B, (and recall that o; > wpi, > 0 for all i € By,), we have the
following lower bound for 7,:

1
Thzom, ) (Z|Di|_pi|3in0i)|l)j|

1 :
§|Di|—Pi|amD,« > c1a}|D;| > |D;| foralli € K,.

i,jeKy,j<i
2
C]C ci1C
>0 D, g PilDi=en, D0 o BIDID;]
i,j€EKy,,j<i i,jEKn,i#Jj
L ZIDl) 3D (328)
mm16M2 i . .

i€k,

Note that the second term in the min function in the assumption gives

. TrinC
m}a(x |D;| < 27 rou(rl, —rl) < —= 0 < Z |D;],

ie out
lEKn

where we used (3.27) in the last inequality. Applying this to the right-hand side of
(3.28) gives

, ccg 1 c1c3
Ty 2a)minm'i(z |D |) m1n32M2(7TrmCO)

i€k,

Case 2. If Case 1 is not true, then there must be some iy € K, satisfying régt —

r > mm{cz( )2, 2;:(:} =: ¢3, which leads to
|

io

i CcoC3
|0f[(1) outl - al() (rout r]n A

=:1

2M

Although this set Dj, is likely not thin enough for us to apply Lemma 3.3, since
|0;® — 08| is bounded below by a positive constant independent of 7, we can still use
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Lemma 3.4 to conclude that %|Di0| — Diolay, D;, = ¢4 for some ¢4 > 0 depending
only on ry,, Fou, and /. This leads to

1
T, > E wminajc4|Dj|Zwminc4 E o(j|Dj|Zwminc4'5 wdx,
io>J D Cint(Tn) int(T'n)

where the last inequality follows from the fact that for all sufficiently large 7, the
definition of w, gives Y- cin(ry) 1D 71 = fier,) @n dx = 3 Sy @ dx. Note
that the last integral is positive since @ > 0 on I, and it is clearly independent of r.

From the above discussion, for all sufficiently large n, regardless of whether we
are in Case 1 or 2 for this n, we always have that 7}, is bounded below by some
uniformly positive constant independent of n. Therefore, taking the n — oo limit
gives

liminfd” > liminf 7, > 0.
n—>oo n—->oo
This contradicts 4" = 0, therefore finishing the proof of step 5.

Step 6. It remains to show that all connected components of {w > 0} are con-
centric. If {w > 0} has finitely many connected components, then we could proceed
similarly as the end of the proof of Corollary 2.10. But since {®w > 0} may have count-
ably many connected components, we need to use a different argument.

Let us denote the connected components of {w > 0} by {U;}ie;, where [
may have countably many elements. Denote their centers by {0;};es, their radii
by {R;}ier, and their outer boundaries by {don U, }icr. Without loss of generality,
suppose that the x-coordinates of their centers {01‘1 }ier are not all identical.

Among the (possibly infinitely many) collection of circles {90, U; }ier, let T’y be
the “circle with rightmost center” among them, in the following sense:

o If there exists some ip € I such that o} = sup;c; o}, then we define T, :=
douUi, - (If the supremum is achieved at more than one index, then we set iy to be any
of them.)

e Otherwise, take any subsequence {ir}reny C I such that limg_, oilk =
Sup; ez 01-1. Since @ has compact support, we can extract a further subsequence
(which we still denote by {ix }xen) such that both o;, and r;, converge as k — oo,
and denote their limit by O, € R? and R, € R. Finally, let ', := dB(O,, R,).

With the above definition, we point out that f := w * N = const on I',. Note
that in both cases above, we can find a sequence of level set components of @ that
converges to I'y, in the sense that the Hausdorff distance between the two sets goes
to 0. Since f = const on each level set component of w, continuity of f gives that
f =conston I.

Let fi (x) := (wly;) * N fori € I'; note that by definition we have f =", ., fi.
Lemma 2.11 gives the following:
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(a) for all x € (int(3ouU;))¢, we have f;(x) = %(fU[ wdx)n|x —o;|;

(b) If U; is doubly connected, then f; = const in int(0;,U;), where the constants
are different for different i.

Note that for any i € I, U; must be either nested inside I',, or have I', nested
in its hole. (By a slight abuse of notation, we use i < I'; and i > T, to denote these
two relations.) Let TR := (0O} + R,,0?) and Tt := (O} — R,, O?) be the right-
most/leftmost points of the circle I'». Note that (b) implies that f; (I‘rR) = f; (FrL) for
all i > T';, whereas (a) gives the following for all i < I',:

Jy. wdx [y, wdx
———|lf =0 = = — I} —oi| = i(T),

i) =
where the inequality follows from the fact that |0} + R, —o}| >0} — R, — o}|,
which is a consequence of 0} < O} due to our choice of O,. (Also note that I'¥ and
'~ have the same y-coordinate.)

As aresult, summing over all i € I gives f(I'R) > f(T'L), where the equality is
achieved if and only if 0:'1 = O, foralli < TI',. Now we discuss two cases:

Case 1. There is some i < I', with oi1 < O;. In this case, the above discussion
gives f (FrR) > f (FrL), which leads directly to the contradiction f = const on [';.

Case 2. If case 1 does not hold, then let us define I'; as a “circle with leftmost
center” among {doyU; }ies in the same way as I',. Then we must have 011 <0}, and
since case 1 does not hold (i.e., all i < I', satisfy that 0;‘1 = O,), we must have I'; >
I';. By definition of I';, there exists some U;, whose outer boundary is sufficiently
close to I'; and whose center is sufficiently close to O,. As a result, ip < I'; and
0j, > Oj}.

Let FlL and FIR be the leftmost/rightmost points of I';. A parallel argument as
above then gives that f; (I’IL) > fi (FIR) forall i € I. Since we have found an iy < Iy
with oilo > Oll, we have in(FlL) > fio (FIR); thus summing over all i € I gives the
strict inequality f (I‘ZL) > f (FIR), contradicting with f = const on I7.

In both cases above we have obtained a contradiction, thus {o; };e; must have the
same x-coordinate. An identical argument shows that their y-coordinates must also
be identical, thus the {U;};e; are concentric. Since w is known to be radial within
each U; (about its own center) in steps 1-5, the proof is now finished. U

In the next corollary, we show that the above proof for stationary smooth solutions
can be extended (with some modifications) to show radial symmetry of nonnegative
rotating smooth solutions with < 0.

