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Abstract

Despite the moduli space of triangles being three dimensional, we prove the existence of two triangles 
which are not isometric to each other for which the first, second and fourth Dirichlet eigenvalues coincide, 
establishing a numerical observation from Antunes–Freitas [1]. The two triangles are far from any known, 
explicit cases. To do so, we develop new tools to rigorously enclose eigenvalues to a very high precision, as 
well as their position in the spectrum. This result is also mentioned as (the negative) part of [36, Conjecture 
6.46], [23, Open Problem 1] and [40, Conjecture 3].
 2020 Elsevier Inc. All rights reserved.

1. Introduction

Mark Kac coined the term “hearing the shape of a drum” [33] in 1965 for the problem of the 

determination of a domain D given the spectrum of the Laplacian. Since then, the spectral deter-
mination of (mostly planar) domains has become a fundamental question in geometric analysis. 
Throughout this paper we will work with Dirichlet boundary conditions, that is, we will consider 
the set of real numbers 0 < λ1 < λ2 ≤ λ3 ≤ . . . that solve
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−�uk = λkuk in D

uk = 0 on ∂D. (1)

Most of the results in the literature are negative. In particular, for euclidean polygons, the first 
example of a pair of non-isometric polygons with the same spectrum is due to Gordon, Webb 

and Wolpert [22]. In the case of Riemannian manifolds, even the local geometry of isospectral 
manifolds can be different [55].

We now mention some of the very few positive results for the inverse spectral problem. For 
negatively curved manifolds, there are spectral rigidity [11,24] and compactness results [46], 
some of which have been recently extended to Anosov surfaces [50]. See also [45,47] for a proof 
of these compactness results in the case of planar domains. Zelditch [59] showed, by computing 

wave invariants, that any analytic bounded planar domain that has an even symmetry with respect 
to a line is spectrally determined in the class of analytic bounded symmetric planar domains. This 
was later generalized to higher dimensional domains in their respective class [27]. Without any 

symmetry and analyticity assumptions, only few results exist on the plane: a family of perturbed 

disks [57], semi-regular polygons in the class of convex piecewise smooth domains [13] and very 

recently, Hezari and Zelditch [28] have shown that ellipses of small eccentricity are spectrally 

determined in the class of smooth domains, even without assumptions on convexity or closeness 
to the ellipse.

Instead of focusing on a wide class of domains, one could try to solve the inverse spectral 
problem in a smaller class. Simple, positive examples include the regular n-gon in the class of 
n-gons (due to the isoperimetric inequality) or rectangles in the class of rectangles (since the 

eigenvalues are explicit). A nontrivial result is to show that triangles are determined in the class 
of triangles (see [12] for a proof using the wave trace and a simpler one [23] that only uses the 

heat kernel and elementary calculations). Recently, trapezoids have been shown to be determined 

in the class of trapezoids (under Neumann boundary conditions) [26], as well as parallelograms 
and acute trapezoids [40] in their respective classes.

However, most known results use the full spectrum (i.e. an infinite amount of quantities); 
the only non-explicit results using only finitely many eigenvalues rely on isoperimetric in-
equalities, most remarkably the Payne–Pólya–Weinberger conjecture proved by Ashbaugh and 

Benguria [3], which implies that the first two eigenvalues determine the disk among all domains 
of Rn. See [25] for a discussion on extremizers of functions of eigenvalues. Being in a finite 

dimensional ambient space (such as the space of n-gons for a fixed n) it is expected that a finite 

amount of eigenvalues should suffice to characterize an n-gon. Chang and DeTurck [10] showed 

that given a triangle T , there is a finite number N(T ) such that the first N(T ) eigenvalues distin-
guish T from any other triangle. However, N(T ) is not known to be uniformly bounded. Since 

the moduli space of triangles is 3 dimensional, it is conceivable (see [35]) that 3 eigenvalues 
could characterize every triangle. Our paper is a first step in this direction by showing (on the 

negative) that if that is the case, not any 3 eigenvalues suffice. Specifically we prove the following 

theorem (see Fig. 1):

Theorem 1.1. There exist two triangles TA and TB, not isometric to each other, such that 

λi(TA) = λi(TB), for i = 1, 2, 4.

Antunes and Freitas [1] had observed numerically the presence of a saddle point for λ4/λ1

around which λ2/λ1 is regular, which would imply the existence of such two triangles (see 
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Fig. 1. An approximation of the two triangles TA and TB from Theorem 1.1. If the base of the first triangle has length 

1, so that the base of the second triangle has length approximately 0.915, then for both of them λ1 ≈ 233, λ2 ≈ 391 and 

λ4 ≈ 698.

Fig. 2). Moreover they conjectured that the three first eigenvalues λ1, λ2 and λ3 do determine 

the shape of a triangle. This question has recently attracted a lot of attention. Laugesen and 

Siudeja mention both (positive and negative) directions in [36, Conjecture 6.46], as well as 
Grieser and Maronna [23, Open Problem 1] and Lu and Rowlett [40, Conjecture 3]. Despite 

being the simplest polygonal class, the spectral theory of triangles is far from well understood 

and many advances have been made recently, for example [32], [29] and [48].

Remark 1.2. With no extra effort, we also show that there exists an open set in the moduli 
space of triangles such that for every triangle from this set there is another one with the same 

eigenvalues λi , i = 1, 2, 4.

