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Abstract

We study the radial symmetry properties of stationary and uniformly rotating solu-

tions of the 2D Euler and gSQG equations, both in the smooth setting and the patch

setting. For the 2D Euler equation, we show that any smooth stationary solution with

compactly supported and nonnegative vorticity must be radial, without any assump-

tions on the connectedness of the support or the level sets. For the 2D Euler equation

in the patch setting, we show that every uniformly rotating patch D with angular

velocity�� 0 or�� 1
2

must be radial, where both bounds are sharp. For the gSQG

equation, we obtain a similar symmetry result for�� 0 or���˛ (with the bounds

being sharp), under the additional assumption that the patch is simply connected.

These results settle several open questions posed by Hmidi, de la Hoz, Hassainia,

and Mateu on uniformly rotating patches. Along the way, we close a question by

Choksi, Neumayer, and Topaloglu on overdetermined problems for the fractional

Laplacian, which may be of independent interest. The main new ideas come from a

calculus-of-variations point of view.

1. Introduction

Let us start by considering the initial value problem for the 2-dimensional incom-
pressible Euler equation in vorticity form. Here the evolution of the vorticity ! is
given by

8

ˆ̂
<

ˆ̂
:

@t! C u � r! D 0 in R2 �RC;

u.�; t /D �r?.��/�1!.�; t / in R2;

!.�; 0/D !0 in R2;

(1.1)
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where r? WD .�@x2
; @x1

/. Note that we can express u as u.�; t /D r?.!.�; t / � N /,
where N .x/ WD 1

2�
ln jxj is the Newtonian potential in two dimensions. More gen-

erally, the 2D Euler equation belongs to the following family of active scalar equa-
tions indexed by a parameter ˛, (0� ˛ < 2), known as the generalized surface quasi-

geostrophic (gSQG) equations:
8

ˆ̂
<

ˆ̂
:

@t! C u � r! D 0 in R2 �RC;

u.�; t /D �r?.��/�1C ˛
2 !.�; t / in R2;

!.�; 0/D !0 in R2:

(1.2)

Here we can also express the Biot–Savart law as

u.�; t /D r?
�

!.�; t / �K˛
�

; (1.3)

where K˛ is the fundamental solution for �.��/�1C ˛
2 ; that is,

K˛.x/D
´
1
2�

ln jxj for ˛ D 0;

�C˛jxj�˛ for ˛ 2 .0; 2/;
(1.4)

where C˛ D 1
2�

�.˛
2 /

21�˛�.1� ˛
2 /

is a positive constant only depending on ˛.

We will focus here on establishing radial symmetry properties for stationary and
uniformly rotating solutions to equations (1.1) and (1.2). We either work with the
patch setting, where !.�; t / D 1D.t/ is an indicator function of a bounded set that
moves with the fluid, or the smooth setting, where !.�; t / is smooth and compactly
supported in x. (For well-posedness results for patch solutions, see the global well-
posedness results in [7] and [20] for (1.1), and the local well-posedness results in
[26], [35], [60], and [77] for (1.2) with ˛ 2 .0; 2/.)

Let us begin with the definition of a stationary/uniformly rotating solution in the
patch setting. For a bounded open set D � R2, we say that ! D 1D is a stationary

patch solution to (1.2) for some ˛ 2 Œ0; 2/ if u.x/ � En.x/D 0 on @D, with u given by
(1.3). This leads to the integral equation

1D � K˛ � Ci on @D; (1.5)

where the constant Ci can differ on different connected components of @D. And if
!.x; t/D 1D.R�tx/ is a uniformly rotating patch solution with angular velocity �
(whereR�tx rotates a vector x 2 R2 counterclockwise by angle�t about the origin),
then 1D becomes stationary in the rotating frame with angular velocity �; that is,
.r?.1D � K˛/ � �x?/ � En.x/ D 0 on @D. This is equivalent to r?.1D � K˛ �
�
2

jxj2/ � En.x/D 0 on @D, and as a result we have

1D � K˛ � �

2
jxj2 � Ci on @D; (1.6)
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where Ci again can take different values along different connected components of
@D. Note that a stationary patch D also satisfies (1.6) with � D 0, and it can be
considered as a special case of uniformly rotating patch with zero angular velocity.

Likewise, in the smooth setting, if !.x; t/ D !0.R�tx/ is a uniformly rotating
solution of (1.2) with angular velocity � (which becomes a stationary solution in the
�D 0 case), then we have .r?.!0 �K˛/��x?/ � r!0 D 0. As a result, !0 satisfies

!0 � K˛ � �

2
jxj2 � Ci

on each connected component of a regular level set of !0; (1.7)

where Ci can be different if a regular level set ¹!0 D cº has multiple connected com-
ponents.

Clearly, every radially symmetric patch/smooth function automatically satisfies
(1.6)/(1.7) for all � 2 R. The goal of this article is to address the complementary
question, which can be roughly stated as follows.

QUESTION 1
In the patch or smooth setting, under what condition must a stationary/uniformly

rotating solution be radially symmetric?

Below we summarize the previous literature related to this question, and state
our main results. We will first discuss the 2D Euler equation in the patch and smooth
settings, respectively. Then we will discuss the gSQG equation with ˛ 2 .0; 2/.

1.1. 2D Euler in the patch setting

Let us deal with the patch setting first. So far, affirmative answers to Question 1 have
only been obtained for simply connected patches, for angular velocities�D 0,�< 0
(under some additional convexity assumptions), and � D 1

2
. For stationary patches

(�D 0), Fraenkel [33, Chapter 4] proved that if D satisfies (1.6) (where K˛ D N )
with the same constant C on the whole @D, then D must be a disk. The idea is that
in this case the stream function  D 1D � N solves a semilinear elliptic equation
� D g. / in R2 with g. /D 1¹ <C º, where the monotonicity of the discontinu-
ous function g allows one to apply the moving-plane method developed in [40] and
[80] to obtain the symmetry of  . As a direct consequence, every simply connected
stationary patch must be a disk. But if D is not simply connected, (1.6) gives that
 D Ci on different connected components of @D, and thus  might not solve a
single semilinear elliptic equation in R2. Even if  satisfies � D g. /, g might
not have the right monotonicity. For these reasons, whether a nonsimply connected
stationary patch must be radial still remains an open question.
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For � < 0, Hmidi [49] used the moving-plane method to show that if a simply
connected, uniformly rotating patchD satisfies some additional convexity assumption
(which is stronger than star-shapedness but weaker than convexity), then D must be a
disk. In the special case�D 1

2
, Hmidi [49] also showed that a simply connected, uni-

formly rotating patch D must be a disk, using the fact that 1D � N � �
2

jxj2 becomes
a harmonic function in D when �D 1

2
.

On the other hand, it is known that there can be nonradial uniformly rotating
patches for � 2 .0; 1

2
/. The first example dates back to the Kirchhoff ellipse in [59],

where it was shown that any ellipseD with semiaxes a; b is a uniformly rotating patch
with angular velocity ab

.aCb/2
. Deem and Zabusky [31] numerically found families of

patch solutions of (1.1) with m-fold symmetry by bifurcating from a disk at explicit
angular velocities �0m D m�1

2m
, and they coined the term V-states. Further numerics

were done in [32], [69], [78], and [90]. Burbea [9] gave the first rigorous proof of
their existence by using (local) bifurcation theory arguments close to the disk. There
have been many recent developments in a series of works by Hmidi, Mateu, Verdera,
and de la Hoz (see [30], [52], [53]) in different settings and directions (regularity
of the boundary, different topologies, and so forth). In particular, [30] showed the
existence of m-fold doubly connected nonradial patches bifurcating at any angular
velocity � 2 .0; 1

2
/ from some annulus of radii b 2 .0; 1/ and 1.

There are many other interesting perspectives of the V-states, which we briefly
review below, although they are not directly related to Question 1. Hassainia, Mas-
moudi, and Wheeler [48] were able to perform global bifurcation arguments and study
the whole branch of V-states. Other scenarios such as the bifurcation from ellipses
instead of disks have also been studied: first numerically by Kamm [56] and later
theoretically by Castro, Córdoba, and Gómez-Serrano [17] and by Hmidi and Mateu
[50]. See also the work of Carrillo, Mateu, Mora, Rondi, Scardia, and Verdera [15] for
variational techniques applied to other anisotropic problems related to vortex patches.
Love [65] established linear stability for ellipses of aspect ratio bigger than 1

3
and

linear instability for ellipses of aspect ratio smaller than 1
3

. Most of these efforts have
been devoted to establishing nonlinear stability and instability in the range predicted
by the linear part. Wan [87] and Tang [84] proved the nonlinear stable case, whereas
Guo, Hallstrom, and Spirn [43] settled the nonlinear unstable one (see also [25]). In
[86], Turkington considered N vortex patches rotating around the origin in the varia-
tional setting, yielding solutions of the problem which are close to point vortices.

Our first main result is summarized below in Theorem A, which gives a complete
answer to Question 1 for 2D Euler in the patch setting. Note that D is allowed to be
disconnected, and each connected component can be nonsimply connected. Figure 1
illustrates a comparison of our result (in red color) with the previous results (in black
color).
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Figure 1. (Color online) For 2D Euler in the patch setting, previous results on Question 1 are
summarized in black color. Our results in Theorem A are colored in red.

THEOREM A (D Corollary 2.10, Theorems 2.12 and 2.14)
Let D � R2 be a bounded open set with C 1;
 boundary. Assume that D is a station-

ary/uniformly rotating patch of (1.1), in the sense that D satisfies (1.6) (with K˛ D
N ) for some � 2 R. Then D must be radially symmetric if � 2 .�1; 0/ [ Œ1

2
;1/,

and radially symmetric up to a translation if �D 0.

Remark 1.1

The C 1;
 boundary regularity is not optimal and can be pushed down to Lipschitz.
We have outlined the necessary modifications to make Theorem A work in Remarks
2.4 and 2.7, which also apply to Corollary 2.10 and Theorems 2.12 and 2.14.

1.2. 2D Euler in the smooth setting

One of the main motivations of this paper is to find sufficient rigidity conditions in
terms of the vorticity, such that the only stationary/uniformly rotating solutions are
radial ones. Heuristically speaking, this belongs to the broader class of the “Liou-
ville theorem” type of results, which shows that solutions satisfying certain conditions
must have a simpler geometric structure, such as being constant (in one direction, or
all directions) or being radial. We were unable to find any conditions on 2D Euler
in the literature that lead to radial symmetry, although several other Liouville-type
results have been established for 2D fluid equations. For 2D Euler, Hamel and Nadi-
rashvili [44], [45] proved that any stationary solution without a stagnation point must
be a shear flow. (But note that this result does not apply to our setting (1.7), since the
velocity field u associated with any compactly supported !0 must have a stagnation
point. See also the Liouville theorem by Koch, Nadirashvili, Seregin, and Šverák [61]
for the 2D Navier–Stokes equations.)

Let us briefly review some results on the characterization of stationary solu-
tions to 2D Euler, although they are not directly related to Question 1. Nadirashvili
[74] studied the geometry and the stability of stationary solutions, following the
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works of Arnold [3]–[5]. Izosimov and Khesin [54] characterized stationary solu-
tions of 2D Euler on surfaces. Choffrut and Šverák [21] showed that locally near
each stationary smooth solution there exists a manifold of stationary smooth solu-
tions transversal to the foliation, and Choffrut and Székelyhidi [22] showed that there
is an abundant set of stationary weak (L1) solutions near a smooth stationary one.
Luo–Shvydkoy in [67] and [68] classified the set of stationary smooth solutions of the
form v D r?.r
f .!//, where .r;!/ are polar coordinates. In a different direction,
Turkington [85] used variational methods to construct stationary vortex patches of a
prescribed area in a bounded domain, imposing that the patch is a characteristic func-
tion of the set ¹‰ > 0º, and also studied the asymptotic limit of the patches tending to
point vortices. Long, Wang, and Zeng [64] studied their stability, as well as the reg-
ularity in the smooth setting (see also [12]). For other variational constructions close
to point vortices, we refer to the work of Cao, Liu, and Wei [10], Cao, Peng, and Yan
[11], and Smets and van Schaftingen [82]. Musso, Pacard, and Wei [73] constructed
nonradial smooth stationary solutions without compact support in !. The (nonlinear
L1) stability of circular patches was proved by Wan and Pulvirenti [88] (a shorter
proof was later given by Sideris and Vega [81]). See also Beichman and Denisov [6]
for similar results on the strip.

Recently, Gavrilov in [37] and [38] provided a remarkable construction of non-
trivial stationary solutions of 3D Euler with compactly supported velocity. See also
Constantin, La, and Vicol [24] for a simplified proof with extensions to other fluid
equations.

Regarding uniformly rotating smooth solutions .� ¤ 0/ for 2D Euler, Castro,
Córdoba, and Gómez-Serrano [18] were able to desingularize a vortex patch to pro-
duce a smoothm-fold V-state with�� m�1

2m
> 0 form� 2. Recently, García, Hmidi,

and Soler [36] studied the construction of V-states bifurcating from other radial pro-
files (Gaussians and piecewise quadratic functions).

Our second main result is the following theorem, which gives radial symmetry of
compactly supported stationary/uniformly rotating solutions in the smooth setting for
�� 0, under the additional assumption !0 � 0.

THEOREM B (D Theorem 3.5 and Corollary 3.6)
Let !0 � 0 be smooth1 and compactly supported. Assume that !.x; t/D !0.R�tx/

is a stationary/uniformly rotating solution of (1.1) with �� 0, in the sense that it sat-

isfies (1.7) with K˛ D N . Then !0 must be radially symmetric if �< 0, and radially

symmetric up to a translation if �D 0.

1It is enough to assume that !0 2C 2.R2/; see the footnote under Theorem 3.5 for more discussions.
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Note that there exist nonradial nonnegative smooth uniformly rotating solutions
for every�> 0: taking the nonradial smooth V-state !0 � 0 constructed in [18] (with
�> 0) and multiplying it by any � > 0, one obtains a new V-state �!0 with angular
velocity ��> 0.

Although the extra assumption !0 � 0 might seem unnatural at first glance, in
a forthcoming work [42] we will show that it is indeed necessary: if we allow !0 to
change sign, then by applying bifurcation arguments to sign-changing radial patches,
we are able to show that there exists a compactly supported, sign-changing smooth
stationary vorticity !0 that is nonradial.

1.3. The gSQG case (0 < ˛ < 2)

Recall that in the patch setting, a stationary/uniformly rotating patch satisfies (1.6)
with K˛ given in (1.4). Even though the kernels K˛ are qualitatively similar for all
˛ 2 Œ0; 2/, there is a key difference on the symmetry versus nonsymmetry results
between the cases ˛ D 0 and ˛ > 0. For the 2D Euler equation (˛ D 0), we proved
in Theorem A that any rotating patch D with � � 0 must be radial, even if D is
not simply connected. However, this result is not true for any ˛ 2 .0; 2/: de la Hoz,
Hassainia, Hmidi, and Mateu [28] showed that there exist nonradial patches bifur-
cating from annuli at �< 0 and Gómez-Serrano [41] constructed nonradial, doubly
connected stationary patches (�D 0). Therefore, we cannot expect a nonsimply con-
nected rotating patch D with �� 0 to be radial for ˛ 2 .0; 2/.

However, if D is a simply connected stationary patch, then radial symmetry
results were obtained in a series of works for ˛ 2 Œ0; 5

3
/, which we review below.

These works consider (1.6) in a more general context not limited to dimension 2. Let
K˛;d be the fundamental solution of �.��/�1C ˛

2 in Rd for d � 2, given by

K˛;d WD �C˛;d jxj�dC2�˛ (1.8)

for some C˛;d > 0; except that in the special case �d C2�˛ D 0 it becomesK˛;d D
Cd ln jxj for some Cd > 0. Note that K˛;d 2 L1loc.R

d / for all ˛ < 2. Consider the
following question.

QUESTION 2
Let ˛ 2 Œ0; 2/. Assume that D � Rd is a bounded open set such that

K˛;d � 1D � �

2
jxj2 D const on @D (1.9)

for some � � 0, where the constant is the same along all connected components of

@D. Must D be a ball in Rd?
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Positive answers to Question 2 were obtained in the �D 0 case for ˛ < 5
3

in the
following works. As we discussed before, Fraenkel [33] proved that D must be a ball
for ˛ D 0. Also using the moving-plane method, Reichel [75, Theorem 2], Lu and Zhu
[66], and Han, Lu, and Zhu [46] generalized this result to ˛ 2 Œ0; 1/. Here [66] also
covered generic radially increasing potentials not too singular at the origin (which
include all Riesz potentials K˛;d with ˛ 2 Œ0; 1/). Recently, Choksi, Neumayer, and
Topaloglu [23, Theorem 1.3] further pushed the range to ˛ 2 Œ0; 5

3
/, leaving the range

˛ 2 Œ5
3
; 2/ an open problem. We point out that in all these results for ˛ > 0, @D was

assumed to be at least C 1. All the above results were obtained using the moving-plane
method.

In our third main result, we use a completely different approach to give an affir-
mative answer to Question 2 for all �� 0 and ˛ 2 Œ0; 2/, under a weaker assumption
on the regularity of @D.

THEOREM C (D Theorem 4.2)
Let D be a bounded open set in Rd with Lipschitz boundary (and if d D 2, then we

only require @D to be rectifiable). If D satisfies (1.9) for some �� 0 and ˛ 2 Œ0; 2/,
then it must be a ball in Rd .

As a direct consequence, Theorem C implies that for the gSQG equation with
˛ 2 Œ0; 2/, any simply connected rotating patch with �� 0 must be a disk (see Theo-
rem 4.4). In addition, in the smooth setting (1.7), we prove a similar result in Corol-
lary 4.7 for uniformly rotating solutions with � � 0 for all ˛ 2 Œ0; 2/: if the super-
level sets ¹!0 > hº are all simply connected for all h > 0, then !0 must be radially
decreasing.

Next we review the previous literature on uniformly rotating solutions for the
gSQG equation. Note that the case of ˛ 2 .0; 2/ is more challenging than the 2D
Euler case, since the velocity is more singular and this produces obstructions to the
bifurcation theory when it comes to the choice of spaces and the regularity of the func-
tionals involved in the construction. Hassainia and Hmidi [47] showed the existence
of V-states with C k boundary regularity in the case 0 < ˛ < 1, and in [16], Castro,
Córdoba, and Gómez-Serrano upgraded the result to show existence and C1 bound-
ary regularity in the remaining open cases: ˛ 2 Œ1; 2/ for the existence, ˛ 2 .0; 2/
for the regularity. In that case, the solutions bifurcate at angular velocities given

by �˛m WD 2˛�1 �.1�˛/

�.1� ˛
2 /

2 .
�.1C ˛

2 /

�.2� ˛
2 /

� �.mC ˛
2 /

�.mC1� ˛
2 /
/. This boundary regularity was sub-

sequently improved to analytic in [17]. (See also [51] for another family of rotating
solutions, [28] and [76] for the doubly connected case, and [19] for a construction in
the smooth setting.)
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Figure 2. (Color online) For gSQG in the patch setting, previous results on Question 1 are sum-
marized in black color, with our results in Theorems C and D colored in red.

One can check that �˛m are increasing functions of m for any ˛, whose limit is a

finite number �˛ WD 2˛�1 �.1�˛/

�.1� ˛
2 /

2

�.1C ˛
2 /

�.2� ˛
2 /

for ˛ 2 Œ0; 1/, and C1 if ˛ � 1. It is then

a natural question to ask whether there exist V-states (with area �) that rotate with
angular velocity faster than �˛ for ˛ 2 .0; 1/. Our fourth main theorem answers this
question among all simply connected patches.

THEOREM D (D Theorem 5.1)
For ˛ 2 .0; 1/, let 1D be a simply connected V-state of area � , and let its angular

velocity be ���˛ . Then D must be the unit disk.

Finally, we illustrate a comparison of our results in Theorems C and D (in red
color) with the previous results (in black color) in Figure 2.

1.4. Structure of the proofs

While all the previous symmetry results on Questions 1 and 2 (see, e.g., [23], [33],
[46], [49], [66], [75]) are done by moving-plane methods, our approaches are com-
pletely different, with more of a variational flavor.

Theorem A is based on computing the first variation of the energy functional

EŒ1D�D �1
2

Z

R2

1D.x/.1D � N /.x/� �

2
jxj21D.x/dx

in two different ways, as we deform D along a carefully chosen vector field that is
divergence-free in D. On the one hand, we show that the first variation should be
zero ifD is a stationary/rotating patch with angular velocity�; on the other hand, we
show that the first variation must be nonzero if �� 0 or �� 1

2
, leading to a contra-

diction. If D is simply connected, we give a very short proof in Section 2.1, where a
rearrangement inequality due to Talenti [83] is crucial to get a sign condition. For a
nonsimply connected patch D, the choice of the right vector field is more involved.
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Since 1D � N � �
2

jxj2 now takes different constant values on different connected
components of @D, in order to keep the first variation at zero it is necessary to modify
our perturbation vector field such that it also preserves the area of each hole. We then
prove a new version of a rearrangement inequality for this modified vector field in a
similar spirit as Talenti’s result, leading to a nonzero first variation if D is nonradial
and �� 0 or �� 1

2
.

