PHYSICAL REVIEW D 102, 024087 (2020)

Gravitational waves and mass ejecta from binary neutron star mergers:

Effect of the spin orientation
Swami Vivekanandgi Chaurasia ,1'2 Tim Dietrich,3'4 Maximiliano Ujevic,5 Kai Hendriks ,1’6’7
Reetika Dudi,"® Francesco Maria Fabbri®,' Wolfgang Tichy . and Bernd Briigmann1
"Theoretical Physics Institute, University of Jena, 07743 Jena, Germany
*The Oskar Klein Centre, Department of Astronomy, Stockholm University,
AlbaNova, SE-10691 Stockholm, Sweden
nstitut fiir Physik und Astronomie, Universitit Potsdam,
Haus 28, Karl-Liebknecht-Strasse 24/25, 14476, Potsdam, Germany
*Nikhef. Science Park 105, 1098 XG Amsterdam, Netherlands
SCentro de Ciéncias Naturais e Humanas, Universidade Federal do ABC,
09210-170, Santo André, Sdo Paulo, Brazil
6Department of Astrophysics/IMAPP, Radboud University,
P.O. Box 9010, 6500 GL Nijmegen, Netherlands
"Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University,
P.O. Box 616, 6200 MD Maastricht, Netherlands
 Max Planck Institute for Gravitational Physics, Albert Einstein Institute, D-14476 Golm, Germany
9Department of Physics, Florida Atlantic University, Boca Raton, Florida 33431, USA

® (Received 2 April 2020; accepted 14 July 2020; published 30 July 2020; corrected 4 August 2020)

We continue our study of the binary neutron star parameter space by investigating the effect of the spin
orientation on the dynamics, gravitational wave emission, and mass ejection during the binary neutron star
coalescence. We simulate seven different configurations using multiple resolutions to allow a reasonable
error assessment. Due to the particular choice of the setups, five configurations show precession effects,
from which two show a precession (“wobbling”) of the orbital plane, while three show a “bobbing” motion;
i.e., the orbital angular momentum does not precess, while the orbital plane moves along the orbital angular
momentum axis. Considering the ejection of mass, we find that precessing systems can have an anisotropic
mass ejection, which could lead to a final remnant kick of ~40 km/s for the studied systems. Furthermore,
for the chosen configurations, antialigned spins lead to larger mass ejecta than aligned spins, so that
brighter electromagnetic counterparts could be expected for these configurations. Finally, we compare our
simulations with the precessing, tidal waveform approximant IMRPhenomPv2_NRTidalv2 and find good
agreement between the approximant and our numerical relativity waveforms with phase differences below
1.2 rad accumulated over the last ~16 gravitational wave cycles.
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I. INTRODUCTION

The first coincidence detection of gravitational waves
(GWs) and electromagnetic (EM) waves originating
from the same astrophysical source, the binary neutron
star (BNS) merger GW170817, inaugurated a new era in
multimessenger astronomy [1,2]. Already this first BNS
detection provided important scientific insights; e.g., it
allowed for a new and independent measurement of the
Hubble constant (e.g., [3,4]), it proved that NS mergers are
a source of r-process elements (e.g., [5-9]), and it placed
constraints on the equation of state (EOS) of cold matter
at supranuclear densities (e.g., [1,10-14]). In addition, the
increasing number of potential binary neutron star candi-
dates and the second confirmed detection of a binary
neutron star merger, GW190425 [15], suggest that many
more systems will be detected in the near future.
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For a correct analysis and interpretation of the observed
signals, one has to relate the measured data with theoretical
predictions. With respect to GW astronomy, this can be
done by correlating the signal with a waveform model
maximizing their agreement, e.g., [16]. Considering EM
astronomy, one needs to relate the observed properties of
the signals (spectra and light curves) with the theoretical
predictions of EM transients, which are connected to the
material outflow and evolution during the last stages of the
binary dynamics, e.g., [5-9,12].

To be prepared for future detections of BNS systems
with various intrinsic parameters, one has to cover the
entire parameter space; i.e., one has to vary systematically
the individual masses, the neutron stars (NSs) spins. In
addition, our missing knowledge about the exact EOS adds
an additional free parameter that we need to vary in our
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studies. In this article, we will focus on the effect of
intrinsic NS spin on the BNS coalescence.

Although pulsar observations of BNS systems suggest
that most NSs have small spins, e.g., [17,18], this conclusion
is based on a small selected set of observed binaries.
Observations of isolated NSs or NSs in binary systems
other than BNSs show that NSs can rotate fast; e.g., PSR
J1807 — 2500B has a rotation frequency of 239 Hz [18,19].

