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Absitract—The dynamic response of power grids to small
disturbances influences their overall stability. This letter
examines the effect of network topology on the linearized
time-invariant dynamics of electric power systems. The
proposed framework utilizes H,-norm based stability met-
rics to study the optimal placement of lines on existing
networks as well as the topology design of new networks.
The design task is first posed as an NP-hard mixed-integer
nonlinear program (MINLP) that is exactly reformulated as a
mixed-integer linear program (MILP) using McCormick lin-
earization. To improve computation time, graph-theoretic
properties are exploited to derive valid inequalities (cuts)
and tighten bounds on the continuous optimization vari-
ables. Moreover, a cutting plane generation procedure is
put forth that is able to interject the MILP solver and aug-
ment additional constraints to the problem on-the-fly. The
efficacy of our approach in designing optimal grid topolo-
gies is demonstrated through numerical tests on the IEEE
39-bus network.

Index Terms—Topology design, power system stability.

[. INTRODUCTION

IDESPREAD adoption of new grid technologies is
Wcontinuously changing the face of our modern elec-
tricity networks. Increased penetration of renewable energy
sources and changing load patterns has lead to higher volatil-
ity in power networks [1]. The stochastic nature of renewables
and active loads is likely to produce recurring disturbances that
will require careful planning and design of power networks
with stability in mind [1]. Additionally, the loss of rotational
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inertia in systems with high percentage of renewables will sig-
nificantly reduce the capability of power grids to handle such
disturbances [2].

While several works have explored the placement of vir-
tual inertia to improve the dynamic performance of power
networks [3], it is not well understood how grid topology
affects transient stability [4]. Recent works have shown that
the grid Laplacian matrix eigenvalues allows us to quantify the
effect of grid topology on the power network [4]. Our work
is further motivated by the claim that grid robustness against
low frequency disturbances is determined by the connectiv-
ity of the network [4]. Past studies have looked at designing
grid topologies for specific goals such as reduction of tran-
sient line losses [1], improvement in feedback control [5], and
coherence-based network design [6]. Topologies can also be
designed to pursue other objectives such as improving reli-
ability, minimizing investment and operating costs, reducing
line losses, and managing network congestion; see [7], [8] and
references therein.

This letter investigates the effect of topology on power
system dynamics. For a variety of H-norm based stabil-
ity metrics, such as reduction of line losses, fast damping
of oscillations, and network synchronization, our previous
works [9], [10] presented methods that can be used to opti-
mally design power grid topologies. In [10], we presented
reformulations of the combinatorial topology design task that
allowed us to solve the problem to optimality, albeit with for-
biddingly slow run-times. This work significantly improves
the computational performance of the previous formulation
using the following key contributions discussed in Section IV:
i) present methods to derive tight bounds on the continuous
optimization variables; ii) generate a-priori valid cuts based on
graph-theoretic properties; and iii) showcase an eigenvector-
based cut-generation procedure that is able to interject the
solver and add constraints on-the-fly. To explore conditions
under which a greedy scheme would perform well, we also
present new conditions for supermodularity in Section V.

Notation: Column vectors (matrices) are denoted by lower
(upper) case letters, and sets by calligraphic symbols. The car-
dinality of set X" is denoted by |X| and @ is an empty set.
Given a real-valued sequence {xi,...,xy}, x is the N x 1
vector obtained by stacking the entries x; and dg({x;}) is the
corresponding diagonal matrix. The operator (-)' stands for
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transposition. The N x N identity matrix is represented by Iy.
The canonical vector ¢; has a 1 at the i-th entry and is O else-
where. The time derivative of 8 is denoted by 6 = %‘%. M>0
implies that M is positive semi-definite, and X 43 denotes the
matrix obtained from X upon sampling the rows and columns
indexed respectively by sets A and B.