COROLLARY 3.6
Let w(x,t) = wo(Rqsx) be a smooth, nonnegative compactly supported uniformly
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rotating solution of 2D Euler with angular velocity Q2 < 0. Then wy is radially sym-
metric about the origin.

Proof

The proof is very similar to the proof of Theorem 3.5, and we only highlight the
differences. Let {w,} be the same approximation for wq as in step 2 of Theorem 3.5.
We consider the same setting as in (3.6) and (3.7), except with f(x) replaced by
fa(x) :=wo* N — % |x|2. From the assumption on w, we have that fgq is a constant
on each level set component of wg. Thus the same computations in (3.8) give 4" =0
foralln > 1.

On the other hand, we have

J"=/ an<p”-V(w0*N)dx+(—Q)/ wp V" - xdx
R2 R2

=47 4 (—Q) 42, (3.29)
——

>0

The same argument as in (2.34) of Theorem 2.12 gives that 45 > 0. As for 47, in steps
3-5 of the proof of Theorem 3.5, we have already shown that liminf, . J7 > 0,
and the equality is achieved if and only if each connected component of {wg > 0} is
radially symmetric up to a translation, and they are all nested.

Let us decompose supp wy into (possibly infinitely many) connected components
\U;es Ui, with centers {0; }ier. Our goal is to show o; = (0,0) for i € I. Note that it
suffices to show that their x-coordinates satisfy sup;; oi1 < 0. Once we prove this, a
parallel argument gives inf;cy 01.1 > 0, which implies 01‘1 =0 for i € I, and the same
can be done for the y-coordinate.

Towards a contradiction, suppose that sup; ¢; 01.1 > (. We can then define T, in the
same way as step 6 of the proof of Theorem 3.5, that is, it is the “circle with rightmost
center” among {douU; }ier, and its center O, satisfies O} = sup,;¢; 0} > 0. Since
fa = const along each level set component of wg, we again have that fg = const on
I, Let I'X and T'L be the rightmost/leftmost points on T'. Note that their distances
to the origin satisfy |I'rR| > |I'rL |, where the strict inequality is due to the assumption
0} >0.

Let us define f;(x) = (woly,) * N for i € I, and note that fo = (D _;c; fi) —
Q|x|2. Properties (a) and (b) in step 6 of Theorem 3.5 still hold for f;, thus we have
fi(TRY> f;(TE) for all i € I. This leads to

fa(Tf) = (;ﬂm’*)) + Q) INEP > (;ﬂ(Ff)) +(=ITH? = fa(Th),
A4S >0 A4S

contradicting the fact that fo = const on [';. O
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3.1. Proofs of the quantitative lemmas

Before the proof of Lemma 3.2, let us state two lemmas that we will use in the proof.
The first one is a quantitative version of the isoperimetric inequality obtained by
Fusco, Maggi, and Pratelli [34].

LEMMA 3.7 (cf. [34, Section 1.2])
Let E CR? be a bounded open set. Then there is some constant ¢ € (0, 1) such that

P(E) = 2/7VIE|(1+ cAE)?),

where P(E) = #(JE) denotes the perimeter of E.

The second lemma is a simple result relating the Fraenkel asymmetry of a set E
with its subsets U .

LEMMA 3.8 (cf. [27, Lemma 4.4])
Let E € R? be a bounded open set. For all U C E satisfying |U| > |E|(1 — @),
we have

AU) > @

Proof of Lemma 3.2

The proof of the Lemma 3.2 is similar to [27, Proposition 4.5] obtained by Craig, Kim,
and the last author. For the sake of completeness, we give a proof below. Let g(k),

Dy, and Dk be defined as in Proposition 2.8, let D = D U h, and define Ph = Plon.

We start by following the proof of Proposition 2.8, except that after obtaining (2.19),
instead of using the isoperimetric inequality, we use the stability version in Lemma 3.7
to control P(Dy). This gives

1 -
g (k)(g(k) + |h|1p,>k) < —EP(Dk)Z
< 27| Di| (1 + e A(Dy)?)?
< —27(g(k) + |h|1p,=k) (1 + cA(Dg)?).

Hence it follows from Lemma 3.8 that

D)? - - D
g’(k)g—zn(1+c‘A( ) ) for all k suchthat|Dk|z|D|(1—M) (3.30)
16
We claim that
A(D)? . A(D)|D|
g(k)§|D|—2n(1+c T )k forkfmm{ph,v}. (3.31)
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Towards a contradiction, suppose that there is ko < min{py, ‘A’(D )lD | } such that (3.31)

is violated. Since 1 + c% < 2, we have

A(D)|D
g(ko) > |D| ~4mko = D] - 2XPNPL
Therefore,
|Dio| = g (ko) + |h]
A(D)|D
>|D|_w+|h|

4
- AD)|D - A(D)
=151 MR- 42

Hence for all k € (0, ko], g’ (k) satisfies the inequality (3.30). Thus we have

ko A(D)Z
g(ko)§/0 —27t<1+c o )dk+|D|

A(D)?
16 )k"’

=|D|—2n(1—|—c

contradicting our assumption on k.

Finally, to control pj, we discuss two cases below, depending on which one in
A(D)|D|

the minimum function in (3.31) is smaller. For simplicity, we denote A := ==

A(D)?
and B :=c¢ T

Case I: pp, < A. In this case (3.31) holds for all k < py,. Thus

0=<g(pn) =|D|—=27(1 + B)pn,

implying that

|D| |D|
Ph_m_—( —¢o)

for some constant ¢ which depends only on (D).
Case 2: pp > A. In this case (3.31) gives g(A) < |D| —2x(1 + B)A and we use
a crude bound for k > A, that is, g’ (k) < —2m. Therefore, for k > A,

k
glk)= / g'(kydk + g(A) < —2m(k — A) + |D|—2n(1 + B)A
A
=|D|—-2nk —27nAB

< |D|( —LB)—ZJT]C,
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where the last inequality follows from 4 > %. Plugging in k = py, gives

A(D)

0=<g(pn) = IDI(l g B) — 27 pn,
leading to
D
= 21— co.
2
where again ¢o depends only on A (D). O

Next we prove Lemma 3.3.