Similar to the uncertainty in the spin magnitude, the
orientation of spins in BNS systems is also highly uncertain
and unknown. Misaligned spins can be caused by the
supernova explosions of the progenitor stars. A possible
realignment of the spin with the orbital angular momentum
due to accretion is only possible for the more massive NS,
but not for the secondary star; e.g., for PSRJ0737-3039B
the angle between the spin and the orbital angular momen-
tum is ~130° [20]. In addition, for BNS systems formed
due to dynamical capture, there is no reason to have aligned
spins at all and one can expect that spins will be isotropi-
cally distributed. Consequently, further investigations of
the effect of the spin orientation are required.

We will present a detailed numerical relativity study for
various precessing systems. We point out that, in most
numerical relativity (NR) studies, spins have been
neglected or have been treated unrealistically by assuming
that the stars are tidally locked. Only in the last few years,
NR groups performed spinning NS simulations dropping
the corotational assumption. The only NR simulations in
which the Einstein constraint equations and also the
equations of general relativistic hydrodynamics are solved
for configurations in which the individual NSs are spin-
ning, are presented in [21-27]. With respect to precession,
the list of studies is even shorter [22,28,29]. Reference [22]
performed a preliminary study for one precessing, one spin
aligned, and one nonspinning configuration employing
only low resolution grid setups. A precessing inspiral
has also been shown in [28], but the merger and postmerger
parts have been excluded. Finally, [29] performed a more
systematic study for two unequal mass, precessing NS
systems. In total, the entire NR community has studied less
than five precessing configurations until now. To overcome
this shortage, we study several equal-mass BNS configu-
rations for various spin orientations. Each configuration is
evolved with four different resolutions.

The article is structured as follows: Sec. II describes the
numerical methods that we employ and the configurations
that we study. In Sec. III we provide a first discussion about
the coalescence by focusing on the energetics and the
properties of the merger remnant. In Sec. [V we discuss the
mass ejection and kick estimates for the studied configu-
rations. In Sec. V we study the emitted GW signal by
analyzing the phase evolution for the different setups,
compare the waveforms with GW approximants, and
comment on the postmerger frequencies. We conclude in
Sec. VI. For completeness, we give important expressions

for the computation of radiated energy, angular momentum,
and linear momentum in the Appendix A and discuss in
Appendix B the accuracy of our NR simulations.

II. METHODS AND CONFIGURATIONS

A. Numerical methods

1. Initial data construction

The initial data for the setups studied in this article are
obtained with the pseudospectral SGRID code [22,30-32].
Quasiequilibrium configurations of NSs with arbitrary spins
and different EOSs [22] can be obtained with SGR]D,l which
employs the conformal thin sandwich formalism [34-36] in
addition to the constant rotational velocity approach [37-39]
to describe the rotation state of the NSs. Although SGRID can
construct eccentricity reduced initial data, we do not perform
any kind of eccentricity reduction to reduce computational
costs. Moreover, the residual eccentricities for our quasie-
quilibrium setups are reasonably small (<1072) for our
present analysis [22]; see Table I.

The computational domain of SGRID is divided into six
patches (Fig. 1 of [22]) that includes spatial infinity, which
allows imposing exact boundary conditions. We employ
ny =ng =28, n, =8, ncy = 24 points for the spectral
grid; cf. [22,30-33] for further details.

2. Dynamical evolutions

The constructed initial data are evolved with the BAM
code [40-43], utilizing the Z4c formulation of the Einstein
equations for the evolution system [44,45] together with the
(1+log)-lapse and gamma-driver-shift conditions [46-48].
The numerical fluxes for the general relativistic hydro-
dynamics system are constructed with a flux-splitting
approach based on the local Lax-Friedrich (LLF) flux.
We perform the flux reconstruction with a fifth-order
WENOZ algorithm [49] on the characteristic fields [S0-52]
to obtain high-order convergence [43]. For low density
regions and around the moment of merger, we switch to a
primitive reconstruction scheme that is more stable but
less accurate i.e., from a higher-order LLF scheme that uses
the characteristic fields to a second-order LLF scheme that
simply uses the primitive variables [43]. A piecewise-
polytropic form of the EOS approximation is used for the
SLy EOS [53]. Additionally, thermal effects to the EOS
are added by a thermal pressure following an ideal gas
contribution i.e., by adding an additional thermal pressure
of the form py, = pe(ly, — 1) with Ty, = 1.75; see [54].

The method of lines is used for the time integration
combined with an explicit fourth-order Runge-Kutta

"This project started before the upgraded SGRID version
presented in [33] was available, so that we have used the previous
SGRID version of [22] and therefore could not explore higher
spins possible with the upgraded version.
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TABLE 1.

BNS configurations. The first column gives the configuration name. The next five columns provide the physical properties

of the individual stars: the gravitational masses of the individual stars MAB | the baryonic masses of the individual stars MQ'B , the stars’
dimensionless spins magnitude y*%, and their orientations 74 and 7. The last six columns give the mass-weighted effective spin ygr,
the effective spin-precession parameter y,, the residual eccentricity e, the initial GW frequency M®9,, the Arnowitt-Deser-Misner
(ADM) mass M zpy, and the ADM angular momentum Jzpy. The configurations were evolved with the resolutions of Table II.