We do not know how to show the existence of a saddle point for the quotient of two eigen-
values in a region far away from the explicit triangles; that would require controlling up to two 

derivatives of the eigenvalues, which have very difficult expressions. Instead, we use a topolog-
ical argument relying only on “C0 computations” and using very tight, rigorous enclosures of 
eigenvalues, as well as a control of their position in the spectrum. While upper bounds are easy 

to obtain using Rayleigh–Ritz quotients over suitable test functions, guaranteed lower bounds 
(and indices) are much more difficult.

There are many classical results in the literature [34,37,6,15,42,54] showing the existence 

of an eigenvalue close to an approximate one. The main philosophy is that if (λapp, uapp) is an 

eigenpair that satisfies the equation up to an error bounded by δ, then there is a true eigenpair 
(λ, u) at a distance Cδk . Recently, Barnett and Hassell [4] improved on the classical estimates 
by a factor of O(

√
λ) using quasi-orthogonality arguments. Unfortunately, none of these results 

can assert the position in the spectrum of the eigenvalue without knowing any a priori bounds.
In order to circumvent this issue and obtain the position, Plum [51] proposed a homotopy 

method linking the eigenvalues of the domain of the problem with another, known domain (the 

base problem). See also the intermediate method [58,17,5] for another example of connecting the 

problem to a known domain. The difficulty in our case is that we have to solve many eigenvalue 

problems and all of them are far from any known domain, yielding impractical times at the 

precision needed. Moreover, using domain monotonicity with the inclusion into a circular sector 
does not yield a useful lower bound for the fifth eigenvalue. In [39] and [38], Liu and Oishi 
found rigorous lower bounds in terms of the solutions of a finite dimensional problem given by a 

Finite Element Method discretization (see also [9] for similar bounds). Again, at the level of the 

required precision for Theorem 1.1 the number of elements that we need in the mesh is too high. 
See also the paper [44] for a computer-assisted proof using the bounds by Liu and Oishi in the 

context of a modified version of Schiffer’s conjecture.
In this paper we propose a combination of the two families of methods in two passes. In a first 

pass, we separate the first 4 eigenvalues from the rest of the spectrum (using the method of [38]). 
At that point the enclosures that we find are big and not admissible. In a second pass we find 
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a very good approximation of 4 eigenvalues and eigenvectors below the threshold (which have 

to be necessarily close to λ1, λ2, λ3, λ4). Combining now the stability methods from Barnett–
Hassell [4] with the a priori knowledge of the lower bound of λ5 this yields very small enclosures 
of the first 4 eigenvalues and their respective positions in the spectrum. This new method com-
bines the different strengths of the two families and their characters: the global problem (finding 

the order) versus the local problem (the refinement of its value).
In order to find a very accurate representation of the eigenvalue and eigenvector we will use 

the Method of Particular Solutions (MPS). This method was introduced by Fox, Henrici and 

Moler [15] and has been later adapted by many authors (see [2,52,18,14,7] as a sample, and the 

thorough review [8]). The main idea is to consider a set of functions that solve the eigenvalue 

problem without boundary conditions as a basis, and writing the solution of the problem with 

boundary conditions as a linear combination of them, solving for the coefficients that minimize 

the error on the boundary. Typically, the choices have been rational functions [30] or products of 
Bessel functions and trigonometric polynomials centered at certain points. The different choices 
for these points have a big impact in the performance of the method. Very recently, Gopal and 

Trefethen [20,21] have developed a new way of selecting the base functions in such a way to yield 

root exponential convergence (the lightning Laplace solver). We use their algorithm (though our 
own implementation in C++) to obtain accurate, fast approximations of the eigenpairs. We stress 
that these methods produce accurate approximations but there is no explicit control of the error 
with respect to the true solution. In order to overcome this issue and make all the bounds (such 

as the defect) rigorous we will use interval arithmetics to bound errors whenever needed.
By working this way, the method outlined above produces a rigorous enclosure of the eigen-

values corresponding to a particular triangle, but using only this information it is impossible to 

show that two given triangles share the same eigenvalues since we only obtain (narrow) bounds 
and we are looking at a closed condition. Instead, due to the stability of the problem, we can 

transform the closed condition into an open condition using a topological argument and check it 
by computing multiple bounds along the sides of a parallelogram in the moduli space of trian-
gles, at the price of an increased computational cost. To mitigate this cost, we reduce the amount 
of points to be computed using stability estimates (with explicit constants) for the eigenvalues of 
a small open ball of triangles around a given one. We remark that perturbation methods will not 
work directly since the two triangles TA and TB are far from the triangles for which the spectrum 

is explicitly known.
In the recent years, the application of calculations done by computers to mathematical proofs 

has become more popular due to the increment of computational resources, but in order to make 

sure that their results are rigorous, we need to control the errors that floating point arithmetic 

can accumulate. This is usually done by means of interval arithmetic, in which the data that a 

computer stores for a real number is an interval (two endpoints, or a midpoint and a radius) of 
real numbers, stored by two high-precision floating point numbers, instead of just one.