Proof of Lemma 3.3
Without loss of generality, we can assume that 0; = (0,0) and 0, = (ae,0). To esti-
mate p|yp,, we decompose p into

p = p|3B1g + us
where g satisfies
Ag=0 inD,
g=1 ondBy, (3.32)

g=0 on dB,,

and u satisfies

(3.33)

Au=-2 in D,
u=20 on dD.

Using this decomposition as well as the definition of p, we have
—2|B1|:/ Vp'ﬁd0:p|331/ Vg'ﬁdo—i—/ Vu-ido,
0B 0B} 0B}

where 7 is the outer normal of B throughout this proof. Thus

1
=— 27 — Vu-ndo). 3.34
PlaB, faBl Vg-ndo( bid /331 u-n 0) (3.34)

To estimate p|yp, , it remains to estimate the two integrals in (3.34).
The function g can be explicitly constructed using the conformal mapping from
D to a perfect annulus centered at 0. Consider the Mébius map 4 : C — C given by
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z+b

h(z):=
(2) e

where b € R will be fixed soon. Note that the unit circle and the real line are both
invariant under 4, and 0B, is mapped to some circle centered on the real line. In order
to make 4 (0B,) centered at 0, since the left/right endpoints of dB, are (1 4 €) + ae,
we look for b € R that solves

h(l +€+ae)=—h(—1—¢€+ ae). (3.35)

Plugging the definition of /4 into the above equation, we know that b is a root of the
quadratic polynomial

2 1 —a?

f(b):=b*—
Clearly, for 0 < a < 1, f has two positive roots whose product is 1, thus one is in
(0, 1) and the other in (1, 400). We define b to be the root in (0, 1). One can easily
check that f(a) <0, and f(%) > 0 if a* > 2(1 — a®)e, which is true due to our

a2

assumption a? > 64¢. Thus for all € € (0, &1)> we have

O<%<b<a<1.

Note that /4 is holomorphic in C except at the two singularity points —b and —%.
We have already shown that —b € By, thus it is outside of D. Next we will show that
—% € Bf, which is thus also outside of D. To see this, note that

—1l—€e+ae+b
14+ b(—1—€+ae)

=h(—1—¢€+ ae)

l+e+ae+b
1+b5(1+€+ae)

=—h(l1+€+ae)=

where the inequality follows from the fact that a, b, € > 0. Since the numerator of the
left-hand side is already known to be negative due to a,b € (0, 1), its denominator
must be positive, leading to —% < —1 —€ + ae, that is, —% € BS.

Now we define g : R\ {(—b,0) U (—1/b,0)} — R as

g(x):= 10g|h(z)| +1 forz=ux;+ix;.

1
log|h(1 + € + ae)|
Let us check that g indeed satisfies (3.32). First note that g satisfies the boundary
conditions in (3.32), since & maps D to a perfect annulus centered at the origin, whose
inner boundary is 9B . In addition, g is harmonic in R? \ {(—b,0) U (—1/b,0)}, thus
harmonic in D.
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Using the explicit formula of g, we have

2w
log |h(1 + € + ae)|

Ag(x) = (65,0 (X) = 8(_1 6)(x))

in the distribution sense. We can then apply the divergence theorem to g in By, and
compute the integral containing g in (3.34) explicitly as

27
Vg -ndo=— .
/331 g log [A(1 + € + ae)]

As for the integral containing u in (3.34), we compare u with a radial barrier function

(3.36)

w(x) :==2(|x| = 1)(Jx| = 1 —2¢),

which satisfies w = 0 on dB; and w > 0 on dB,. Note that

44 4e
r

1
Aw:(ar,+;a,)w=—8+ <_2 inD,

where we used that € € (0, %) and r > 1 in D in the last inequality. Thus w — u is
superharmonic in D and nonnegative on dD, which allows us to apply the classical
maximum principle to obtain u < w in D. Combining this with the fact that u = w =
0 on 0B;, we have

- - d
Vu(x)-n(x) <Vw(x)-n(x) = d—w(r)|r:1 =4¢ forall x € 9By,
r
hence

/ Vu-ido < 8me. (3.37)
0B

Plugging (3.36) and (3.37) into (3.34), we obtain

plag, <log(|h(1 + €+ ae)|)(1 + 4e).
Since logs < s — 1 for s > 1, it follows that
_ l+e+ae+ b
14+ b(1+€+ae)
a—2b—ab—be—ab6)

1+b(1+4+€+ae)
2

S )= )

10g|h(1 +6+ae)| <h(l14+e€+ae)—1

=e<1+
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. . . . . 2
where we used b > 7 to obtain the last two inequalities. Finally, using that € < &,
we have

plan, =e(1- ) (14 ) ze(1- ) <21 L),

where in the last step we use that | D| = (1 + €)? — & > 27e. This finishes the proof
of the lemma. (]

Finally we give the proof of Lemma 3.4.
Proof of Lemma 3.4
Without loss of generality, we can assume that o, is the origin. Let  := p|yp, . From

the proof of Proposition 2.8, we already know that g’ (k) < —27, where g(k) := |{x €
D : p(x) > k}|. This implies that g(k) > —2m(k — ). Therefore, we have

B B
_ _ _ g2
Lpdxi[o g(k)dkz[0 2n(k —B)dk =np~.

On the other hand, the same computation in the proof of Lemma 2.13 gives

1 1
piB 1+ [ pax=s [ (vprax< [ P
D 2Jp 2J/p

1 1
—/ |x|2dx=—(/ |x|2dx—/ |x|2dx)
2Jp 2 Bgr By

D|? D||B B/ ? 1
=| | +| || r| +| r| _5/ |x|2dx
By

Since

4 2 4
_IDP | IDIB_1B,|
4 2 2

it follows that

D|? D||B 1?|B
4 2w 2

(3.38)

By solving the quadratic inequality (3.38), we find that

D]

B < E(l —¢o)

for some constant ¢y which depends only on 61, 85, and /. O



3016 GOMEZ-SERRANO, PARK, SHI, and YAO

4. Radial symmetry for stationary/rotating gSQG solutions with 2 <0

In this section, we consider the family of gSQG equations with 0 < & < 2, and study
the symmetry property for rotating patch/smooth solutions with angular velocity 2 <
0.

