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Abstract

Despite the moduli space of triangles being three dimensional, we prove the existence of two triangles
which are not isometric to each other for which the first, second and fourth Dirichlet eigenvalues coincide,
establishing a numerical observation from Antunes—Freitas [1]. The two triangles are far from any known,
explicit cases. To do so, we develop new tools to rigorously enclose eigenvalues to a very high precision, as
well as their position in the spectrum. This result is also mentioned as (the negative) part of [36, Conjecture
6.46], [23, Open Problem 1] and [40, Conjecture 3].
© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Mark Kac coined the term “hearing the shape of a drum” [33] in 1965 for the problem of the
determination of a domain D given the spectrum of the Laplacian. Since then, the spectral deter-
mination of (mostly planar) domains has become a fundamental question in geometric analysis.
Throughout this paper we will work with Dirichlet boundary conditions, that is, we will consider
the set of real numbers 0 < A; < Ay < A3 <... that solve
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Most of the results in the literature are negative. In particular, for euclidean polygons, the first
example of a pair of non-isometric polygons with the same spectrum is due to Gordon, Webb
and Wolpert [22]. In the case of Riemannian manifolds, even the local geometry of isospectral
manifolds can be different [55].

We now mention some of the very few positive results for the inverse spectral problem. For
negatively curved manifolds, there are spectral rigidity [11,24] and compactness results [46],
some of which have been recently extended to Anosov surfaces [50]. See also [45,47] for a proof
of these compactness results in the case of planar domains. Zelditch [59] showed, by computing
wave invariants, that any analytic bounded planar domain that has an even symmetry with respect
to a line is spectrally determined in the class of analytic bounded symmetric planar domains. This
was later generalized to higher dimensional domains in their respective class [27]. Without any
symmetry and analyticity assumptions, only few results exist on the plane: a family of perturbed
disks [57], semi-regular polygons in the class of convex piecewise smooth domains [13] and very
recently, Hezari and Zelditch [28] have shown that ellipses of small eccentricity are spectrally
determined in the class of smooth domains, even without assumptions on convexity or closeness
to the ellipse.

Instead of focusing on a wide class of domains, one could try to solve the inverse spectral
problem in a smaller class. Simple, positive examples include the regular n-gon in the class of
n-gons (due to the isoperimetric inequality) or rectangles in the class of rectangles (since the
eigenvalues are explicit). A nontrivial result is to show that triangles are determined in the class
of triangles (see [12] for a proof using the wave trace and a simpler one [23] that only uses the
heat kernel and elementary calculations). Recently, trapezoids have been shown to be determined
in the class of trapezoids (under Neumann boundary conditions) [26], as well as parallelograms
and acute trapezoids [40] in their respective classes.

However, most known results use the full spectrum (i.e. an infinite amount of quantities);
the only non-explicit results using only finitely many eigenvalues rely on isoperimetric in-
equalities, most remarkably the Payne—Pdélya—Weinberger conjecture proved by Ashbaugh and
Benguria [3], which implies that the first two eigenvalues determine the disk among all domains
of R". See [25] for a discussion on extremizers of functions of eigenvalues. Being in a finite
dimensional ambient space (such as the space of n-gons for a fixed n) it is expected that a finite
amount of eigenvalues should suffice to characterize an n-gon. Chang and DeTurck [10] showed
that given a triangle T, there is a finite number N (T') such that the first N(7') eigenvalues distin-
guish T from any other triangle. However, N(T') is not known to be uniformly bounded. Since
the moduli space of triangles is 3 dimensional, it is conceivable (see [35]) that 3 eigenvalues
could characterize every triangle. Our paper is a first step in this direction by showing (on the
negative) that if that is the case, not any 3 eigenvalues suffice. Specifically we prove the following
theorem (see Fig. 1):

Theorem 1.1. There exist two triangles Ta and Tg, not isometric to each other, such that
Ai(Ta) = 2;(Tg), fori=1,2,4.

Antunes and Freitas [1] had observed numerically the presence of a saddle point for A4/
around which Ap/A1 is regular, which would imply the existence of such two triangles (see
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Fig. 1. An approximation of the two triangles T4 and 7g from Theorem 1.1. If the base of the first triangle has length
1, so that the base of the second triangle has length approximately 0.915, then for both of them A & 233, A, &~ 391 and
Ayq A 698.

Fig. 2). Moreover they conjectured that the three first eigenvalues A1, A and A3 do determine
the shape of a triangle. This question has recently attracted a lot of attention. Laugesen and
Siudeja mention both (positive and negative) directions in [36, Conjecture 6.46], as well as
Grieser and Maronna [23, Open Problem 1] and Lu and Rowlett [40, Conjecture 3]. Despite
being the simplest polygonal class, the spectral theory of triangles is far from well understood
and many advances have been made recently, for example [32], [29] and [48].

Remark 1.2. With no extra effort, we also show that there exists an open set in the moduli
space of triangles such that for every triangle from this set there is another one with the same
eigenvalues ;,i =1, 2, 4.