The smooth setting in Theorem B is based on a similar idea, but it is techni-
cally more difficult. The point of view is to approximate a smooth function by step
functions and consider the above perturbation in each set where the step function is
constant. To do this, we need to obtain some quantitative (stability) estimates on our
version of Talenti’s rearrangement inequality, particularly in terms of the Fraenkel
asymmetry of the domain in the spirit of Fusco, Maggi, and Pratelli [34].

Theorem C is also based on a variational approach, but we need a different per-
turbation from the vector field in Theorem A, which heavily relies on the Newtonian
potential and also fails for general Riesz potential K˛ . The key ingredient to prove
Theorem C is to perturbD using the continuous Steiner symmetrization in [8], which
has been successfully applied in other contexts by Carrillo, Hittmeir, Volzone, and
Yao [13] (nonlinear aggregation models) or by Morgan [72] (minimizers of the gravi-
tational energy). This method is much more flexible and allows the treatment of more
singular kernels than is possible using moving-plane methods. Due to the low reg-
ularity of the kernels, instead of computing the derivative of the energy under the
perturbation, we work with finite differences instead.

Theorem D uses maximum principles and monotonicity formulas for nonlocal
equations. The idea is to find the smallest diskB.0;R/ containingD (which intersects
@D at some x0), then use two different ways to compute r.1B.0;R/nD �K˛/ at x0,
and obtain a contradiction if � ��˛ and D is not a disk. The proof works for the
full range of ˛ 2 Œ0; 2/, thus closing the problem raised by Hmidi [49] and by de la
Hoz, Hassainia, Hmidi, and Mateu [29] among all simply connected patches.

1.5. Organization

Our work here is split into sections according to the cases ˛ D 0 (Euler) and ˛ ¤ 0

(gSQG). Sections 2 and 3 are devoted to proving the symmetry results for ˛ D 0 in
the patch setting (Section 2) and in the smooth setting (Section 3). Sections 4 and 5
deal with the gSQG equations with 0 < ˛ < 2. Section 4 is concerned with the case
�� 0, whereas Section 5 handles the case ���c .

1.6. Notation

In Sections 2 and 3 of this paper, we use the following notation.
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For a simple closed curve � , denote by int.�/ its interior, which is the bounded
connected component of R2 separated by the curve � . Note that the Jordan–
Schoenflies theorem guarantees that int.�/ is open and simply connected.

We say that two disjoint simple closed curves �1 and �2 are nested if �1 �
int.�2/ or vice versa. We say that two domains D1;D2 are nested if one is contained
in a hole of the other one.

For a bounded domain D � R2, we denote by @outD its outer boundary. And if
D is doubly connected, then we denote by @inD its inner boundary,

For a set D, we use 1D.x/ to denote its indicator function. And for a statement
S , we let

1S D
´

1 if S is true;

0 if S is false:

(e.g., 1�<3 D 0).
For an open set U � R2, in the boundary integral

R

@U
En � Ef d� , the vector En is

taken as the outer normal of the open set U in that integral.
For a countable number of disjoint sets Ui � R2, we denote their union by PS

iUi

to emphasize the disjointedness.

2. Radial symmetry of steady/rotating patches for the 2D Euler equation

Throughout this section, we work with the 2D Euler equation (1.1) in the patch set-
ting. For a stationary or uniformly rotating patch D with angular velocity � 2 R,
let

f�.x/ WD .1D � N /.x/� �

2
jxj2:

Recall that in (1.6) we have shown that f� � Ci on each connected component of
@D, where the constants can be different on different connected components.

Our goal in this section is to prove Theorem A, which completely answers Ques-
tion 1 for 2D Euler patches. As we described in the Introduction, our proof has a
variational flavor, which is done by perturbing D by a carefully chosen vector field,
and computing the first variation of an associated energy functional in two different
ways. In Section 2.1, we will define the energy functional and the perturbation vector
field, and give a one-page proof in Theorem 2.2 that answers Question 1 among sim-
ply connected patches. (Note that even among simply connected patches, it is an open
question whether every rotating patch with � > 1

2
or � < 0 must be a disk.) In the

following subsections, we further develop this method, and modify our perturbation
vector field to cover nonsimply connected patches.
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2.1. Warm-up: Radial symmetry of simply connected rotating patches

We begin by providing a sketch and some motivations of our approach, and then give a
rigorous proof afterwards in Theorem 2.2. Suppose thatD is a C 1;
 simply connected
rotating patch with angular velocity� that is not a disk. We perturbD in “time” (here
the “time” t is just a name for our perturbation parameter, and is irrelevant with the
actual time in the Euler equation) with a velocity field Ev.x/ 2 C 1.D/\C.D/ that is
divergence-free in D, which we will fix later. That is, consider the transport equation

�t C r � .�Ev/D 0

with �.�; 0/D 1D . We then investigate how the “energy functional”

EŒ�� WD �
Z

R2

1

2
�.x/.� � N /.x/� �

2
jxj2�.x/dx

changes in time under the perturbation. Formally, we have

d

dt
EŒ��jtD0 D �

Z

R2

�t .x; 0/
��

�.�; 0/ � N
�

.x/� �

2
jxj2

�

dx

D �
Z

D

Ev.x/ � r
�

.1D � N /.x/� �

2
jxj2

�

dx: (2.1)

The above transport equation and the energy functional only serve as our motivation,
and will not appear in the proof. In the actual proof, we only focus on the right-hand
side of (2.1), which is an integral that is well defined by itself:

I WD �
Z

D

Ev.x/ � r
�

.1D � N /.x/� �

2
jxj2

�

dx D �
Z

D

Ev � rf� dx: (2.2)

We will use two different ways to compute I, and show that if D is not a disk, then
the two ways lead to a contradiction for �� 0 or �� 1

2
.

On the one hand, since f� is a constant on @D (denote it by c), the divergence
theorem yields the following for every Ev 2 C 1.D/\C.D/ that is divergence-free in
D:

I D �c
Z

@D

En � Ev d� C
Z

D

.r � Ev/f� dx

D �c
Z

D

r � Ev dxC
Z

D

.r � Ev/f� dx D 0: (2.3)

On the other hand, we fix Ev as follows, which is at the heart of our proof. Let Ev.x/ WD
�r'.x/ in D, where

'.x/ WD jxj2
2

C p.x/ in D; (2.4)
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with p.x/ being the solution to Poisson’s equation
´

�p.x/D �2 in D;

p.x/D 0 on @D:
(2.5)

Note that ' is harmonic in D, thus Ev is indeed divergence-free in D. This definition
of Ev is motivated by the fact that among all divergence-free vector fields in D, such
Ev is the closest one to �Ex in the L2.D/ distance. (In fact, such Ev is connected to the

gradient flow of
R

D
jxj2

2
dx in the metric space endowed by 2-Wasserstein distance,

under the constraint that jD.t/j must remain constant; see [2], [70], [71].) Formally,
one expects that D becomes “more symmetric” as we perturb it by Ev, which inspires
us to consider the first variation of E under such perturbation.

In the proof we will show that with such choice of Ev, we can compute I in another
way and obtain that I > 0 for �� 0 and I < 0 for �� 1

2
. Therefore, in both cases,

we obtain a contradiction with I D 0 in (2.3).
Our proof makes use of a rearrangement inequality for solutions to elliptic equa-

tions, which is due to Talenti [83]. Below is the form that we will use; the original
theorem works for a more general class of elliptic equations.

PROPOSITION 2.1 ([83, Theorem 1])
Let D � R2 be a bounded open set, and let p be defined as in (2.5). Let B be an open

disk centered at the origin with jBj D jDj, and let pB solve (2.5) in B . Then we have

p� � pB pointwise in B , where p� is the radial decreasing rearrangement of p. This

leads to
Z

D

p.x/dx �
Z

B

pB.x/dx:

Using that pB.x/D 1
2
.r2B � jxj2/, where �r2B D jBj D jDj and

R

B
pB.x/D �

4
r4B it

follows that
Z

D

p.x/dx � 1

4�
jDj2;

where the equality is achieved if and only if D is an open disk (cf. [58, Theorem 3.1,

Remark 3.1]).

Now we are ready to prove the following theorem, saying that any simply con-
nected stationary/rotating patch with � � 0 or � � 1

2
must be a disk. Interestingly,

the same proof can treat the two disjoint intervals �� 0 and �� 1
2

all at once.

THEOREM 2.2
Let D be a simply connected bounded domain with C 1;
 boundary. If D is a rotating
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patch solution with angular velocity �, where � � 0 or � � 1
2

, then D must be a

disk, and it must be centered at the origin unless �D 0.

Proof

Let D be a rotating patch with � 2 .�1; 0�[ Œ1
2
;1/. As we described above, in this

theorem we will use two different ways to compute the integral I defined in (2.2),
where we fix Ev.x/ WD �r'.x/, with ' and p defined as in (2.4) and (2.5).

On the one hand, we have that Ev is divergence-free in D, and elliptic regularity
theory immediately yields that Ev 2 C 1.D/\C.D/. Using the assumption that D is a
rotating patch, we know f� is a constant on @D. (Note that @D is a connected closed
curve since we assume that D is simply connected). Thus the computation in (2.3)
directly gives that I D 0.

On the other hand, we compute I as follows:

I D �
Z

D

Ev � rf� dx D
Z

D

r' � rf� dx

D
Z

D

x � rf� dx
„ ƒ‚ …

DWI1

C
Z

D

rp � rf� dx
„ ƒ‚ …

DWI2

: (2.6)

For I1, we have

I1 D
Z

D

x � r.1D � N / dx �
Z

D

x ��x dx

D 1

2�

Z

D

Z

D

x � .x � y/
jx � yj2 dy dx ��

Z

D

jxj2 dx

D 1

4�

Z

D

Z

D

x � .x � y/� y � .x � y/
jx � yj2 dy dx ��

Z

D

jxj2 dx

D 1

4�
jDj2 ��

Z

D

jxj2 dx; (2.7)

where the third equality is obtained by exchanging x with y in the first integral, then
taking the average with the original integral. To compute I2, using the divergence
theorem (and the fact that p D 0 on @D), we have

I2 D �
Z

D

p�f� dx D .2�� 1/
Z

D

p dx: (2.8)

Plugging (2.7) and (2.8) into (2.6) gives

I D 1

4�
jDj2 ��

Z

D

jxj2 dxC .2�� 1/
Z

D

p dx: (2.9)
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When�D 0, Proposition 2.1 directly gives that I > 0 ifD is not a disk, contradicting
I D 0.

When� 2 .�1; 0/[ Œ1
2
;1/, let B be a disk centered at the origin with the same

area as D. Towards a contradiction, assume that D ¤ B . Among all sets with the
same area as D, the disk B is the unique one that minimizes the second moment. To
see this, denoting by rB the radius of B , we have

Z

D

jxj2 dx �
Z

B

jxj2 dx D
Z

DnB

jxj2 dx �
Z

BnD

jxj2 dx

�
Z

DnB

r2B dx �
Z

BnD

r2B dx D 0;

where the last equality follows from jD nBj D jB nDj, which is due to jDj D jBj;
and the inequality is strict whenever D ¤B . Thus, if D ¤B , then we have

Z

D

jxj2 dx >
Z

B

jxj2 dx D 1

2�
jDj2;

where the last step follows from an elementary computation. Plugging this into (2.9)
gives the following inequality for � 2 Œ1

2
;1/:

I <
1

4�
jDj2 � �

2�
jDj2 C .2�� 1/

Z

D

p dx D .1� 2�/
� 1

4�
jDj2 �

Z

D

p dx
�

� 0:

On the other hand, for � 2 .�1; 0/, we have

I >
1

4�
jDj2 � �

2�
jDj2 C .2�� 1/

Z

D

p dx D .1� 2�/
� 1

4�
jDj2 �

Z

D

p dx
�

> 0;

and we obtain a contradiction to I D 0 in all the cases, thus the proof is finished.

Remark 2.3

In fact, one can easily check that the proof of Theorem 2.2 applies to a bounded

disconnected patch D D PSN

iD1Di with C 1;
 boundary, as long as each connected
component Di is simply connected, which yields that such a patch cannot be a rotat-
ing solution. Here the proof remains the same, except for one small change. On the
one hand, since now we have f� D ci on @Di , (2.3) should be replaced by

I D �
N

X

iD1

�

ci

Z

@Di

En � Ev d� C
Z

Di

.r � Ev/f� dx
�

D 0:

On the other hand, the same argument as in the proof of Theorem 2.2 shows that
I ¤ 0 whenever D contains more than one connected component.
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Remark 2.4

When the domain D is Lipschitz, we no longer have Ev D �x � rp 2 C 1.D/. Nev-
ertheless, the divergence theorem in the proof of Theorem 2.2 can still be justified,
thanks to the fact that rp 2L2.@D/ for a Lipschitz domainD, where rpj@D is taken
in the nontangential limit sense, and this follows from [55, Theorem 5.6].

Even in the regime � 2 .0; 1
2
/, where nonradial rotating patches are known to

exist (recall that there exist patches bifurcating from a disk at �m D m�1
2m

for all
m � 2), our approach still allows us to obtain the following quantitative estimate,
saying that if a simply connected patch D rotates with angular velocity � 2 .0; 1

2
/

that is very close to 1
2

, then D must be very close to a disk, in the sense that their
symmetric difference must be small.

COROLLARY 2.5
Let D be a simply connected bounded domain with C 1;
 boundary. Assume that D is

a rotating patch solution with angular velocity �, where � 2 .1
4
; 1
2
/. Let ı WD 1

2
��.

Then we have

jD4Bj � 2
p
2ıjDj;

where B is the disk centered at the origin with the same area as D.

Proof

In the proof of Theorem 2.2, combining the equation I D 0 and (2.9) together, we
have that

1

4�
jDj2 ��

Z

D

jxj2 dx � .1� 2�/
Z

D

p dx D 0:

Dividing both sides by � and rearranging the terms, we obtain

Z

D

jxj2 dx � 1

2�
jDj2 D 1� 2�

�

� 1

4�
jDj2 �

Z

D

p dx
�

� 2ıjDj2
�

;

where in the inequality we used that 2ı WD 1� 2�, �> 1
4

, and
R

D p dx � 0.
Since

R

B
jxj2 dx D 1

2�
jDj2, the above inequality implies that

Z

DnB

jxj2 dx �
Z

BnD

jxj2 dx � 2ıjDj2
�

: (2.10)

Since D and B have the same area, let us denote ˇ WD jD nBj D jB nDj. Among all
sets U � Bc with area ˇ,

R

U
jxj2 dx is minimized when U is an annulus with area

ˇ and inner circle coinciding with @B . To see this, let U0 be such an annulus, and
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denote by rin and rout its inner and outer radius (note that rin is also the radius of B).
Then we have

Z

U

jxj2 dx �
Z

U0

jxj2 dx D
Z

UnU0

jxj2 dx �
Z

U0nU

jxj2 dx

�
Z

UnU0

r2out dx �
Z

U0nU

r2out dx D 0;

where the inequality follows from U n U0 � Bc n U0 � B.0; rout/
c (recall that U �

Bc), and the last equality follows from jU n U0j D jU0 n U j, which is due to jU j D
jU0j.

Thus an elementary computation gives
Z

DnB

jxj2 dx � inf
U�Bc ;jU jDˇ

Z

U

jxj2 dx D ˇ.2jBj C ˇ/

2�
:

Likewise, among all sets V � B with area ˇ,
R

V jxj2 dx is maximized when V is an
annulus with area ˇ and outer circle coinciding with @B , thus

Z

BnD

jxj2 dx � sup
V�B;jV jDˇ

Z

V

jxj2 dx D ˇ.2jBj � ˇ/
2�

:

Subtracting these two inequalities yields

Z

DnB

jxj2 dx �
Z

BnD

jxj2 dx � ˇ2

�
;

and combining this with (2.10) immediately gives

ˇ2 � 2ıjDj2;

thus jD4Bj D 2ˇ � 2
p
2ıjDj.

2.2. Radial symmetry of nonsimply connected stationary patches

In this subsection, we aim to prove the radial symmetry of a connected rotating patch
D with � � 0, where D is allowed to be nonsimply connected. Let D � R2 be a
bounded domain with C 1;
 boundary. Assume that D has n holes with n � 0, and
then let h1; : : : ; hn � R2 denote the n holes of D (each hi is a bounded open set).
Note that @D has nC 1 connected components: they include the outer boundary of
D, which we denote by @D0, and the inner boundaries @hi for i D 1; : : : ; n. We orient
@hi the opposite way as @D0.

To begin with, we point out that even for the steady patch case �D 0, the proof
of Theorem 2.2 cannot be directly adapted to the nonsimply connected patch. If we
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define Ev in the same way, then the second way to compute I still goes through (since
Proposition 2.1 still holds for nonsimply connectedD), and leads to I > 0 if D is not
a disk. But the first way to compute I no longer gives I D 0: if D is stationary and
not simply connected, then f .x/ WD .1D � N /.x/ may take different constant values
on different connected components of @D, thus the identity (2.3) no longer holds.

In order to fix this issue, we still define Ev D �r' D �r. jxj2

2
C p/, but mod-

ify the definition of p in the following lemma. Compared to the previous definition
(2.5), the difference is that p now takes different values 0; c1; : : : ; cn on each con-
nected component of @D. The lemma shows that there exist values of ¹ciºniD1 such
that

R

@hi
rp � End� D �2jhi j along the boundary of each hole. As we will see later,

this leads to
R

@hi
Ev � End� D 0 for i D 1; : : : ; n, which ensures that I D 0. (Of course,

with p defined in the new way, the second way of computing I no longer follows
from Proposition 2.1, and we will take care of this later in Proposition 2.8.)

LEMMA 2.6
Let D, hi , and @D0 be given as in the first paragraph of Section 2.2. Then there exist

positive constants ¹ciºniD1 such that the solution p WD ! R to the Poisson equation

8

ˆ̂
<

ˆ̂
:

�p D �2 in D;

p D ci on @hi for i D 1; : : : ; n;

p D 0 on @D0;

(2.11)

satisfies
Z

@hi

rp � End� D �2jhi j for i D 1; : : : ; n: (2.12)

Here jhi j is the area of the domain hi � R2.

Proof

Let u satisfy that

´

�uD �2 in D;

uD 0 on @D:

Furthermore, let the function vj for j D 1; : : : ; n be the solution to
8

ˆ̂
<

ˆ̂
:

�vj D 0 in D;

vj D 0 on @D n @hj ;
vj D 1 on @hj ;
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where vj 2 C 2.D/ \ C 1.D/ by elliptic regularity. Now we consider the following
linear equation,

Ax D b; (2.13)

where Ai;j D
R

@hi
rvj � End� and bi D �2jhi j �

R

@hi
ru � End� . We argue that (2.13)

has a unique solution. Thanks to the divergence theorem, we have

0D
Z

D

�vj dx D
Z

@D0

rvj � End� �
n

X

iD1

Z

@hi

rvj � End�:

Therefore,

n
X

iD1

Ai;j D
Z

@D0

rvj � End� < 0; (2.14)

where the last inequality follows from the Hopf lemma (see [57]) since vj attains its
minimum value 0 on @D0, and vj 6� 0 on @D. A similar argument gives that Ai;j >
0 for i ¤ j and Aj;j < 0. Thus A is invertible by the Gershgorin circle theorem
(see [39]), leading to a unique solution of (2.13). Let us denote the solution by x D
.c1; : : : ; cn/

t . Then the function p defined by

p WD uC
n

X

iD1

civi

satisfies the desired properties (2.12).
Now we prove that ci > 0 for i � 1. Suppose that ci� WD mini ci � 0. Then by

the minimum principle, p attains its minimum on @hi� . Therefore,

0�
Z

@hi�

rp � End� D �2jhi� j< 0;

which is a contradiction.

Remark 2.7

In order to push the regularity of the domain down to Lipschitz, to prove (2.14),
instead of the Hopf Lemma, we may use the following observation in two dimensions
(see [1, pp. 935–936]. Let D � R2 be a Lipschitz domain, and let † � @D be rela-
tively open with respect to @D. Let vj be a harmonic function in D and continuous
in D. If vj vanishes on † and its normal derivative vanishes in a subset of † with
positive surface measure, then vj � 0 in D. In addition, the use of the divergence
theorem is justified by the same argument as in Remark 2.4.
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Next we prove a parallel version of Talenti’s theorem for the function p con-
structed in Lemma 2.6. We will use this result throughout Sections 2 and 3.