Let us deal with patch solutions first. As we have discussed in the Introduction,
we cannot expect a nonsimply connected patch D with 2 < 0 to be radial, due to
the nonradial examples in [28] and [41] for « € (0, 2). For a simply connected patch
D, the constant on the right-hand side of (1.6) is the same on dD, which motivates
us to consider Question 2 in the Introduction. The goal of this section is to prove
Theorem C, which gives an affirmative answer to Question 2 for the whole range
a €]0,2).

Our results are not limited to the Riesz potentials K 4 in (1.4); in fact, we only
need the potential being radially increasing and not too singular at the origin. Below
we state our assumption on the potential K, which covers the whole range of K, 4
with « € [0, 2).

(HK) Let K € C'(R? \ {0}) be radially symmetric with K’(r) > 0 for all r > 0.
(Here we denote K(x) = K(r) by a slight abuse of notation.) Also assume that there
is some C > 0,6 > 0 such that K'(r) < Cr=4=1%8 forall 0 < r <1.

Our proof is done by a variational approach, which relies on a continuous Steiner
symmetrization argument similar to that of [13].

4.1. Definition and properties of continuous Steiner symmetrization

Below we define the continuous Steiner symmetrization for a bounded open set D C
R? with respect to the direction e; = (1,0,...,0), which can be easily adapted to
any other direction in R? . The definition is the same as [13, Section 2.2.1], which we
briefly outline below for completeness.

For a 1-dimensional open set U C R, we define its continuous Steiner sym-
metrization M *[U] as follows. If U = (a, b) is an open interval, then M *[U] shifts
the midpoint of this interval towards the origin with velocity 1, while preserving the
length of interval. That is,

(a—t sgn(“;b),b -7 sgn(#)) for0<7 < Ia;bl’

b=a b= +b
(—bza boa) for v > latbl,

M*U] .= {

If U= U1N=1 U; is a finite union of open intervals, then M*[U] is defined by
UIN=1 M ®[U;], and as soon as two intervals touch each other, we merge them into one
interval as in [13, Definition 2.10(2)]. Finally, if U = Ufil U; is a countable union
of open intervals, we define M *[U] as a limit of M’[va=1 Uijlas N - oo asin [13,
Definition 2.10(3)]. See [13, Figure 1] for an illustration of M *[U].
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D :l\ D] :L\

NN
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X N\

{x1 =0} 1x; =0}

Figure 5. (Color online) Illustration of the continuous Steiner symmetrization ST[D] for a set
D C R2. The left figure is the set D, with the midpoints of all subintervals of its 1D section
highlighted in red circles. The right figure shows the set ST[D] for some small 7 > 0, with the
new midpoints denoted by blue squares.

Next we move on to higher dimensions. We denote a point x € R? by (x1,x’),
where x' = (x2,...,xg7) € R4~1. For a bounded open set D C R and any x’ €
Rd_l, we define the section of D with respect to the direction x; as

Dy :={x1 €R: (x1.x") € D},

which is an open set in R. If the section D, is a single open interval centered at O for
all x’ € R~ then we say that the set D is Steiner symmetric about the hyperplane
{x1 = 0}. Note that this definition is stronger than being symmetric about {x; = 0}.
For example, an annulus in R? is symmetric about {x; = 0}, but not Steiner symmet-
ric about it.

Finally, for any t > 0, the continuous Steiner symmetrization of D C R¢ is
defined as

ST[D]:={(x1,x") eR? : x; € MT[D/]},

with M'* given above being the continuous Steiner symmetrization for 1-dimensional
open sets. See Figure 5 for a comparison of the sets D and S*[D] for small 7 > 0.
One can easily check that ST[D] satisfies the following properties.

LEMMA 4.1
For any bounded open set D C R?, its continuous Steiner symmetrization ST[D]
satisfies the following properties:
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(a) |ST[D]| = |D| for any t > 0, where | - | denotes the Lebesgue measure in R?;
(b) (ST[D))AD C BT[D] for any t > 0, where /A is the symmetric difference
between the two sets, and B¥[D] is the t-neighborhood of 0D, given by

BT[D]:= {x e R? : dist(x,dD) < t}. 4.1)

Proof

Property (a) is a direct consequence of the fact that |[M*[U]| = |U| for any open set
U CRand 7t >0 (see [13, Lemma 2.11(b)]). To prove (b), one can start with the 1-
dimensional version. For any bounded open set U C R, we have M*[U]AU C {x €
R : dist(x, dU) < t}, which follows from the fact that the intervals move with velocity
at most 1. Thus for any bounded open set D C R?,

STID]AD = {(x1,x") €R? : x; € MT[D/]ADy)
C {(x1.x) 1 dist(x1. 9(Dy)) < T}
C B*[D],

finishing the proof. U

4.2. Simply connected patch solutions with Q <0
We assume that D C R satisfies the following condition.

(HD) D C R4 is an open set, and there exists some M > 0 depending on D such
that | B¥[D]| < M for all sufficiently small T > 0, where B*[D] is given in (4.1).

It can be easily checked that for d > 2, any bounded open set D with Lipschitz
continuous boundary satisfies condition (HD). In fact, for d = 2, we will show that
any bounded open set D C R? with a rectifiable boundary satisfies (HD), with a
precise bound

|B*[D]| <2|9D|tr forall T >0, (4.2)

where |0D | is the total length of dD. Let us first prove that (4.2) holds for any polygon
P C R?. Erect two polygons at distance t from P with the transversal sides being
bisectors of the inner angles of P (see Figure 0). It is clear that B*[P] is contained
in the trapezoidal region, which has area no more than 2|0P|z. Finally, this can be
extended to the general case by approximating any rectifiable curve by polygons.

Below we state our main theorem of this section, which is slightly more general
than Theorem C.

THEOREM 4.2
Let D C R and K € C'(R? \ {0}) satisfy the conditions (HD) and (HK), respec-
tively. Let g € CY(R?) be a radial function with g'(r) > 0 for all r > 0.
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area =2[;t

Figure 6. (Color online) Illustration of the polygon P and the underlying trapezoidal region (the
whole colored region). Here the blue trapezoid has area 2/ 7 (/1 is the corresponding side length
in P), and summing over all edges gives a total area of 2|0P |t. Since the trapezoids may intersect
for large 7, the whole trapezoidal region has area no more than 2|0P |z.