Il. GRID MODELING AND STABILITY METRICS

An electric power network with N 4 1 nodes can be repre-
sented by a graph G = (V, &), where V = {1,2,...,N+ 1}
corresponds to nodes and edges in £ correspond to undi-
rected lines. Let node i = 1 be the reference, and collect
the remaining nodes in set V, = V\{1}. The suscep-
tance of line (i,j) € & connecting nodes i and j € V
is denoted by b; > 0, while its reactance is denoted by
Xjj = b;l under a lossless line model. Then, L represents
the (N + 1) x (N + 1) susceptance Laplacian matrix of
graph G and is defined as Lj == ) ; ;¢ bij, if i =ji Lij :=
—by;, if (i,j) € £; and O otherwise.

We consider a small-signal disturbance setup where each
node i € )V is associated with a synchronous machine’s
rotor angle 6;, frequency w; = 9,-, inertia constant M;, and
damping coefficient D;; see [11]. If a node i hosts an ensem-
ble of devices, the parameters M; and D; represent lumped
characterizations of the collective behavior of the hosted
devices [3]. Without loss of generality, the quantities (8;, w;)
will henceforth refer to deviations of nodal phase angles and
frequencies from their steady-state values. Using these defi-
nitions, the state-space representation of the linearized power
grid dynamics can be expressed as [11]

A T s I O

A= B:=

where M = dg({M;}) and D = dg({D;}) are the (N+1) x (N+
1) matrices collecting the inertia and damping constants across
all nodes; the (N + 1)-long vectors 8, w, and u stack respec-
tively the phase angles, frequencies, and power disturbances
at each node. The subsequent analysis relies on the ensu-
ing assumption, which has been justified in several existing
works [1], [10], [12].

Assumption 1: The constants (M;, D;) are positive and D; =
c for all i € V (identical damping).

Given the state-space model in (1), our goal is to design
power network topologies that minimize the expected steady-
state value of a generalized control objective combining angle
deviations and frequency excursions [3], [9]

F@ =Y Y w60 — 6;(1)* + si? (1) ()

ieV | j#i
for given non-negative weights {w;;} and {s;}. The weights w;;
induce a connected weighted graph G,, that may be different
from G. Let W be the Laplacian matrix of graph G,, and define
S := dg({s:}). Then, it is easy to see that f(f) = ||J’(I)||%, where

C[wlZ2 0 716w
Yo ':[ 0 51/2][w(:)]' ©)
— —

C=

The importance of the generalized control objective in (2)
is that by varying (W, S), one can capture different stability
metrics and study them under a unified framework [9]. Note
that the network coherence metric considered in the numerical
tests corresponds to the case of W = Iy — N]II'INH 1;+1
and S =0 [9].

The expected steady-state value of f(f) can be interpreted
as the squared Hj-norm of the linear time-invariant (LTT)
system described by (1) and (3). This system will be com-
pactly denoted by H := (A, B, C). Leveraging this link, the
generalized control objective can be expressed as

IH13,, = Te(BT OB) @

where Q0 > 0 is the observability Gramian matrix of the
LTI system H, and can be computed as the solution to the
Lyapunov equation [13, Ch. 5]

ATQ+0A=-C'cC. 5)

The ensuing sections select network topologies that minimize
the stability metric of (4).

1. OPTIMAL DESIGN OF GRID TOPOLOGIES

Consider a connected graph Q = (V, é), where £ is the set
of all candidate lines. The goal is to find a subset of lines
& C €, so that the resultant power network minimizes the sta-
bility objective in (4). Because adding lines can be costly and
utilities have limited budgets, we further impose the constraint
that |£| < K with K > N. By setting K = N, a radial topology
can be enforced. The topology design task can be now posed
as [10]

argmin Tr(B' OB) (6a)
EcE

sto |E] <K (6b)

Q satisfies (5), £ is connected. (6c)

Under Assumption 1, the objective of (6) can be shown to
be proportional to Tr(WL~!), where W and L are the N x N
matrices obtained after removing the first row and column
from W and L, respectively; see [10, Lemma 1]. Problem (6)
can be then rewritten as [10]

argmin Tr(WL™')
Eck

sto |€] <K, rank(L) =N (7

where the rank constraint ensures that £ is connected.