Name MAB my*® Vs Ve 7° Xeft Xp e Mo,  Mapm  Jabum

SLy(") 13505 14946 0.0955 (0,0,1)  (0,0,1)  0.0955 0 0.00753  0.03405 2.6799  8.1939
SLy(™")  1.3505 1.4946 0.0956 (“j;” a ji') 0.0676  0.0676  0.00793  0.03406 2.6799  8.0993
SLy(”/) 13505 1.4946 0.0955 % % 0.0675  0.0676 0.00813  0.03406 2.6799  8.1020
SLy(=—™) 13505 14946 0.0955 (=1,0,0) (1,0, 0) 0 0.0955 0.00922 0.03408 2.6799 7.8712
SLyW™ 13505 14946 00956 ! 3{” a %” —-0.0676  0.0676 0.01083 0.03411 2.6799  7.6437
SLy(\N 13505 14946 0.0956 U %” “-‘;;) —0.0676 0.0676 0.01194 0.03409 2.6799  7.6437
SLy(W) 13505 14946 0.0955 (0,0, 1) (0,0, —=1) —0.0955 0 0.01197 0.03411 2.6799 7.5484

TABLE II. Grid configurations. The columns refer to the
resolution name, the number of levels L, the number of moving
box levels L, the number of points in the nonmoving boxes n,
the number of points in the moving boxes n,,,, the grid spacing in
the finest level ig covering the NS diameter, the grid spacing in
the coarsest level A, and the outer boundary position R. The grid
spacing and the outer boundary position are given in units of M

Name L L, n Ny he hy Ry

R1 7 3 192 64 0.246 15.744 1511.4
R2 7 3 288 96 0.164 10.496 1511.4
R3 7 3 384 128 0.123 7.872 1511.4
R4 7 3 480 160 0.0984 6.2976  1511.4

integrator. Furthermore, the time stepping utilizes the
Berger-Collela scheme, enforcing mass conservation across
the refinement boundaries [42,55].

The computational domain is divided into a hierarchy of
cell centered nested Cartesian grids with refinement factor
of 2. Each level has one or more Cartesian grids with
constant grid spacing /; and n (or ™) points per direction.
Some of the refinement levels / > [™¥ can be dynamically
moved and adapted during the time evolution according to
the technique of “moving boxes.” In this article, we
set [™ = 3.

Since we are interested in spin and precession effects,
we cannot enforce any additional symmetry and evolve
the full 3D grid. This increases the computational costs
by a factor of 2 compared to most of our past studies
where we employed bitant symmetry. In order to have
compatible simulations even the spin-aligned and anti-
aligned setups that are not expected to show any pre-
cession are evolved without imposing any symmetry.
Details about the different grid configurations employed
in this work are given in Table II; the grid configurations
are labeled as R1, R2, R3, R4, ordered by increasing
resolution.

B. Configurations

In this article we study equal-mass systems with NSs
at an initial proper separation of ~56 km and having fixed
rest masses (baryonic masses) of M’Z'B = 1.4946 M. The
gravitational masses for the NSs in isolation are M4-B~
1.35 M, leading to a binary mass of M ~2.70 M; see
details in Table I. The individual stars are spinning and have
dimensionless spins y* = »® ~ 0.096 which corresponds to
~190 Hz for the SLy EOS used in this study. The simulated
configurations differ in their spin orientation with respect to
the orbital angular momentum direction of the system. We
note that a setup in which only one star has a non-negligible
spin might be astrophysically better motivated. However,
our current study is pedagogically motivated. Moreover, we
expect to maximize the effects of misaligned spin from the
chosen configurations. Keeping the systems symmetric we
expect to better disentangle the effect of misaligned spins
and have better quantitative comparisons among the simu-
lated setups. In Table I we give the mass-weighted effective
spin y.; that, in the equal-mass case, simply reduces to

A B
A el
Aeff = 5 (1)
with 181 being the projection of the dimensionless spin
vector along the orbital angular momentum direction, and
the effective spin-precession parameter y, that, in the

equal-mass case, is defined as

2)

where y41B1 is the magnitude of the component of the
dimensionless spin vectors perpendicular to the orbital
angular momentum. Both spin measurements y., y, are
commonly used in GW data analysis [1,10,56] for BNS
systems and therefore seem to be a natural choice for a
comparison with our simulations.

Xp = max()(ALv)(BL)s
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III. DYNAMICS

A. Qualitative discussion

We start our investigation with a qualitative discussion
about all considered systems. For this purpose, we present
in Fig. 1 the tracks of the stars (left panels), the precession
cones of the individual spins and the orbital angular
momentum (middle panels), and the (2, 2)- and (2, 1)-
modes of the GW signal (right panels). The individual rows
refer to the different configurations.