PROPOSITION 2.8
Let D � R2 be a bounded domain with C 1;
 boundary. Assume that D has n holes

with n� 0, and denote by h1; : : : ; hn � R2 the holes ofD (each hi is a bounded open

set). Let p W D ! R be the function constructed in Lemma 2.6. Then the following

two estimates hold:

sup
D

p � jDj
2�

(2.15)

and
Z

D

p.x/dx � jDj2
4�

: (2.16)

Furthermore, for each of the two inequalities above, the equality is achieved if and

only if D is either a disk or an annulus.

Proof

The proof is divided into two parts. In step 1 we prove the two inequalities (2.15) and
(2.16), and in step 2 we show that equality can be achieved if and only if D is a disk
or an annulus.

Step 1. When D is simply connected, (2.15) and (2.16) directly follow from Tal-
enti’s theorem Proposition 2.1. Next we consider a nonsimply connected domain
D, and prove that these inequalities also hold when p W D ! R is defined as in
Lemma 2.6.

For k 2 RC, let us denote Dk WD ¹x 2D W p.x/ > kº, g.k/ WD jDkj and QDk WD
Dk P[. PS

¹i Wci>kºhi /. Elliptic regularity theory gives that p 2 C1.D/, thus by Sard’s
theorem, k is a regular value for almost every k 2 .0; supD p/, that is, jrp.x/j> 0 on
¹x 2D W p.x/D kº. Thus ¹x 2D W p.x/D kº is a union of smooth simple closed
curves and equal to @ QDk for almost every k 2 .0; supD p/.

Since @Dk D @ QDk P[. PS
¹i Wci>kº@hi / for k … ¹c1; : : : ; cnº, we compute

g.k/D �1
2

Z

Dk

�p.x/dx D �1
2

Z

@Dk

rp � End�

D �1
2

Z

@ QDk

rp � End� C 1

2

X

¹i Wci>kº

Z

@hi

rp � End�

D �1
2

Z

@ QDk

rp � End� �
X

¹i Wci>kº

jhi j;
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where the last identity is due to (2.12). Therefore, it follows that

g.k/C
X

¹i Wci>kº

jhi j D �1
2

Z

@ QDk

rp � End� D 1

2

Z

@ QDk

jrpjd�; (2.17)

where the last equality follows from the fact that rp is perpendicular to the tangent
vector on the level set.

On the other hand, the coarea formula yields that

g.k/D
Z

R

Z

@ QDs

1Dk

1

jrpj d�ds D
Z 1

k

Z

@ QDs

1

jrpj d� ds:

Therefore, it follows that for almost every k 2 .0; supD p/,

g0.k/D �
Z

@ QDk

1

jrpj d�: (2.18)

Thus it follows from (2.17) and (2.18) that

g0.k/
�

g.k/C
X

¹i Wci>kº

jhi j
�

D �1
2

�Z

@ QDk

jrpjd�
��Z

@ QDk

1

jrpj d�
�

� �1
2
P. QDk/2; (2.19)

whereP.E/ denotes the perimeter of a rectifiable curve @E . Note that the last inequal-
ity becomes equality if and only if jrpj is a constant on @ QDk . Also, the isoperimetric
inequality gives that

P. QDk/2 � 4�j QDkj; (2.20)

where equality holds if and only if QDk is a disk. This yields that

g0.k/
�

g.k/C
X

¹i Wci>kº

jhi j
�

� �2�j QDkj D �2�
�

g.k/C
X

¹i Wci>kº

jhi j
�

: (2.21)

Therefore, g0.k/� �2� for almost every k 2 .0; supD p/. Combining it with the fact
that g.0/D jDj, we have

g.k/�
�

g.0/� 2�k
�

C
D

�

jDj � 2�k
�

C
for almost every k � 0:

This proves that supD p � jDj
2�

. It follows that

Z

D

p.x/dx D
Z

D

Z jDj
2�

0

1¹k<p.x/º dk dx D
Z jDj

2�

0

g.k/dk

�
Z jDj

2�

0

�

jDj � 2�k
�

C
dx D jDj2

4�
:
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Step 2. Now we show that for the two inequalities (2.15) and (2.16), the equality is
achieved if and only ifD is either a disk or an annulus. First, ifD is either a disk or an
annulus centered at some x0 2 R2, then uniqueness of solution to Poisson’s equation
gives that p is radially symmetric about x0. Since we have �p D �2 in D and p D 0

on the outer boundary of D, this gives an explicit formula p.x/ D � jx�x0j2

2
C R2

2

for x 2D, where R is the outer radius of D. For either a disk or an annulus, one can
explicitly compute supD p and

R

D p dx to check that equalities in (2.15) and (2.16)
are achieved.

To prove the converse, assume that either (2.15) or (2.16) achieves equality, and
we aim to show that D is either a disk or an annulus. In order for either equality to be
achieved, (2.21) needs to achieve equality at almost every k 2 .0; supD p/. In addi-
tion, g.k/ needs to be continuous in k since g.k/ is decreasing. Since (2.21) follows
from a combination of the Cauchy-Schwarz inequality in (2.19) and the isoperimetric
inequality in (2.20), we need to have all the three conditions below in order for either
(2.15) or (2.16) to achieve equality:
(1) jrpj is a constant on each level set @ QDk for almost every k 2 .0; supD p/;
(2) QDk is a disk for almost every k 2 .0; supD p/;
(3) g.k/ D jDkj is continuous in k; as a result, j QDkj is continuous in k at all

k ¤ ci , with ci > 0 defined as in (2.11).
Next we will show that if these three conditions are satisfied, then D must be an

annulus or disk. First, note that by sending k & 0 in condition (2), and combining it
with the continuity of j QDkj as k & 0, it already gives that the outer boundary of D
must be a circle. Therefore, if D is simply connected, then it must be a disk.

If D is nonsimply connected, using condition (2) and (3), we claim that D can
have only one hole, which must be a disk, and p must achieve its maximum value in
D on the boundary of the hole. To see this, let hi be any hole of D, and recall that
pj@hi

D ci . As we consider the set limit of QDk as k approaches ci from below and
above, by definition of QDk we have

lim
k%ci

QDk D lim
k&ci

QDk P[
� P[

¹j Wcj Dci º

hj

�

:

By (2) and (3), the left-hand side limk%ci
QDk is a disk, and the set limk&ci

QDk on
the right-hand side is also a disk (if the limit is nonempty). But after taking union
with the holes ¹hj W cj D ciº (each is a simply connected set), the right-hand side will
be a disk if and only if limk&ci

QDk is empty, PS
¹j Wcj Dci ºhj D hi , and hi is a disk.

This implies that ci D supD p and cj < ci for all j ¤ i . But since hi is chosen to be
any hole of D, we know that D can have only one hole (call it h), which is a disk,
and supD p D pj@h. Finally, note that condition (1) gives that all the disks ¹ QDkº are
concentric, and as a result we have that D is an annulus, finishing the proof.
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Finally, we are ready to show that every connected stationary patch D with C 1;


boundary must be either a disk or an annulus.

THEOREM 2.9
Let D � R2 be a bounded domain with C 1;
 boundary. Suppose that !.x/ WD 1D.x/

is a stationary patch solution to the 2D Euler equation in the sense of (1.5). Then D

is either a disk or an annulus.

Proof

If D has n holes (where n � 0), denote them by h1; : : : ; hn. By (1.5), the function
f WD 1D � N is constant on each connected component of @D, and let us denote

f .x/D
´

ai on @hi ;

a0 on @D0:
(2.22)

Let p W D ! R be defined as in Lemma 2.6, and let ' WD jxj2

2
C p. Similar to the

proof of Theorem 2.2, we calculate I WD
R

D
r' � rf dx in two different ways. Note

that rf D r.f � a0/ in D. Applying the divergence theorem to I and using (2.22)
and �' D 0 in D, it follows that

I D
Z

@D

.r' � En/.f � a0/ d� �
Z

D

�'.f � a0/ dx

D
n

X

iD1

.ai � a0/
Z

@hi

r' � End�: (2.23)

By definition of ', and combining it with the property of p in (2.12), we have

Z

@hi

r' � End� D
Z

@hi

r
� jxj2
2

�

� End� C
Z

@hi

rp � End�

D
Z

hi

2dxC
Z

@hi

rp � End� D 0: (2.24)

Plugging this into (2.23) gives I D 0. On the other hand, we also have

I D
Z

D

x � rf dxC
Z

D

rp � rf dx DWE1 CE2:

We compute

E1 D
Z

D

x � .1D � rN / dx D
Z

D

Z

D

1

2�

x � .x � y/
jx � yj2 dy dx D jDj2

4�
; (2.25)
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where the last equality is obtained by exchanging x with y and taking the average
with the original integral. For E2, the divergence theorem yields that

E2 D
Z

@D

prf � End� �
Z

D

p�f dx D
Z

@D

prf � End� �
Z

D

p dx:

Using the property of p in (2.11) and the fact that �f D 0 in hi , the divergence
theorem yields that

Z

@D

prf � End� D �
n

X

iD1

Z

@hi

prf � End� D �
n

X

iD1

ci

Z

hi

�f dx D 0: (2.26)

As a result, we have E2 D �
R

D
p dx. If D is neither a disk nor an annulus, then

Proposition 2.8 gives

I DE1 CE2 D jDj2
4�

�
Z

D

p dx > 0;

contradicting I D 0.

In the next corollary, we generalize the above result to a nonnegative stationary
patch with multiple (disjoint) patches.

COROLLARY 2.10
Let !.x/ WD Pn

iD1 ˛i1Di
, where ˛i > 0, each Di is a bounded domain with C 1;


boundary, and Di \Dj D ; if i ¤ j . Assume that ! is a stationary patch solution,

that is, the function f .x/ WD ! � N satisfies r?f � EnD 0 on @Di for all i D 1; : : : ; n.

Then ! is radially symmetric up to a translation.

Proof

Following similar notation as the beginning of Section 2.2, we denote the outer bound-
ary of Di by @Di0, and the holes of each Di (if any) by hik for k D 1; : : : ;Ni . Let
pi WDi ! R be defined as in Lemma 2.6, that is, pi satisfies

8

ˆ̂
<

ˆ̂
:

�pi D �2 in Di ;

pi D cik on @hik;

pi D 0 on @Di0;

where cik is chosen such that
R

@hik
rpi � End� D �2jhikj. We then define ' W

Sn
iD1Di ! R, such that in each Di we have ' D 'i WD jxj2

2
C pi .

Similar to Theorem 2.9, we compute
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I WD
Z

R2

!r' � rf dx D
n

X

iD1

Z

Di

˛ir'i � rf dx

in two different ways. On the one hand, since f D ! � N is a constant on each con-
nected component of @Di , the same computation of Theorem 2.9 yields that

R

Di
r'i �

rf dx D 0, therefore I D 0. On the other hand, since r' D xC rpi in eachDi , we
break I into

I D
n

X

i;jD1

˛i˛j

Z

Di

x � r.1Dj
� N / dxC

n
X

i;jD1

˛i˛j

Z

Di

rpi � r.1Dj
� N / dx

DW I1 C I2:

For I1, we compute

I1 D
n

X

i;jD1

˛i˛j

2

�Z

Di

x � r.1Dj
� N / dxC

Z

Dj

x � r.1Di
� N / dx

�

D
n

X

i;jD1

˛i˛j

2

�Z

Di

Z

Dj

x � .x � y/
2�jx � yj2 dy dxC

Z

Dj

Z

Di

x � .x � y/
2�jx � yj2 dy dx

�

D
n

X

i;jD1

˛i˛j

4�
jDi jjDj j; (2.27)

where we exchanged i with j to get the first equality. For I2, we have

I2 D
n

X

iD1

˛2i

Z

Di

rpi � r.1Di
� N / dxC

X

i¤j

˛i˛j

Z

Di

rpi � r.1Dj
� N / dx

DW I21 C I22:

By the same computation for E2 in the proof of Theorem 2.9, we have

I21 D �
n

X

iD1

˛2i

Z

Di

pi dx: (2.28)

For i ¤ j , we denote j � i if Dj is contained in a hole of Di . (And if Dj is
not contained in any hole of Di , we say j ⊀ i .) Using this notation, the divergence
theorem directly yields that

Z

@Di

pir.1Dj
� N / � End� D �

NiX

kD1

Z

@hik

pir.1Dj
� N / � End�

D 0 if j ⊀ i: (2.29)
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And if j � i , then the divergence theorem and (2.15) in Proposition 2.8 yield
Z

@Di

pir.1Dj
� N / � End� � � sup

@Di

pi jDj j � � 1

2�
jDi jjDj j if j � i: (2.30)

Hence it follows that

I22 � �
X

i¤j

1j�i

˛i˛j

2�
jDi jjDj j D �

X

i¤j

.1j�i C 1i�j /
˛i˛j

4�
jDi jjDj j; (2.31)

where the last step is obtained by exchanging i; j and taking the average with the
original sum. Note that we have 1j�i C 1i�j � 1 for any i ¤ j . From (2.27), (2.28),
and (2.31), we obtain

I �
n

X

iD1

˛2i

� jDi j2
4�

�
Z

Di

pi dx
�

C
X

j⊀i and i⊀j
i¤j

˛i˛j
jDi jjDj j
4�

: (2.32)

Since we already know that I D 0 and all the summands in (2.32) are nonnegative, it
follows that

jDi j2
4�

D
Z

Di

pi dx for all i D 1; : : : ; n and
®

.i; j / W i ¤ j; i ⊀ j and j ⊀ i
¯

D ;:

Therefore, every Di is either a disk or an annulus by Proposition 2.8 and they are
nested. By relabeling the indices, we can assume that i � i C 1 for i D 1; : : : ; n� 1.

Next we prove that all Di ’s are concentric by induction. For k � 1, suppose that
D1; : : : ;Dk are known to be concentric about some o 2 R2. To show that DkC1 is
also centered at o, we break f into

f D
k

X

iD1

.˛i1Di
/ � N C

n
X

iDkC1

.˛i1Di
/ � N :

In the first sum, each Di is centered at o for i � k; thus Lemma 2.11(a) (which
we prove right after this theorem) yields that

Pk
iD1.˛i1Di

/ � N D C
2�

ln jx � oj on

@inDkC1, where C D Pk
iD1 ˛i jDi j> 0. In the second sum, for each i � kC 1, since

eachDi is an annulus with @inDkC1 in its hole, Lemma 2.11(b) gives that 1Di
� N �

const on @inDkC1 for all i � k C 1. Thus, overall, we have f D C
2�

ln jx � oj C C2

on @inDkC1 for C > 0. Combining it with the assumption that f is a constant on
@inDkC1, we know that DkC1 must also be centered at o, finishing the induction
step.

Now we state and prove the lemma used in the proof of Corollary 2.10, which
follows from standard properties of the Newtonian potential.



SYMMETRY OF STATIONARY AND ROTATING SOLUTIONS 2983

LEMMA 2.11
Assume that g 2L1.R2/ is radially symmetric about some o 2 R2, and is compactly

supported in B.o;R/. Then � WD g � N satisfies the following:

(a) �.x/D
R

R2 g dx

2�
ln jx � oj for all x 2B.0;R/c;

(b) if in addition we have g � 0 in B.o; r/ for some r 2 .0;R/, then �D const in

B.o; r/.

Proof

To show (a), we take any x 2 B.o;R/c and consider the circle � 3 x centered at o.
By radial symmetry of � about o and the divergence theorem, we have

r� � xjxj D 1

j�j

Z

�

r� � End� D 1

j�j

Z

int.�/
��dx D

R

R2 g.x/dx

2�jx � oj ;

which implies �.x/D
R

g dx

2�
ln jx � oj C C . To show that C D 0, for jxj sufficiently

large we have

jC j D
ˇ
ˇ
ˇ

Z

B.o;R/

g.x/
�

N .x � y/� N .x � o/
�

dy
ˇ
ˇ
ˇ

� kgkL1.R2/ sup
y2B.o;R/

ˇ
ˇN .x � o/� N .x � y/

ˇ
ˇ;

and by sending jxj ! 1 we have C D 0, which gives (a). To show (b), it suffices to
prove that r�� 0 in B.o; r/. Take any x 2 B.o; r/, and consider the circle �2 3 x
centered at o. Again, symmetry and the divergence theorem yield that

ˇ
ˇr�.x/

ˇ
ˇ D 1

j�2j

Z

�2

r� � End� D 1

j�2j

Z

int.�2/

��dx D
R

int.�/ g.x/dx

j�j D 0;

finishing the proof of (b).

2.3. Radial symmetry of nonsimply connected rotating patches with �< 0

In this subsection, we show that a nonnegative uniformly rotating patch solution (with
multiple disjoint patches) must be radially symmetric if the angular velocity �< 0.

THEOREM 2.12
For i D 1; : : : ; n, let Di be a bounded domain with C 1;
 boundary, and assume that

Di \Dj D ; for i ¤ j . If ! D Pn
iD1 ˛i1Di

is a nonnegative rotating patch solution

with ˛i > 0 and angular velocity �< 0, then ! must be radially symmetric.

Proof

In this proof, let
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f�.x/ WD ! � N � �

2
jxj2:

In each Di , let us define pi as in Lemma 2.6. Let 'i WD jxj2

2
C pi in each Di . As in

Theorem 2.12, we compute I WD Pn
iD1 ˛i

R

Di
r'i � rf� dx in two different ways.

Since f� is a constant on each connected component of @Di and r'i is divergence-
free in Di , we still have I D 0 as in the proof of Theorem 2.9.

On the other hand, we have

I D
n

X

iD1

˛i

Z

Di

.xC rpi / � r.! � N / dxC .��/
„ƒ‚…

�0

n
X

iD1

˛i

Z

Di

.xC rpi / � x dx

DW I1 C .��/I2:

As in the proof of Corollary 2.10, we have

I1 D
n

X

iD1

˛2i

� jDi j2
4�

�
Z

Di

pi dx
�

C
X

j⊀i and i⊀j
i¤j

˛i˛j
jDi jjDj j
4�

� 0: (2.33)

Note that I1 D 0 as long as all Di ’s are nested annuli/disks, even if they are not
concentric. For I2, using the Cauchy–Schwarz inequality in the second step, and
Lemma 2.13 in the third step (which we will prove right after this theorem), we have

I2 D
n

X

iD1

˛i

�Z

Di

jxj2 dxC
Z

Di

rpi � x dx
�

�
n

X

iD1

˛i

�Z

Di

jxj2 dx �
�Z

Di

jrpi j2 dx
�1=2�

Z

Di

jxj2 dx
�1=2�

� 0: (2.34)

Combining (2.33) and (2.34) gives us I � 0. If there is any Di that is not a disk or
annulus centered at the origin, Lemma 2.13 would give a strict inequality in the last
step of (2.34), which leads to I > 0 and thus contradicts with I D 0.

Now we state and prove the lemma that is used in the proof of Theorem 2.12.

LEMMA 2.13
Let D be a bounded domain with C 1;
 boundary, and let p be as in Lemma 2.6. Then

we have

�
Z

D

rp � x dx D
Z

D

jrpj2 dx �
Z

D

jxj2 dx: (2.35)

Furthermore, in the inequality, “D” is achieved if and only if D is a disk or annulus

centered at the origin.
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Proof

We compute
Z

D

jrpj2 dx D
Z

@D

prp � End� C
Z

D

2p dx

D �
Z

@D

px � End� C
Z

D

2p dx;

where in the last equality we use that p is constant along each @hi , as well as the
following identity due to (2.12) and the divergence theorem (here En is the outer normal
of hi ):

Z

@hi

rp � End� D �2jhi j D �
Z

hi

�
jxj2
2
dx D �

Z

@hi

x � End�:

On the other hand, the divergence theorem yields

�
Z

D

rp � x dx D �
Z

@D

px � End� C
Z

D

2p dx:

Therefore, using Young’s inequality �rp � x � 1
2
jrpj2 C 1

2
jxj2 (where the equality

is achieved if and only if �rp D x), we have
Z

D

jrpj2 dx D �
Z

D

rp � x dx � 1

2

Z

D

jrpj2 dxC 1

2

Z

D

jxj2 dx;

which proves (2.35). Here the equality is achieved if and only if �rp D x in D,

which is equivalent with pC jxj2

2
being a constant in D, and it can be extended to D

due to continuity of p. By our construction of p in Lemma 2.6, p is already a constant

on each connected component of @D, implying that jxj2

2
is constant on each piece of

@D; hence @D must be a family of circles centered at the origin. By the assumption
that D is connected, it must be either a disk or annulus centered at the origin.