If D satisfies that
Q
Ip* K — Eg(x) =const on dD (4.3)

for some Q < 0 (where the constant is the same on all connected components of 0D ),
then D is a ball. Moreover, the ball is centered at the origin if Q < 0.

Remark 4.3

(1) Note that D does not need to be simply connected in Theorem 4.2. However,
since the constant on the right-hand side of (4.3) is assumed to be the same
on all connected components of dD, comparing with (1.6), Theorem 4.2 only
implies that all simply connected patches with < 0 must be a disk.

(2) In the case 2 = 0, the problem is translation-invariant, so in the proof we
assume without loss of generality that the center of mass of D is at the origin.

Proof

We prove it by contradiction. Without loss of generality, we assume that K satis-
fies the additional assumption that K(1) = 0 (note that (4.3) still holds if we add
any constant to K), and D is not Steiner symmetric about the hyperplane {x; = 0}.
Let D® := ST[D] be the continuous Steiner symmetrization of D at time 7 > 0. By
Lemma 4.1(b), we have

DT*AD C BT[D], 4.4)

where BT is defined as in (4.1). Let us consider the functional
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eli= [ [ 1o@p0IKGE -y drdy+ ) [ sto1p .

=:4[D] =:V[D]

. . + + .
We will use two different ways to compute ‘fi—t &[DT]|;=0, where ‘2—1 denotes the right
derivative. On the one hand, using the equation (4.3) and the regularity assumptions
on D, K, and g, we aim to show that

d+
€D ]le=0 = 0. 4.5)
T

Instead of directly taking the derivative, we consider the finite difference

€[D7] - &[D] = /Rd 2(1pr — 10)(1D « K — %g(x)) dx

=111

+/ (1p- —ID)((lpr —ID)*K)dx,
R4

=112

where in the equality we used that [ 1p(1pr * K)dx = [ 1p=(1p * K)dx for any
radial kernel K.

Let us control the term [; first. First note that (4.4) implies that the integrand is
supported in B;[D]. Next we claim that (HK) implies 1p x K — g € C*%'(R?)
for 8’ := min{§, 1}, where C %! stands for Lipschitz continuity. The proof is a simple
potential theory estimate, which we provide below for completeness. For any x,z €
R4,

|(1p * K)(x +z) — (1p * K)(x)|

=| [, 106 =K+ 2= KO dy|

5/ IK(y+Z)—K(y)|dy+/ Ip(x —y)|K(y +2) — K(y)| dy
lyl<2z] lyl>2lz|
=:J1+ J>.

Since (1p * K)(x) € L>(R?), one can moreover assume that |z| < %; then, a crude

estimate gives

d
o], bl

y|<3|z

8

|IK(y)|a’ySC(d)IZ

where in the last step we used that (HK) and K(1) = 0 imply |K(y)| < C|y|7¢+¢
for |y| < 1. For J,, note that (HK) and the mean value theorem gives
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—d—1+6
|K(y +2)— K| < Cly["*7"*°|z| forall |y|> 2]z,

and plugging it into the integral gives J, < C(d,|D|)|z|’. Putting the estimates for
J1 and J, together gives that 1p % K € C%¥'(R9) for § = min{§, 1}, and combining
this with the assumption g € C(R?) gives 1p x K — £g € CO¥'(RY).

In addition, by (4.3), we have 1p * K — % g(x) = Cy on 9D for some constant
Co. Thus we have

}10 * K — %g(x)—Co) <C(8.d,|D)* inB*[D]

for some constant C > 0, where we used the Holder continuity of 1p * K — %g and
the definition of B¥[D]. This leads to

Q ,
1| <2|B*[D]] e;u[fm‘]]) # K- g(x) - co( <C(8.d.|D) M,
X T

where in the first inequality we used that f B, (1p — 1pz)Cydx = 0, which follows
from Lemma 4.1(a), and in the second inequality we used (HD).
Next, using (4.4) we control I, by the crude bound

| 1] E/ 11|15 (D) * K)|dx
R4
< |B*[D]|Il1 B (p] * K loo
<Mz |(1gzp)”™ * K|

where the last step follows from the Hardy-Littlewood inequality, where (1pz[p))* is
the radial decreasing rearrangement of 1<[pj. By (HD), (1p[p})* is a characteristic
function of a ball whose radius is bounded by C(d)(M1)'/?, thus

C(d)(Mz)l/d
/ |K(r)|a)drd_1dr

[taeion* K] < |

Cd)(Mr)\/4 s
< / war~ " dx < C(d)(M1)4,
0
and plugging it into the I, estimate gives
| < C(d)M “& 1+,

Putting the estimates of /; and I, together directly yields
T _ ) ,
|8[D ] 8[D]| EC(S/,d,M,lDDTmm{%’S },

T

and since § > 0, we have %S[D’Hr:o =0.
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Now, we use another way to calculate %8 [D7]|:=0- Let us deal with the 2 < 0
case first. Since K is radial and increasing in r, it has been shown in [8, Corollary 2]
and [63, Theorem 3.7] that the interaction energy J[D*] = [ [ K(x —y)dxdy
is nonincreasing along the continuous Steiner symmetrization, leading to

d+
—J[D*] <0 forallt>0.
dt
For the other term V[D] = (—) [p. g(x)dx, by the assumptions that g'(r) >
0 for all » > 0 and D is not Steiner symmetric about {x; = 0}, we can use [I3,
Lemma 2.22] to show that, for Q2 < 0,
d+ d

+
Do = (—2) / ¢(x) dx] oo <.
dt dt Jpr

Adding them together gives

dt
d—g[Dr:”r:O < 0,
T

leading to a contradiction with (4.5).