Precession effects for SLy(”/") and SLy("™) are largest
due to the misaligned initial spins, which leads to a clearly
visible motion of the binaries along the z-axis. In addition,
the precession cone of the orbital angular momentum has
the largest opening angle which confirms our observation
that these systems undergo a precessing motion. Moreover,
a clear modulation in GW amplitude due to precession can
be seen in the (2, 1)-mode of the GW signal.

Other configurations, such as SLy(“~) have clearly
different dynamics. Even though the initial spins for this
simulation are misaligned, no characteristic precession
effect is visible for the orbital angular momentum. As
the spins lie in the orbital plane and are opposite and of
equal magnitude, any z-motion of the stars is in the same
direction. This results in a “bobbing” motion of the orbital
plane (rather than the “wobbling” motion that is typical for
precession). These findings are supported by the corre-
sponding precession cone, which shows no precession of
the orbital angular momentum. Furthermore, no precession
effects are present in the (2, 1)-mode of the GW signal due
to the symmetry of this system. However, we find clearly
that the individual spins are precessing; cf. blue and green
lines in the middle panels.

Similar symmetry arguments can be used to explain
why the other symmetrically misaligned simulations show
“bobbing” motion in the z-direction, but no precession of
the orbital plane like the SLy(”"/") and the SLy(™™) cases.

Interestingly, the motion of the orbital plane, “wobbling”
or “bobbing” for the spin-misaligned systems can be
explained by considering the general relativistic frame-
dragging effect or specifically the Lense-Thirring (LT) effect
[57]. Due to this effect, a rotating mass in general relativity
influences the motion of objects in its vicinity; i.e., the
rotating mass “drags along” spacetime in its vicinity. In
Fig. 2 we show a schematic of the frame dragging due to the
NS spins. Top row panels show the initial configurations for
setups with symmetrically misaligned spin (left column) and
with asymmetrically misaligned spin (right column) for the
NSs A and B. The blue circles represent the two NSs, the
black arrows show their spin directions, and the dragging of
the spacetime is depicted as the circular rings around the
NSs. In the top row panel scenario, the stars will feel no LT
effect i.e., the dragging due to each other’s spin rotations.
The spin orientation of the stars changes very slowly, so that
a quarter of an orbit later they will still be pointed in

essentially the same direction. This scenario is depicted in
the bottom row panels. This time for the symmetrically
misaligned system, star B will feel the LT effect due to A in
the direction that points into the orbital plane. Since the spin
of star B is pointed in the opposite direction, the LT effect on
star A will be in the same direction as on star B i.e., into the
orbital plane as shown in the bottom left panel. The net result
will now push the entire orbital plane in this direction, which
is perpendicular to the orbital plane. Half an orbit later, the
effect will be in the opposite direction; the resulting motion
is an oscillation of the orbital plane in the perpendicular
direction i.e., a “bobbing” motion. Similarly, for the asym-
metrically misaligned-spin system (right column), stars A
and B will be pushed in directions opposite to one another.
This results in a zero net force on the orbital plane as shown
in the bottom right panel and a nonzero torque that tilts the
orbital plane, which over time causes the “wobbling”
motion. Therefore, the misaligned spins of the NSs either
produce a torque or a net force on the orbital plane giving
rise to either “wobbling” or “bobbing” motions respectively.
Additionally, two important observations can be made based
on Fig. 1.

First, for the SLy("") and SLy!) configurations there is
no precession as their initial spins are (anti-) aligned with the
orbital angular momentum. Moreover, the orbital hang-up
(speed-up) effect [21,58], i.e., the fact that spin-aligned
systems merge later and vice versa, is clearly visible in the
GW signal with respect to the peak time in the amplitude at
the merger. This effect also holds for the misaligned systems
that have effective (anti-) aligned-spin components with
respect to the orbital angular momentum of the system. The
exact merger times can be found in Table III for the R3
setups. Second, apart from precession, the spin-misaligned
systems also show nutation, i.e., small oscillations in the
precession cones for the individual spins (blue and green) as
seen in column 2 of Fig. 1. The nutation happens on a much
shorter timescale than the precession motion. These nutation
cycles are clearly visible for the individual spins for the
SLy(\") and SLy(/") cases but are also present for the
SLy(*™) and SLy("™) cases. We also show a comparison
of the precession cones of the orbital angular momentum for
SLy(”/) and SLy(\™ in Fig. 3.