Operations between intervals are implemented to return intervals which are guaranteed to 

contain every possible result when the operands belong to the input intervals. For example, if 
[x] = [x, x] and [y] = [y, y] are two intervals, their sum will be given by the interval [x] +[y] =
[x + y, x + y] and their product by [x] · [y] = [min{xy, xy, xy, xy}, max{xy, xy, xy, xy}]. The 

same rule applies to function implementations: a function f evaluated on [x] should return an 

interval containing every f (x) for x ∈ [x]. We refer to the book [56] for an introduction to 

validated numerics, in which most of the techniques used here are explained, and to the survey 

[19] and the recent book [43] for a more specific treatment of computer-assisted proofs in PDE.
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The paper is organized as follows. In Section 2 we explain how to get tight, rigorous enclo-
sures of the eigenvalues corresponding to a single triangle. Section 3 is devoted to the extension 

of the previous method to a continuous set of triangles, and to the proof of Theorem 1.1. Finally, 
in Section 4 we give some implementation details.

2. Enclosing the spectrum of one triangle

In this section we explain how we obtain rigorous bounds for the eigenvalue quotients ξ21 =
λ2
λ1

, ξ41 = λ4
λ1

for a particular triangle, using the two passes explained above. This will be the main 

ingredient for the next section, in which we will explain how these bounds can be propagated to 

a segment in the moduli space of triangles.

2.1. First pass: separating the first 4 eigenvalues

We will focus on the lower bound of λ5 needed to validate ξ41, as the discussion for ξ21 is 
analogous. In order to find a rigorous lower bound for the fifth eigenvalue of a triangle we will 
use a recent result found by Liu [38], which is similar to the one presented in [9] but simplifies 
the hypotheses and improves the constant involved. Both use the non-conforming Finite Element 
Method of Crouzeix–Raviart, which has the advantage over other conforming finite elements 
(such as [39]) that the mass matrix is diagonal.

The Crouzeix–Raviart finite-element method uses a triangulation of the domain �, which in 

our case we will take to be the trivial triangulation given by N2 triangles with sides equal to 1/N

of the original one. The basis functions are indexed by interior edges of the triangulation: if E
is a common edge of triangles τ , τ ′, the basis function ψE is the unique function supported on 

τ ∪ τ ′ such that restricted to each triangle is affine, takes the value 1 in the midpoint of E and 

the value 0 in the midpoints of the other edges of τ and τ ′.
The weak formulation of the problem (1) reads:

∫

�

∇u · ∇ψ = λ

∫

�

uψ.

Defining the coefficients of the stiffness and mass matrices A = (aEF ), B = (bEF ) by the 

bilinear forms

aEF =
∫

�

∇ψE · ∇ψF bEF =
∫

�

ψEψF

we are left to solve the discrete system

Ax = λBx, (2)

where the vector x = (xi) corresponds to the discrete solution ud =
∑

xiψi . For our choice of 
triangulation, B is simply a multiple of the identity 2|�|I/ 

(

3N2
)

(see [9, Remark 3.9]), whereas 
A is a sparse matrix whose entries involve in a straightforward way the geometry of the triangle. 
This allows us to invert B in the system (2), so we have to solve the following matrix eigenvalue 

problem
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Mx = λx, M = 3N2A/(2|�|), (3)

instead of the previous generalized one. The main result that we will use is the following [38, 
Theorem 2.1 and Remark 2.2] linking solutions of the finite element problem (3) with solutions 
of the continuous one (1):

Theorem 2.1. Consider a polygonal domain � with a triangulation so that each triangle has 

diameter at most h. Let λk be the k-th solution of the eigenvalue problem (1) in � and λk,h the 

k-th eigenvalue of the Crouzeix–Raviart discretized problem (3) in �. Then

λh,k

1 + C2
hλh,k

≤ λk, (4)

where Ch ≤ 0.1893h is a constant.

In order to be able to deal with approximate eigenvalues we will need in addition the following 

a posteriori bound found in a lemma from [49, Theorem 15.9.1], which given an approximate 

solution quantifies an upper bound on how far there has to be a true solution nearby.

Lemma 2.2. Let (λ̃h, ũh) be an approximate eigenpair solving (3) approximately such that λ̃h is 

closer to some λh (which solves exactly (3)) than to any other solution of (3). Suppose that the 

coefficient vector ũh is normalised, ‖ũh‖ = 1. Then the (algebraic) residual r := Mũh − λ̃hũh

satisfies

|λh − λ̃h| ≤ ‖r‖.

Remark 2.3. We can combine Theorem 2.1 with Lemma 2.2 thanks to the monotonicity of (4), 
using λh,k − ‖r‖ as a lower bound of λh,k instead.

It is easy to obtain estimations λ̃h with a very small residual using standard eigenvalue rou-
tines. The hardest part here before applying the theorem is to check that they have indeed the 

correct index, i.e., that they are closer to the appropriate λh than to any other discrete eigenvalue. 
This is why we need to control the whole spectrum of the discrete problem. We will do that by 

finding an approximately orthonormal basis which approximately diagonalizes the matrix, and 

proving that there is an exactly orthonormal basis nearby (with explicit bounds) of actual eigen-
vectors. This will give us useful bounds after application of Gershgorin disks theorem [16]. More 

precisely we will use the following:

Lemma 2.4. Let v1, . . . , vm be vectors in Rm and s > 0 such that |〈vi, vj 〉 −δij | ≤ s, and suppose 

that 8ms < 1. Then there exists an orthonormal set of vectors w1, . . . , wm ∈ R
m such that ‖vi −

wi‖ ≤
√

3s.1

Proof. Consider the Gram–Schmidt method applied to the vectors v1, . . . , vm: we define recur-
sively