2.4. Radial symmetry of nonsimply connected rotating patches with �� 1
2

In this final subsection for patches, we consider a bounded open set D with C 1;


boundary. The set D can have multiple connected components, and each connected
component can be nonsimply connected. If 1D is a rotating patch solution to the Euler
equation with angular velocity � � 1

2
, then we will show that D must be radially

symmetric and centered at the origin.
To do this, one might be tempted to proceed as in Theorem 2.2 and replace p W

D ! R by the function defined in Lemma 2.6. Here the first way of computing I D
R

D.x C rp/ � rf� dx still yields I D 0, but the second way gives some undesired
terms caused by the holes hi :



2986 GÓMEZ-SERRANO, PARK, SHI, and YAO

Figure 3. (Color online) For a set D �B.0;R0/ (the whole yellow region on the left), the middle
figure illustrates the definition of D0;R (the blue region), ¹Ui º (the gray regions), and the right
figure illustrates V DBR nD0;R (the green region).

I D 1

4�
jDj2 ��

Z

D

jxj2 dxC .2�� 1/
Z

D

p dxC 2�

n
X

iD1

pj@hi
jhi j:

Due to the last term on the right-hand side, we are unable to show that I � 0 when
�� 1

2
as we did before in Theorem 2.2. For this reason, we take a different approach

in the next theorem. Instead of defining p as a function in D and I as an integral in
D, we want to define them in Dc . But since Dc is unbounded, we define pR and IR

in a truncated set B.0;R/ nDc , and then use two different ways to compute IR. By
sending R ! 1, we will show that the two ways give a contradiction unless D is
radially symmetric.

THEOREM 2.14
For a bounded open set D with C 1;
 boundary, assume that 1D is a rotating patch

solution to the Euler equation with angular velocity �� 1
2

. Then D is radially sym-

metric and centered at the origin.

Proof

Since D is bounded, let us choose R0 > 0 such that BR0
� D. For any R > R0,

consider the open set BR nD, which may have multiple connected components. We
denote the component touching @BR by D0;R, and name the other connected compo-
nents by U1; : : : ;Un. Throughout this proof, we assume that n � 1: if not, then each
connected component of D is simply connected, which has already been treated in
Theorem 2.2 and Remark 2.3. We also define V WDBR nD0;R, which is the union of
D and all its holes. Note that V may have multiple connected components, but each
must be simply connected. (See Figure 3 for an illustration of D0;R, ¹UiºniD1 and V .)
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To prove the theorem, the key idea is to define pR and IR in BR nD, instead of
in D. Let p0;R and pi be defined as in Lemma 2.6 in D0;R and Ui , respectively, then

set '0;R WD p0;R C jxj2

2
in D0;R, and 'i WD pi C jxj2

2
in Ui for i D 1; : : : ; n. Finally,

define pR and 'R W R2 ! R as

pR WD p0;R1D0;R
C

n
X

iD1

pi1Ui
; 'R WD '0;R1D0;R

C
n

X

iD1

'i1Ui
:

Since 1D rotates with angular velocity � � 1
2

, we know that f� WD 1D � N �
�
2

jxj2 is constant on each connected component of @D. Next we will compute

IR WD
Z

BRnD

rf� � r'R dx (2.36)

in two different ways. If some connected component of @D is not a circle, then we
will derive a contradiction by sending R ! 1. We point out that as we increase R,
the domain D0;R will change, but the sets ¹UiºniD1 and V all remain unchanged.

On the one hand, we break IR into

IR D
Z

D0;R

rf� � r'0;R dxC
n

X

iD1

Z

Ui

rf� � r'i dx DW I1R C I2R:

Since f� is constant on each connected component of @Ui , the same computation
as (2.23)–(2.24) gives I2R D 0. For I1R, note that although f� is a constant along
the boundary of each hole of D0;R, it is not a constant along @outD0;R D @BR. Thus
similar computations as (2.23)–(2.24) now give

I1R D
Z

@BR

�

1D � N � �

2
R2

�

r'0;R � End�

D
Z

@BR

�

.1D � N /.x/� jDjN .x/
�

r'0;R � End�.x/; (2.37)

where in the second equality we used
R

@BR
r'0;R � End� D 0 and the fact that N .x/

is constant on @BR. For any x 2 @BR, since D � BR0
and R > R0, we can control

.1D � N /.x/� jDjN .x/ as

ˇ
ˇ.1D � N /.x/�

ˇ
ˇD

ˇ
ˇN .x/

ˇ
ˇ � 1

2�

Z

D

ˇ
ˇlog jx � yj � log jxj

ˇ
ˇdy

� jDj
2�

ˇ
ˇ
ˇlog

�

1� R0

R

�ˇ
ˇ
ˇ on @BR: (2.38)

We introduce the following lemma to control jr'0;R � Enj on @BR. The proof is post-
poned to the end of this subsection.
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LEMMA 2.15
LetD �BR0

be an open set with C 1;
 boundary. For anyR >R0, letD0;R, V , p0;R,

and '0;R be defined as in the proof of Theorem 2.14. Then we have

jr'0;R � Enj � NR20
2R log.R=R0/

on @BR; (2.39)

where N > 0 is the number of connected components of V (and is independent of R).

Once we have this lemma, plugging (2.39) and (2.38) into (2.37) yields

jI1Rj � N jDjR20
2

ˇ
ˇ
ˇlog

�

1� R0

R

�ˇ
ˇ
ˇ

�

log.R=R0/
��1 � jDjC.D;R0/

R logR
! 0 as R! 1:

Combining this with I2R D 0 gives

lim
R!1

IR D 0: (2.40)

Next we compute IR in another way. Note that 1BR
� N � jxj2

4
is a radial harmonic

function in BR, and thus is equal to some constant CR in BR. Using this fact, we can
rewrite f� as

f� D 1D � N � �

2
jxj2 D .1D � 1BR

/ � N �
��

2
� 1

4

�

jxj2 CCR:

As a result, IR can be rewritten as

IR D �
Z

BRnD

r.1BRnD � N / � r'R dx � .2�� 1/
2

Z

BRnD

x � r'R dx

DW �J1R � .2�� 1/
2

J2R: (2.41)

Next we will show that J1R;J
2
R � 0, leading to IR � 0. Let us start with J2R. Applying

Lemma 2.13 to each of D0;R and ¹UiºniD1 immediately gives

J2R �
Z

D0;R

jxj2 C rp0;R � x dxC
n

X

iD1

Z

Ui

jxj2 C rpi � x dx

DW T0;R C
n

X

iD1

Ti � 0: (2.42)

Note that the Ti ’s are independent of R for i D 1; : : : ; n, and we know that Ti � 0

with equality is achieved if and only if Ui is an annulus or a disk centered at the
origin. This will be used later to show that all ¹UiºniD1 are centered at the origin in the
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�> 1
2

case. (When�D 1
2

, the coefficient of J2R becomes 0 in (2.41), thus a different
argument is needed in this case.)

We now move on to J1R. We first break it into

J1R D
Z

BRnD

r.1BRnD �N / �x dxC
Z

BRnD

r.1BRnD �N / �rpR dx DW J11CJ12:

An identical computation as (2.25) gives J11 D 1
4�
.jD0;Rj C Pn

iD1 jUi j/2. For J12,
the same computation as (2.28)–(2.30) gives the following (where we used that each
Ui lies in a hole of D0;R for i D 1; : : : ; n):

J12 � �
Z

D0;R

p0;R dx �
n

X

iD1

Z

Ui

pi dx �
X

1�i�n

jUi j sup
D0;R

p0;R �
X

1�i;j�n
j�i

jUi jjUj j
2�

:

Adding up the estimates for J11 and J12, we obtain

J1R �
� 1

4�
jD0;Rj2 �

Z

D0;R

p0;R dx
�

C
� X

1�i�n

jUi j
�� 1

2�
jD0;Rj � sup

D0;R

p0;R

�

C
n

X

iD1

� 1

4�
jUi j2 �

Z

Ui

pi dx
�

C
X

j⊀i and i⊀j
i¤j

1

4�
jUi jjUj j: (2.43)

By Proposition 2.8, all terms on the right-hand side are nonnegative. But note that only
the two terms in the second line are independent of R. Plugging (2.43) and (2.42) into
(2.41) gives the following (where we only keep the terms independent of R on the
right-hand side):

lim inf
R!1

.�IR/�
n

X

iD1

� 1

4�
jUi j2 �

Z

Ui

pi dx
�

C
X

j⊀i and i⊀j
i¤j

1

4�
jUi jjUj j C 2�� 1

2

n
X

iD1

Ti � 0:

Combining this with the previous limit (2.40), we know that Ui must be an annulus or
a disk for i D 1; : : : ; n, and they must be nested in each other. In addition, if �> 1

2
,

then we have Ti D 0 for i D 1; : : : ; n, implying that each Ui is centered at the origin.
The radial symmetry of D0;R is more difficult to obtain. Although the first two

terms on the right-hand side of (2.43) are both strictly positive if D0;R is not an
annulus, we need some uniform-in-R lower bound to get a contradiction in the R!
1 limit. Between these two terms, it turns out the second term is easier to control.
This is done in the next lemma, whose proof we postpone to the end of this subsection.
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LEMMA 2.16
Let D �BR0

be an open set with C 1;
 boundary. For any R >R0, let D0;R, V , and

p0;R be given as in the proof of Theorem 2.14. If V is not a single disk, then there

exists some constant C.V / > 0 depending only on V such that

lim inf
R!1

� 1

2�
jD0;Rj � sup

D0;R

p0;R

�

� C.V / > 0:

If V is not a disk, then Lemma 2.16 gives lim infR!1 J1R > .
P

1�i�n jUi j/ �
C.V / > 0. (Recall that in the beginning of this proof we assume that

P

1�i�n jUi j>
0, and it is independent of R.) This implies that lim infR!1.�IR/ � C.V / > 0,
contradicting (2.40).

So far we have shown that @D is a union of nested circles, and it remains to
show that they are all centered at 0. For the �> 1

2
case, we already showed that all

¹UiºniD1 are centered at 0, so it suffices to show that the outermost circle @V (denoted
by B. Qo; Qr/) is also centered at 0. By definition of ¹UiºniD1, we have D D B. Qo; Qr/ n
. PSn

iD1Ui /. Note that 1B.Qo;Qr/�N D jx�Qoj2

4
CC for some constantC , and 1 P

Sn

iD1Ui
�N

is radially increasing. Therefore, f� can be written as

f� D 1B.Qo;Qr/ � N � 1 P
Sn

iD1Ui
� N � �

2
jxj2 D jx � Qoj2

4
� g.x/;

where g is radially symmetric, and strictly increasing in the radial variable. Since both

f� and jx�Qoj2

4
are known to take constant values on @B. Qo; Qr/, it implies that g must

be constant on @B. Qo; Qr/ too, and the fact that g is a radially increasing function gives
that QoD 0. This finishes the proof for �> 1

2
.

For�D 1
2

, we do not yet know whether ¹UiºniD1 are centered at 0. Denote by U1
the innermost one. Then we have

f�.x/D jx � Qoj2
4

� 1 P
Sn

iD1Ui
� N � jxj2

4
D Qo � x

2
C const for x 2 @outU1; (2.44)

where the second equality follows from Lemma 2.11(b), where we used that 1� j for
all 2� j � n. Combining (2.44) with the fact that f� D const on @outU1 gives QoD 0,
that is, the outermost circle must be centered at 0. This leads to f� D �Pn

iD1 1Ui
�

N . Since f� D const on each connected component of @Ui , we can apply the last part
in the proof of Corollary 2.10 to show that the ¹UiºniD1 are all concentric. Denoting
their center by o1, we can show that o1 D 0: Lemma 2.11(a) gives f�.x/D C ln jx�
o1j for some C < 0 on @B. Qo; Qr/, and since we have f D const on @B. Qo; Qr/ and QoD 0,
it implies that o1 D 0, finishing the proof.

Proof of Lemma 2.15

For notational simplicity, we shorten p0;R, D0;R, and '0;R into pR, DR, and 'R
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throughout this proof. Recall that @DR D @BR [ @V . Clearly we have 'R D R2

2
on

@BR, due to pR D 0 on @outDR D @BR. We claim that

� NR20
2

� 'R � R2

2
� R20

2
on @V; (2.45)

where N � 1 is the number of connected components of V . Once it is proved, we
apply the comparison principle to the functions 'R � R2

2
and ˙g, where

g.x/ WD NR20
2 log.R=R0/

log
R

jxj :

Note that g � 0 on @BR, and g � NR2
0

2
on @V since @V � BR0

. If 0 …DR, then the

functions 'R � R2

2
and ˙g are all harmonic in DR, their values on @BR are all 0, and

their boundary values on @V are ordered due to (2.45). The comparison principle in
DR then yields

� g.x/� 'R.x/� R2

2
� g.x/ in DR: (2.46)

Since 'R � R2

2
� g � 0 on @BR, (2.46) gives jr'R � Enj � jrg � Enj D NR2

0

2R log.R=R0/
on

@BR, which is the desired estimate (2.39). And if 0 2DR, then (2.46) still holds in
DR nB� for all sufficiently small � > 0 by applying the comparison principle in this
set, and (2.39) again follows as a consequence.

In the rest of the proof we will show (2.45). Its second inequality is straightfor-
ward:

'R � R2

2
� R20

2
C sup
DR

pR � R2

2
� R20

2
on @V:

Here the first inequality follows from the definition of 'R and the fact that V �BR0
,

and the second inequality is due to supDR
pR � jDRj

2�
� R2

2
in Proposition 2.8.

It remains to prove the first inequality of (2.45). Let us fix any R > R0. Denote
the N connected components of @V by ¹�iºNiD1, and let �0 WD @BR. This notation

leads to @DR D SN
iD0�i . For i D 0; : : : ;N , let Li � R be the range of 'R � R2

2
on

�i . By continuity of 'R, each Li is a closed bounded interval, which can be a single
point. Clearly, L0 D ¹0º due to 'Rj@BR

D R2

2
. Towards a contradiction, suppose that

vmin WD min
1�i�N

infLi D inf
@V

�

'R � R2

2

�

DW �N jR0j2
2

� ı for some ı > 0: (2.47)

As for the maximum value, since L0 D ¹0º, we have
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vmax WD max
0�i�N

supLi � 0: (2.48)

For i D 1; : : : ;N , using pRj�i
D const, 'R D pR C jxj2

2
, and �i �BR0

, the length of
each interval Li satisfies

jLi j D osc�i

jxj2
2

� R20
2

for i D 1; : : : ;N: (2.49)

Comparing (2.49) with (2.47)–(2.48), we know that the union of ¹LiºNiD0 cannot
fully cover the interval Œvmin; vmax�, thus they can be separated in the following sense:
there exists a nonempty proper subset S � ¹0; : : : ;N º such that the range of Li for
indices in S and Sc WD ¹0; : : : ;N º n S are strictly separated by at least ı, that is,
mini2S infLi � maxi2Sc supLi C ı. In terms of 'R, we have

min
i2S

inf
�i

'R � max
i2Sc

max
�i

'R C ı: (2.50)

Since 'R is harmonic inDR, whose boundary is
SN
iD0�i , it is a standard comparison

principle exercise to show that (2.50) implies

X

i2S

Z

�i

r'R � End� > 0; (2.51)

where En denotes the outer normal of DR. But on the other hand, we have
Z

�i

r'R � End� D 0 for i D 0; : : : ;N: (2.52)

To see this, the cases i D 1; : : : ;N can be done by an identical computation as (2.24),
and the i D 0 case follows from

R

@DR
'R � End� D

R

DR
�'R dx D 0 and the fact that

@DR D SN
iD0�i . Thus we have obtained a contradiction between (2.51) and (2.52),

completing the proof.

Proof of Lemma 2.16

Assume that V has N connected components ¹Vj ºNjD1 for N � 1. For notational
simplicity, we shorten D0;R, p0;R, and '0;R into DR; pR, and 'R in this proof.
Let �R WD 1

2�
jDRj � supDR

pR, which is nonnegative by Proposition 2.8. Towards
a contradiction, assume that there exists a diverging subsequence ¹Riº1

iD1 such that
limi!0 �Ri

D 0.

Define Q'Ri
WD 'Ri

� R2
i

2
. We claim that ¹ Q'Ri

º1
iD1 has a subsequence that con-

verges locally uniformly to some bounded harmonic function '1 in R2 n V .
To show this, we will first obtain a uniform bound of ¹ Q'Ri

º1
iD1. Note that (2.45)

gives that sup@V j Q'Ri
j � NR2

0

2
for all i 2 NC. Since Q'Ri

� 0 on @BRi
for all i 2 NC,
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the maximum principle for harmonic functions gives supDRi
j Q'Ri

j � NR2
0

2
for all i 2

NC.
For any R > 2R0, we will obtain a uniform gradient estimate for ¹ Q'Ri

º in DR
for all Ri > 2R. First note that since @BR is in the interior of DRi

(due to Ri >
2R), the interior estimate for harmonic functions (together with the above uniform
bound) gives that k Q'Ri

kC2.@BR/
� C.N;R0/. On the other boundary @V , recall that

Q'Ri
j@Vj

D jxj2

2
C ci;j , with jci;j j � .NC1/R2

0

2
. Thus k Q'Ri

kC2.@DR/
� C.N;R0/ for

all Ri > 2R, and the standard elliptic regularity theory gives the uniform gradient
estimate supDR

jr Q'Ri
j � C.V /. This allows us to take a further subsequence (which

we still denote by ¹ Q'Ri
º) that converges uniformly in DR to some harmonic function

Q'1 2 C.DR/. SinceR > 2R0 is arbitrary, we can repeat this procedure (for countably
many times) to obtain a subsequence that converges locally uniformly to a harmonic

function Q'1 in R2 nV , where Q'1j@Vj
D jxj2

2
Ccj with jcj j � .NC1/R2

0

2
. This finishes

the proof of the claim.
Now define

QpRi
WD pRi

� R2i
2

D Q'Ri
� jxj2

2
;

which is known to converge locally uniformly to Qp1 WD Q'1 � jxj2

2
in R2nV . Note that

Qp1 is not radially symmetric up to any translation. To see this, recall that Qp1j@Vj
�

cj . If Qp1 is radial about some x0, then it must be of the form � jx�x0j2

2
C c due to

� Qp1 D �2. As a result, the level sets of Qp1 are all nested circles, thus V must be a
single disk (where we used that each connected component of V is simply connected).

Next we will show that limi!0 �Ri
D 0 implies that Qp1 is radial up to a trans-

lation, leading to a contradiction. For k 2 R, let gi .k/ WD j¹x 2DRi
W pRi

.x/ > kºj.
In the proof of Proposition 2.8, we have shown that gi .0/D jDRi

j, gi is decreasing
in k, with g0

i .k/ � �2� for almost every k 2 .0; supDRi
pRi

/. Since supDRi
pRi

D
1
2�

jDRi
j � �Ri

, we can control gi .k/ from below and above as follows:

�

jDRi
j � 2�k � 2��Ri

�

C
� gi .k/�

�

jDRi
j � 2�k

�

C
for all k � 0: (2.53)

Likewise, define Qgi .k/ WD j¹x 2 DRi
W QpRi

.x/ > kºj, and Qg1.k/ WD j¹x 2 DRi
W

Qp1.x/ > kºj. Since QpRi
D pRi

� R2
i

2
, we have Qgi .k/D gi .kC R2

i

2
/ for all k � �R2

i

2
,

thus (2.53) is equivalent to

�

�jV j � 2�k � 2��Ri

�

C
� Qgi .k/�

�

�jV j � 2�k
�

C
for all k � �R

2
i

2
:

The locally uniform convergence of pRi
gives limi!1 Qgi D Qg0, and since we assume

that limi!1 �Ri
D 0, we take the i ! 1 limit in the above inequality and obtain
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Qg1.k/D
�

�2�k � jV j
�

C
for all k 2 R;

which implies that

Qg0
1.k/D �2� for all k 2

�

�1; sup
R2nV

Qp1

�

: (2.54)

Applying the proof of Proposition 2.8 to Qp1 (note that the proof still goes through
even though Qp1 takes negative values, and is defined in an unbounded domain), we
have that (2.54) can happen only if QDk WD ¹ Qp1 > kº P[. PS

¹j Wcj>kºVj / is a disk for

almost every k 2 .�1; supR2nV Qp1/, and jr Qp1j is a constant on almost every @ QDk .
These two conditions imply that all regular sets of Qp1 are concentric circles, thus Qp1

is radial up to a translation, and we have obtained a contradiction.