In the Q = 0 case, recall that we assume that the center of mass of D is at the
origin. Thus if D is not Steiner symmetric about {x; = 0}, then the same proof as
[13, Proposition 2.15] gives that 4[ D] must be decreasing to the first order for a short
time, leading to

dt

d+
—E&[D |y = — K(|x —y|)dxdy|ls=¢ <0,
dr [D*]lz=0 dt Lt /;)r (|x J’|) xdyle=o <

again contradicting (4.5). We point out that although the proposition was stated for
continuous densities, the same proof works for the patch setting. In addition, although
[13] only dealt with the kernels no more singular than Newtonian potential, the proof
indeed holds for all kernels K satisfying (HK): see [14, Theorem 6] for an extension
to all Riesz potentials K, 4 with o € (0,2). O

The above theorem immediately leads to the following result concerning a simply
connected stationary/rotating patch solution with < 0.

THEOREM 4.4

Let D C R? be a bounded, simply connected domain with rectifiable boundary. If 1 p
is a V-state for (1.2) for some o € [0,2) with angular velocity Q <0, then D must be
a disk. In addition, the disk must be centered at the origin if 2 < 0.

Proof
We have 1p * K — % |x|?> = C for some constant C on dD. For the Euler equation,
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K = %ln|x|. For the g-SQG equation, K = —Cg4|x|™®. In both cases, the proof
follows from Theorem 4.2. O

Remark 4.5

As we discussed in the beginning of this subsection, in the case of gSQG with o €
(0,2), Theorem 4.4 is not true if the simply connected assumption is dropped, due to
the nonradial patches in [28] and [41] bifurcating from annuli.

4.3. Smooth solutions with simply connected level sets with 2 <0

The rest of this section is devoted to the smooth setting. We will show that any non-
negative smooth rotating solution of the Euler or gSQG equation with angular velocity
Q < 0 must be radial, under the additional assumption that all the super-level sets U”

U= {xe R? : wo(x) > h} (4.6)

are simply connected for any s > 0. We believe that the simply connected assumption
is necessary, since it is likely that the bifurcation arguments from annuli in [28] and
[41] can be extended to the smooth setting as well, using a similar argument as in [ 18]
or [19].

THEOREM 4.6

Let w(x) € C'(R?) be nonnegative and compactly supported. In addition, assume
that the super-level set U" as in (4.6) is simply connected for all h € (0,supw).
Assume that K satisfies (HK). If for some Q <0, we have

Q
wx K — 5|x|2 = Co(h) ondU" forall h € (0, supw), (4.7)

then w is radially decreasing up to a translation. Moreover, it is centered at the origin
if 2 <0.

Proof

We prove it by contradiction. For the 2 < 0 case, we assume without loss of generality

that w is not symmetric decreasing about the line x; = 0. For the &2 = 0 case, similar

to Remark 4.3, we assume without loss of generality that the center of mass is at the

origin, and then we assume that @ is not symmetric decreasing about the line x; = 0.
For any 7 > 0, we define the continuous Steiner symmetrization w®(x) in the

same way as [ 13, Definition 2.12]:

ho
CUT()C) IZ/O 1sr[Uh](X)dh,
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where /o := supw, and ST[U"] is the continuous Steiner symmetrization of the
super-level set U” at time 7 > 0.
Consider the energy functional

. _ B 2
Elw] = /1‘@ /Rza)(x)a)(y)K(x y)dxdy + ( Q)/l;zw(x)|x| dx.

=:J[w] =:V[w]

We proceed similarly as in Theorem 4.2 to compute %8 [wT] in two different ways.
We first rewrite the finite difference &[w®] — €[w] as

Elw'] — &lw]

= /11&2 2(0"(x) — w(x)) (a) * K — %|x|2) dx

@ - e@) @ 0) - 00)Ke - ) drdy
R2xR2
=11+ 1. (4.8)
Since w € C}(R?) and K satisfies (HK) (hence is locally integrable), one can easily
check that w *x K — %|x|2 is Lipschitz in D := {x € R? : dist(x, suppw) < 1}. Note
that we have suppw?® € D for all t € [0, 1]. Combining this fact with the assumption
(4.7), there exists C; > 0 independent of / such that

Q
’(a) * K) () = o |x|? - Co(h)’ <Cit on STUMAU" forall h € (0, ho). (4.9)

Let us first rewrite /; as

ho Q
I = 2/0 /Rz(lsfwh](x) - 1Uh(x))((w * K)(x) — E|x|2) dxdh.

By Lemma 4.1(a), we have fRz(lsr[Uh](x) — lyn(x))dx =0 for all h € (0, hy).
Thus we can control I; as

h() Q 5
|11|=‘2/ /(1Sr[Uh](x)—1Uh(x))((w*1<)(x)——|x| —Co(h))dxdh‘
0o Jr2 2
ho
52c1r/ [(ST[UM) AU dh
0
ho
52c1f/ 210U |zdh
0

= 4C112[ |Vo|dx < C(w)7>. (4.10)
supp @
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Here in the second line we used (4.9); in the third line we used Lemma 4.1(b) and the
property (4.2) in two dimensions; and in the fourth line we used the coarea formula
and the fact that w € C/l.

We next move on to I5. Since |Vw| is bounded, Lemma 4.1(b) leads to

|07 () — o(x)| = )/OOO s () = 1 (x) dh|
<C||Vo|pet forall x € R?,
and suppw® € D for all 7 € [0, 1]. Thus
L] < llo® — ol ](@ - o) * K|«
< lo" ~olp o’ ol [ [Ke)]dx
< C(w)7>.

Combining the estimates for I; and I, gives &[w®] — &[w] < C(w)r? for all
T € [0, 1], thus

d* d+
Elw]lr=0 = =1 + I2)|z:=0 = 0. (4.11)
dt dt

+ . .
On the other hand, we compute ‘278 [0F]|;=0 in a different way as

+

+
Eg[a)r]h:o =7 (@] + V[o™]) =0

T
In the 2 < O case, similarly as in Theorem 4.2, we have that d[w®] is nonincreas-
ing along the continuous Steiner symmetrization by [8, Corollary 2] and [63, Theo-
rem 3.7], thus

d+

—d[w®] <0 forall T>0.
dt

For V[w®], by the assumption that @ is not symmetric decreasing about {x; = 0}, we
again use [13, Lemma 2.22] to show that, for 2 <0,

d+ d+

—V[w*] = (—Q)—/ 0% (x)|x]? dx|=0 < 0.

dt dt Jg2
Adding them together gives %S[D’H,:O < 0, contradicting (4.11).