1 The constants in this lemma can be optimized, but for the sake of simplicity of the implementation, and since the 
errors in this part are very small, we have preferred to use simpler bounds.
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uk := vk −
k−1
∑

i=1

ui

〈ui, vk〉
‖ui‖2

and the normalized vectors wk := uk/‖uk‖. Let β = s + 2ms2. We will prove by induction that 
‖uk‖2 ≥ 1 − β and that |〈vk, uj 〉| ≤ β for all j < k. Indeed, for the first inequality,

‖uk‖2 = 〈vk, vk〉 −
k−1
∑

i=1

〈vk, ui〉2

‖ui‖2
≥ 1 − s − m

β2

1 − β
(5)

and for the second inequality,

|〈vk, uj 〉| ≤ |〈vk, vj 〉| +
j−1
∑

i=1

|〈vk, ui〉〈vj , ui〉|
‖ui‖2

≤ s + m
β2

1 − β
. (6)

We will be able to close the iteration as long as

s +
mβ2

1 − β
≤ β

(note that both (5) and (6) give place to the same condition). Using the definition of β this reduces 
to checking that s(4m + 4m2s + 2 + 4ms) ≤ 1, which holds true by virtue of the condition on s. 
Then we can bound the difference

‖vi − wi‖2 = ‖vi‖2 + ‖wi‖2 − 2〈vi,wi〉 = ‖vi‖2 + 1 − 2
〈vi, ui〉
‖ui‖

= ‖vi‖2 + 1 − 2‖ui‖ ≤ 2 + s − 2
√

1 − β

which is bounded by 3s. �

We will use Lemma 2.4 in our proof in the following way: we will first find an approximate or-
thonormal basis of eigenvectors {vi}, let Q̃ be the matrix that has them as columns, and compute 

an enclosure for the almost-diagonal matrix D̃ = Q̃T MQ̃. Let Q be the matrix whose column 

vectors are given by the lemma, and construct D = QT MQ, which now has the same eigenval-
ues as M due to the orthogonality of Q. We can obtain rigorous enclosures of the entries of D
using D̃ in this way:

|Dij − D̃ij | = |〈wi,Mwj 〉 − 〈vi,Mvj 〉|

≤ |〈wj − vj ,Mvi〉 + 〈wj − vj ,M(wi − vi)〉 + 〈wi − vi,Mvj 〉|

≤
√

3s
(

‖Mvi‖ + ‖Mvj‖
)

+ 4s‖M‖2,

where s is as in the lemma and we have used the symmetry of M . Observe that the bounds 
for ‖Mvi‖ can be computed explicitly, and that the upper bound ‖M‖2 ≤ ‖M‖Frob is easily 

computed.
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Finally, applying Gershgorin’s generalized disks theorem to the matrix D, of which we have 

sharp bounds, we can separate the spectrum of M in at least two components, one of which will 
contain the first 5 eigenvalues, and the other of which will contain the rest. This will allow us 
to rigorously identify the index of the λh,5, for which Lemma 2.2 provides a very sharp bound, 
by identifying 5 disjoint enclosures of eigenvalues in the first component. Once we have this, 
application of Theorem 2.1 and of Remark 2.3 will provide a lower bound for λ5.

2.2. Second pass: getting narrow enclosures

Our approach to find tight bounds for the eigenvalues of triangles uses the Method of Partic-
ular Solutions (MPS), introduced by Fox, Henrici and Moler in [15] and more recently revived 

by Betcke and Trefethen [8]. In this method, a function u is written as a linear combination of 
functions φi (1 ≤ i ≤ N ) that satisfy the equation (� + λ)φi = 0 on the full plane for a fixed λ. 
It is very important to remark that there are no boundary conditions on φi and the linear combi-
nation u is chosen in such a way to ensure the boundary conditions of (1). In other words, the 

coefficients are chosen to optimize the proximity of the function to the eigenspace of the actual 
eigenvalue λj . In order to achieve this, one tries to find a λ and a non-zero function for which the 

boundary conditions are close to zero. This amounts to find a nontrivial solution (c, λ) of

A(λ)c = 0,

with ci being the coefficient vector such that u(x) =
∑N

i=1 ciφi(x) and A a rectangular matrix 

encoding the boundary conditions evaluated at certain points of the boundary ∂�. Thus, the 

eigenvalues λ will be the values for which the smallest singular value of A is zero. In practice, 
λ are found by using a golden ratio search on the smallest singular value of A. This provides a 

candidate λ ∈ R and coefficients ci for which u can be computed with arbitrary precision.
The basis of functions φi that we will use was introduced very recently by Gopal and Tre-

fethen [20,21] and offers root-exponential convergence. These functions are of two classes: the 

first are centered around points (that we will call charges) that accumulate exponentially near 
the vertices of the triangle along the outside of the angle bisector. More precisely, the j -th of 
them is located at a distance ℓe−σj/

√
nc of the vertex, where the parameters we have used are 

ℓ = 1.0, σ = 2.5. Here nc is the number of charges and 0 ≤ j < nc; we have used nc = 7. Using 

polar coordinates around the charges, the three functions centered around every charge take the 

form

φext(r, θ) = Y0

(

r
√

λ
)

, φc
ext(r, θ) = Y1

(

r
√

λ
)

cos θ, φs
ext(r, θ) = Y1

(

r
√

λ
)

sin θ.