B. Energetics

We study the conservative dynamics for all the configu-
rations presented in this article by computing the reduced
binding energy,

_ M ppm(to) = Evg — M

E , 3
) » (3)
and the specific orbital angular momentum,

/= Taom (o) = Sa(to) = Sp(to) = Jraal . @)

vM?
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FIG. 1. Orbital dynamics and GW emission for all simulations. Column I shows the coordinate tracks of each NS in the binary.
Column 2 shows the corresponding precession cones. The spin evolution of the individual stars (blue and green), and the orbital angular
momentum of the system (red) are shown here. Column 3 shows the (2, 2)- and (2, 1)-modes of the GW strain rh.
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FIG. 2. A schematic of the Lense-Thirring effect in a binary
system. Left column: A system with symmetrically misaligned
spins of the NSs A and B with respect to the orbital angular
momentum direction. Right column: A system with asymmetri-
cally misaligned spins of the NSs A and B.

Here v := MAMB / M? is the symmetric mass ratio, g, Jpaq
are the emitted energy and angular momentum in the

radiated GWs, and M py, Japy denote the ADM mass
and angular momentum at the beginning of the simulation
(i.e., at t = 1), §A(t0) and §B(t0) are estimated from the
initial data (Table I), and §A’B = (MAB)2yABYAB  Tn
Appendix A, we present a few details about the postpro-
cessing step for the computation of the radiated energy and
angular momentum in GWs extracted in numerical rela-
tivity simulations employing the BAM code. In Fig. 4, we
show the computed angular momentum for all the simu-
lated configurations. One finds that for the symmetrically
misaligned configurations (SLy(“~), SLy(\/")| SLy(~"))
the angular momentum is radiated only in the z-component
whereas the x, y-components remain identically zero
during the inspiral. For the asymmetrically misaligned
systems (SLy(”"/) and SLy(\) there is radiation in the
other components as well.

TABLE III. Properties of the merger remnant. The columns
represent (i) the name of the configuration, (ii) the merger time in
M and in ms, (iii) the lifetime, 7, of the HMNS formed during
our simulation, given in M and in ms, (iv) the final mass of the
BH, Mygy, if the HMNS collapsed during our simulation, the
dimensionless spin of the final BH, ygy, and the mass of the disk
surrounding the BH, M 4 . The different physical quantities are
computed for resolution R3. Note that the case SLy('") did not
undergo a collapse to a BH during our simulation time and
therefore the corresponding quantities are marked as “(- - -).”

tmerge T MBH XBH Mdisk
Name (Mg) (ms) (M) (ms) (Mg) (My)
SLy(") 9981 49.16 > 12532 > 61.72 co e
SLy(™\/) 9923 4888 7074 3484 237 0.7 0215
SLy(”/) 9919 4886 4421 21778 242 0.62 0.165
SLy(“™) 9622 4739 3062  15.08 240 0.59 0.167
SLy™) 9275 4568 1394 6.87 245 0.62 0.113
SLy(NN) 9230 4546 1471 725 245 0.62 0.123
SLyH) 9064 44.64 2156  10.62 241 0.57 0.135

1.0
0.8

L, 06
0.4 ~0.05
0.2 0.00 &

0.05
0.0 —0.05  0.00 0.05
(]

FIG. 3. Precession cone for the SLy(”"/") configuration for the
orbital angular momentum (red). Additionally, as a green dashed
line we show also the precession cones for (L,, ﬁy,ﬁz) for the
SLy(\™J configuration. The opening angles for both the configu-
rations are almost identical, due to the symmetry of the systems.
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FIG. 4. Radiated angular momentum (jmd) in GWs computed
using the relations given in Appendix A. For symmetrically
misaligned configurations the angular momentum is only radiated
in the z-component and the x, y-components remain identically
zero during the inspiral. Whereas for the asymmetrically mis-
aligned systems there is radiation in all the components.
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—0.16 | SLy(7) —SLy™) i

FIG.5. Reduced binding energy E,, as a function of the specific
orbital angular momentum ¢ for all configurations considered
in the article. Additionally, we also include the curve for an
irrotational case SLy(™”) taken from the CoRe Database (ID:-
BAM:0095:R02) for comparison. As expected, the irrotational
curve matches the SLy(“~~) case nicely.

In Fig. 5 we show the E-Z curve for all the configurations
for the highest resolution (R4); cf. Table II. For comparison
we also show the curve for an irrotational configuration
SLy(%) (“black line”) with the same masses and EOS. The
irrotational setup corresponds to “BAM:0095:R02” from
the CoRe Database [59,60]. For the early inspiral part of the
dynamics (large E and ¢), we find that the E-Z curves
are very similar for all setups, which is caused by the fact
that the main contribution, the point-mass contribution, is
identical for all systems.