In the Q = 0 case, we assume that the center of mass of w is at the origin. Thus if

w is not symmetric decreasing about {x; = 0}, then the same proof as [13, Proposi-
tion 2.15] gives that 4 [ D] must be decreasing to the first order for a short time (again,
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the proof holds for all kernels K satisfying (HK); see [ 14, Theorem 6] for extensions
to Riesz kernels Ky 4 with o € (0,2)). This gives %S[D’]h:o < 0, again contra-
dicting (4.11). O

The above theorem immediately gives the following corollary concerning the V-
states for the Euler and gSQG equations.

COROLLARY 4.7

Assume that w(x) € C1(R?) is a nonnegative, compactly supported V-state satisfy-
ing the Euler equation or the gSQG equation for some o € (0,2) with Q < 0. In
addition, assume that the super-level set U" as in (4.6) is simply connected for all
h € (0, supw). Then w must be radially decreasing if Q2 < 0, and radially decreasing
up to a translation if 2 = 0.

Proof
For the Euler equation, K = % In |x|. For the gSQG equation, K = —Cy|x|™*. In
both cases, the proof follows from Theorem 4.6. O

5. Radial symmetry of rotating gSQG solutions with Q2 > Q,
In this section, we focus on rotating gSQG patches with area 7w and « # 0. As we dis-

cussed in the Introduction, for @ € [0, 2), there exist rotating patches bifurcating from
_ 2a—1 l"(l—(x) (F(1+%) _ F(’”"‘%)

- r(a-%)2're-%) Trm+1-%)
Q¢ is increasing in m for any fixed « € [0,2). Let us denote Q4 = limy o0 Q5. If

a € (0, 1), then we have that

the unit disk at angular velocities 9, ), where

F(l—a) T(1+%)

Qo =271 .
r(1-%2re-¢

(5.1

Note that 2, is a continuous function of « for @ € (0, 1), with Q¢ = %, and Q, =
+oo forall o« € [1,2).

A natural question is whether there can be rotating patches with area 7 with
Q > Q, for o € (0,1). Note that the area constraint is necessary for all « > 0: if D
is a rotating gSQG patch for @ € (0,2) with angular velocity €2, then one can easily
check that its scaling AD = {Ax : x € D} is a rotating patch with angular velocity
AT*Q.

In Theorem 2.14, we showed that for the 2D Euler case (o« = 0), every rotating
patch with Q > Q¢ = % must be a disk. In this section, our goal is to show that every
simply connected rotating patch with area & with Q > Q, for o € (0,1) must be a
disk. Whether there exist nonsimply connected or disconnected rotating patches with

Q > Qq for a € (0,1) is still an open question.
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-~~~ _B(O,R

Figure 7. (Color online) Ilustration of the set U and the point xg.

Below is the main theorem of this section. Recall that for o € (0,2), Ky =
. . . i 149 _ 1 F(%)
Ce|x|™* is the fundamental solution for —(—A)™" "2, where Cy = 5 TOT(=D)
THEOREM 5.1
Let D C R? be a bounded, simply connected patch with C' boundary. Let us denote
R := maxyep |x|. Assume that D is a uniformly rotating patch with angular velocity
Q of the gSQG equation with a € (0, 1), that is,

Q
1D*Ka—5|x|2=C on dD. (5.2)
Let Qc(R) := R7%Qyq. If 2 > Q. (R), then D must coincide with B(0, R).

Remark 5.2
(a) Note that all sets D C R? with area 7w must have R > 1. In this case we have
Q:(R) < Q4, thus Theorem 5.1 immediately implies that all simply connected rotat-
ing patches with area 7 and 2 > Q, must be a disk.

(b) Note that the constant €2, is sharp, since there exist patches bifurcating from
a disk of radius 1 at velocities 2%, which can get arbitrarily close to 24 as m — oo
(see [47, Theorem 1.4]).

Proof

Towards a contradiction, assume that D # B(0, R). Let xo € 0D be the farthest point
from 0. Then we have that D C B(0, R), and let U := B(0, R) \ D. See Figure 7 for
an illustration of U and x¢. Then (5.2) can be rewritten as

Q
1y * Ky = lpo.r) * Ko — 5|x|2 —C ondD. (5.3)

The key idea of this proof is to use two different ways to compute V(ly *
Ky)(x0) - X9, and obtain a contradiction if Q > Q.(R). On the one hand,
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(xo—y)-xo
o= V)Xo 4o, (5.4)
U |xo—yl*t? Y

V(1y * Ka)(x0) - xo = aCy
where we used the fact that (xog — y) - xo > 0 for all y € U C B(0, R) since the two
vectors point to the same half-plane.

On the other hand, we claim that the following properties hold for 1y * K:

(1) A(ly * Ky) <0in D,

(2) along 0D, the minimum of 1y * K, is achieved at xy.

To show property (1), using the fact that K, = —Cgy|x|™® is the fundamental
solution for —(—A)™1*% we have 1y % Ko = —(—A) 151y, thus A(ly * Ko) =
(—=A)*21y . Thus for any x € D, using the singular integral definition of the frac-
tional Laplacian (see [62, Theorem 1.1, Definition (e)]) and the fact that 1y = 0 in
D, we have

ly(x) — 1y (»)
|x — y|2+a

81w =@ [ dy

—1u(y)
=Ci(x )/ = y|2+ad y <0 forxeD
for some constant Cy(«) > 0. Note that despite the denominator being singular, the
integral indeed converges for all x € D, due to the fact that D is open and the inte-
grand is identically zero in D which yields

A(ly * Ko)(x) = (—=A)*?1y(x) <0 in D. (5.5)

‘We now move on to property (2). Due to (5.3) and the fact that x is the outermost
point on 9D, it suffices to show that the radial function 1p,g) * Ko — %|x|2 is
nonincreasing in |x| for all 2 > Q.(R). We prove this in Proposition 5.3 right after
this theorem.

The above claims allow us to apply the maximum principle to 1y * K (recall
that 1y * K, is superharmonic in D by property (1)), which yields that the minimum
of 1y * K, in D is also achieved at xg, thus

V(ly * Ko)(x0) - 1i(x0) <0,

where 7(xg) is the outer normal of D at xo. Since 7(xg) = xo/|xo|, the above
inequality contradicts with (5.4). As a result, D must coincide with B(0, R). O

Now we prove the proposition that was used in the proof of the above theorem.