To express the optimization in (7) over g in a more con-
venient form, let us associate each line £ € £ with a binary
variable zg, which is z; = 1 if line £ is selected (that is £ € £);
and zy = 0, otherwise. If we collect variables {z¢} b in vec-
tor z, then z must lie in the set Z = {z : ZTII(‘:'I <K, z¢

{0, 1))€1}. Based on the line selection vector z, the reduced
susceptance Laplacian of G can be expressed as
L@y = ) zbiaiay. ®
(M

Here, each a;; € {0, ﬂ:l}]"N is the row vector of the reduced
branch-bus incidence matrix corresponding to line (i,j) €
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& [10]. Given the explicit form of f,(z), it is not hard to see that
the objective in (7) is a monotone function that is minimized
when all lines in £ are selected. Utilizing (8), problem (7) can
be equivalently written as an MINLP [10]

(X*,7*) e arg Xn;én;g Tr(WX) (9a)

s.to L)X = Iy. (9b)

Constraint (9b) enforces X = fﬁl(z), and thus, matrix f,(z)
to be full-rank at optimality. Problem (9) is non-convex due
to the binary nature of z and the bilinear constraints in (9b).
To handle the latter, we adopt McCormick linearization [14],
which is briefly reviewed next; see also [10] for details.
Constraint (9b) involves bilinear terms z;Xj; for all £ e é
and i, j € V,. For every term, introduce an auxiliary variable

Yeij = 2eXij (10)

and let the entries X;; lie within bounds [Lj, f,-j]. Since zy is
binary, the following inequalities hold true

(11a)
(11b)

yeij > Xij + 2eXij —

Yeij = e Xy, X,
yeij < Xij + zeXj; — Xjj-

yei < 2eXij,

One can replace the bilinear terms in (9b) by yg;;’s, drop equa-
tion (10), and enforce (11) as additional constraints for all
£ € £ and i,j € V, to get an MILP reformulation of (9).
It is not hard to show that this reformulation is exact, i.e.,
Yeij = ZeXjj because z is binary [14].

Through the aforementioned process, problem (9) is refor-
mulated to an MILP over variables {Xj;}, {z¢}, and {yg;}, and
can thus be handled by modern MILP solvers such as Gurobi
or CPLEX. Nonetheless, MILPs with McCormick linearization
can be forbiddingly complex to solve if the bounds (_JJ,X,;,-)
on each Xj; are arbitrarily wide.

IV. VALID INEQUALITIES AND BOUND TIGHTENING

This section develops graph theoretic arguments to provide
easy-to-compute non-trivial bounds on the entries of X and
derive valid cuts for two topology design tasks: i) adding lines
to an existing connected network; and ii) designing a new
network afresh.

A. Augmenting Existing Power Networks

Consider an existing network described by G, = (V, &).
The goal here is to select additional lines from £\&, to improve
stability. This is an instance of problem (9) with the entries of
z related to the lines in & being fixed to one. Based on (8),
the reduced Laplacian matrices of the existing network G, and
network G with all lines connected are L, = Y ; ¢, biaija}
and Iy ==Y (ij)eé gﬂgﬂ,}, respectively. Under this setup and
assuming G, 1s connected, the entries of X minimizing (9) can
be bounded as follows.

Lemma 1: Given that f,fl
of X are bounded by

< X < L7, the diagonal entries

[ i <X <[L;'ls, VieV,. 12)

and its off-diagonal entries are bounded by
[ii—‘lfj + U T — 1 ) (2 T — 1 1)
Xy > (L7 J([Le li — L7 (AL — 1L ' 1)

forall i,j € V, w1th] # 1.
Proof: Since X = L;', it follows that v/ (X — L")y > 0
for all v. Selecting v = ¢; — d¢; for some & > 0 yields

Xii + 82X — 26X > [L7 "1 + 82(L; ' — 28117 1. (14)

Setting § = 0 provides the LHS of (12). The RHS of (12) can
be obtained by exploiting L! > X likewise.

For the off-diagonal entries of X, rearrange (14) if § > 0
and substitute X; and Xj; with the respective upper bounds
from (12) to obtain

_ o T T e T 1

Xj < L)y + ——5 T — 48— —.