We do not know how to show the existence of a saddle point for the quotient of two eigen-
values in a region far away from the explicit triangles; that would require controlling up to two
derivatives of the eigenvalues, which have very difficult expressions. Instead, we use a topolog-
ical argument relying only on “C® computations” and using very tight, rigorous enclosures of
eigenvalues, as well as a control of their position in the spectrum. While upper bounds are easy
to obtain using Rayleigh—Ritz quotients over suitable test functions, guaranteed lower bounds
(and indices) are much more difficult.

There are many classical results in the literature [34,37,6,15,42,54] showing the existence
of an eigenvalue close to an approximate one. The main philosophy is that if (Aapp, Uapp) iS an
eigenpair that satisfies the equation up to an error bounded by &, then there is a true eigenpair
(A, u) at a distance Cs*. Recently, Barnett and Hassell [4] improved on the classical estimates
by a factor of O(+/A) using quasi-orthogonality arguments. Unfortunately, none of these results
can assert the position in the spectrum of the eigenvalue without knowing any a priori bounds.

In order to circumvent this issue and obtain the position, Plum [51] proposed a homotopy
method linking the eigenvalues of the domain of the problem with another, known domain (the
base problem). See also the intermediate method [58,17,5] for another example of connecting the
problem to a known domain. The difficulty in our case is that we have to solve many eigenvalue
problems and all of them are far from any known domain, yielding impractical times at the
precision needed. Moreover, using domain monotonicity with the inclusion into a circular sector
does not yield a useful lower bound for the fifth eigenvalue. In [39] and [38], Liu and Oishi
found rigorous lower bounds in terms of the solutions of a finite dimensional problem given by a
Finite Element Method discretization (see also [9] for similar bounds). Again, at the level of the
required precision for Theorem 1.1 the number of elements that we need in the mesh is too high.
See also the paper [44] for a computer-assisted proof using the bounds by Liu and Oishi in the
context of a modified version of Schiffer’s conjecture.

In this paper we propose a combination of the two families of methods in two passes. In a first
pass, we separate the first 4 eigenvalues from the rest of the spectrum (using the method of [38]).
At that point the enclosures that we find are big and not admissible. In a second pass we find
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a very good approximation of 4 eigenvalues and eigenvectors below the threshold (which have
to be necessarily close to A1, Az, A3, A4). Combining now the stability methods from Barnett—
Hassell [4] with the a priori knowledge of the lower bound of A5 this yields very small enclosures
of the first 4 eigenvalues and their respective positions in the spectrum. This new method com-
bines the different strengths of the two families and their characters: the global problem (finding
the order) versus the local problem (the refinement of its value).

In order to find a very accurate representation of the eigenvalue and eigenvector we will use
the Method of Particular Solutions (MPS). This method was introduced by Fox, Henrici and
Moler [15] and has been later adapted by many authors (see [2,52,18,14,7] as a sample, and the
thorough review [8]). The main idea is to consider a set of functions that solve the eigenvalue
problem without boundary conditions as a basis, and writing the solution of the problem with
boundary conditions as a linear combination of them, solving for the coefficients that minimize
the error on the boundary. Typically, the choices have been rational functions [30] or products of
Bessel functions and trigonometric polynomials centered at certain points. The different choices
for these points have a big impact in the performance of the method. Very recently, Gopal and
Trefethen [20,21] have developed a new way of selecting the base functions in such a way to yield
root exponential convergence (the lightning Laplace solver). We use their algorithm (though our
own implementation in C++) to obtain accurate, fast approximations of the eigenpairs. We stress
that these methods produce accurate approximations but there is no explicit control of the error
with respect to the true solution. In order to overcome this issue and make all the bounds (such
as the defect) rigorous we will use interval arithmetics to bound errors whenever needed.

By working this way, the method outlined above produces a rigorous enclosure of the eigen-
values corresponding to a particular triangle, but using only this information it is impossible to
show that two given triangles share the same eigenvalues since we only obtain (narrow) bounds
and we are looking at a closed condition. Instead, due to the stability of the problem, we can
transform the closed condition into an open condition using a topological argument and check it
by computing multiple bounds along the sides of a parallelogram in the moduli space of trian-
gles, at the price of an increased computational cost. To mitigate this cost, we reduce the amount
of points to be computed using stability estimates (with explicit constants) for the eigenvalues of
a small open ball of triangles around a given one. We remark that perturbation methods will not
work directly since the two triangles 7o and Tg are far from the triangles for which the spectrum
is explicitly known.

In the recent years, the application of calculations done by computers to mathematical proofs
has become more popular due to the increment of computational resources, but in order to make
sure that their results are rigorous, we need to control the errors that floating point arithmetic
can accumulate. This is usually done by means of interval arithmetic, in which the data that a
computer stores for a real number is an interval (two endpoints, or a midpoint and a radius) of
real numbers, stored by two high-precision floating point numbers, instead of just one.