3. Radial symmetry of nonnegative smooth stationary/rotating solutions for 2D

Euler with �� 0

Let !.x; t/ D !0.R�tx/ be a nonnegative compactly supported stationary/rotating
solution of 2D Euler with angular velocity � � 0. Recall that by (1.7), f� WD !0 �
N � �

2
jxj2 is a constant along each connected component of a regular level set of

!0. In this section, we prove that !0 is radial up to a translation for �D 0, and radial
for �< 0. As we discussed in the Introduction, the ! � 0 condition is necessary: in
a forthcoming work [42] we will show that there exists a compactly supported, sign-
changing smooth stationary vorticity !0 that is nonradial, and the construction also
works for �< 0 that is close to 0.

Most of this section is devoted to the proof of Theorem 3.5 in the � D 0 case
(the � < 0 case is done in Corollary 3.6 as a simple extension). In the proof, the
two key steps are to show that every connected component of a regular level set of !
is a circle, and that these circles are concentric. These are done by approximating
! by a step function !n D PMn

iD1 ˛i1Di
such that the sets ¹Diº are disjoint, and

k! � !nkL1 D O.1=n/. We then define 'n D jxj2

2
C PMn

iD1 1Di
pi corresponding

to this step function !n, and compute In D
R

!nr'n � rfdx in two ways.
Due to theO.1=n/ error in the approximation, the qualitative statement in Propo-

sition 2.8 that “the equality is achieved if and only if D is a disk or an annulus” is no
longer good enough for us. We need to obtain various quantitative versions of (2.15)
for doubly connected domains, and three such versions are stated below.

In Lemma 3.2, the quantitative constant c0 > 0 depends on the Fraenkel asym-
metry of the outer boundary defined in Definition 3.1.

Definition 3.1 (cf. [34, Section 1.2])

For a bounded open set E � R2, we define the Fraenkel asymmetry A.E/ 2 Œ0; 1/ as
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A.E/ WD inf
x0

° jE�.x0 C rB/j
jEj W x0 2 R2; �r2 D jEj

±

;

where B is a unit disk in R2.

LEMMA 3.2
Let D be a doubly connected set. Let us denote the hole of D by an open set h, and

let QD WD D [ h. We define p in D as in Lemma 2.6. Then if A. QD/ > 0, there is a

constant c0 > 0 that depends only on A. QD/ such that

pj@h � jDj
2�

.1� c0/:

Lemma 3.2 will be used in the proof of Theorem 3.5 to show that all level sets
of ! are circles. To obtain radial symmetry of !, we also need to show that all these
level sets are concentric. To do this, we need to obtain some quantitative lemmas for
a region between two nonconcentric disks. In Lemma 3.3 we consider a thin tubu-
lar region between two nonconcentric disks whose radii are close to each other, and
obtain a quantitative version of (2.15) for such a domain.

LEMMA 3.3
For � > 0, consider two open disks B1 WD B.o1; 1/ and B2 D B.o2; 1C �/ such that

B1 � B2. Suppose that jo1 � o2j D a� with a 2 .0; 1/, and let p be defined as in

Lemma 2.6 in D WDB2 nB1. Then if � and a satisfy that 0 < � < a2

64
, we have

pj@B1
� jDj
2�

�

1� a2

16

�

: (3.1)

In Lemma 3.4 we consider a region between two nonconcentric disks (that is not
necessarily a thin tubular region), and obtain a quantitative version of (2.15) for such
a domain.

LEMMA 3.4
Consider two open disks Br WDB.o1; r/ and BR DB.o2;R/ such that Br �BR. Let

p be defined as in (2.6) in D WD BRnBr . Suppose that l WD jo1 � o2j > 0 and there

exist ı1 > 0 and ı2 > 0 such that ı1 < r < R < ı2. Then there exists a constant c0
that depends only on ı1, ı2, and l such that

pj@Br
� jDj
2�

.1� c0/:

The proofs of the above quantitative lemmas will be postponed to Section 3.1.
Now we are ready to prove the main theorem.
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THEOREM 3.5
Let ! be a smooth2 compactly supported nonnegative stationary solution to the 2D

Euler equation. Then ! is radially symmetric up to a translation.

Proof

Note that as mentioned in step 1 of Proposition 2.8, by Sard’s theorem, we have that
for almost every k 2 .0;k!kL1/, !�1.¹kº/ is a smooth 1-manifold. Furthermore,
since ! is compactly supported, each such level set is a disjoint union of a finite
number of simple closed curves. For any such closed curve, we call it a level set

component in this proof.
We split the proof into several steps. Throughout steps 1, 2, and 3, we prove

that all level set components of ! must be circles. In step 4, we will prove that any
two level set components are nested, that is, one is contained in the other. Lastly, we
present the proof that all level set components are concentric in steps 5 and 6.

Step 1. Towards a contradiction, suppose that there is k > 0 that is a regular
value of !, and suppose that !�1.¹kº/ has a connected component � that differs
from a circle. Recall that int.�/ denotes the interior of � , which is open and simply
connected. Since � is not a circle, we have A.int.�// > 0, with A as in Definition 3.1.

In this step, we investigate level set components near � . Since k is a regular value,
we can find an open neighborhood U of � and a constant � > 0 such that jr!j > �
in U . For any x 2 � , consider the flow map ˆt .x/ originating from x, given by

d

dt
ˆt .x/D r!.ˆt .x//

jr!.ˆt .x//j2

with initial condition ˆ0.x/D x. Since r!
jr!j2

is smooth and bounded in U , we can
choose ı1 > 0 so that ˆt .�/ WD ¹ˆt .x/ W x 2 �º lies in U for any t 2 .�ı1; ı1/. Note
that the ˆt ’s are diffeomorphisms, thus ˆt .�/ is also a smooth simple closed curve
for t 2 .�ı1; ı1/. Then we observe that

d

dt
!

�

ˆt .x/
�

D r!
�

ˆt .x/
�

� r!.ˆt .x//
jr!.ˆt .x//j2

D 1 for .t; x/ 2 .�ı1; ı1/� � . (3.2)

Hence for each t 2 .�ı1; ı1/, ˆt .�/ is a level set component and

!
�

ˆt1.�/
�

¤ !
�

ˆt2.�/
�

if t1 ¤ t2. (3.3)

By continuity of the map .t; x/ 7!ˆt .x/, we can find ı2 2 .0; ı1/ such that

2In fact, it is sufficient to assume that !0 2C 2.R2/. In the proof, the application of Sard’s theorem in step 1 is

the step that requires the highest regularity and it is applicable for functions inC 2.R2/. (See [79, Theorem 6.1].)

Therefore, !0 2C 2.R2/ ensures that !�1.¹kº/ is aC 2 1-manifold for almost every k 2 .0;k!kL1 /, whose

regularity is sufficient for all the following steps.
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A
�

int
�

ˆt .�/
��

>
1

2
A

�

int.�/
�

for any t 2 .�ı2; ı2/: (3.4)

Since two different level sets cannot intersect, we can assume without loss of gener-
ality that int.ˆ�ı2

.�// � int.ˆı2
.�//. Then it follows from the intermediate value

theorem and (3.2) that

int
�

ˆ�ı2
.�/

�

�ˆt .�/� int
�

ˆı2
.�/

�

for any t 2 .�ı2; ı2/: (3.5)

Lastly, we denote V WD int.ˆı2
.�//nint.ˆ�ı2

.�// which is a nonempty open doubly
connected set; therefore jV j> 0.

Step 2. For any integer n > 1, we claim that we can approximate ! by a step
function !n of the form !n.x/ D PMn

iD1 ˛i1Di
.x/, which satisfies all the following

properties:
(a) each Di is a domain with smooth boundary and possibly has a finite number

of holes;
(b) each connected component of @Di is a level set component of !;
(c) Di \Dj D ; if i ¤ j ;
(d) k!n �!kL1.R2/ � 2

n
k!kL1.Rn/.

To construct such !n for a fixed n > 1, let r0 D 0 and rnC1 D k!kL1 . We
pick r1; : : : ; rn to be regular values of ! such that 0 < r1 < � � � < rn < k!kL1 ,
and riC1 � ri < 2

n
k!kL1 for i D 0; : : : ; n. We denote Di WD ¹x 2 R2 W ri < !.x/ <

riC1º for i D 1; : : : ; n � 1, and let Dn WD ¹x 2 R2 W !.x/ > rnº. Thus for each i D
1; : : : ; n, Di is a bounded open set with smooth boundary. We can then write it
as Di D PSmi

lD1D
l
i for some mi 2 N, where the Dl

i ’s are connected components of
Di . Then let !n.x/ WD Pn

iD1 ri
Pmi

lD1
1Dl

i
. By relabeling the indices, we rewrite

!n.x/ D PMn

iD1 ˛i1Di
, where Mn D Pn

iD1mi , and each ˛i 2 ¹r1; : : : ; rnº. One can
easily check that such !n satisfies properties (a)–(d).

Of course, there are many ways to choose the values r1; : : : ; rn, with each
choice leading to a different !n. From now on, for any n > 1, we fix !n.x/ WD
PMn

iD1 ˛i1Di
.x/ as any function constructed in the above way. (Note that ˛i and Di

all depend on n, but we omit their n dependence for notational simplicity.)
Finally, let us point out that for !n.x/ constructed above, if Di � V for some i ,

then Di must be doubly connected, since step 1 shows that all level set components
in V are nested curves. We will use this in steps 3 and 5.

Step 3. For any n > 1, let !n.x/D PMn

iD1 ˛i1Di
.x/ be constructed as in step 2.

For each Di , we define pni in Di as in Lemma 2.6. We set
8

ˆ̂
<

ˆ̂
:

pn WD PMn

iD1p
n
i 1Di

;

'ni WD pi C jxj2

2
in Di ;

'n WD PMn

iD1 '
n
i 1Di

:

(3.6)
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As in Theorem 2.9, let f WD ! � N , and we will compute

In WD
Z

R2

!n.x/r'n.x/ � rf .x/dx D
MnX

iD1

˛i

Z

Di

r'n.x/ � rf .x/dx (3.7)

in two different ways and derive a contradiction by taking the n! 1 limit.
On the one hand, the same computation as in (2.23)–(2.24) yields that

In D
MnX

iD1

˛i

�Z

@Di

f .x/r'ni .x/ � End� �
Z

Di

f .x/�'ni .x/dx
�

D 0: (3.8)

On the other hand,

In D
Z

R2

!n.x/x � rf .x/dxC
Z

R2

!n.x/rpn.x/ � rf .x/dx

DW In1 C In2 :

Since !n satisfies property (d) in step 2, it follows that

lim
n!1

In1 D
Z

R2

!.x/x � rf .x/dx:

A similar computation as in (2.25) yields that
Z

R2

!.x/x � rf .x/dx D 1

2�

Z

R2

Z

R2

!.x/!.y/
x � .x � y/
jx � yj2 dx dy

D 1

4�

Z

R2

Z

R2

!.x/!.y/dx dy

D 1

4�

�Z

R2

!.x/dx
�2

; (3.9)

where we used the symmetry of the integration domain to get the second equality.
Now we estimate the limit of In2 . By Lemma 2.13, we have

R

Di
jrpni j2 dx �

R

Di
jxj2 dx, hence k!nrpkL2.R2/ is uniformly bounded. Since !n ! ! in L1, the

bounded convergence theorem yields that

lim
n!1

Z

R2

!nrpn � r
�

.!n �!/ � N
�

.x/dx D 0:

Therefore,

lim inf
n!1

In2 D lim inf
n!1

Z

R2

!n.x/rpn.x/ � r.!n � N / dx:
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From now on, we will omit the n dependence in pni for notational simplicity. Let
us break the integral on the right-hand side into

Z

R2

!n.x/rpn.x/ � r.!n � N / dx

D
MnX

i;jD1

˛i˛j

Z

Di

rpi � r.1Dj
� N / dx

D
MnX

iD1

˛2i

Z

Di

rpi � r.1Di
� N / dxC

X

i¤j

˛i˛j

Z

Di

rpi � r.1Dj
� N / dx

DW F1 CF2: (3.10)

For F1, the divergence theorem yields

F1 D
MnX

iD1

˛2i

�Z

@Di

pir.1Di
� N / � End� �

Z

Di

pi dx
�

D �
MnX

iD1

˛2i

Z

Di

pi dx; (3.11)

where the second equality follows from an identical computation as in (2.26). Then
by Proposition 2.8, we have

F1 � � 1

4�

MnX

iD1

˛2i jDi j2: (3.12)

For F2, the divergence theorem yields

F2 D
X

i¤j

˛i˛j

�Z

@Di

pir.1Dj
� N / � End� �

Z

Di

pi1Dj
dx

�

D
X

i¤j

˛i˛j

Z

@Di

pir.1Dj
� N / � End�;

where we used property (c) in step 2 to get the last equality.
For i ¤ j , recall that as in the proof of Corollary 2.10, we denote j � i if Dj is

contained in a hole of Di . Then the divergence theorem gives

Z

@Di

pir.1Dj
� N / � End�

´

D 0 if j ⊀ i;

� � sup@Di
pi jDj j if j � i:

(3.13)
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Next we will improve this inequality for j � i and i 2 L, where L WD ¹i WDi �
V º. (Note that L depends on !n, where we omit this dependence for notational sim-
plicity.) From the discussion at the end of step 2, we know that Di has exactly one
hole for all i 2L. Using the divergence theorem together with this observation, (3.13)
becomes

Z

@Di

pir.1Dj
� N / � End�

8

ˆ̂
<

ˆ̂
:

D 0 if j ⊀ i;

� � supDi
pi jDj j if j � i and i …L;

D �pi j@inDi
jDj j if j � i and i 2L:

(3.14)

For the second case on the right-hand side, we simply use the crude bound
supDi

pi � jDi j
2�

from Proposition 2.8. For the third case, we can have a better bound:
for any i 2 L, by Lemma 3.2 and (3.4), there exists an � > 0 that depends only on
A.int.�// (and in particular is independent of n) such that pi j@inDi

� . 1
2�

� �/jDi j.
Thus (3.14) now becomes

Z

@Di

pir.1Dj
� N / � End�

8

ˆ̂
<

ˆ̂
:

D 0 if j ⊀ i;

� � 1
2�

jDi jjDj j if j � i and i …L;
� �. 1

2�
� �/jDi jjDj j if j � i and i 2L:

(3.15)

Now we are ready to estimate F2. Let us break it into

F2 D
X

j�i
.i;j /…L�L

˛i˛j

Z

@Di

pir.1Dj
� N / � End�

C
X

j�i
.i;j /2L�L

˛i˛j

Z

@Di

pir.1Dj
� N / � End�

� �
X

j�i
.i;j /…L�L

˛i˛j
1

2�
jDi jjDj j �

X

j�i
.i;j /2L�L

˛i˛j

� 1

2�
� �

�

jDi jjDj j;

where the first equality follows from case (1) of (3.15), and the second inequality
follows from cases (2) and (3) of (3.15). Finally, by exchanging i with j and taking
the average with the original inequality, we have

F2 � � 1

4�

X

i¤j
.i;j /…L�L

.1i�j C 1j�i /˛i˛j jDi jjDj j

� 1

2

X

i¤j
.i;j /2L�L

.1i�j C 1j�i /˛i˛j

� 1

2�
� �

�

jDi jjDj j
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� � 1

4�

X

i¤j
.i;j /…L�L

˛i˛j jDi jjDj j � 1

2

X

i¤j
.i;j /2L�L

˛i˛j

� 1

2�
� �

�

jDi jjDj j

D � 1

4�

X

i¤j

˛i˛j jDi jjDj j C �

2

X

i¤j
.i;j /2L�L

˛i˛j jDi jjDj j; (3.16)

where the second inequality is due to the fact that for any i ¤ j , at most one of i � j

and j � i can be true, thus we always have 1i�j C 1j�i � 1.
Therefore, from (3.12) and (3.16) it follows that

F1 CF2 � � 1

4�

MnX

i;jD1

˛i˛j jDi jjDj j

C �

2

X

.i;j /2L�L

˛i˛j jDi jjDj j � �

2

X

i2L

˛2i jDi j2

D � 1

4�

�MnX

iD1

˛i jDi j
�2

C �

2

�X

i2L

˛i jDi j
�2

� �

2

X

i2L

˛2i jDi j2: (3.17)

Since we will send n! 1, in the rest of step 3 we will denote L by Ln to emphasize
that L depends on !n. (In fact, ˛i and Di depend on n as well, and we omit the n
dependence for them to avoid overcomplicating the notation.)

Note that
P

i2Ln ˛i1Di
converges to !1V in L1.R2/. Also if i 2 Ln, then the

nondegeneracy of jr!j on V yields that limn!1 supi2Ln jDi j D 0; consequently

lim
n!1

X

i2Ln

˛2i jDi j2 � k!kL1 lim
n!1

sup
i2Ln

jDi j
Z

R2

! dx D 0:

Therefore, it follows that

lim inf
n!1

In2 D lim inf
n!1

.F1 CF2/

� � lim
n!1

1

4�

�MnX

iD1

˛i jDi j
�2

C lim
n!1

�

2

� X

i2Ln

˛i jDi j
�2

D � 1

4�

�Z

R2

!.x/dx
�2

C �

2

�Z

V

!.x/dx
�2

: (3.18)

Note that ! is strictly positive in V , due to jr!j > 0 in V and ! � 0 in R2. Thus
from (3.8), (3.9), and (3.18), it follows that

0D lim
n!1

In � lim
n!1

In1 C lim inf
n!1

In2 � �

2

�Z

V

!.x/dx
�2

> 0; (3.19)
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which is a contradiction, and we have proved that any level set component is a circle.
Step 4. In this step, we show that every pair of level set components are nested.

Towards a contradiction, assume that there exist two level set components �1 and �2
that are not nested.

From step 3, we know that �1 and �2 are circles. Then the disks int.�1/ and
int.�2/ are disjoint, and they must be separated by a positive distance since �1 and
�2 are level sets of regular values of !. As in step 1, using the flow mapˆt originating
from the two circles, we can find disjoint open annuli V1 and V2 such that �i � Vi for
i D 1; 2, and both @outVi and @inVi are level set components of !.

For any n > 1, let !n.x/D PMn

iD1 ˛i1Di
.x/ be constructed as in step 2, and let

Ln1 WD ¹i WDi � V1º and Ln2 WD ¹i WDi � V2º:

Let pi be defined as in (3.6) of step 3, and let In be defined as in (3.7). Then on the
one hand, the same computations as in step 3 give

lim
n!1

In D 0 and lim
n!1

In1 D 1

4�

�Z

R2

!.x/dx
�2

: (3.20)

Let F1 and F2 be given by (3.10). For F1, the estimate (3.12) still holds. For F2,
using (3.13) and Proposition 2.8, we have

F2 � � 1

4�

X

i�j or j�i

˛i˛j jDi jjDj j:

Since V1 and V2 are assumed to be not nested, if .i; j / 2Ln1 �Ln2 , then neither i � j

nor j � i . Therefore, it follows that

F2 � � 1

4�

X

i¤j

˛i˛j jDi jjDj j C 1

4�

X

.i;j /2L1�L2

˛i˛j jDi jjDj j

C 1

4�

X

.j;i/2L1�L2

˛i˛j jDi jjDj j:

Combining the estimates for F1 and F2 yields

F1 CF2 � � 1

4�

MnX

i;jD1

˛i˛j jDi jjDi j C 1

2�

� X

i2Ln
1

˛i jDi j
�� X

i2Ln
2

˛i jDi j
�

:

As n ! 1, since
P

i2Ln
1
˛i1Di

and
P

i2Ln
2
˛i1Di

converge to !1V1
and !1V2

,

respectively, in L1.R2/, we have
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lim inf
n!1

In2 � lim
n!1

.F1 CF2/D � 1

4�

�Z

R2

!.x/dx
�2

C 1

2�

�Z

V1

!.x/dx
��Z

V2

!.x/dx
�

: (3.21)

Combining (3.20) and (3.21) gives us a similar contradiction as in (3.19), except that
�
2
.
R

V
!.x/dx/2 is now replaced by 1

2�
.
R

V1
!.x/dx/.

R

V2
!.x/dx/. Thus we com-

plete the proof that level sets are nested.
Step 5. In this step, we aim to show that all level set components are concentric

within the same connected component of ¹! > 0º WD ¹x 2 R2 W ! > 0º. This immedi-
ately implies that each connected component of ¹! > 0º is an annulus or a disk, and
! is radially symmetric about its center.

Towards a contradiction, suppose that there are two level set components �in and
�out in the same connected component of ¹! > 0º, such that they are nested circles,
but their centers Oin and Oout do not coincide. We denote their radii by rin and rout,
and define

U WD int.�out/ n int.�in/:

For an illustration of �in and �out and U , see Figure 4(a).
We claim that ! is uniformly positive in U . Recall that all level set components

of ! are nested by step 4. Thus if ! achieves zero in U , then the zero level set
must also be nested between �in and �out, since it can be taken as a limit of level set
components whose value approaches 0; but this contradicts with the assumption that
�in and �out lie in the same connected component of ¹! > 0º. As a result, we have
!min WD infU ! > 0.