The functions of the second class are all centered around the same point, which we have 

chosen to be the centroid of the triangle. Using polar coordinates around it, they take the form

φ0(r, θ) = J0

(

r
√

λ
)

, φc
j (r, θ) = Jj

(

r
√

λ
)

cos jθ, φs
j (r, θ) = Jj

(

r
√

λ
)

sin jθ,

for 1 ≤ j ≤ d ; we have used d = 10. Here Jj and Yj are the Bessel functions of the first and 

second kind, respectively. Note that the first class of functions are singular at the charge point, 
which allows us to develop the correct behavior at the vertex of the triangle, where the eigen-
function is singular. The second class of functions allows us to fit the boundary values near the 

vertices.
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This method produces very accurate eigenvalues and eigenfunctions but with no guaranteed 

bounds. In order to obtain these, we will make use of the method developed by Barnett and 

Hassell [4], that bounds the error if we can control the L2 norm of the candidate eigenfunction 

on the border. In addition to an improvement in the constant by a factor of 
√

λ, which makes it 
optimal in the high eigenvalue limit, the L2 control is a lot more efficient in practice than the L∞

bounds originally developed in [15,42], because the approximate eigenfunctions generated with 

typical MPS bases tend to be very irregular around the vertices but regular and small in most 
of the boundary. Their method is however optimized for high-index eigenvalues, so we adapt 
some of the steps to our case of small eigenvalues, simplifying the bookkeeping of the explicit 
constants.

We summarize the main results that we will use. Let � be a triangle and u a nonzero smooth 

function on � such that (� + λ)u = 0. We will measure how good u is as an approximation to 

an eigenfunction using the tension

t[u] :=
‖u‖L2(∂�)

‖u‖L2(�)

. (7)

Let λj , uj be the sequence of eigenvalues and eigenfunctions of �, satisfying (� + λj )uj = 0
with zero Dirichlet boundary conditions. Let vj be the normal derivative of uj , defined on the 

regular part of ∂�. We define the operator

A(λ) =
∑

λj

vj 〈vj , ·〉
(λ − λj )2

,

and decompose it as a sum of three:

Anear(λ) =
∑

|λ−λj |≤
√

λ

vj 〈vj , ·〉
(λ − λj )2

,

Afar(λ) =
∑

λ/2≤λj ≤2λ,|λ−λj |>
√

λ

vj 〈vj , ·〉
(λ − λj )2

,

Atail(λ) =
∑

λj <λ/2 or λj >2λ

vj 〈vj , ·〉
(λ − λj )2

where 〈·, ·〉 is the standard inner product on L2(∂�).
This operator is useful because its norm is controlled from below by the tension (see [4, 

Section 3]):

t[u]−2 ≤ ‖A(λ)‖. (8)

Moreover we have the following bounds from [4, Lemma 4.1] and [4, Lemma 4.2]:

‖Afar(λ)‖ ≤ C1, (9)

‖Atail(λ)‖ ≤ C2λ
−1/2, (10)
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that hold for all λ > 1,2 with explicit constants C1, C2 given below. For the near term, since we 

are working with very low eigenvalues, 
√

λ is actually small enough that only the summand with 

λj = λ appears:

‖Anear(λ)‖ =
‖vj‖2

L2(∂�)

(λ − λj )2
. (11)

For convex domains, like in our case, Section 6 of [4] offers explicit bounds for the constants. 
In particular, they are based on another constant C� coming from a boundary quasi-orthogonality 

inequality (see [4, Lemma 2.1]) that we will not discuss in more detail. We will simply use the 

bounds C1 ≤ 2π2C�/3 < 7C� and C2 < 7C� quoted from the end of page 1058 of the paper.
C� can be taken as any constant that makes Lemma 2.1 in [4] hold; in particular, in view of 

the proof of the lemma and since λ > 1, one can take C� = 4(Ca + C′
a) +

√
2C′′

a , where these 

three newly introduced constants depend on a vector field on � with certain properties. Luckily, 
for strictly star-shaped domains, one can make a trivial choice of such a vector field and obtain 

simple expressions for the constants. The concrete expressions can be quoted from the first bullet 
point of [4, Section 6]:

Ca =
sup∂�(x · n)

inf∂�(x · n)
, C′

a =
1

inf∂�(x · n)
, C′′

a = 0,

where n is the outer normal vector field in the regular part of the boundary. Since the problem is 
coordinate-invariant, we are free to chose an origin, and the optimal choice is the incenter of the 

triangle. In this case, both the supremum and the infimum are equal to the inradius ρ, so we can 

take C� = 4(1 + ρ)/ρ.
Putting (8)-(11) together we have

t[u]−2 ≤
‖vj‖2

L2(∂�)

(λ − λj )2
+ 7C�(1 + λ−1/2). (12)

Finally, recall Rellich’s formula [53]:

∫

∂�

(∂nuj )
2(x · n)ds = 2λj .