Operations between intervals are implemented to return intervals which are guaranteed to
contain every possible result when the operands belong to the input intervals. For example, if
[x] =[x, x]and [y] = [y, y] are two intervals, their sum will be given by the interval [x]+ [y] =
[x 4+ vy, X + 7] and their product by [x] - [y] = [min{xy, x¥, Xy, Xy}, max{xy, xy, Xy, Xy}]. The
same rule applies to function implementations: a function f evaluated on [x] should return an
interval containing every f(x) for x € [x]. We refer to the book [56] for an introduction to
validated numerics, in which most of the techniques used here are explained, and to the survey
[19] and the recent book [43] for a more specific treatment of computer-assisted proofs in PDE.
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The paper is organized as follows. In Section 2 we explain how to get tight, rigorous enclo-
sures of the eigenvalues corresponding to a single triangle. Section 3 is devoted to the extension
of the previous method to a continuous set of triangles, and to the proof of Theorem 1.1. Finally,
in Section 4 we give some implementation details.

2. Enclosing the spectrum of one triangle

In this section we explain how we obtain rigorous bounds for the eigenvalue quotients &1 =
%, = % for a particular triangle, using the two passes explained above. This will be the main
ingredient for the next section, in which we will explain how these bounds can be propagated to
a segment in the moduli space of triangles.

2.1. First pass: separating the first 4 eigenvalues

We will focus on the lower bound of A5 needed to validate &41, as the discussion for &1 is
analogous. In order to find a rigorous lower bound for the fifth eigenvalue of a triangle we will
use a recent result found by Liu [38], which is similar to the one presented in [9] but simplifies
the hypotheses and improves the constant involved. Both use the non-conforming Finite Element
Method of Crouzeix—Raviart, which has the advantage over other conforming finite elements
(such as [39]) that the mass matrix is diagonal.

The Crouzeix—Raviart finite-element method uses a triangulation of the domain €2, which in
our case we will take to be the trivial triangulation given by N2 triangles with sides equal to 1/N
of the original one. The basis functions are indexed by interior edges of the triangulation: if £
is a common edge of triangles 7, ’, the basis function ¥ is the unique function supported on
7 U 7/ such that restricted to each triangle is affine, takes the value 1 in the midpoint of E and
the value 0 in the midpoints of the other edges of 7 and 7’.

The weak formulation of the problem (1) reads:

/w-vw:xfmp.

Q Q

Defining the coefficients of the stiffness and mass matrices A = (agr), B = (bgr) by the
bilinear forms

aEF=/V1ﬂE'V1//F bEF=/1ﬁE1/fF
Q Q

we are left to solve the discrete system

Ax = ABx, @)

where the vector x = (x;) corresponds to the discrete solution ug = Y x;v;. For our choice of
triangulation, B is simply a multiple of the identity 2|2|// (3N 2) (see [9, Remark 3.9]), whereas
A is a sparse matrix whose entries involve in a straightforward way the geometry of the triangle.
This allows us to invert B in the system (2), so we have to solve the following matrix eigenvalue
problem
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Mx=Xix, M=3N?A/Q2|Q)), (3)

instead of the previous generalized one. The main result that we will use is the following [38,
Theorem 2.1 and Remark 2.2] linking solutions of the finite element problem (3) with solutions
of the continuous one (1):

Theorem 2.1. Consider a polygonal domain 2 with a triangulation so that each triangle has
diameter at most h. Let .y be the k-th solution of the eigenvalue problem (1) in Q and Ay j, the
k-th eigenvalue of the Crouzeix—Raviart discretized problem (3) in Q. Then

_ Mk @)
l—I—C}zl)\h,k

where Cj, < 0.1893% is a constant.

In order to be able to deal with approximate eigenvalues we will need in addition the following
a posteriori bound found in a lemma from [49, Theorem 15.9.1], which given an approximate
solution quantifies an upper bound on how far there has to be a true solution nearby.

Lemma 2.2. Let (A, ity) be an approximate eigenpair solving (3) approximately such that Ay, is
closer to some \j, (which solves exactly (3)) than to any other solution of (3). Suppose that the
coefficient vector uy, is normalised, ||uy| = 1. Then the (algebraic) residual r := Muy — Anitn
satisfies

Iw = Anl < Il

Remark 2.3. We can combine Theorem 2.1 with Lemma 2.2 thanks to the monotonicity of (4),
using Ap x — ||I7]| as a lower bound of Aj, x instead.

It is easy to obtain estimations A, with a very small residual using standard eigenvalue rou-
tines. The hardest part here before applying the theorem is to check that they have indeed the
correct index, i.e., that they are closer to the appropriate Aj than to any other discrete eigenvalue.
This is why we need to control the whole spectrum of the discrete problem. We will do that by
finding an approximately orthonormal basis which approximately diagonalizes the matrix, and
proving that there is an exactly orthonormal basis nearby (with explicit bounds) of actual eigen-
vectors. This will give us useful bounds after application of Gershgorin disks theorem [16]. More
precisely we will use the following:

Lemma2.4. Let vy, ..., vy bevectorsin R™ and s > 0 such that |(v;, vj) — ;| < s, and suppose
that 8ms < 1. Then there exists an orthonormal set of vectors wi, ..., wy, € R™ such that ||v; —

w;]| < /3s.!