During the late inspiral part, when the stars come close
to each other, due to the emission of energy and angular
momentum, a clear difference is present as seen in Fig. 5.
Throughout the simulation, the E-¢ curve for the irrota-
tional configuration SLy(®”) and the effectively zero-spin
configuration (y.; = 0) SLy(“~) clearly demarcate the
effectively aligned-spin and the effectively antialigned-spin
configurations. In general, aligned-spin configurations are
less bound while the antialigned-spin configurations are
more bound than the corresponding irrotational setup;
cf. Fig. 6 top panel.

To better disentangle the different contributions to the
total binding energy due to the spin [21,23], we assume that
it consists of a nonspinning contribution including tidal
effects E, a spin-orbit Egq contribution, and a spin-spin
contribution Egg,

E, = Eg + Eso + Ess + O(S?). (5)

In general, the spin-orbit (SO) interaction is at leading

order « L -§,~/ r3; see [61]. The SO-interaction term is
either repulsive or attractive, i.e., positive or negative,

according to the sign of Y % L- §,~. The spin-spin term
includes the self-spin term (of the form §l~ . §,-) and an

interaction term [of the form §,- . §j(i # j)1 between the
two spins. The spin-spin interaction term in particular is

T SLyW)-SLy(““S — SLy(“”;-SLy“‘“) — SL‘y“\)-SLy(““)
0004 B SLy(\/),SLy(OO) J— SLy(/\),SLy(OO) J— SLyu“fSLy((m) T
~ SLy( ) -SLy(©0)

E 0.002-\\\1___),___ 1

S ) S

—0.002 | R

—0.004 % % % !

0.004 F Fso— Y — . Bl ]

0.002 | T B — B ]

0.000 prmme

—0.002 |+~ 4

—0.004 L L I L .
3.4 3.6 3.8 4.0 4.2

FIG. 6. Top panel: Estimate of the spin orientation effects on
the conservative dynamics by taking the difference between all
the configurations and the SLy(?) (irrotational case taken from
CoRe Database) configuration. The shaded region marks the
difference in results obtained with a lower resolution and takes
into account the uncertainty of the initial data. Bottom panel: Spin
and orbital contributions to the binding energy estimated follow-
ing the discussion in the text.

x [3(A-S;)@-S,) — (S; - S,)]/7* (with il denoting the
unit vector pointing from one star to the other and r being
the distance between the stars); see e.g., [61]. Note that
the first term in the interaction term is zero for the
(anti-) aligned configurations and the remaining term
« —(§1 §2) does not change sign if both spins flip.
We compute the spin-orbit term Egq as

E.ISLyv(!M = E, [SLy( )
ESO: b[ y ]2 b[ y ]’ (6)

and estimate the complete spin-spin term, i.e., including
the interaction term and the self-spin term as

E, [SLy(T“} + Eb[SLy(W)]

Eoo =
sS 2

— E[SLy®]. (7)

The bottom panel in Fig. 6 shows these contributions
to the binding energy. We find that compared to the
SO interaction, the spin-spin term is almost negligible
during most of the inspiral and mostly within the uncer-
tainty of our data.” The SO contribution is the dominant

*The error estimate in Fig. 6 is shown as shaded regions. It is
obtained by taking into account the finite resolution of the
simulations and is estimated from the difference between R3
and R4 resolutions. For the irrotational case we do not have
exactly the same resolution data, namely R3 and R4 used in this
article but higher resolutions (finest resolution boxes have i =
0.078 M and h = 0.118 M). Furthermore, an additional un-
certainty of 107 is added for accounting the errors coming in
from the initial data solver [22]. The error bounds shown are
obtained from error propagation assuming errors from different
configurations are uncorrelated.
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contribution to the binding energy in our comparison,
while in the very late inspiral tidal effects can dominate
[21]. Intuitively, this is understandable based on the
differences in the Post-Newtonian (PN) order of the SO
(1.5PN), spin-spin (2PN), and tidal effects (SPN).

To get a better understanding of potential precession
effects, we also compute

Epd ™77 = Ey[SLyN] = E,[SLy )], (8)

Efe Y = E,[SLy@ ] — E,[SLy(\N], (9)

EE:;:_OO)

= Ey[SLy'"7)] = E,[SLy ™). (10)
and show the results in the bottom panel of Fig. 6. We
find that the configurations (SLy(™\") & SLy(”/)) and
(SLy(¥"™) & SLy("\V)) are almost identical with respect to
their binding energy contribution. Also the difference
between the irrotational case and SLy(~™) is not clearly
resolved in our simulations. The reasons for this could be
due to (i) the fact that the spins are rather small to show
any distinguishable effect and (ii) that even the highest
resolution employed in the simulations presented in this
article falls short in resolving the differences between
those configurations. Therefore, even though the tracks
and the precession cones, cf. Fig. 1, show clear imprints of
precession, the energetics does not shed light on the
differences, at least among the abovementioned pairs.