For a sufficiently large n, let !n D PMn

iD1 ˛i1Di
.x/ be given as in step 2, where

we further require that both �in and �out coincide with some boundary of Di . (This
is allowed in our construction of !n in step 2, since ! is regular along both �in and
�out.) Let us denote

Bn WD ¹1� i �Mn WDi � U º;

and note that U WD S

i2Bn
Di . See Figure 4(b) for an illustration of ¹Diºi2Bn

.
As before, we denote i � j if Di is nested in Dj . For the integral In in (3.7), on

the one hand, we have In D 0 for all n > 1 by (3.8). On the other hand, following the
same argument as in step 3 up to (3.13) (where we also use that each Di is already
known to be doubly connected, thus

R

@Di
pir.1Dj

� N / � End� D �pi j@inDi
jDj j if

j � i ), we have

lim inf
n!1

In D lim inf
n!1

� 1

4�

�MnX

iD1

˛i jDi j
�2
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Figure 4. (Color online) (a) Illustration of the circles �in and �out, whose centers are Oin and
Oout. The set U is colored in blue. (b) For a fixed n, each open set ¹Di ºi2Bn

is colored in yellow.
Note that their union gives exactly the set U .

�
MnX

iD1

˛2i

Z

Di

pi dx �
X

1�i;j�Mn;j�i

˛i˛jpi j@inDi
jDj j

�

� lim inf
n!1

� X

1�i;j�Mn;j�i

˛i˛j

� 1

2�
jDi j � pi j@inDi

�

jDj j
„ ƒ‚ …

DWTn

�

;

where in the last step we used Proposition 2.8.
Note that Proposition 2.8 gives Tn > 0, where we have strict positivity, since

Oin ¤ Oout implies that some ¹Diºi2Bn
must be nonradial. But since the area of

these Di ’s may approach 0 as n ! 1, in order to derive a contradiction after tak-
ing lim infn!1, we need to obtain a quantitative estimate for Proposition 2.8 for a
thin tubular region Di between two circles, which is done in Lemma 3.3.

Next we show that the sets ¹Diºi2Bn
that are “nonradial to some extent” must

occupy a certain portion of U . For i 2Bn, denote by oiin and r iin the center and radius
of @inDi , and likewise oiout and r iout the center and radius of @outDi . Note that if Di is
the innermost set in ¹Diºi2Bn

, then we have oiin DOin, and the outermostDi satisfies
oiout DOout. In addition, if @outDi D @inDj for some i; j 2 Bn, then oiout D o

j
in. Thus

the triangle inequality gives
X

i2Bn

joiin � oioutj � jOin �Ooutj DW c0 > 0: (3.22)

In order to apply Lemma 3.3 (which requires the region to have inner radius 1),
for each i 2Bn, consider the scaling
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Qpi .x/ WD .r iin/
�2pi .r

i
inx/:

Then Qpi is defined in QDi WD .r iin/
�1Di . Due to the scaling, QDi has inner radius 1

(denote the hole by Qhi ), and outer radius 1C �i , where �i WD ri
out�r

i
in

ri
in

> 0. In addition,

the distance between the centers of @in QDi and @out QDi is ai�i , where

ai WD joiin � oioutj
jr iin � r ioutj

:

One can also easily check that Qpi satisfies � Qpi D �2 in QDi , and
R

@ Qhi
r Qp � End� D

�2j Qhi j D �2� . By Lemma 3.3, if 0 < �i <
.ai /

2

64
, then Qpi j@ Qhi

� j QDi j
2�
.1� a2

i

16
/. Thus in

terms of pi , we have

pi j@inDi
� 1

2�
jDi j � c1a2i jDi j if i 2Bn satisfies r iout � r iin � c2a

2
i ; (3.23)

where c1 WD 1
32�

and c2 WD rin
64

are independent of n and i , due to the fact that r iin �
rin > 0 for all i 2Bn. Using the definition of ai , (3.22) can be written as

X

i2Bn

ai jr iin � r ioutj � c0: (3.24)

Note that
P

i2Bn
jr iin � r ioutj satisfies the upper bound

X

i2Bn

jr iin � r ioutj � jU j
2�rin

DWM; (3.25)

which follows from

jU j D
X

i2Bn

jDi j D �
X

i2Bn

jr iin � r ioutj .r iin C r iout/
„ ƒ‚ …

>2rin

:

Combining (3.24) and (3.25) gives

X

i2Bn

1
ai>

c0
2M

jr iin � r ioutj �
X

i2Bn

�

ai � c0

2M

�

jr iin � r ioutj � c0

2
; (3.26)

where the first inequality follows from 1
ai>

c0
2M

� ai � c0

2M
(recall that ai 2 .0; 1/),

and the second inequality follows from subtracting c0

2M
times (3.25) from (3.24).

Let

Kn WD
°

i 2Bn W ai >
c0

2M

±

:
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Using this definition and the fact that jDi j> 2�rinjr iin � r ioutj, (3.26) can be rewritten
as

X

i2Kn

jDi j> 2�rin

X

i2Kn

jr iin � r ioutj � �rinc0: (3.27)

Now we take a sufficiently large n, and discuss two cases (note that different n may
lead to different cases).

Case 1. Every i 2Kn satisfies r iout � r iin � min¹c2. c0

2M
/2; rinc0

4rout
º. By definition of

Kn, we have r iout � r iin � c2.
c0

2M
/2 � c2a

2
i for i 2Kn. (The motivation of the second

term in the min function will be made clear later.) Then by (3.23), we have

1

2�
jDi j � pi j@inDi

� c1a
2
i jDi j � c1c

2
0

4M 2
jDi j for all i 2Kn:

Since Kn is a subset of Bn (and recall that ˛i � !min > 0 for all i 2Bn), we have the
following lower bound for Tn:

Tn � !2min

X

i;j2Kn;j�i

� 1

2�
jDi j � pi j@inDi

�

jDj j

� !2min

X

i;j2Kn;j�i

c1c
2
0

4M 2
jDi jjDj j D !2min

X

i;j2Kn;i¤j

c1c
2
0

8M 2
jDi jjDj j

D !2min

c1c
2
0

16M 2

�� X

i2Kn

jDi j
�2

�
X

i2Kn

jDi j2
�

: (3.28)

Note that the second term in the min function in the assumption gives

max
i2Kn

jDi j< 2�rout.r
i
out � r iin/� �rinc0

2
� 1

2

X

i2Kn

jDi j;

where we used (3.27) in the last inequality. Applying this to the right-hand side of
(3.28) gives

Tn � !2min

c1c
2
0

16M 2
� 1
2

� X

i2Kn

jDi j
�2

� !2min

c1c
2
0

32M 2
.�rinc0/

2:

Case 2. If Case 1 is not true, then there must be some i0 2Kn satisfying r i0out �
r
i0
in >min¹c2. c0

2M
/2; rinc0

4rout
º DW c3, which leads to

joi0in � oi0outj D ai0.r
i0
out � r i0in / >

c0c3

2M
DW l:

Although this set Di0 is likely not thin enough for us to apply Lemma 3.3, since
joi0in � oi0outj is bounded below by a positive constant independent of n, we can still use
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Lemma 3.4 to conclude that 1
2�

jDi0 j � pi0 j@inDi0
� c4 for some c4 > 0 depending

only on rin; rout, and l . This leads to

Tn �
X

i0�j

!min˛j c4jDj j � !minc4
X

Dj �int.�in/

˛j jDj j � !minc4 � 1
2

Z

int.�in/

! dx;

where the last inequality follows from the fact that for all sufficiently large n, the
definition of !n gives

P

Dj �int.�in/
˛j jDj j D

R

int.�in/
!n dx � 1

2

R

int.�in/
! dx. Note

that the last integral is positive since ! > 0 on �in, and it is clearly independent of n.
From the above discussion, for all sufficiently large n, regardless of whether we

are in Case 1 or 2 for this n, we always have that Tn is bounded below by some
uniformly positive constant independent of n. Therefore, taking the n ! 1 limit
gives

lim inf
n!1

In � lim inf
n!1

Tn > 0:

This contradicts In D 0, therefore finishing the proof of step 5.
Step 6. It remains to show that all connected components of ¹! > 0º are con-

centric. If ¹! > 0º has finitely many connected components, then we could proceed
similarly as the end of the proof of Corollary 2.10. But since ¹! > 0º may have count-
ably many connected components, we need to use a different argument.

Let us denote the connected components of ¹! > 0º by ¹Uiºi2I , where I

may have countably many elements. Denote their centers by ¹oiºi2I , their radii
by ¹Riºi2I , and their outer boundaries by ¹@outUiºi2I . Without loss of generality,
suppose that the x-coordinates of their centers ¹o1i ºi2I are not all identical.

Among the (possibly infinitely many) collection of circles ¹@outUiºi2I , let �r be
the “circle with rightmost center” among them, in the following sense:

� If there exists some i0 2 I such that o1i0 D supi2I o
1
i , then we define �r WD

@outUi0 . (If the supremum is achieved at more than one index, then we set i0 to be any
of them.)

� Otherwise, take any subsequence ¹ikºk2N � I such that limk!1 o1ik D
supi2I o

1
i . Since ! has compact support, we can extract a further subsequence

(which we still denote by ¹ikºk2N) such that both oik and rik converge as k ! 1,
and denote their limit by Or 2 R2 and Rr 2 R. Finally, let �r WD @B.Or ;Rr/.

With the above definition, we point out that f WD ! � N D const on �r . Note
that in both cases above, we can find a sequence of level set components of ! that
converges to �r , in the sense that the Hausdorff distance between the two sets goes
to 0. Since f D const on each level set component of !, continuity of f gives that
f D const on �r .

Let fi .x/ WD .!1Ui
/�N for i 2 I ; note that by definition we have f D P

i2I fi .
Lemma 2.11 gives the following:
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(a) for all x 2 .int.@outUi //
c , we have fi .x/D 1

2�
.
R

Ui
! dx/ ln jx � oi j;

(b) If Ui is doubly connected, then fi D const in int.@inUi /, where the constants
are different for different i .

Note that for any i 2 I , Ui must be either nested inside �r , or have �r nested
in its hole. (By a slight abuse of notation, we use i � �r and i � �r to denote these
two relations.) Let �Rr WD .O1r C Rr ;O

2
r / and �Lr WD .O1r � Rr ;O

2
r / be the right-

most/leftmost points of the circle �r . Note that (b) implies that fi .�Rr /D fi .�
L
r / for

all i � �r , whereas (a) gives the following for all i � �r :

fi .�
R
r /D

R

Ui
! dx

2�
ln j�Rr � oi j �

R

Ui
! dx

2�
ln j�Lr � oi j D fi .�

L
r /;

where the inequality follows from the fact that jO1r C Rr � o1i j � jO1r � Rr � o1i j,
which is a consequence of o1i �O1r due to our choice of Or . (Also note that �Rr and
�Lr have the same y-coordinate.)

As a result, summing over all i 2 I gives f .�Rr /� f .�Lr /, where the equality is
achieved if and only if o1i DOr for all i � �r . Now we discuss two cases:

Case 1. There is some i � �r with o1i < Or . In this case, the above discussion
gives f .�Rr / > f .�

L
r /, which leads directly to the contradiction f D const on �r .

Case 2. If case 1 does not hold, then let us define �l as a “circle with leftmost
center” among ¹@outUiºi2I in the same way as �r . Then we must have O1

l
<O1r , and

since case 1 does not hold (i.e., all i � �r satisfy that o1i DOr ), we must have �l �
�r . By definition of �r , there exists some Ui0 whose outer boundary is sufficiently
close to �r and whose center is sufficiently close to Or . As a result, i0 � �l and
o1i0 >O

1
l

.
Let �L

l
and �R

l
be the leftmost/rightmost points of �l . A parallel argument as

above then gives that fi .�Ll /� fi .�
R
l
/ for all i 2 I . Since we have found an i0 � �l

with o1i0 > O
1
l

, we have fi0.�
L
l
/ > fi0.�

R
l
/; thus summing over all i 2 I gives the

strict inequality f .�L
l
/ > f .�R

l
/, contradicting with f D const on �l .

In both cases above we have obtained a contradiction, thus ¹oiºi2I must have the
same x-coordinate. An identical argument shows that their y-coordinates must also
be identical, thus the ¹Uiºi2I are concentric. Since ! is known to be radial within
each Ui (about its own center) in steps 1–5, the proof is now finished.

In the next corollary, we show that the above proof for stationary smooth solutions
can be extended (with some modifications) to show radial symmetry of nonnegative
rotating smooth solutions with �< 0.

COROLLARY 3.6
Let !.x; t/ D !0.R�tx/ be a smooth, nonnegative compactly supported uniformly
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rotating solution of 2D Euler with angular velocity �< 0. Then !0 is radially sym-

metric about the origin.

Proof

The proof is very similar to the proof of Theorem 3.5, and we only highlight the
differences. Let ¹!nº be the same approximation for !0 as in step 2 of Theorem 3.5.
We consider the same setting as in (3.6) and (3.7), except with f .x/ replaced by
f�.x/ WD !0 �N � �

2
jxj2. From the assumption on !0, we have that f� is a constant

on each level set component of !0. Thus the same computations in (3.8) give In D 0

for all n > 1.
On the other hand, we have

In D
Z

R2

!nr'n � r.!0 � N / dxC .��/
Z

R2

!nr'n � x dx

DW In1 C .��/
„ƒ‚…

�0

In2 : (3.29)

The same argument as in (2.34) of Theorem 2.12 gives that In2 � 0. As for In1 , in steps
3–5 of the proof of Theorem 3.5, we have already shown that lim infn!1 In1 � 0,
and the equality is achieved if and only if each connected component of ¹!0 > 0º is
radially symmetric up to a translation, and they are all nested.

Let us decompose supp!0 into (possibly infinitely many) connected components
S

i2I Ui , with centers ¹oiºi2I . Our goal is to show oi � .0; 0/ for i 2 I . Note that it
suffices to show that their x-coordinates satisfy supi2I o

1
i � 0. Once we prove this, a

parallel argument gives infi2I o1i � 0, which implies o1i � 0 for i 2 I , and the same
can be done for the y-coordinate.

Towards a contradiction, suppose that supi2I o
1
i > 0. We can then define �r in the

same way as step 6 of the proof of Theorem 3.5, that is, it is the “circle with rightmost
center” among ¹@outUiºi2I , and its center Or satisfies O1r D supi2I o

1
i > 0. Since

f� D const along each level set component of !0, we again have that f� D const on
�r . Let �Rr and �Lr be the rightmost/leftmost points on �r . Note that their distances
to the origin satisfy j�Rr j> j�Lr j, where the strict inequality is due to the assumption
O1r > 0.

Let us define fi .x/D .!01Ui
/ � N for i 2 I , and note that f� D .

P

i2I fi / �
�jxj2. Properties (a) and (b) in step 6 of Theorem 3.5 still hold for fi , thus we have
fi .�

R
r /� fi .�

L
r / for all i 2 I . This leads to

f�.�
R
r /D

�X

i2I

fi .�
R
r /

�

C .��/
„ƒ‚…

>0

j�Rr j2 >
�X

i2I

fi .�
L
r /

�

C .��/j�Lr j2 D f�.�
L
r /;

contradicting the fact that f� � const on �r .
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3.1. Proofs of the quantitative lemmas

Before the proof of Lemma 3.2, let us state two lemmas that we will use in the proof.
The first one is a quantitative version of the isoperimetric inequality obtained by
Fusco, Maggi, and Pratelli [34].

LEMMA 3.7 (cf. [34, Section 1.2])
Let E � R2 be a bounded open set. Then there is some constant c 2 .0; 1/ such that

P.E/� 2
p
�

p

jEj
�

1C cA.E/2
�

;

where P.E/D H1.@E/ denotes the perimeter of E .

The second lemma is a simple result relating the Fraenkel asymmetry of a set E
with its subsets U .

LEMMA 3.8 (cf. [27, Lemma 4.4])
Let E � R2 be a bounded open set. For all U � E satisfying jU j � jEj.1� A.E/

4
/,

we have

A.U /� A.E/

4
:

Proof of Lemma 3.2

The proof of the Lemma 3.2 is similar to [27, Proposition 4.5] obtained by Craig, Kim,
and the last author. For the sake of completeness, we give a proof below. Let g.k/,
Dk , and QDk be defined as in Proposition 2.8, let QD DD [ h, and define ph WD pj@h.
We start by following the proof of Proposition 2.8, except that after obtaining (2.19),
instead of using the isoperimetric inequality, we use the stability version in Lemma 3.7
to control P. QDk/. This gives

g0.k/
�

g.k/C jhj1ph>k

�

� �1
2
P. QDk/2

� �2�j QDkj
�

1C cA. QDk/2
�2

� �2�
�

g.k/C jhj1ph>k

��

1C cA. QDk/2
�

:

Hence it follows from Lemma 3.8 that

g0.k/� �2�
�

1C c
A. QD/2
16

�

for all k such that j QDkj � j QDj
�

1� A. QD/
4

�

: (3.30)

We claim that

g.k/� jDj � 2�
�

1C c
A. QD/2
16

�

k for k � min
°

ph;
A. QD/j QDj
16�

±

: (3.31)
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Towards a contradiction, suppose that there is k0 � min¹ph; A. QD/j QDj
16�

º such that (3.31)

is violated. Since 1C cA. QD/2

16
� 2, we have

g.k0/ > jDj � 4�k0 � jDj � A. QD/j QDj
4

:

Therefore,

j QDk0
j D g.k0/C jhj

> jDj � A. QD/j QDj
4

C jhj

D j QDj � A. QD/j QDj
4

D j QDj
�

1� A. QD/
4

�

:

Hence for all k 2 .0; k0�, g0.k/ satisfies the inequality (3.30). Thus we have

g.k0/�
Z k0

0

�2�
�

1C c
A. QD/2
16

�

dkC jDj

D jDj � 2�
�

1C c
A. QD/2
16

�

k0;

contradicting our assumption on k0.
Finally, to control ph, we discuss two cases below, depending on which one in

the minimum function in (3.31) is smaller. For simplicity, we denote A WD A. QD/j QDj
16�

and B WD cA. QD/2

16
.

Case 1: ph �A. In this case (3.31) holds for all k � ph. Thus

0� g.ph/� jDj � 2�.1CB/ph;

implying that

ph � jDj
2�.1CB/

� jDj
2�

.1� c0/

for some constant c0 which depends only on A. QD/.
Case 2: ph >A. In this case (3.31) gives g.A/� jDj � 2�.1CB/A and we use

a crude bound for k �A, that is, g0.k/� �2� . Therefore, for k > A,

g.k/D
Z k

A

g0.k/dkC g.A/� �2�.k �A/C jDj � 2�.1CB/A

D jDj � 2�k � 2�AB

� jDj
�

1� A. QD/
8

B
�

� 2�k;
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where the last inequality follows from A> A. QD/jDj
16�

. Plugging in k D ph gives

0� g.ph/� jDj
�

1� A. QD/
8

B
�

� 2�ph;

leading to

ph � jDj
2�

.1� c0/;

where again c0 depends only on A. QD/.

Next we prove Lemma 3.3.

Proof of Lemma 3.3

Without loss of generality, we can assume that o1 D .0; 0/ and o2 D .a�; 0/. To esti-
mate pj@B1

, we decompose p into

p D pj@B1
gC u;

where g satisfies
8

ˆ̂
<

ˆ̂
:

�gD 0 in D;

gD 1 on @B1;

gD 0 on @B2;

(3.32)

and u satisfies
´

�uD �2 in D;

uD 0 on @D.
(3.33)

Using this decomposition as well as the definition of p, we have

�2jB1j D
Z

@B1

rp � End� D pj@B1

Z

@B1

rg � End� C
Z

@B1

ru � End�;

where En is the outer normal of B1 throughout this proof. Thus

pj@B1
D 1

R

@B1
rg � End�

�

�2� �
Z

@B1

ru � End�
�

: (3.34)

To estimate pj@B1
, it remains to estimate the two integrals in (3.34).