Proof. Consider the Gram—Schmidt method applied to the vectors vy, ..., v,: we define recur-
sively

' The constants in this lemma can be optimized, but for the sake of simplicity of the implementation, and since the
errors in this part are very small, we have preferred to use simpler bounds.
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k—1

. " (ui, vi)
=vg — E i
flui |12

i=1

and the normalized vectors wy := uy/||ux||. Let B = s + 2ms>. We will prove by induction that
lluxl|> = 1 — B and that | (v, uj)| < B forall j < k. Indeed, for the first inequality,

k— 1 2

(vk, u B
lull® = (ve, ve) >l—s—m ®)
; lui ||2 -8
and for the second inequality,
o (e ) (0 )| i
[{vk, uj)| < [{vk, vj)l ZWSS—F’”I—,B' (6)
1

We will be able to close the iteration as long as

mﬁ2 <p

S+1—ﬁ_

(note that both (5) and (6) give place to the same condition). Using the definition of g this reduces
to checking that s (4m + 4m3s +2+ 4ms) < 1, which holds true by virtue of the condition on s.
Then we can bound the difference

) (vi, u;)
flu; |

2 2 2 2
lvi — will” = llvi [I7 + lJwi lI* = 2(vi, wi) = i [I7 + 1 =

=lvll* +1=2Ju;ll <2+s—-2/1-p
which is bounded by 3s. O

We will use Lemma 2.4 in our proof in the following way: we will first find an approximate or-
thonormal basis of eigenvectors {v;}, let Q be the matrix that has them as columns, and compute
an enclosure for the almost-diagonal matrix D= QTM Q. Let O be the matrix whose column
vectors are given by the lemma, and construct D = Q7 M Q, which now has the same eigenval-
ues as M due to the orthogonality of Q. We can obtain rigorous enclosures of the entries of D
using D in this way:

|Dij — Dij| = [(wi, Mwj) — (v;, Mv})|
<NKwj —vj, Mvi) +(w;j —vj, M(w; —v;)) + (wi —vi, Mvj)|

< V3s (IMvi ]| +I1Mv; ) + 45| M 12,

where s is as in the lemma and we have used the symmetry of M. Observe that the bounds
for ||[Mv;|| can be computed explicitly, and that the upper bound || M||2 < ||M||Fwob is easily
computed.
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Finally, applying Gershgorin’s generalized disks theorem to the matrix D, of which we have
sharp bounds, we can separate the spectrum of M in at least two components, one of which will
contain the first 5 eigenvalues, and the other of which will contain the rest. This will allow us
to rigorously identify the index of the A, 5, for which Lemma 2.2 provides a very sharp bound,
by identifying 5 disjoint enclosures of eigenvalues in the first component. Once we have this,
application of Theorem 2.1 and of Remark 2.3 will provide a lower bound for As.

2.2. Second pass: getting narrow enclosures

Our approach to find tight bounds for the eigenvalues of triangles uses the Method of Partic-
ular Solutions (MPS), introduced by Fox, Henrici and Moler in [15] and more recently revived
by Betcke and Trefethen [8]. In this method, a function u is written as a linear combination of
functions ¢; (1 <i < N) that satisfy the equation (A + A)¢; = 0 on the full plane for a fixed .
It is very important to remark that there are no boundary conditions on ¢; and the linear combi-
nation u is chosen in such a way to ensure the boundary conditions of (1). In other words, the
coefficients are chosen to optimize the proximity of the function to the eigenspace of the actual
eigenvalue A ;. In order to achieve this, one tries to find a A and a non-zero function for which the
boundary conditions are close to zero. This amounts to find a nontrivial solution (c, 1) of

A(A)c =0,

with ¢; being the coefficient vector such that u(x) = va: 1 Ci¢i(x) and A a rectangular matrix
encoding the boundary conditions evaluated at certain points of the boundary 9€2. Thus, the
eigenvalues A will be the values for which the smallest singular value of A is zero. In practice,
A are found by using a golden ratio search on the smallest singular value of A. This provides a
candidate A € R and coefficients ¢; for which u# can be computed with arbitrary precision.

The basis of functions ¢; that we will use was introduced very recently by Gopal and Tre-
fethen [20,21] and offers root-exponential convergence. These functions are of two classes: the
first are centered around points (that we will call charges) that accumulate exponentially near
the vertices of the triangle along the outside of the angle bisector. More precisely, the j-th of
them is located at a distance £e~%//ve of the vertex, where the parameters we have used are
£=1.0,0 =2.5. Here n. is the number of charges and 0 < j < n.; we have used n, = 7. Using
polar coordinates around the charges, the three functions centered around every charge take the
form

dext(r, 0) = Yo (r«/X) L ¢S (ne) =Y (rﬁ) cosh, ¢ (r.0) =Y (rﬁ) sinf.