C. Merger remnant

In Table IIT we show the properties of the remnants
obtained from the R3 resolution, since due to the high
computational costs the R4 resolutions are not evolved for a
long time after the merger. Until the end of our simulations
all the runs except SLy('?) collapsed into a black hole; see
Fig. 7 where the maximum of the density is shown as an
indicator of the BH formation. In general, the lifetime of
the hyper-massive neutron star (HMNS) decreases when
we go from the aligned-spin setups to the antialigned-spin
setups, an indicator that the presence of spins influences the
angular momentum support counteracting the gravitational
collapse; see also [23,62]. Aligned-spin configurations, and
SLy("") in particular, have additional angular momentum
support which allows a longer HMNS lifetime. Similar
behavior was also found in [23]. While we find that
aligned-spin configurations lead to more massive disks
and less massive BHs, cf. [21,63], which is directly caused
by the delayed BH formation which allows for better
angular momentum and matter redistribution into the outer
layer of the remnant, we do not find any trend in the
remnant spins. This can be attributed to the fact that more
refinement is required to resolve the BH formed after
the merger and therefore the inferred properties can incur
some errors.

0.010 T T T T T T
— Sy — 8Ly — gLy
SLy(\/") — Iy — g1y

0.008 |- SLzr(//) y y B
X 0.006 |- i
g
< 0.004 | s

0.002 | ]

0.000 L ! ! ‘

0 10 20 30 70 80

t[ms]

FIG.7. Maximum of p vs coordinate time ¢. The cases that form
a black hole (BH) after the merger show a sharp change in the
density where the density drops to zero for such cases, because
matter is removed inside the BH. Note that we report the merger
remnant properties for the R3 resolution setups as the simulations
could be evolved for longer times owing to the reduced computa-
tional costs.

IV. EJECTA AND KICK ESTIMATES
A. Ejecta

During our simulations, unbound matter is mainly
ejected in the very late inspiral from the tidal tail ejection
mechanism or from shock heating during the collision of
the cores of the NSs. In general, our simulations are too
short to estimate properly disk wind ejecta.

We compute the amount of ejected matter as shown for
the R3 and R4 resolution simulations in Table IV. In
general, we mark matter as unbound if it fulfills

u, <—-1 and v'x; >0, (11)
where u, = —W(a — ;v') is the time component of the
fluid 4-velocity (with a lowered index), a is the lapse, ' is
the shift vector, W is the Lorentz factor, and x' = (x,y, z).
For Eq. (11) we assume that the fluid elements follow
geodesics and require that the orbit is unbound and has an
outward pointing velocity; cf. also [64].

Bound and unbound matter along with their velocity
profile are shown for the SLy(*") case in Fig. 8. Here, we

TABLEIV. Ejecta mass from the volume integral Mlj (cf. [65])
for the R3 and R4 resolution setups.

My(Mo)

Name R3 R4

SLy(™") 0.0053 0.0043
SLy(\/) 0.0045 0.0062
SLy(/"/) 0.0031 0.0054
SLy(<=) 0.0111 0.0162
SLy(«™) 0.0192 0.0188
SLy(\N) 0.0210 0.0189
SLy()) 0.0275 0.0192
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FIG. 8. 2D plots for the SLy(*") configuration showing the density and velocity field at different times close to the merger, with the
unbound material shown in the brown to green color scale, while the bound material is shown in a blue to red color scale. Top row: Plots
show the xy-plane covering a distance of ~88 km in each direction. Bottom row: Plots show the xz-plane, where each direction is
covering a distance of ~293 km. Columns one to three: Time snapshots when the surfaces of the stars touch until the cores of the NSs
finally merged. Fourth column: Postmerger phase when a hypermassive NS has been formed. Interestingly, we see that in the final phase
of the merger unbound matter is ejected asymmetrically due to the “bobbing” motion that this system undergoes. Such an asymmetrical

matter ejection is capable of imparting a kick velocity to the merger remnant.

see that the matter ejection does not happen until the NSs
collide (column one). After that (column two), unbound
matter characterized with a density ~O(107%)-O(107%)
[~O(10%)-O(10°) g cm™] can be seen coming out from
the tidal tail mostly in the orbital plane (note that this case
shows a “bobbing” motion of the orbital plane; see Fig. 1).
These ejecta quickly expand into the volume surrounding
the system, dropping in density by several orders of
magnitude. Once the cores of the NSs have merged
(column three) there are also ejecta in the direction normal
to the orbital plane due to shock heating. During these last
phases in the merger unbound matter characterized with a
density ~O(1078)-0(107%) [~O(10°) — O(10'") g cm™]
is ejected. In principle, unlike equal-mass nonprecessing
quasicircular BNSs where the matter should be symmet-
rically ejected, similar setups for precessing BNSs can eject
matter asymmetrically due to the “wobbling” or the
“bobbing” motion of the system. This asymmetrical ejec-
tion of matter would then give rise to electromagnetic
counterparts with a more complicated geometry.