The function g can be explicitly constructed using the conformal mapping from
D to a perfect annulus centered at 0. Consider the Möbius map h W C ! C given by
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h.z/ WD zC b

1C bz
;

where b 2 R will be fixed soon. Note that the unit circle and the real line are both
invariant under h, and @B2 is mapped to some circle centered on the real line. In order
to make h.@B2/ centered at 0, since the left/right endpoints of @B2 are ˙.1C �/Ca�,
we look for b 2 R that solves

h.1C �C a�/D �h.�1� �C a�/: (3.35)

Plugging the definition of h into the above equation, we know that b is a root of the
quadratic polynomial

f .b/ WD b2 � 2C .1� a2/�
a

bC 1:

Clearly, for 0 < a < 1, f has two positive roots whose product is 1, thus one is in
.0; 1/ and the other in .1;C1/. We define b to be the root in .0; 1/. One can easily
check that f .a/ < 0, and f .a

2
/ > 0 if a2 > 2.1 � a2/�, which is true due to our

assumption a2 > 64�. Thus for all � 2 .0; a2

64
/, we have

0 <
a

2
< b < a < 1:

Note that h is holomorphic in C except at the two singularity points �b and � 1
b

.
We have already shown that �b 2B1, thus it is outside of D. Next we will show that
� 1
b

2Bc2 , which is thus also outside of D. To see this, note that

�1� �C a�C b

1C b.�1� �C a�/
D h.�1� �C a�/

D �h.1C �C a�/D � 1C �C a�C b

1C b.1C �C a�/
< 0;

where the inequality follows from the fact that a; b; � > 0. Since the numerator of the
left-hand side is already known to be negative due to a; b 2 .0; 1/, its denominator
must be positive, leading to � 1

b
<�1� �C a�, that is, � 1

b
2Bc2 .

Now we define g W R2 n ¹.�b; 0/[ .�1=b; 0/º ! R as

g.x/ WD � 1

log jh.1C �C a�/j log
ˇ
ˇh.z/

ˇ
ˇ C 1 for z D x1 C ix2:

Let us check that g indeed satisfies (3.32). First note that g satisfies the boundary
conditions in (3.32), since hmapsD to a perfect annulus centered at the origin, whose
inner boundary is @B1. In addition, g is harmonic in R2 n ¹.�b; 0/[ .�1=b; 0/º, thus
harmonic in D.
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Using the explicit formula of g, we have

�g.x/D � 2�

log jh.1C �C a�/j
�

ı.�b;0/.x/� ı.� 1
b
;0/.x/

�

in the distribution sense. We can then apply the divergence theorem to g in B1, and
compute the integral containing g in (3.34) explicitly as

Z

@B1

rg � End� D � 2�

log jh.1C �C a�/j : (3.36)

As for the integral containing u in (3.34), we compare u with a radial barrier function

w.x/ WD �2
�

jxj � 1
��

jxj � 1� 2�
�

;

which satisfies w D 0 on @B1 and w > 0 on @B2. Note that

�w D
�

@rr C 1

r
@r

�

w D �8C 4C 4�

r
� �2 in D;

where we used that � 2 .0; 1
2
/ and r > 1 in D in the last inequality. Thus w � u is

superharmonic in D and nonnegative on @D, which allows us to apply the classical
maximum principle to obtain u�w inD. Combining this with the fact that uDw D
0 on @B1, we have

ru.x/ � En.x/� rw.x/ � En.x/D d

dr
w.r/jrD1 D 4� for all x 2 @B1;

hence
Z

@B1

ru � End� � 8��: (3.37)

Plugging (3.36) and (3.37) into (3.34), we obtain

pj@B1
� log

�ˇ
ˇh.1C �C a�/

ˇ
ˇ
�

.1C 4�/:

Since log s � s � 1 for s > 1, it follows that

log
ˇ
ˇh.1C �C a�/

ˇ
ˇ � h.1C �C a�/� 1D 1C �C a�C b

1C b.1C �C a�/
� 1

D �
�

1C a� 2b � ab � b� � ab�
1C b.1C �C a�/

�

� �
�

1� ab

4

�

� �
�

1� a2

8

�

;
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where we used b > a
2

to obtain the last two inequalities. Finally, using that � < a2

64
,

we have

pj@B1
� �

�

1� a2

8

��

1C a2

16

�

� �
�

1� 1

16
a2

�

<
jDj
2�

�

1� 1

16
a2

�

;

where in the last step we use that jDj D �.1C �/2�� > 2��. This finishes the proof
of the lemma.

Finally we give the proof of Lemma 3.4.

Proof of Lemma 3.4

Without loss of generality, we can assume that o2 is the origin. Let ˇ WD pj@Br
. From

the proof of Proposition 2.8, we already know that g0.k/� �2� , where g.k/ WD j¹x 2
D W p.x/ > kºj. This implies that g.k/� �2�.k � ˇ/. Therefore, we have

Z

D

p dx �
Z ˇ

0

g.k/dk �
Z ˇ

0

�2�.k � ˇ/dk D �ˇ2:

On the other hand, the same computation in the proof of Lemma 2.13 gives

ˇjBr j C
Z

D

p dx D 1

2

Z

D

jrpj2 dx � 1

2

Z

D

jxj2 dx:

Since

1

2

Z

D

jxj2 dx D 1

2

�Z

BR

jxj2 dx �
Z

Br

jxj2 dx
�

D jDj2
4�

C jDjjBr j
2�

C jBr j2
4�

� 1

2

Z

Br

jxj2 dx

D jDj2
4�

C jDjjBr j
2�

� l2jBr j
2

;

it follows that

�ˇ2 C ˇjBr j � jDj2
4�

C jDjjBr j
2�

� l2jBr j
2

: (3.38)

By solving the quadratic inequality (3.38), we find that

ˇ � jDj
2�

.1� c0/

for some constant c0 which depends only on ı1, ı2, and l .
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4. Radial symmetry for stationary/rotating gSQG solutions with �� 0

In this section, we consider the family of gSQG equations with 0 < ˛ < 2, and study
the symmetry property for rotating patch/smooth solutions with angular velocity��
0.

Let us deal with patch solutions first. As we have discussed in the Introduction,
we cannot expect a nonsimply connected patch D with � � 0 to be radial, due to
the nonradial examples in [28] and [41] for ˛ 2 .0; 2/. For a simply connected patch
D, the constant on the right-hand side of (1.6) is the same on @D, which motivates
us to consider Question 2 in the Introduction. The goal of this section is to prove
Theorem C, which gives an affirmative answer to Question 2 for the whole range
˛ 2 Œ0; 2/.

Our results are not limited to the Riesz potentials K˛;d in (1.4); in fact, we only
need the potential being radially increasing and not too singular at the origin. Below
we state our assumption on the potential K , which covers the whole range of K˛;d
with ˛ 2 Œ0; 2/.

(HK) Let K 2 C 1.Rd n ¹0º/ be radially symmetric with K 0.r/ > 0 for all r > 0.
(Here we denote K.x/DK.r/ by a slight abuse of notation.) Also assume that there
is some C > 0; ı > 0 such that K 0.r/� Cr�d�1Cı for all 0 < r � 1.

Our proof is done by a variational approach, which relies on a continuous Steiner
symmetrization argument similar to that of [13].

4.1. Definition and properties of continuous Steiner symmetrization

Below we define the continuous Steiner symmetrization for a bounded open set D �
Rd with respect to the direction e1 D .1; 0; : : : ; 0/, which can be easily adapted to
any other direction in Rd . The definition is the same as [13, Section 2.2.1], which we
briefly outline below for completeness.

For a 1-dimensional open set U � R, we define its continuous Steiner sym-
metrization M � ŒU � as follows. If U D .a; b/ is an open interval, then M � ŒU � shifts
the midpoint of this interval towards the origin with velocity 1, while preserving the
length of interval. That is,

M � ŒU � WD
´

.a� � sgn.aCb
2
/; b � � sgn.aCb

2
// for 0� � < jaCbj

2
;

.�b�a
2
; b�a
2
/ for � � jaCbj

2
:

If U D SN
iD1Ui is a finite union of open intervals, then M � ŒU � is defined by

SN
iD1M

� ŒUi �, and as soon as two intervals touch each other, we merge them into one
interval as in [13, Definition 2.10(2)]. Finally, if U D S1

iD1Ui is a countable union
of open intervals, we define M � ŒU � as a limit of M � Œ

SN
iD1Ui � as N ! 1 as in [13,

Definition 2.10(3)]. See [13, Figure 1] for an illustration of M � ŒU �.
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Figure 5. (Color online) Illustration of the continuous Steiner symmetrization S� ŒD� for a set
D � R2. The left figure is the set D, with the midpoints of all subintervals of its 1D section
highlighted in red circles. The right figure shows the set S� ŒD� for some small � > 0, with the
new midpoints denoted by blue squares.

Next we move on to higher dimensions. We denote a point x 2 Rd by .x1; x0/,
where x0 D .x2; : : : ; xd / 2 Rd�1. For a bounded open set D � Rd and any x0 2
Rd�1, we define the section of D with respect to the direction x1 as

Dx0 WD
®

x1 2 R W .x1; x0/ 2D
¯

;

which is an open set in R. If the section Dx0 is a single open interval centered at 0 for
all x0 2 Rd�1, then we say that the set D is Steiner symmetric about the hyperplane
¹x1 D 0º. Note that this definition is stronger than being symmetric about ¹x1 D 0º.
For example, an annulus in R2 is symmetric about ¹x1 D 0º, but not Steiner symmet-
ric about it.

Finally, for any � > 0, the continuous Steiner symmetrization of D � Rd is
defined as

S � ŒD� WD
®

.x1; x
0/ 2 Rd W x1 2M � ŒDx0 �

¯

;

withM � given above being the continuous Steiner symmetrization for 1-dimensional
open sets. See Figure 5 for a comparison of the sets D and S � ŒD� for small � > 0.

One can easily check that S � ŒD� satisfies the following properties.

LEMMA 4.1
For any bounded open set D � Rd , its continuous Steiner symmetrization S � ŒD�

satisfies the following properties:
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(a) jS � ŒD�j D jDj for any � > 0, where j � j denotes the Lebesgue measure in Rd ;

(b) .S � ŒD�/4D � B� ŒD� for any � > 0, where 4 is the symmetric difference

between the two sets, and B� ŒD� is the � -neighborhood of @D, given by

B� ŒD� WD
®

x 2 Rd W dist.x; @D/� �
¯

: (4.1)

Proof

Property (a) is a direct consequence of the fact that jM � ŒU �j D jU j for any open set
U � R and � > 0 (see [13, Lemma 2.11(b)]). To prove (b), one can start with the 1-
dimensional version. For any bounded open set U � R, we have M � ŒU �4U � ¹x 2
R W dist.x; @U /� �º, which follows from the fact that the intervals move with velocity
at most 1. Thus for any bounded open set D � Rd ,

S � ŒD�4D D
®

.x1; x
0/ 2 Rd W x1 2M � ŒDx0 �4Dx0

¯

�
®

.x1; x
0/ W dist

�

x1; @.Dx0/
�

� �
¯

�B� ŒD�;

finishing the proof.

4.2. Simply connected patch solutions with �� 0

We assume that D � Rd satisfies the following condition.
(HD)D � Rd is an open set, and there exists someM > 0 depending on D such

that jB� ŒD�j �M� for all sufficiently small � > 0, where B� ŒD� is given in (4.1).
It can be easily checked that for d � 2, any bounded open set D with Lipschitz

continuous boundary satisfies condition (HD). In fact, for d D 2, we will show that
any bounded open set D � R2 with a rectifiable boundary satisfies (HD), with a
precise bound

ˇ
ˇB� ŒD�

ˇ
ˇ � 2j@Dj� for all � � 0; (4.2)

where j@Dj is the total length of @D. Let us first prove that (4.2) holds for any polygon
P � R2. Erect two polygons at distance � from P with the transversal sides being
bisectors of the inner angles of P (see Figure 6). It is clear that B� ŒP � is contained
in the trapezoidal region, which has area no more than 2j@P j� . Finally, this can be
extended to the general case by approximating any rectifiable curve by polygons.

Below we state our main theorem of this section, which is slightly more general
than Theorem C.

THEOREM 4.2
Let D � Rd and K 2 C 1.Rd n ¹0º/ satisfy the conditions (HD) and (HK), respec-

tively. Let g 2 C 1.Rd / be a radial function with g0.r/ > 0 for all r > 0.
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Figure 6. (Color online) Illustration of the polygon P and the underlying trapezoidal region (the
whole colored region). Here the blue trapezoid has area 2l1� (l1 is the corresponding side length
in P ), and summing over all edges gives a total area of 2j@P j� . Since the trapezoids may intersect
for large � , the whole trapezoidal region has area no more than 2j@P j� .

If D satisfies that

1D �K � �

2
g.x/D const on @D (4.3)

for some �� 0 (where the constant is the same on all connected components of @D),

then D is a ball. Moreover, the ball is centered at the origin if �< 0.

Remark 4.3

(1) Note that D does not need to be simply connected in Theorem 4.2. However,
since the constant on the right-hand side of (4.3) is assumed to be the same
on all connected components of @D, comparing with (1.6), Theorem 4.2 only
implies that all simply connected patches with �� 0 must be a disk.

(2) In the case � D 0, the problem is translation-invariant, so in the proof we
assume without loss of generality that the center of mass of D is at the origin.

Proof

We prove it by contradiction. Without loss of generality, we assume that K satis-
fies the additional assumption that K.1/ D 0 (note that (4.3) still holds if we add
any constant to K), and D is not Steiner symmetric about the hyperplane ¹x1 D 0º.
Let D� WD S � ŒD� be the continuous Steiner symmetrization of D at time � > 0. By
Lemma 4.1(b), we have

D�4D �B� ŒD�; (4.4)

where B� is defined as in (4.1). Let us consider the functional
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EŒD� WD
Z

Rd

Z

Rd

1D.x/1D.y/K.x � y/dx dy
„ ƒ‚ …

DWIŒD�

C .��/
Z

Rd

g.x/1D.x/dx

„ ƒ‚ …

DWVŒD�

:

We will use two different ways to compute d
C

d�
EŒD� �j�D0, where dC

d�
denotes the right

derivative. On the one hand, using the equation (4.3) and the regularity assumptions
on D;K , and g, we aim to show that

dC

d�
EŒD� �j�D0 D 0: (4.5)

Instead of directly taking the derivative, we consider the finite difference

EŒD� �� EŒD�D
Z

Rd

2.1D� � 1D/
�

1D �K � �

2
g.x/

�

dx

„ ƒ‚ …

DWI1

C
Z

Rd

.1D� � 1D/
�

.1D� � 1D/ �K
�

dx

„ ƒ‚ …

DWI2

;

where in the equality we used that
R

1D.1D� �K/dx D
R

1D� .1D �K/dx for any
radial kernel K .

Let us control the term I1 first. First note that (4.4) implies that the integrand is
supported in B� ŒD�. Next we claim that (HK) implies 1D � K � �

2
g 2 C 0;ı0

.Rd /

for ı0 WD min¹ı; 1º, where C 0;1 stands for Lipschitz continuity. The proof is a simple
potential theory estimate, which we provide below for completeness. For any x; z 2
Rd ,

ˇ
ˇ.1D �K/.xC z/� .1D �K/.x/

ˇ
ˇ

D
ˇ
ˇ
ˇ

Z

Rd

1D.x � y/
�

K.y C z/�K.y/
�

dy
ˇ
ˇ
ˇ

�
Z

jyj<2jzj

ˇ
ˇK.y C z/�K.y/

ˇ
ˇdy C

Z

jyj>2jzj

1D.x � y/
ˇ
ˇK.y C z/�K.y/

ˇ
ˇdy

DW J1 C J2:

Since .1D �K/.x/ 2 L1.Rd /, one can moreover assume that jzj< 1
3

; then, a crude
estimate gives

J1 �
Z

jyj<2jzj

ˇ
ˇK.y C z/

ˇ
ˇ C

ˇ
ˇK.y/

ˇ
ˇdy � 2

Z

jyj<3jzj

ˇ
ˇK.y/

ˇ
ˇdy � C.d/jzjı ;

where in the last step we used that (HK) and K.1/ D 0 imply jK.y/j � C jyj�dCı

for jyj � 1. For J2, note that (HK) and the mean value theorem gives
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ˇ
ˇK.y C z/�K.y/

ˇ
ˇ � C jyj�d�1Cı jzj for all jyj> 2jzj;

and plugging it into the integral gives J2 � C.d; jDj/jzjı . Putting the estimates for
J1 and J2 together gives that 1D �K 2 C 0;ı0

.Rd / for ı0 D min¹ı; 1º, and combining
this with the assumption g 2 C 1.Rd / gives 1D �K � �

2
g 2 C 0;ı0

.Rd /.
In addition, by (4.3), we have 1D �K � �

2
g.x/� C0 on @D for some constant

C0. Thus we have
ˇ
ˇ
ˇ1D �K � �

2
g.x/�C0

ˇ
ˇ
ˇ � C

�

ı0; d; jDj
�

�ı
0

in B� ŒD�

for some constant C > 0, where we used the Hölder continuity of 1D �K � �
2
g and

the definition of B� ŒD�. This leads to

jI1j � 2
ˇ
ˇB� ŒD�

ˇ
ˇ sup
x2B� ŒD�

ˇ
ˇ
ˇ1D �K � �

2
g.x/�C0

ˇ
ˇ
ˇ � C

�

ı0; d; jDj
�

M�1Cı0

;

where in the first inequality we used that
R

B�
.1D � 1D� /C0 dx D 0, which follows

from Lemma 4.1(a), and in the second inequality we used (HD).
Next, using (4.4) we control I2 by the crude bound

jI2j �
Z

Rd

1B� ŒD�

ˇ
ˇ.1B� ŒD� �K/

ˇ
ˇdx

�
ˇ
ˇB� ŒD�

ˇ
ˇk1B� ŒD� �Kk1

�M�



.1B� ŒD�/

� �K





1
;

where the last step follows from the Hardy–Littlewood inequality, where .1B� ŒD�/
� is

the radial decreasing rearrangement of 1B� ŒD�. By (HD), .1B� ŒD�/
� is a characteristic

function of a ball whose radius is bounded by C.d/.M�/1=d , thus




.1B� ŒD�/

� �K





1
�

Z C.d/.M�/1=d

0

ˇ
ˇK.r/

ˇ
ˇ!d r

d�1 dr

�
Z C.d/.M�/1=d

0

!d r
�1Cı dx � C.d/.M�/

ı
d ;

and plugging it into the I2 estimate gives

jI2j � C.d/M
dCı

d �1C ı
d :

Putting the estimates of I1 and I2 together directly yields

jEŒD� �� EŒD�j
�

� C
�

ı0; d;M; jDj
�

�min¹ ı
d
;ı0º;

and since ı > 0, we have dC

d�
EŒD� �j�D0 D 0.
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Now, we use another way to calculate dC

d�
EŒD� �j�D0. Let us deal with the �< 0

case first. Since K is radial and increasing in r , it has been shown in [8, Corollary 2]
and [63, Theorem 3.7] that the interaction energy IŒD� �D

R

D�

R

D� K.x � y/dx dy
is nonincreasing along the continuous Steiner symmetrization, leading to

dC

d�
IŒD� �� 0 for all � � 0:

For the other term V ŒD� � D .��/
R

D� g.x/dx, by the assumptions that g0.r/ >

0 for all r > 0 and D is not Steiner symmetric about ¹x1 D 0º, we can use [13,
Lemma 2.22] to show that, for �< 0,

dC

d�
V ŒD� �j�D0 D .��/d

C

d�

Z

D�

g.x/dxj�D0 < 0:

Adding them together gives

dC

d�
EŒD� �j�D0 < 0;

leading to a contradiction with (4.5).
In the �D 0 case, recall that we assume that the center of mass of D is at the

origin. Thus if D is not Steiner symmetric about ¹x1 D 0º, then the same proof as
[13, Proposition 2.15] gives that IŒD� must be decreasing to the first order for a short
time, leading to

dC

d�
EŒD� �j�D0 D dC

d�

Z

D�

Z

D�

K
�

jx � yj
�

dx dyj�D0 < 0;

again contradicting (4.5). We point out that although the proposition was stated for
continuous densities, the same proof works for the patch setting. In addition, although
[13] only dealt with the kernels no more singular than Newtonian potential, the proof
indeed holds for all kernels K satisfying (HK): see [14, Theorem 6] for an extension
to all Riesz potentials K˛;d with ˛ 2 .0; 2/.

The above theorem immediately leads to the following result concerning a simply
connected stationary/rotating patch solution with �� 0.

THEOREM 4.4
Let D � R2 be a bounded, simply connected domain with rectifiable boundary. If 1D
is a V-state for (1.2) for some ˛ 2 Œ0; 2/ with angular velocity �� 0, then D must be

a disk. In addition, the disk must be centered at the origin if �< 0.

Proof

We have 1D �K � �
2

jxj2 D C for some constant C on @D. For the Euler equation,
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K D 1
2�

ln jxj. For the g-SQG equation, K D �C˛jxj�˛ . In both cases, the proof
follows from Theorem 4.2.

Remark 4.5

As we discussed in the beginning of this subsection, in the case of gSQG with ˛ 2
.0; 2/, Theorem 4.4 is not true if the simply connected assumption is dropped, due to
the nonradial patches in [28] and [41] bifurcating from annuli.