The functions of the second class are all centered around the same point, which we have
chosen to be the centroid of the triangle. Using polar coordinates around it, they take the form

bo(r,0) = Jo (r«/X) L) = (rﬁ) cosjb,  PNr6O) =1, (rﬁ) sin j6,

for 1 < j <d; we have used d = 10. Here J; and Y; are the Bessel functions of the first and
second kind, respectively. Note that the first class of functions are singular at the charge point,
which allows us to develop the correct behavior at the vertex of the triangle, where the eigen-
function is singular. The second class of functions allows us to fit the boundary values near the
vertices.
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This method produces very accurate eigenvalues and eigenfunctions but with no guaranteed
bounds. In order to obtain these, we will make use of the method developed by Barnett and
Hassell [4], that bounds the error if we can control the L2 norm of the candidate eigenfunction
on the border. In addition to an improvement in the constant by a factor of ~/A, which makes it
optimal in the high eigenvalue limit, the L? control is a lot more efficient in practice than the L™
bounds originally developed in [15,42], because the approximate eigenfunctions generated with
typical MPS bases tend to be very irregular around the vertices but regular and small in most
of the boundary. Their method is however optimized for high-index eigenvalues, so we adapt
some of the steps to our case of small eigenvalues, simplifying the bookkeeping of the explicit
constants.

We summarize the main results that we will use. Let €2 be a triangle and # a nonzero smooth
function on €2 such that (A + A)u = 0. We will measure how good u is as an approximation to
an eigenfunction using the tension

a2

tlul: @)

a2
Let A, u; be the sequence of eigenvalues and eigenfunctions of €2, satisfying (A + X ;)u; =0

with zero Dirichlet boundary conditions. Let v; be the normal derivative of u j, defined on the
regular part of 2. We define the operator

Mm=§:g¥§%,
Aj J

and decompose it as a sum of three:

Apear(A) = Z M

A—Arj)?
|A—A,—|sﬁ( ?
vji{vj, )
Apar(1) = > agfy,

MJ25h; <20 A=A > VA !

U'<U',’>

Ait(V) = Ll
tdll( ) Z ()\_)Lj)z

Aj<A/2orA;>2A
where (-, -) is the standard inner product on L%(32).
This operator is useful because its norm is controlled from below by the tension (see [4,
Section 3]):
tul > < IAG- ®)

Moreover we have the following bounds from [4, Lemma 4.1] and [4, Lemma 4.2]:

| Apr (W)l < C1, )
At W < Car =12, (10)
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that hold for all A > 1,2 with explicit constants Cp, C given below. For the near term, since we
are working with very low eigenvalues, +/A is actually small enough that only the summand with
Aj = A appears:

12
”vj ||L2(3Q)

||Anear()\)|| = (A — kj)z .

an

For convex domains, like in our case, Section 6 of [4] offers explicit bounds for the constants.
In particular, they are based on another constant Cq coming from a boundary quasi-orthogonality
inequality (see [4, Lemma 2.1]) that we will not discuss in more detail. We will simply use the
bounds C; < 2n2Cg/3 < 7Cgq and Cy < 7Cq quoted from the end of page 1058 of the paper.

Cq can be taken as any constant that makes Lemma 2.1 in [4] hold; in particular, in view of
the proof of the lemma and since A > 1, one can take Cq =4(C, + C),) + \/EC:; where these
three newly introduced constants depend on a vector field on Q2 with certain properties. Luckily,
for strictly star-shaped domains, one can make a trivial choice of such a vector field and obtain
simple expressions for the constants. The concrete expressions can be quoted from the first bullet
point of [4, Section 6]:

_supyqo(x-n) , 1

y =, C// - O,
infyo(x-n) ¢ infyo(x-n) ¢

where n is the outer normal vector field in the regular part of the boundary. Since the problem is
coordinate-invariant, we are free to chose an origin, and the optimal choice is the incenter of the
triangle. In this case, both the supremum and the infimum are equal to the inradius p, so we can
take Cq = 4(1 + p)/p.

Putting (8)-(11) together we have

12,
) L2(092) —-1/2
t <———+7Cqo(l+A . 12
)™ = 55+ TCall 1) (12)
Finally, recall Rellich’s formula [53]:
f(anuj)z(x-n)ds =24;.
Q

2

For our choice of origin of coordinates, this just gives us [lv;]l;, 59

= 2A;/p. Inserting this
into (12) and rearranging we have proved:

Proposition 2.5. The distance d from M\ to the spectrum of the Laplacian on 2, can be bounded
above by

g 2%;
~V ptlul™2 =281 + p)(1 +271/2)

2 This condition obviously holds for our triangles, for example by the Faber—Krahn inequality.
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where )Cj is an upper bound for Aj.3
3. Proof of Theorem 1.1 and reduction to a finite number of triangles

In this section we will give specific details of the triangles 7o and 7g that we construct in
Theorem 1.1. We first notice that because of the scaling of the problem, one can fix two vertices
at (0,0) and (1, 0) and require the quotients &1 = A2/A; and &41 = A4/A1 to be equal. We will
parametrize the search space by means of the coordinates (cy, cy) of the third vertex of the
triangle.