PROPOSITION 5.3
For a fixed o € (0,1) and R > 0, let Q. (R) be the smallest number such that
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Q
gr(x):=1p(.R) * Ko — 76|)€|2
is nonincreasing in |x|. Then we have Q.(R) = R™*Qq, with Q4 given in (5.1).

Proof

Recall that K, = —Cy|x|™* with Cy = 21” #Ja)

are both radially symmetric and increasing in |x|, we have

Since |x|? and 1g(o,r) * Ka

|xo —y[™*dy — |xy —y|™*dy
QC(R) _ 2Ca sup fB(O,R) s fB(OZ,R) ]
1 | 1xa |1 |2 — [ x2]

Let us denote the fraction above by F(x1, x2). We claim that the sup|y., |£|x,| F (X1, X2)
is attained when |x;| = R, and |x;| = R.

To prove the claim, we first compute /(x) := || B(O.R) |x — y|™* dy. Taking the
Fourier transform:

I(x)=CR2_°‘/O =2 111 Jo (' xIr )dr,

where C is some positive constant. By Sonine—Schafheitlin’s formula (see [89,
p. 401]) and by continuity, we obtain

r'(%) .

oo — CR™2* 22y Fi(§—1.5.1. le) if |x| < R,
- _ _ (%) .

CR>%2%2|y| aRaF(I—_Z%)ZFl(%,% T |2) if |x| > R.

By the mean value theorem, it is enough to check that min J(z) = J(R?), where

J(2) = LGR(E-1.2.1.5)) if 2 < R2,
L((1-2)z72R¢F1(£.2.2.8 R%)) iz > R2,
TR ,ﬁ) if - < R2,

= a(a D 1S RIF (2,1 + 2, —) if z > R?.

Writing the series expansion (resp., at z = 0 and z = oo) of the hypergeometric series:

oz(oc—Z)L2 Fl(a

1+2.2,)
~° T4 Z
4 R?2 2 2

_ 1 TE+mre+1+9%) Z\"
“ R 2:: T(&-DIETA+n)T2+n) (F)

A =2) 14 ga F(5.1+5.2 1)
4 2141 21 21 ’Z
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% ,oen TE+mTn—1+%) [R>\n
=<Z> R zn; F(%—ZI)I‘(%)F(n)F(nz-l-l)(7)’

which are both minimized at z = R? since every coefficient is negative. This proves
the claim.
The claim immediately implies that
Cy d

Q(R)= ———— —y|7%d —R, 5.6
¢(R) R dpx| B(O,R)lx yI7%dylixj=r (5.6)

where ﬁ denotes the derivative in the radial variable (recall that f B(O.R) |x —
y|~* dy is radially symmetric). To compute the derivative at |x| = R, we can simply
compute the partial derivative in the x; direction at the point (R, 0):

: f
lx = y|7*dylx=(r.0
0x1 JB(0.R) =R

=—a/ ((R—y1)2+y§)_7_l(R—y1)dy1 dy,
B(0,R)

R a - /R2_,.2
) R— 2 + 2\~ 2 V1= R—y> d
/0 (( Y1)+ 2 ) |y1=_ By V2

=_21—%R1—a(/1(1—¢1 —u2)~% du—/l(l +V1—u?)~5% du)
0 0

o % o % o
=_21—7R1_“(/ (1 —cosf) 2 cos@d@—/ (1 +cosf) 2 cos@d@)
0 0
= 28R (]; — 1), (5.7)

where in the third line we used the identity (R £ /R% —y3)? + y3 = 2R*(1 £+

V1= (R 1y,)2), as well as the substitution u = R~ !y,.

Using a substitution 6 = 28, we rewrite /; as

I = 2/01(1 —cos(Zﬂ))_% cos(2p)dp = 21-% foz(sinﬁ)_“(l —2sin? B) dB.

Likewise, the substitution § = 7 — 2 allows us to rewrite —/, as

L=2["(- cos(2B))” 2 cos(2B) df = 2'~% 7(sinﬁ)—“(l —2sin? B) dp.
I )

T

4 4

Adding the above two identities for /; and —I, together gives
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s
1-¢ 2 . —a .2
L—-1,=2"2 (sinB)"%(1 —2sin” B) dp
0

(a5 - wC5E )

FEHT(G) S1-4 r39rQ)

=27% o Ty
ra-3) re-3
where B stands for the beta function. Here the second identity follows from the prop-
erty that B(x,y) =2 fon/z(sin 6)>*~1(cos #)??~1 d6, and the third line follows from
the property that B(x, y) = % According to the properties of the gamma func-

tion T'(z + 1) =zI'(z) and I'(z)T(z + 3) = 2'7%2 /7 T'(2z), we have

a 2xl'(1—a)

L —I,=27"1%% : 5.8
1— 12 2o TU-92 (5.8)
Finally, plugging this into (5.7) and (5.6) gives
Qc(R) = R™Co2'"2(I1 — Ip)
_ pa L '(%) o (ZnI‘(l —a))
22T (1-%)2—a \ T(1 - %)2
Y 2a—1F(1 —oz)l"(% +1) — RQ,
T(1-%2rQe-¢
finishing the proof. O

At the end of this section, we point out that Theorem 5.1 directly gives the follow-
ing quantitative estimate: if a simply connected patch D rotates with angular velocity
Q € (0,L24) that is very close to €4, then D must be very close to a disk in terms of
symmetric difference.

COROLLARY 5.4

Assume that 0 < o < 1. Let D be a rotating patch with area & and angular velocity
Q € (0,4), and let B be the unit disk. Then we have

Qg \ 2/
|DAB|§27{((§) —1).
Note that for a fixed o € (0, 1), the right-hand side goes to 0 as Q2 /' Qq.

Proof
Denote R := maxyep |x|. If D is a rotating patch with angular velocity 2 and is not a
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disk, then Theorem 5.1 gives that 2 < R™%Q,,, which gives that R < (%—"‘)1/ % Thus
D c B(0, (%—“)1/ @), which implies that the symmetric difference D A B satisfies

IDAB|=2|D\ B 52’3(0, (%)l/a) \B‘ =2n<(%)2/a )=
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