The RHS of the upper bound on X;; can be minimized over

1 L u
i|uL|— Plugging §* back into

[Le Ji—[Ls 'l

the bounds completes the proof. The lower bounds on X;’s

can be obtained similarly starting from f,e_] > X. |
To provide some alternate bounds on the entries of X that

may be tighter, let us consider the following inequality [15]

Vije), (15)

where the LHS of (15) is defined as the effective resistance
of the graph Rj; scalar dj; is equal to the sum of reactance
values along the shortest path between nodes i and j on G,;
and € is an arbitrarily small positive number. The length dj; of
the shortest path between all pairs (i, j) € V, can be obtained
by using the Floyd-Warshall algorithm [16]. Note that for the
special case where there is a unique path between nodes i
and j, the bound in (15) is tight, that is R; = d;;. Moreover,
the effective resistance R;; does not increase when edges are
added [15]. This simple fact can be exploited to obtain the
following bounds.

Lemma 2 The off -diagonal entries of X are lower bounded

by X;; = U2 "Hlfz i—dj— for all i,j € V, with j # i.

Proof: The bound can be simply obtained by rearranging
the terms in (15) and substituting the lower bounds for the
diagonal entries (Xj;, Xj;) from (12). [ |

Between the two lower bounds on the off-diagonal entries
of X, we only keep the tighter one. Note that the reduced
Laplacian matrix L. of the existing network G, is invertible
only if G, is connected. If G, is not connected, one could
obtain bounds on the entries of X by imposing a meshed or
radial structure on the sought topology as discussed next.

Xxj =

§ > 0 to obtain §* =

Xii +Xjj —2X;j < djj+ €

B. Designing New Power Networks

This section considers designing a network afresh. In [10],
we derived bounds useful for the design of radial topologies.
Here we develop a new approach to derive bounds on Xj’s
for meshed networks. Heed the lower bound in (12) is also
valid for the design of new networks. Since X is an inverse
M-matrix [17], its off-diagonal entries also satisfy X;; > 0.
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Exploiting the structure of Q = (V,c‘:' ), we can provide
additional information on the entries of X to accelerate (9) for
designing radial and meshed grids alike. For example, if G is
disconnected upon removing edge £ € &, then £ belongs to
the sought network topology and z; = 1 before solving (9).
Such critical edges & C & can be identified using the algo-
rithm presented in our previous work [10] and the entries of
z corresponding to these edges can be safely set to 1. This
process not only reduces the binary search for z* in (9), but
also tightens the lower bounds on certain Xj;’s.

Corollary 1: Suppose a critical edge £ = (i,j) € & parti-
tions the nodes of G into two disjoint connected components:
set V; and its complement V. If Vg contains nodes (i, 1) and
]_)g contains node j, then

[Ef_l]ﬁ + [fafl]jj —dj—e
2

< Xjj (16)

where c},-j is the length of the shortest path (reactance of edge
£) between nodes i and j on graph G. Similarly, for the design
of radial networks one can tighten the lower bounds as

-

dii — € < Xj. (17)

Proof: Because edge £ is the only connection between nodes
i and j on graph G, this edge is also the shortest path between
the two nodes and must belong to the sought network topology.
The bound in (16) can then be shown to be valid using the
arguments in the proof of Lemma 2. To obtain the bound
in (17), we refer to arguments presented in [10, Lemma 4]. W

So far we have obtained lower bounds on the entries of
X, that is X < X for a known matrix X. Using these entry-
wise lower bounds, valid upper bounds on the entries of the
symmetric matrix X can be found by solving M%l linear
programs of the form

max a'XB (18a)
s.to Tr(WX) > Tr(WX"), (18b)
Te(WX) < Tr(WX)), (18c¢)
Xii +Xj — 2X; = [L; T + [L; ']y — 2[L7 "1 (18d)
Xi+Xj—2Xj <dij+e¢ Y(i,j) €& (18¢)
Xi>Xyj VijeV,i#j (18f)
X<X (18g)