Let A = (0.63500, 0.27500) and B = (0.84906, 0.31995) and consider the parallelograms in
this space with the following sets of vertices:

o A+ a+v41,4, A+ V21,4 — V41,4, A — V21,4 — V41,4, A — V21,4 + V41,45
o B+ p+v41,8, B+ v21,B—v41,B, B— V21,8 — V41,8, B — v21 B + V41,B;

where the explicit values of the vectors are

v21,4 = (0.004610608896618232, 0.0012403688839389946)
v41.4 = (—0.0041659682109460045, —0.000511581170421992)
v21,3 = (0.0028159587453638808, 0.0020776257941965285)
v41,3 = (0.007180726583099708, 0.00213029677112299)

These are drawn in Fig. 2 together with a numerical contour plot of the eigenvalue quotients.
The vectors have been chosen with the heuristic that moving along them keeps one of &>1, £41 ap-
proximately constant, while incrementing the other by a fixed amount. In particular, their lengths
have been adjusted to optimize the total time of the calculations, as shortening one pair of sides
of the parallelogram reduces the total time to validate them, but it also reduces the margin & — &
in the validation of the other pair of sides, thereby increasing their validation time.

We can reduce Theorem 1.1 to a computation on the boundary of the parallelograms by the
following proposition:

Propgsition 3.1. Let the p_arallelograms be defined as before and consider £y — 5_'21 and &41 — §41 s
with &1 := 1.67675 and &41 :=2.99372. If the following condition is satisfied:

each of &1 — & and €41 — &4

has a constant and opposite sign in opposite edges of the parallelograms (@)

then there exist two triangles Ta and T such that

€1(Ta) = &21(Tp) = &1 and £41(Ta) = E41(Tp) = a1

The proof follows from the continuity of eigenvalues and the Poincaré—Miranda theorem [41],
which we recall here for completeness:

3 Obtaining this upper bound is a minor problem: one can use first a trivial one, like the one obtained in the first pass,
to obtain a first enclosure and then use it to bootstrap and get a better one.
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Fig. 2. (Numerical) plot of the level sets of the quotients &1 (discontinuous lines) and &4 (continuous lines) around the
region of interest. The points A and B are shown in red and the validated parallelograms in green. (For interpretation of
the colors in the figure(s), the reader is referred to the web version of this article.)

Theorem 3.2. Given two continuous functions f, g :[—1,11> — R such that f(x,y) has the
same sign as x when x = £1 and g(x, y) has the same sign as y when y = %1, there exists a
point (x,y) € [—1, 112 such that fx,y)=gx,y)=0.

Note that the slightly more general result of Remark 1.2 follows from the fact that with the
computer we will check only a finite number of strict inequalities, so they will remain true if the
values of 521 and §41 are perturbed by a small amount.

Our goal now is to check the aforementioned sign condition on the sides of the parallelograms.
Instead of working directly with the full side, we will show that it is enough to check condition
(C) on a finite set of triangles through stability estimates. These will follow from the monotonic-
ity of the eigenvalues with respect to the inclusion of domains and the scaling properties of the
eigenvalues.

Lemma 3.3. Let T and T’ be two triangles, whose vertices are A = (0,0), B =(1,0), and C

— —_—
(cx, ¢y), C" = (cy, ) respectively (cy, ¢, > 0). Consider the cross products p = AC x AC’

r / -y S _ r_ ;o .
CxCly = €yCy and g = BC x BC' = (cy l)cy cy(cy —1). Then:

o Ifboth p,q <0, there is a homothety of T’ by a factor 1 — p/c/y that contains T.
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CII

AII A AIII B

Fig. 3. Two pairs of homothetic triangles: ABC and A”” BC"”', and ABC' and A” BC”'.

e Ifboth p,q > 0, there is a homothety of T' by a factor 1 +q/ c/y that contains T.

Proof. The proof is very similar in the two cases, so we will only do it for the first one. We want
to find the homothety of scale 1+ r that keeps the vertex B of triangle 7’ fixed and such that the
image of its opposite side contains vertex C of T (see Fig. 3 for a picture of the homothetic trian-
gles ABC and A” BC", and ABC' and A” BC” respectively). The condition becomes simpler
once we apply an inverse homothety to 7 and 7', so that it results in the points

A C/// — C + rB !
b 1 + r 9
being aligned. The solution is r = —p/ c/y, which is positive by our condition. Moreover, triangle

T lies below this homothety of 7’ because the vectors BC and BC' are in the correct orientation
due to the condition ¢ < 0. This suffices to check that T is contained in this homothety. O

Lemma 3.4. With the same notation as in Lemma 3.3,

e Ifp>0andq <0,thenT CT'.
o If p <0and q > 0, there is a homothety of T’ by a factor cy/c’y > 1 that contains T.