For our choice of origin of coordinates, this just gives us ‖vj‖2
L2(∂�)

= 2λj/ρ. Inserting this 

into (12) and rearranging we have proved:

Proposition 2.5. The distance d from λ to the spectrum of the Laplacian on �, can be bounded 

above by

d ≤

√

2λ̃j

ρt[u]−2 − 28(1 + ρ)(1 + λ−1/2)

2 This condition obviously holds for our triangles, for example by the Faber–Krahn inequality.
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where λ̃j is an upper bound for λj .3

3. Proof of Theorem 1.1 and reduction to a finite number of triangles

In this section we will give specific details of the triangles TA and TB that we construct in 

Theorem 1.1. We first notice that because of the scaling of the problem, one can fix two vertices 
at (0, 0) and (1, 0) and require the quotients ξ21 = λ2/λ1 and ξ41 = λ4/λ1 to be equal. We will 
parametrize the search space by means of the coordinates (cx, cy) of the third vertex of the 

triangle.
Let A = (0.63500, 0.27500) and B = (0.84906, 0.31995) and consider the parallelograms in 

this space with the following sets of vertices:

• A + v21,A + v41,A, A + v21,A − v41,A, A − v21,A − v41,A, A − v21,A + v41,A;
• B + v21,B + v41,B , B + v21,B − v41,B , B − v21,B − v41,B , B − v21,B + v41,B ;

where the explicit values of the vectors are

• v21,A = (0.004610608896618232, 0.0012403688839389946)

• v41,A = (−0.0041659682109460045, −0.000511581170421992)

• v21,B = (0.0028159587453638808, 0.0020776257941965285)

• v41,B = (0.007180726583099708, 0.00213029677112299)

These are drawn in Fig. 2 together with a numerical contour plot of the eigenvalue quotients. 
The vectors have been chosen with the heuristic that moving along them keeps one of ξ21, ξ41 ap-
proximately constant, while incrementing the other by a fixed amount. In particular, their lengths 
have been adjusted to optimize the total time of the calculations, as shortening one pair of sides 
of the parallelogram reduces the total time to validate them, but it also reduces the margin ξ − ξ̄

in the validation of the other pair of sides, thereby increasing their validation time.
We can reduce Theorem 1.1 to a computation on the boundary of the parallelograms by the 

following proposition:

Proposition 3.1. Let the parallelograms be defined as before and consider ξ21− ξ̄21 and ξ41 − ξ̄41, 

with ξ̄21 := 1.67675 and ξ̄41 := 2.99372. If the following condition is satisfied:

each of ξ21 − ξ̄21 and ξ41 − ξ̄41

has a constant and opposite sign in opposite edges of the parallelograms (C)

then there exist two triangles TA and TB such that

ξ21(TA) = ξ21(TB) = ξ̄21 and ξ41(TA) = ξ41(TB) = ξ̄41.

The proof follows from the continuity of eigenvalues and the Poincaré–Miranda theorem [41], 
which we recall here for completeness:

3 Obtaining this upper bound is a minor problem: one can use first a trivial one, like the one obtained in the first pass, 
to obtain a first enclosure and then use it to bootstrap and get a better one.
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Fig. 2. (Numerical) plot of the level sets of the quotients ξ21 (discontinuous lines) and ξ41 (continuous lines) around the 
region of interest. The points A and B are shown in red and the validated parallelograms in green. (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)

Theorem 3.2. Given two continuous functions f, g : [−1, 1]2 → R such that f (x, y) has the 

same sign as x when x = ±1 and g(x, y) has the same sign as y when y = ±1, there exists a 

point (x, y) ∈ [−1, 1]2 such that f (x, y) = g(x, y) = 0.

Note that the slightly more general result of Remark 1.2 follows from the fact that with the 

computer we will check only a finite number of strict inequalities, so they will remain true if the 

values of ξ̄21 and ξ̄41 are perturbed by a small amount.
Our goal now is to check the aforementioned sign condition on the sides of the parallelograms. 

Instead of working directly with the full side, we will show that it is enough to check condition 

(C) on a finite set of triangles through stability estimates. These will follow from the monotonic-
ity of the eigenvalues with respect to the inclusion of domains and the scaling properties of the 

eigenvalues.

Lemma 3.3. Let T and T ′ be two triangles, whose vertices are A = (0, 0), B = (1, 0), and C =
(cx, cy), C

′ = (c′
x, c

′
y) respectively (cy, c

′
y > 0). Consider the cross products p = −→

AC ×
−−→
AC′ =

cxc
′
y − cyc

′
x and q = −→

BC ×
−−→
BC′ = (cx − 1)c′

y − cy(c
′
x − 1). Then:

• If both p, q < 0, there is a homothety of T ′ by a factor 1 − p/c′
y that contains T .
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Fig. 3. Two pairs of homothetic triangles: ABC and A′′′BC′′′, and ABC′ and A′′BC′′.

• If both p, q > 0, there is a homothety of T ′ by a factor 1 + q/c′
y that contains T .

Proof. The proof is very similar in the two cases, so we will only do it for the first one. We want 
to find the homothety of scale 1 + r that keeps the vertex B of triangle T ′ fixed and such that the 

image of its opposite side contains vertex C of T (see Fig. 3 for a picture of the homothetic trian-
gles ABC and A′′′BC′′′, and ABC′ and A′′BC′′ respectively). The condition becomes simpler 
once we apply an inverse homothety to T and T ′, so that it results in the points

A,C′′′ =
C + rB

1 + r
,C′

being aligned. The solution is r = −p/c′
y , which is positive by our condition. Moreover, triangle 

T lies below this homothety of T ′ because the vectors 
−→
BC and 

−−→
BC′ are in the correct orientation 

due to the condition q < 0. This suffices to check that T is contained in this homothety. �

Lemma 3.4. With the same notation as in Lemma 3.3,

• If p > 0 and q < 0, then T ⊂ T ′.
• If p < 0 and q > 0, there is a homothety of T ′ by a factor cy/c

′
y > 1 that contains T .