4.3. Smooth solutions with simply connected level sets with �� 0

The rest of this section is devoted to the smooth setting. We will show that any non-
negative smooth rotating solution of the Euler or gSQG equation with angular velocity
�� 0 must be radial, under the additional assumption that all the super-level sets U h

U h WD
®

x 2 Rd W !0.x/ > h
¯

(4.6)

are simply connected for any h > 0. We believe that the simply connected assumption
is necessary, since it is likely that the bifurcation arguments from annuli in [28] and
[41] can be extended to the smooth setting as well, using a similar argument as in [18]
or [19].

THEOREM 4.6
Let !.x/ 2 C 1.R2/ be nonnegative and compactly supported. In addition, assume

that the super-level set U h as in (4.6) is simply connected for all h 2 .0; sup!/.
Assume that K satisfies (HK). If for some �� 0, we have

! �K � �

2
jxj2 D C0.h/ on @U h for all h 2 .0; sup!/; (4.7)

then ! is radially decreasing up to a translation. Moreover, it is centered at the origin

if �< 0.

Proof

We prove it by contradiction. For the�< 0 case, we assume without loss of generality
that ! is not symmetric decreasing about the line x1 D 0. For the �D 0 case, similar
to Remark 4.3, we assume without loss of generality that the center of mass is at the
origin, and then we assume that ! is not symmetric decreasing about the line x1 D 0.

For any � � 0, we define the continuous Steiner symmetrization !� .x/ in the
same way as [13, Definition 2.12]:

!� .x/ WD
Z h0

0

1S� ŒUh�.x/dh;
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where h0 WD sup!, and S � ŒU h� is the continuous Steiner symmetrization of the
super-level set U h at time � � 0.

Consider the energy functional

EŒ!� WD
Z

R2

Z

R2

!.x/!.y/K.x � y/dx dy
„ ƒ‚ …

DWIŒ!�

C .��/
Z

R2

!.x/jxj2 dx
„ ƒ‚ …

DWVŒ!�

:

We proceed similarly as in Theorem 4.2 to compute dC

d�
EŒ!� � in two different ways.

We first rewrite the finite difference EŒ!� �� EŒ!� as

EŒ!� �� EŒ!�

D
Z

R2

2
�

!� .x/�!.x/
��

! �K � �

2
jxj2

�

dx

C
“

R2�R2

�

!� .x/�!.x/
��

!� .y/�!.y/
�

K.x � y/dx dy

DW I1 C I2: (4.8)

Since ! 2 C 1c .R2/ and K satisfies (HK) (hence is locally integrable), one can easily
check that ! �K � �

2
jxj2 is Lipschitz in QD WD ¹x 2 R2 W dist.x; supp!/ � 1º. Note

that we have supp!� 2 QD for all � 2 Œ0; 1�. Combining this fact with the assumption
(4.7), there exists C1 > 0 independent of h such that

ˇ
ˇ
ˇ.! �K/.x/� �

2
jxj2 �C0.h/

ˇ
ˇ
ˇ � C1� on S � ŒU h�4U h for all h 2 .0; h0/: (4.9)

Let us first rewrite I1 as

I1 D 2

Z h0

0

Z

R2

�

1S� ŒUh�.x/� 1Uh.x/
��

.! �K/.x/� �

2
jxj2

�

dxdh:

By Lemma 4.1(a), we have
R

R2.1S� ŒUh�.x/ � 1Uh.x//dx D 0 for all h 2 .0; h0/.
Thus we can control I1 as

jI1j D
ˇ
ˇ
ˇ2

Z h0

0

Z

R2

�

1S� ŒUh�.x/� 1Uh.x/
��

.! �K/.x/� �

2
jxj2 �C0.h/

�

dx dh
ˇ
ˇ
ˇ

� 2C1�

Z h0

0

ˇ
ˇ
�

S � ŒU h�
�

4U h
ˇ
ˇdh

� 2C1�

Z h0

0

2j@U hj�dh

D 4C1�
2

Z

supp!
jr!jdx � C.!/�2: (4.10)
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Here in the second line we used (4.9); in the third line we used Lemma 4.1(b) and the
property (4.2) in two dimensions; and in the fourth line we used the coarea formula
and the fact that ! 2 C 1c .

We next move on to I2. Since jr!j is bounded, Lemma 4.1(b) leads to

ˇ
ˇ!� .x/�!.x/

ˇ
ˇ D

ˇ
ˇ
ˇ

Z 1

0

1S� ŒUh�.x/� 1Uh.x/dh
ˇ
ˇ
ˇ

� Ckr!kL1� for all x 2 R2;

and supp!� 2 QD for all � 2 Œ0; 1�. Thus

jI2j � k!� �!kL1




.!� �!/ �K





L1

� k!� �!kL1k!� �!kL1

Z

QD

ˇ
ˇK.x/

ˇ
ˇdx

� C.!/�2:

Combining the estimates for I1 and I2 gives EŒ!� � � EŒ!� � C.!/�2 for all
� 2 Œ0; 1�, thus

dC

d�
EŒ!� �j�D0 D dC

d�
.I1 C I2/j�D0 D 0: (4.11)

On the other hand, we compute dC

d�
EŒ!� �j�D0 in a different way as

dC

d�
EŒ!� �j�D0 D dC

d�

�

IŒ!� �C V Œ!� �
�

j�D0:

In the � < 0 case, similarly as in Theorem 4.2, we have that IŒ!� � is nonincreas-
ing along the continuous Steiner symmetrization by [8, Corollary 2] and [63, Theo-
rem 3.7], thus

dC

d�
IŒ!� �� 0 for all � > 0:

For V Œ!� �, by the assumption that ! is not symmetric decreasing about ¹x1 D 0º, we
again use [13, Lemma 2.22] to show that, for �< 0,

dC

d�
V Œ!� �D .��/d

C

d�

Z

R2

!� .x/jxj2 dxj�D0 < 0:

Adding them together gives dC

d�
EŒD� �j�D0 < 0, contradicting (4.11).

In the�D 0 case, we assume that the center of mass of ! is at the origin. Thus if
! is not symmetric decreasing about ¹x1 D 0º, then the same proof as [13, Proposi-
tion 2.15] gives that IŒD� must be decreasing to the first order for a short time (again,
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the proof holds for all kernels K satisfying (HK); see [14, Theorem 6] for extensions
to Riesz kernels K˛;d with ˛ 2 .0; 2/). This gives dC

d�
EŒD� �j�D0 < 0, again contra-

dicting (4.11).

The above theorem immediately gives the following corollary concerning the V-
states for the Euler and gSQG equations.

COROLLARY 4.7
Assume that !.x/ 2 C 1.R2/ is a nonnegative, compactly supported V-state satisfy-

ing the Euler equation or the gSQG equation for some ˛ 2 .0; 2/ with � � 0. In

addition, assume that the super-level set U h as in (4.6) is simply connected for all

h 2 .0; sup!/. Then ! must be radially decreasing if �< 0, and radially decreasing

up to a translation if �D 0.

Proof

For the Euler equation, K D 1
2�

ln jxj. For the gSQG equation, K D �C˛jxj�˛ . In
both cases, the proof follows from Theorem 4.6.

5. Radial symmetry of rotating gSQG solutions with �>�˛

In this section, we focus on rotating gSQG patches with area � and ˛ ¤ 0. As we dis-
cussed in the Introduction, for ˛ 2 Œ0; 2/, there exist rotating patches bifurcating from

the unit disk at angular velocities �˛m D 2˛�1 �.1�˛/

�.1� ˛
2 /

2 .
�.1C ˛

2 /

�.2� ˛
2 /

� �.mC ˛
2 /

�.mC1� ˛
2 /
/, where

�˛m is increasing in m for any fixed ˛ 2 Œ0; 2/. Let us denote �˛ WD limm!1�˛m. If
˛ 2 .0; 1/, then we have that

�˛ D 2˛�1 �.1� ˛/
�.1� ˛

2
/2

�.1C ˛
2
/

�.2� ˛
2
/
: (5.1)

Note that �˛ is a continuous function of ˛ for ˛ 2 .0; 1/, with �0 D 1
2

, and �˛ D
C1 for all ˛ 2 Œ1; 2/.

A natural question is whether there can be rotating patches with area � with
� ��˛ for ˛ 2 .0; 1/. Note that the area constraint is necessary for all ˛ > 0: if D
is a rotating gSQG patch for ˛ 2 .0; 2/ with angular velocity �, then one can easily
check that its scaling �D D ¹�x W x 2 Dº is a rotating patch with angular velocity
��˛�.

In Theorem 2.14, we showed that for the 2D Euler case (˛ D 0), every rotating
patch with ���0 D 1

2
must be a disk. In this section, our goal is to show that every

simply connected rotating patch with area � with � � �˛ for ˛ 2 .0; 1/ must be a
disk. Whether there exist nonsimply connected or disconnected rotating patches with
���˛ for ˛ 2 .0; 1/ is still an open question.
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Figure 7. (Color online) Illustration of the set U and the point x0.

Below is the main theorem of this section. Recall that for ˛ 2 .0; 2/, K˛ D
�C˛jxj�˛ is the fundamental solution for �.��/�1C ˛

2 , where C˛ D 1
2�

�.˛
2
/

21�˛�.1� ˛
2 /

.

THEOREM 5.1
Let D � R2 be a bounded, simply connected patch with C 1 boundary. Let us denote

R WD maxx2D jxj. Assume that D is a uniformly rotating patch with angular velocity

� of the gSQG equation with ˛ 2 .0; 1/, that is,

1D �K˛ � �

2
jxj2 D C on @D: (5.2)

Let �c.R/ WDR�˛�˛ . If ���c.R/, then D must coincide with B.0;R/.

Remark 5.2

(a) Note that all sets D � R2 with area � must have R � 1. In this case we have
�c.R/��˛ , thus Theorem 5.1 immediately implies that all simply connected rotat-
ing patches with area � and ���˛ must be a disk.

(b) Note that the constant �˛ is sharp, since there exist patches bifurcating from
a disk of radius 1 at velocities �˛m, which can get arbitrarily close to �˛ as m! 1
(see [47, Theorem 1.4]).

Proof

Towards a contradiction, assume that D ¤B.0;R/. Let x0 2 @D be the farthest point
from 0. Then we have that D �B.0;R/, and let U WDB.0;R/ nD. See Figure 7 for
an illustration of U and x0. Then (5.2) can be rewritten as

1U �K˛ D 1B.0;R/ �K˛ � �

2
jxj2 �C on @D: (5.3)

The key idea of this proof is to use two different ways to compute r.1U �
K˛/.x0/ � x0, and obtain a contradiction if ���c.R/. On the one hand,
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r.1U �K˛/.x0/ � x0 D ˛C˛

Z

U

.x0 � y/ � x0
jx0 � yj˛C2

dy > 0; (5.4)

where we used the fact that .x0 � y/ � x0 > 0 for all y 2 U � B.0;R/ since the two
vectors point to the same half-plane.

On the other hand, we claim that the following properties hold for 1U �K˛ :
(1) �.1U �K˛/ < 0 in D,
(2) along @D, the minimum of 1U �K˛ is achieved at x0.
To show property (1), using the fact that K˛ D �C˛jxj�˛ is the fundamental

solution for �.��/�1C ˛
2 , we have 1U �K˛ D �.��/�1C ˛

2 1U , thus �.1U �K˛/D
.��/˛=21U . Thus for any x 2 D, using the singular integral definition of the frac-
tional Laplacian (see [62, Theorem 1.1, Definition (e)]) and the fact that 1U � 0 in
D, we have

.��/˛=21U .x/D C1.˛/

Z

R2

1U .x/� 1U .y/
jx � yj2C˛

dy

D C1.˛/

Z

R2

0� 1U .y/
jx � yj2C˛

dy < 0 for x 2D

for some constant C1.˛/ > 0. Note that despite the denominator being singular, the
integral indeed converges for all x 2D, due to the fact that D is open and the inte-
grand is identically zero in D which yields

�.1U �K˛/.x/D .��/˛=21U .x/ < 0 in D: (5.5)

We now move on to property (2). Due to (5.3) and the fact that x0 is the outermost
point on @D, it suffices to show that the radial function 1B.0;R/ � K˛ � �

2
jxj2 is

nonincreasing in jxj for all � ��c.R/. We prove this in Proposition 5.3 right after
this theorem.

The above claims allow us to apply the maximum principle to 1U �K˛ (recall
that 1U �K˛ is superharmonic in D by property (1)), which yields that the minimum
of 1U �K˛ in D is also achieved at x0, thus

r.1U �K˛/.x0/ � En.x0/� 0;

where En.x0/ is the outer normal of D at x0. Since En.x0/ D x0=jx0j, the above
inequality contradicts with (5.4). As a result, D must coincide with B.0;R/.

Now we prove the proposition that was used in the proof of the above theorem.

PROPOSITION 5.3
For a fixed ˛ 2 .0; 1/ and R > 0, let �c.R/ be the smallest number such that
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gR.x/ WD 1B.0;R/ �K˛ � �c

2
jxj2

is nonincreasing in jxj. Then we have �c.R/DR�˛�˛ , with �˛ given in (5.1).

Proof

Recall that K˛ D �C˛jxj�˛ with C˛ D 1
2�

�.˛
2 /

21�˛�.1� ˛
2 /

. Since jxj2 and 1B.0;R/ �K˛
are both radially symmetric and increasing in jxj, we have

�c.R/D 2C˛ sup
jx1j¤jx2j

R

B.0;R/
jx2 � yj�˛ dy �

R

B.0;R/
jx1 � yj�˛ dy

jx1j2 � jx2j2
:

Let us denote the fraction above by F.x1; x2/. We claim that the supjx1j¤jx2jF.x1; x2/

is attained when jx1j DR, and jx2j !R.
To prove the claim, we first compute I.x/ WD

R

B.0;R/
jx � yj�˛ dy. Taking the

Fourier transform:

I.x/D CR2�˛

Z 1

0

ra�2J1.r/J0

� jxjr
R

�

dr;

where C is some positive constant. By Sonine–Schafheitlin’s formula (see [89,
p. 401]) and by continuity, we obtain

I.x/D

8

<

:

CR2�˛2˛�2 �.˛
2 /

�.2� ˛
2 / 2
F1.

˛
2

� 1; ˛
2
; 1; jxj2

R2 / if jxj �R;

CR2�˛2˛�2jxj�˛R˛ �.˛
2 /

�.1� ˛
2 / 2
F1.

˛
2
; ˛
2
; 2; R

2

jxj2
/ if jxj>R:

By the mean value theorem, it is enough to check that minJ.z/D J.R2/, where

J.z/D
´
d
dz
.2F1.

˛
2

� 1; ˛
2
; 1; z

R2 // if z �R2;

d
dz
..1� ˛

2
/z� ˛

2R˛2F1.
˛
2
; ˛
2
; 2; R

2

z
// if z > R2;

D
´
˛.˛�2/
4

1
R2 2

F1.
˛
2
; 1C ˛

2
; 2; z

R2 / if z �R2;
˛.˛�2/
4

z�1� ˛
2R˛2F1.

˛
2
; 1C ˛

2
; 2; R

2

z
/ if z > R2:

Writing the series expansion (resp., at z D 0 and z D 1) of the hypergeometric series:

˛.˛ � 2/
4

1

R2 2
F1

�˛

2
; 1C ˛

2
; 2; z

�

D 1

R2

1
X

nD0

�.˛
2

C n/�.nC 1C ˛
2
/

�.˛
2

� 1/�.˛
2
/�.1C n/�.2C n/

� z

R2

�n

;

˛.˛ � 2/
4

z�1� ˛
2R˛2F1

�˛

2
; 1C ˛

2
; 2;

1

z

�
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D
�1

z

� ˛
2

R˛�2

1
X

nD1

�.˛
2

C n/�.n� 1C ˛
2
/

�.˛
2

� 1/�.˛
2
/�.n/�.nC 1/

�R2

z

�n

;

which are both minimized at z D R2 since every coefficient is negative. This proves
the claim.

The claim immediately implies that

�c.R/D �C˛
R

d

d jxj

Z

B.0;R/

jx � yj�˛ dyjjxjDR; (5.6)

where d
d jxj

denotes the derivative in the radial variable (recall that
R

B.0;R/ jx �
yj�˛ dy is radially symmetric). To compute the derivative at jxj DR, we can simply
compute the partial derivative in the x1 direction at the point .R; 0/:

@

@x1

Z

B.0;R/

jx � yj�˛ dyjxD.R;0/

D �˛
Z

B.0;R/

�

.R� y1/2 C y22
�� ˛

2 �1
.R� y1/ dy1 dy2

D �2
Z R

0

�

.R� y1/2 C y2
2
�� ˛

2 jy1D
p
R2�y2

2

y1D�
p
R2�y2

2
dy2

D �21� ˛
2R1�˛

�Z 1

0

.1�
p
1� u2/� ˛

2 du�
Z 1

0

.1C
p
1� u2/� ˛

2 du
�

D �21� ˛
2R1�˛

�Z �
2

0

.1� cos�/�
˛
2 cos� d� �

Z �
2

0

.1C cos�/�
˛
2 cos� d�

�

DW �21� ˛
2R1�˛.I1 � I2/; (5.7)

where in the third line we used the identity .R ˙
q

R2 � y22/2 C y22 D 2R2.1 ˙
p

1� .R�1y2/2/, as well as the substitution uDR�1y2.
Using a substitution � D 2ˇ, we rewrite I1 as

I1 D 2

Z �
4

0

�

1� cos.2ˇ/
�� ˛

2 cos.2ˇ/dˇD 21� ˛
2

Z �
4

0

.sinˇ/�˛.1� 2 sin2 ˇ/dˇ:

Likewise, the substitution � D � � 2ˇ allows us to rewrite �I2 as

�I2 D 2

Z �
2

�
4

�

1� cos.2ˇ/
�� ˛

2 cos.2ˇ/dˇD 21� ˛
2

Z �
2

�
4

.sinˇ/�˛.1� 2 sin2 ˇ/dˇ:

Adding the above two identities for I1 and �I2 together gives
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I1 � I2 D 21� ˛
2

Z �
2

0

.sinˇ/�˛.1� 2 sin2 ˇ/dˇ

D 21� ˛
2

�1

2
B

�1� ˛
2

;
1

2

�

�B
�3� ˛

2
;
1

2

��

D 2� ˛
2
�.1�˛

2
/�.1

2
/

�.1� ˛
2
/

� 21� ˛
2
�.3�˛

2
/�.1

2
/

�.2� ˛
2
/
;

where B stands for the beta function. Here the second identity follows from the prop-
erty that B.x;y/D 2

R �=2

0
.sin�/2x�1.cos�/2y�1 d� , and the third line follows from

the property that B.x;y/D �.x/�.y/
�.xCy/

. According to the properties of the gamma func-

tion �.zC 1/D z�.z/ and �.z/�.zC 1
2
/D 21�2z

p
��.2z/, we have

I1 � I2 D 2�1C ˛
2

˛

2� ˛ � 2��.1� ˛/
�.1� ˛

2
/2
: (5.8)

Finally, plugging this into (5.7) and (5.6) gives

�c.R/DR�˛C˛2
1� ˛

2 .I1 � I2/

DR�˛ 1

2�

�.˛
2
/

21�˛�.1� ˛
2
/

˛

2� ˛
�2��.1� ˛/
�.1� ˛

2
/2

�

DR�˛
2˛�1�.1� ˛/�.˛

2
C 1/

�.1� ˛
2
/2�.2� ˛

2
/

DR�˛�˛;

finishing the proof.

At the end of this section, we point out that Theorem 5.1 directly gives the follow-
ing quantitative estimate: if a simply connected patch D rotates with angular velocity
� 2 .0;�˛/ that is very close to �˛ , then D must be very close to a disk in terms of
symmetric difference.

COROLLARY 5.4
Assume that 0 < ˛ < 1. Let D be a rotating patch with area � and angular velocity

� 2 .0;�˛/, and let B be the unit disk. Then we have

jD4Bj � 2�
���˛

�

�2=˛

� 1
�

:

Note that for a fixed ˛ 2 .0; 1/, the right-hand side goes to 0 as �%�˛ .

Proof

DenoteR WD maxx2D jxj. IfD is a rotating patch with angular velocity� and is not a
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disk, then Theorem 5.1 gives that ��R�˛�˛ , which gives that R � .�˛

�
/1=˛ . Thus

D �B.0; .�˛

�
/1=˛/, which implies that the symmetric difference D4B satisfies

jD4Bj D 2jD nBj � 2
ˇ
ˇ
ˇB

�

0;
��˛

�

�1=˛�

nB
ˇ
ˇ
ˇ D 2�

���˛

�

�2=˛

� 1
�

:
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