Proof. In the first case, the conditions on the signs of the cross products of the side vectors are
equivalent to T being contained in 7. In the second case, the relative orientations of the sides
guarantee that a homothetic triangle to T’ of the same height as T whose top vertex coincides
with C will contain 7', and the ratio of this homothety is clearly c,/ c’y. O

Using two reversed inclusions from the previous lemmas we can prove:

Lemma 3.5. Let T be a triangle as above, and consider perturbations of the third vertex of the
form C + tv defining triangles T(’),fort €[4, L], where v = (vy, vy). Let Ay, )»f,t) be the n-th
Dirichlet eigenvalues of triangles T, TV, respectively, and define E,Y]) as the obvious eigenvalue

- —
quotient. Then we distinguish two cases depending on p, = AC X v and g, = BC x v:
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e If p, and q, both have the same sign, then for all t € [—¢, {]

2 2
0 < ) [Pyl ) gy —1l.
o E’“'—s’“[( ) U=

e If py and q, have different signs, then for all t € [—£, {]

® Sy ?
— < — ) —-1].
|én1 Enl <&l (Cy €|vy|>

Proof. For the first part, note that either of the conditions of Lemma 3.3 holds for T and 7"
) — — =

whenever ¢ # 0: indeed, p = AC x (AC +tv) =tp, and ¢ = BC x (BC + tv) = tq, have the

same sign if p, and g, do. Note also that reversing the roles of T and T causes both p and ¢

to change sign and hence the Lemma still applies, but with the other condition. Combining this

with eigenvalue monotonicity (2 € Q' = A,(2) > 1,(2")) and scaling (A, (02) = p_zkn (2))

yields either

ltpol \ 72 Ipol \ 2
)\nz<l+7> )\fj)z<l+£7) A0,

cy +1vy cy — £lvy|
-2 -2
t
/\fj)z(l+|q“|> xn><1+£7|q”| ) An
Cy cy —Lvy]

or

ltqul \ 7 lgol  \ 7
)\nz<l+7> Af,”z(l—{—zi) A0,

¢y +tvy cy — Lyl
-2 -2
t
)»ff)z<l+|pv|> kn><1+€ |pol ) .
Cy cy —Lvuy]

independently of n. In either case the conclusion is that

(1+£ o] )‘2 (W 90| >‘2<A£f)/xn &
cy — £y cy — Llvy| a )‘Y)/)‘l &n1

2 2
< (1 n, [Pyl ) <1 ) |gvl )
- cy — Llvy| cy — £lvy]|

and from here the first claim readily follows. For the second one the argument is similar: either

2
-2 2 /
cy —Llv cy +Llv c
(*y | y') W= <—y | y') W= (—y> M) =z 00,
Cy Cy Cy

or

933



J. Gomez-Serrano and G. Orriols Journal of Differential Equations 275 (2021) 920-938

2 '\ 2
<Cy —Zlvy|> 20 < (C_y> D < hy <20,
cy cy

independently of n too. Similarly, in either case the conclusion is that

<cy —£|vy|>2 M _ & - (Cy —Elvyl)‘2
cy AV b T Cy

and the claim follows. O

In the last section we discuss how to pick the triangles for which we check Condition (C), and
how the two passes of Section 2 are implemented, thus concluding the proof.

4. Details of the implementation

The computer-assisted part of the proof is done with three main programs that take care of
independent parts of the validation. All the rigorous computations are performed using the vali-
dated arithmetics library Arb, developed by Fredrik Johansson [31], which can be found at http://
arblib.org. The three programs are:

(a)

(b)

(©)

The program implemented in valxi main.cc takes as input data specifying a side of
one of the two quadrilaterals, a total number N of subdivisions of the side, and an integer
1 < ¢ < N indexing the subdivision to validate. Then it computes narrow enclosures for
two eigenvalues (which program (c) will check a posteriori that correspond to A1 and A,
for k =2 or 4), of the triangle parametrized by the center of the segment. Finally it outputs
them together with an enclosure for &1 which is valid for the whole subdivided segment.
interm main.cc reads data specifying one of the sides in which we are validating £41,
and uses the same machinery as (a) to find enclosures for two eigenvalues (which pro-
gram (c) will later confirm to be A, and A3) of the triangle corresponding to the center of the
side. Then it outputs bounds propagated to the whole side (it turns out that here with N =1
segment we get sufficiently small errors).