where the vectors (o, ) in the cost can be setas: ) a = 8 =
¢; to upper bound X;;; and 2) o = ¢; and 8 = ¢; to upper bound
Xjj. Matrix X is any feasible solution to (9) and X" is the solu-
tion to the relaxed MILP formulation of (9), constraint (18d)
can be shown to be valid by simply substituting § = 1 in (14),
the cut in (18e) is derived using (15) and Corollary 1, and the
inequality in (18f) is a property of inverse M-matrices [17].
The MILP formulation of (9) with newly derived bounds in
Sections IV-A and IV-B together with (18f) is henceforth
referred to as the Tightened MILP. Note that (18f) is an impor-
tant constraint that was also included in our previous MILP
formulations [10].

Our previous work in [10] relied on the assumption that
there exists a node in V that is incident to exactly one edge

in &. By fixing this node to be the reference node, we were
able to obtain several graph-theoretic bounds that are valid for
the design of radial networks. This limiting assumption can be
waived for the design of meshed networks, i.e., valid bounds
can be found on Xj’s, even if the chosen reference node
has more than one edge incident on it. For the special case
where removing all connections to the reference node results
in more than two connected components, matrix X becomes
block diagonal in structure and each sub-network (meshed or
radial) can be designed independently by solving a separate
MILP. In that sense, the problem in (9) is parallelizable.

Remark 1: When considering the problem in Section I'V-A,
the assumption was that one is only augmenting the edges of
a pre-existing network G.. However, elimination or addition
of nodes (and associated edges) may also occur when conven-
tional generation plants are phased out and new ones are built.
We can account for these changes in our proposed framework.
For instance, elimination of a node n € V and its incident
edges would result in a modified network G/ = (V', £/), where
V' = V\{n} and &, C &. If G, is connected, then valid bounds
on Xj;’s can be derived from Lemma 1 by removing the n-th
row and column of the Laplacian matrices L, and L. If G/
is not connected, then one can obtain bounds on the entries
of X by enforcing a radial or meshed network topology using
the process outlined in this subsection. Addition of nodes (and
associated candidate edges) can be handled similarly.

So far we have presented techniques for finding bounds on
the entries of X a-priori, that is before solving the MILP. For
the design of new network topologies the derived bounds on
X;;’s may still be relatively loose. To accelerate the conver-
gence of the solver, we next explore how valid global cuts
can be added to the problem on-the-fly.

C. Eigenvector-Based Cuts for New Network Design
To see how valid cuts can be generated dynamically during
the solution process, consider the constraint

| X fN
V= [IN L(z)]to

which is valid for (9). One could replace (9b) with (19),
but that would require solving a much harder mixed-integer
semi-definite program (MISDP). Instead, observe that the
SDP constraint in (19) could strengthen the bounds in MILP
solvers and reduce the size of the branch-and-bound tree. Since
enforcing such constraints is non-trivial, one can exploit the
alternative characterization of an SDP matrix by selecting S
vectors vy € R?Y and augment the MILP in (9) with the linear
cuts

(19)

>0, s=1,...,8. (20)

Vectors {Us}le could be random, e.g., independently drawn
as vy ~ N(0, Iy). However, adding such constraints may not
necessarily tighten the MILP formulation. We explore how v,’s
can be chosen judiciously to yield more meaningful cuts.
2k-sparse eigenvector cuts: Let (", X") be the solution to
the MILP formulation of (9) obtained by relaxing z € {0, 1}|g|
to the box constraints z € [0, 1]|S|. Moreover, let Y” be the
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matrix obtained by substituting (z", X”) in Y. Heed that the
relaxed MILP formulation is not exact, i.e., (', X") may not
satisfy (9b). In fact, the pair (z', X") may not satisfy (19)
either. A valid cut can be derived from the latter observation,
as explained below.