Proof. In the first case, the conditions on the signs of the cross products of the side vectors are 

equivalent to T being contained in T ′. In the second case, the relative orientations of the sides 
guarantee that a homothetic triangle to T ′ of the same height as T whose top vertex coincides 
with C will contain T , and the ratio of this homothety is clearly cy/c

′
y . �

Using two reversed inclusions from the previous lemmas we can prove:

Lemma 3.5. Let T be a triangle as above, and consider perturbations of the third vertex of the 

form C + tv defining triangles T (t), for t ∈ [−ℓ, ℓ], where v = (vx, vy). Let λn, λ
(t)
n be the n-th 

Dirichlet eigenvalues of triangles T , T (t), respectively, and define ξ
(t)
n1 as the obvious eigenvalue 

quotient. Then we distinguish two cases depending on pv = −→
AC × v and qv = −→

BC × v:
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• If pv and qv both have the same sign, then for all t ∈ [−ℓ, ℓ]

|ξ (t)
n1 − ξn1| ≤ ξn1

[

(

1 + ℓ
|pv|

cy − ℓ|vy |

)2 (

1 + ℓ
|qv|

cy − ℓ|vy |

)2

− 1

]

.

• If pv and qv have different signs, then for all t ∈ [−ℓ, ℓ]

|ξ (t)
n1 − ξn1| ≤ ξn1

[

(

cy

cy − ℓ|vy |

)2

− 1

]

.

Proof. For the first part, note that either of the conditions of Lemma 3.3 holds for T and T (t)

whenever t �= 0: indeed, p = −→
AC × (

−→
AC + tv) = tpv and q = −→

BC × (
−→
BC + tv) = tqv have the 

same sign if pv and qv do. Note also that reversing the roles of T and T (t) causes both p and q

to change sign and hence the Lemma still applies, but with the other condition. Combining this 
with eigenvalue monotonicity (� ⊆ �′ ⇒ λn(�) ≥ λn(�

′)) and scaling (λn(ρ�) = ρ−2λn(�)) 
yields either

λn ≥
(

1 +
|tpv|

cy + tvy

)−2

λ(t)
n ≥

(

1 + ℓ
|pv|

cy − ℓ|vy |

)−2

λ(t)
n ,

λ(t)
n ≥

(

1 +
|tqv|
cy

)−2

λn >

(

1 + ℓ
|qv|

cy − ℓ|vy |

)−2

λn

or

λn ≥
(

1 +
|tqv|

cy + tvy

)−2

λ(t)
n ≥

(

1 + ℓ
|qv|

cy − ℓ|vy |

)−2

λ(t)
n ,

λ(t)
n ≥

(

1 +
|tpv|
cy

)−2

λn >

(

1 + ℓ
|pv|

cy − ℓ|vy |

)−2

λn

independently of n. In either case the conclusion is that

(

1 + ℓ
|pv|

cy − ℓ|vy |

)−2 (

1 + ℓ
|qv|

cy − ℓ|vy |

)−2

≤
λ

(t)
n /λn

λ
(t)
1 /λ1

=
ξ

(t)
n1

ξn1

≤
(

1 + ℓ
|pv|

cy − ℓ|vy |

)2 (

1 + ℓ
|qv|

cy − ℓ|vy |

)2

and from here the first claim readily follows. For the second one the argument is similar: either

(

cy − ℓ|vy |
cy

)−2

λ(t)
n ≥

(

cy + ℓ|vy |
cy

)2

λ(t)
n ≥

(

c′
y

cy

)2

λ(t)
n ≥ λn ≥ λ(t)

n ,

or
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(

cy − ℓ|vy |
cy

)2

λ(t)
n ≤

(

c′
y

cy

)2

λ(t)
n ≤ λn ≤ λ(t)

n ,

independently of n too. Similarly, in either case the conclusion is that

(

cy − ℓ|vy |
cy

)2

≤
λ

(t)
n /λn

λ
(t)
1 /λ1

=
ξ

(t)
n1

ξn1
≤

(

cy − ℓ|vy |
cy

)−2

and the claim follows. �

In the last section we discuss how to pick the triangles for which we check Condition (C), and 

how the two passes of Section 2 are implemented, thus concluding the proof.

4. Details of the implementation

The computer-assisted part of the proof is done with three main programs that take care of 
independent parts of the validation. All the rigorous computations are performed using the vali-
dated arithmetics library Arb, developed by Fredrik Johansson [31], which can be found at http://
arblib.org. The three programs are:

(a) The program implemented in valxi_main.cc takes as input data specifying a side of 
one of the two quadrilaterals, a total number N of subdivisions of the side, and an integer 
1 ≤ c ≤ N indexing the subdivision to validate. Then it computes narrow enclosures for 
two eigenvalues (which program (c) will check a posteriori that correspond to λ1 and λk , 
for k = 2 or 4), of the triangle parametrized by the center of the segment. Finally it outputs 
them together with an enclosure for ξk1 which is valid for the whole subdivided segment.

(b) interm_main.cc reads data specifying one of the sides in which we are validating ξ41, 
and uses the same machinery as (a) to find enclosures for two eigenvalues (which pro-
gram (c) will later confirm to be λ2 and λ3) of the triangle corresponding to the center of the 

side. Then it outputs bounds propagated to the whole side (it turns out that here with N = 1
segment we get sufficiently small errors).