Finally, position main. cc is responsible for the first pass described above: separating
the first k = 2 or 4 eigenvalues from the rest of the spectrum and checking that the eigen-
values obtained in (a) do have the claimed indices. This is done by first finding a rigorous
lower bound for A4 at the center of the side using the FEM technique, and propagating it
to the whole side. In the case k = 2, it is enough to check that the eigenvalues found by (a)
on each subdivided interval lie in disjoint enclosures in (0, 13). In the case k = 4, we need
to check that the two eigenvalues given by (a) and the two intermediate eigenvalues given
by (b) give pairwise disjoint enclosures in (0, As) for each subdivided interval.

In our implementation, for part (a) we have divided each side into N = 40 smaller segments.
For (b) and (c) we have not needed any subdivision. Therefore the bulk of the time is taken
by the first program: one run takes approximately 8 minutes, so the total running time is of
approximately 42 hours. This can be of course run in parallel, in our case reducing the time to
less than one hour with 80 machines.
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In programs (a) and (b), eigenvalues are searched around the approximate numeric eigenval-
ues of a FEM discretization of the problem, and then they are refined and rigorously validated
using the techniques explained in the second pass section. These approximate eigenvalues are
found using the numeric linear algebra library ALGLIB. The refined search for the eigenvalues
is done by minimizing the least singular value of a matrix involving boundary values of the ba-
sis functions, as described in [8]; we have chosen 300 boundary points per side, distributed as
Chebyshev nodes, and 40 interior points randomly chosen with a fixed seed. The singular value is
computed using the ALGLIB library again, and the minimum is found by a golden ratio search.

For parts (a) and (b), in order to apply Proposition 2.5 we need an upper bound on the tension
defined in (7), which amounts to finding an upper bound for the L? norm of u on 92 and a lower
bound on its interior L? norm. We now discuss the details of both:

o Upper bound of [|u] 25
For the upper bound on the boundary norm, the sides of the triangle are divided into small
segments, starting with a Chebyshev node distribution and subdividing into two smaller seg-
ments whenever the supremum of #? in the interval is larger than a fixed threshold. For
each of these segments o, linearly parametrized by p : [—1, 1] - o C 9€2, the integral of
v(t) = u*( p(t)) is evaluated by using a quadrature for the corresponding Taylor expansion,
and adding a computed upper bound of the error term. Note that to control both the coeffi-
cients of the expansion and the error term, the derivatives of v need to be evaluated both in
the midpoint of the segment and in the whole segment using interval arithmetic.
More precisely, if v(t) = >_7_gv;t/ +r(r), where v; = ”('/;!(0) are the Taylor coefficients
v(m+l)(,)
(m+1)!

and the residue term r(7) can be bounded by R = sup,¢[_; , then we can use the

bound

2 R
2. 2i
/” =lel Z2i+1+m+2

. i=0

assuming m is odd.
o Lower bound of [lu|l;2(q):

For the interior norm lower bound, we will only bound from below the integral of u?
in an interior region of 2, because the contributions to the L? norm near the boundary are
small due to the Dirichlet condition. We will do this by partitioning this interior region into a
triangular grid and using a form of the minimum principle to deduce a lower bound of u? in
each triangle 7 of the grid from a lower bound of u? on 7. More precisely, suppose |u| > b
on dt, and assume without loss of generality that u > 0 on d7. If u < 0 anywhere inside 7, the
region U on which u is negative has X as its first Dirichlet eigenvalue, so by the Faber—Krahn
inequality, |U| is bounded below. However, U C t implies |U| < |t], so for a small enough
partition this will be a contradiction. Therefore —Au = Au > 0 on 7, and by the minimum
principle, # > infy; u > b on 7.

If u changes sign on the boundary, the lower bound of |u| that we will get will be 0, so we
will be ignoring that triangle. It turns out that this strategy is enough to get a fraction of [|u||?
as a lower bound.

In our case we have used a grid of 8 triangles that partitions an interior triangle of side
length 0.8 times the original one (see Fig. 4). On the perimeter of the grid, lower bounds of 1>
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Fig. 4. Grid used to validate a lower bound for |luf ;2 © for triangle Ty, with (a) the first eigenfunction and (b) the
second eigenfunction plotted on top.

are obtained by subdividing the segments into halves until x> is computed on each segment
with a precision smaller than a given threshold. Evaluation of u? on a segment o is done
by means of the Taylor expansion again, controlling both the derivatives of v () = u>(p(1))
evaluated at # = 0 and at the whole interval r € [—1, 1] by means of interval arithmetic.

Due to the oscillatory behavior of the solutions, especially near the vertices, and the large
amount of cancellation between the summands, a high order Taylor expansion (order m = 25)
has been used to evaluate u2. Since the derivatives of the Bessel functions, which take most of
the time of the computation, can be computed recursively at each point, it is more efficient to use
a high order expansion and fewer intervals to speed up the validation.

For part (c), the approximate orthonormal basis {v;} described at the end of section 2.1 is
constructed using the eigendecomposition method for symmetric matrices from the numerical
library ALGLIB. The rest of the calculations were easily performed using Arb.
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