Another way of enforcing (19) is to ensure all the eigen-
values of Y are non-negative. This can be accomplished by
assigning v; in (20) to be the eigenvectors corresponding to
the negative eigenvalues of ¥Y”. Notice that the cuts in (20) do
not have to be added only once at the beginning of the solu-
tion process (root node), but can also be added dynamically
by interjecting the MILP solver at every branch-and-bound
node when a new relaxed solution is found for (9). However,
since the eigenvectors {vs} are generally non-sparse, each one
of the linear inequality constraints v;r Yv; will couple almost
all entries in Y, that is roughly N? variables. Such dense con-
straints can be detrimental to the solver’s overall solution time.
To alleviate this, we include cuts stemming from a sparse v;.
To this end, let us partition v = [vsTI v];] such that

T T
vy Yvg = vy,

Xvg, + g, L, + 2v] vs,. 1)
Since constraint (19) is equivalent to X > 0 and X > L~1(z);
see [18, Sec. A.5.5], the first two entries in the summand

of (21) are non-negative and only the last term

N
ZU;II'I)SZ =2 Z Vs1,nVs2,n (22)
n=1

contributes to vsT Yv; being negative. Keeping this in mind, the
idea here is to identify the k most negative entries out of the
N summands in (22). For the related indices n, we maintain
the entries of (vy,, v5,), whereas for the remaining indices we
set the corresponding entries to zero. Thus, the modified vec-
tors (v, Vs,) are k-sparse and bear the same sparsity pattern.
Vector vy is then 2k-sparse.

While the 2k-sparse cuts can effectively enforce con-
straint (19) in the MILP formulation, there is a trade-off
between the number of such cuts and improvement in solu-
tion time. Recall that because the cuts in (20) are added to the
solution process on-the-fly, adding too many cuts can signifi-
cantly slow down the solver. To circumvent this, we suggest
adding only those vectors {v,} that correspond to the nega-
tive eigenvalues of Y falling below a pre-defined threshold y
and/or limit the total number of constraints added.

Beyond tightening the bounds on the entries of X and
adding constraints of the form in (20), constraints (18d)-(18e)
can also be appended to the MILP formulation to improve
computational efficiency.

So far our framework has captured the dynamics of a
power system where all nodes host synchronous machines.
Practical power networks however have zero-injection nodes
with no dynamic behavior that can be eliminated via Kron-
reduction [19]. To see how the Kron-reduced Laplacian L,.4(z)
relates to the full Laplacian matrix f,(z) and its inverse X, con-
sider again the power system graph G and partition its nodes
V into synchronous S and zero-injection nodes S. Then it

follows from (9b) that

y_ [Xss Xss‘] _ [I}ss(z) Egg(z)]_l 23)
Xss Xssl lLss@ Lss@)

Applying the matrix inversion lemma for block matrices [18,
Sec. A.5.5], the inverse of the Kron-reduced Laplacian matrix
Xss = L@ = [Lss@ — Lgs@Lss@'Lgs@17".
Hence, power systems with zero-injection nodes can be sim-
ply handled by replacing the cost in (9a) with Tr(WSSXSS).
The remaining formulation in (9) remains unaltered and
optimization occurs on the complete X. Nodes with passive
loads can also be eliminated via Kron-reduction to yield an
identical form of Xgg [19].

While the focus has been on techniques to solve the topol-
ogy design problem exactly, we next explore conditions under
which a greedy scheme would perform well.

V. SUPERMODULARITY OF EDGE AUGMENTATION

For a given finite set S, a function f : 2° — R is said to be
supermodular if for all subsets 4 € B € S and all C € S\B,
it holds that f(AUC) —f(A) < f(BUC) —f(B) [20]. In other
words, the returns due to selection of C are non-diminishing
where adding elements to the larger set B gives larger gains.
Minimizing a supermodular decreasing function is NP-hard.
However, it is known that a greedy scheme that iteratively
minimizes the objective f(A U {s}) for s € S\ A is at least
1 —1/e ~ 63% close to the optimal cost [20].

Lemma 3 [20]: Let A* and A% be the global and best
greedy minimizer to t”l‘le suEermodular decreasing function f,
respectively. Then %ﬁ-’cg‘;r) < 1/e.

In general, the edge addition problem is not supermodular
and hence strong theoretical guarantees are not permissi-
ble. The following theorem lays a restrictive condition under
which the set function f(£) = Te(WL™!) is a supermodular
decreasing function of edge addition.