(c) Finally, position_main.cc is responsible for the first pass described above: separating 

the first k = 2 or 4 eigenvalues from the rest of the spectrum and checking that the eigen-
values obtained in (a) do have the claimed indices. This is done by first finding a rigorous 
lower bound for λk+1 at the center of the side using the FEM technique, and propagating it 
to the whole side. In the case k = 2, it is enough to check that the eigenvalues found by (a)
on each subdivided interval lie in disjoint enclosures in (0, λ3). In the case k = 4, we need 

to check that the two eigenvalues given by (a) and the two intermediate eigenvalues given 

by (b) give pairwise disjoint enclosures in (0, λ5) for each subdivided interval.

In our implementation, for part (a) we have divided each side into N = 40 smaller segments. 
For (b) and (c) we have not needed any subdivision. Therefore the bulk of the time is taken 

by the first program: one run takes approximately 8 minutes, so the total running time is of 
approximately 42 hours. This can be of course run in parallel, in our case reducing the time to 

less than one hour with 80 machines.
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In programs (a) and (b), eigenvalues are searched around the approximate numeric eigenval-
ues of a FEM discretization of the problem, and then they are refined and rigorously validated 

using the techniques explained in the second pass section. These approximate eigenvalues are 

found using the numeric linear algebra library ALGLIB. The refined search for the eigenvalues 
is done by minimizing the least singular value of a matrix involving boundary values of the ba-
sis functions, as described in [8]; we have chosen 300 boundary points per side, distributed as 
Chebyshev nodes, and 40 interior points randomly chosen with a fixed seed. The singular value is 
computed using the ALGLIB library again, and the minimum is found by a golden ratio search.

For parts (a) and (b), in order to apply Proposition 2.5 we need an upper bound on the tension 

defined in (7), which amounts to finding an upper bound for the L2 norm of u on ∂� and a lower 
bound on its interior L2 norm. We now discuss the details of both:

• Upper bound of ‖u‖L2(∂�):
For the upper bound on the boundary norm, the sides of the triangle are divided into small 

segments, starting with a Chebyshev node distribution and subdividing into two smaller seg-
ments whenever the supremum of u2 in the interval is larger than a fixed threshold. For 
each of these segments σ , linearly parametrized by p : [−1, 1] → σ ⊂ ∂�, the integral of 
v(t) := u2(p(t)) is evaluated by using a quadrature for the corresponding Taylor expansion, 
and adding a computed upper bound of the error term. Note that to control both the coeffi-
cients of the expansion and the error term, the derivatives of v need to be evaluated both in 

the midpoint of the segment and in the whole segment using interval arithmetic.

More precisely, if v(t) =
∑m

j=0 vj t
j + r(t), where vj = v(j)(0)

j ! are the Taylor coefficients 

and the residue term r(t) can be bounded by R = supt∈[−1,1]

∣

∣

∣

v(m+1)(t)
(m+1)!

∣

∣

∣
, then we can use the 

bound

∫

σ

u2 ≤ |σ |

⎛

⎝

⌊m/2⌋
∑

i=0

v2i

2i + 1
+

R

m + 2

⎞

⎠

assuming m is odd.
• Lower bound of ‖u‖L2(�):

For the interior norm lower bound, we will only bound from below the integral of u2

in an interior region of �, because the contributions to the L2 norm near the boundary are 

small due to the Dirichlet condition. We will do this by partitioning this interior region into a 

triangular grid and using a form of the minimum principle to deduce a lower bound of u2 in 

each triangle τ of the grid from a lower bound of u2 on ∂τ . More precisely, suppose |u| ≥ b

on ∂τ , and assume without loss of generality that u > 0 on ∂τ . If u < 0 anywhere inside τ , the 

region U on which u is negative has λ as its first Dirichlet eigenvalue, so by the Faber–Krahn 

inequality, |U | is bounded below. However, U ⊂ τ implies |U | ≤ |τ |, so for a small enough 

partition this will be a contradiction. Therefore −�u = λu > 0 on τ , and by the minimum 

principle, u ≥ inf∂τ u ≥ b on τ .
If u changes sign on the boundary, the lower bound of |u| that we will get will be 0, so we 

will be ignoring that triangle. It turns out that this strategy is enough to get a fraction of ‖u‖2

as a lower bound.
In our case we have used a grid of 82 triangles that partitions an interior triangle of side 

length 0.8 times the original one (see Fig. 4). On the perimeter of the grid, lower bounds of u2
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Fig. 4. Grid used to validate a lower bound for ‖u‖
L2(�)

for triangle TB , with (a) the first eigenfunction and (b) the 
second eigenfunction plotted on top.

are obtained by subdividing the segments into halves until u2 is computed on each segment 
with a precision smaller than a given threshold. Evaluation of u2 on a segment σ is done 

by means of the Taylor expansion again, controlling both the derivatives of v(t) = u2(p(t))

evaluated at t = 0 and at the whole interval t ∈ [−1, 1] by means of interval arithmetic.

Due to the oscillatory behavior of the solutions, especially near the vertices, and the large 

amount of cancellation between the summands, a high order Taylor expansion (order m = 25) 
has been used to evaluate u2. Since the derivatives of the Bessel functions, which take most of 
the time of the computation, can be computed recursively at each point, it is more efficient to use 

a high order expansion and fewer intervals to speed up the validation.
For part (c), the approximate orthonormal basis {vi} described at the end of section 2.1 is 

constructed using the eigendecomposition method for symmetric matrices from the numerical 
library ALGLIB. The rest of the calculations were easily performed using Arb.
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