Theorem 1: The function Tr(WL~!) is decreasing and
supermodular in the addition of susceptance weighted edges
to set £, C £ if

(" — 171a) — (L2 — (L' 17) > 0
(I bk = 11 t) = (125 Dok = £ 1t) > 0
(2" Ym = £ ") = (1" im — 1 11in) > 0
where (k, /) is an edge in W (wi > 0) while (i, j) and (m, n)
are edges added to L,.

Proof: Let § = {(i, jl, gm, m)} such that S ¢ &,. Define
the function (&) = Tr(WL;l) and the positive semi-definite
matrix A = Y, _s bra,a]. The Neumann series expansion of
f(& U (S} is given by

Te(W(L, + A1) = Te(WLS ") — Te(WL ALY
+ Tr(Wﬂ;l Af,; ! Ai;l) + higher order terms
Note that the first-order term is negative for all b, > 0

and hence the function is decreasing. To prove that f(£) =
Tr(WL_l) is supermodular, we find conditions under which
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TABLE |
COMPARISON OF COMPUTATION TIMES

Budget(K) MILP in [10] (sec.) Tightened MILP (sec.)
5 362 149
6 545 208
7 837 301
8 936 385

the function is strictly convex. For this, the second derivative
of f(£) with respect to (bjj, bypy) must be positive
8%
8bij8bmn
A sufficient condition for positivity is when both terms on the
LHS of (25) are positive. Expanding them we have
T F-1pi-1
a, L. WL a;
= 3 wia(12 i = 25 T — 25 T + (L7 )
wi=0
(70 I Vs WY 1 R s WY LY
Ly @i = 1L Tim — (L5 Vin — L5 i + [L; ' T
This leads to the conditions for supermodularity. |
To the best of our knowledge, this is the first time explicit
conditions for supermodularity have been provided for the
topology design problem in power grids. Since these con-

ditions are restrictive and do not hold in general, a greedy
scheme is unlikely to perform well.

> 0= (L' WL 'aj)(ay,L: 'ay) > 0 (25)

VI. NUMERICAL TESTS

All tests were carried out on a 2.3 GHz Intel Dual-Core
i5 laptop with 16GB RAM. The MILP formulations were
solved in Julia/JuMP v0.6 [21] using Gurobi v8.1.1. We first
tested the performance of the Tightened MILP formulation
for augmenting existing networks. For this design task, the
IEEE 39-bus system was used as the pre-existing connected
network [22]. Set £ consisted of edges in this base network
and an additional 22 randomly placed lines. From these lines,
we solved (9) for K = {5, 6,7, 8}). To satisfy Assumption 1,
we assumed M; = 10~* on all nodes that did not host gen-
erators, and D; = ¢ = 0.025 for all i € V. Table | compares
the computation time of the MILP formulation in [10] with
the Tightened MILP formulation discussed in this letter. On
average, the run-time required to find the optimal solution to
the Tightened MILP decreased by 61%.

We next considered the radial topology design problem
with £ composed of all edges in the IEEE 39-bus network.
To generate the eigenvector-based cuts we utilized a thresh-
old value of y = —0.95 and set the sparsity parameter k to
one. Compared to the MILP formulation presented in [10]
that required 8,034 sec. to reach the optimal solution, the
Tightened MILP formulation with (18d)-(18e) was solved in
7,361 sec. Augmenting the previous formulation with the
eigenvector-based cuts reduced the run-time further to 4620
sec. The overall reduction in computation time was 40% -
a non-trivial improvement in comparison to state-of-the-art

methods. Similarly, we considered the optimal design of a
meshed network with 39 edges, where £ was composed of all
edges in the 39-bus network. The optimal solution in this case
was found in 9 hours. Longer run-times for the latter task can
be attributed to looser bounds on the entries of X.

VIl. CONCLUSION

We have presented tight mathematical formulations and
numerous valid cutting planes that can substantially speed up
the computational time required to find an optimal topology
design (radial or meshed) for enhanced power system stability.
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