From Table IV we see that the amount of unbound matter
increases when the spin of the NS is effectively antialigned
to the orbital angular momentum. This indicates that the
ejecta are dominated via shock heating during the merger

of the cores of the two stars; see also [25,66].
Overall, ~O(1073)-O(107%)M, [~O(10°°)-0O(10%") g]
of unbound matter is ejected for the studied configurations.
We find the relative error in the estimate of the ejecta mass
to be ~2%-40% between the R3 and R4 resolution setups.
No strong effect of precession is found on the ejecta mass
within our simulations.

B. Kick estimates

In addition to the kicks obtained from the asymmetrical
matter ejection mechanism briefly described in the previous
subsection, the anisotropic loss of linear momentum
radiated away via the emission of GWs also imparts a
recoil or kick on the remaining system which then moves
relative to its original center-of-mass frame. This effect can
be particularly pronounced for the inspiral and merger of
two compact objects, for BBH cases; see e.g., [67-69].

In Fig. 9 we show the estimates for the kick speed
computed from the ejecta and from the emission of GWs
for the R4 resolution setups. The kick estimates from the
ejecta are computed from the conservation of linear
momentum for the unbound matter whereas the estimates
from GWs are computed using the linear momentum
conservation for the GWs using the relations given in
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FIG. 9. Top panel: Kick estimates for the SLy('" case. The
aligned/antialigned cases do not show the “bobbing” or the
“wobbling” motion of the orbital plane. Bottom panel: Kick
estimates for the SLy(™™ case that shows the “wobbling”
motion of the orbital plane. The kicks are estimated using the
recoil from the ejecta and the GWs and are shown for the R4
setup. The merger time, corresponding to the peak in the (2, 2)-
mode of GW strain is shown as a “gray” line.

Appendix A. As expected, aligned (and antialigned)
systems considered in this article being symmetrical, the
kicks imparted from the GWs are negligible (<5 kms™!).
Furthermore, for the symmetrically misaligned configura-
tions considered that undergo “bobbing” motion, we find
the kick speeds to be in the range ~15-50 kms™! and is
mostly contributed from the motion of the orbital plane
giving rise to asymmetrical matter ejection. For the
asymmetrically misaligned configurations, for example
in the bottom panel of Fig. 9, we find that the kicks are

again mostly contributed from the matter ejection, e.g.,
~40 kms™" for the SLy(™™ case. In general, we obtain
larger recoils for the effectively antialigned configura-
tions than for the aligned-spin configurations, but do not
see a noticeable difference between the “wobbling” and
“bobbing” setups. The kicks from the R3 setups for
the configurations shown in Fig. 9 are estimated to be
<10 kms™! for the aligned case and ~52 kms~! for the
asymmetrically misaligned case.

Overall, for all simulated cases the kick imparted from
the GW emission contributes less than the recoil from
unbound matter ejection. This might be due to the
“smaller” spins of neutron stars in comparison to BHs;
for the latter much larger kicks of ~O(10°) kms™, e.g.,
[67], can be obtained due to the anisotropic emission
of GWs.

V. GRAVITATIONAL WAVES

A. Qualitative discussion

The individual modes with respect to the —2-spin-
weighted spherical harmonics of the curvature and the
metric scalars are obtained following Sec. VI A of [65] and
references therein. Additionally, in this article we compute
the GW strain 4 by summing all modes up to £ < 4. All
waveforms are shown against the retarded time

U=1—r, =1—tloy —2MIn(re /2M —1).  (12)
Figure 10 shows the i, and h, polarizations of the GW
strain,

4 7
h=ihe =3 > ho V(0 =1, =0),  (13)

— SLy(™

SLy™") —SLyf/ — SLy(—) —SLy/\ —— SLy(™™ —SLy ol
A 7 0\ [ YV
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FIG. 10. Gravitational wave strains 4 (first and third panels) and A, (second and fourth panels) for the inclinations : = 0 (face on, top

panels) and ¢ = z/2 (edge on, bottom panels).
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for two inclinations: face on 1 = 0 (two top panels) and edge
on 1 = /2 (two bottom panels). Similar inferences can be
made as those from column three of Fig. 1. As expected, we
see that for 1 = 0 (face on) any imprint of precession is
hardly visible and that the £ - or h,-polarizations have the
same magnitude. The GW strain is, as discussed before,
mainly determined by the effective spin y.; and the spin-
orbit contribution.

Precession effects with more than one precession cycle
are visible in &, for 1 = z/2 (edge on) for SLy"/") &
SLy(\). For these cases, the amplitude of 4, (1 = 7/2) is
about 10 times smaller than for 4, (1 = z/2) and 30 times
smaller than &, (1 = 0) or & (z = 0). For the nonprecessing
cases, the signal amplitude of %, is even smaller as already
seen in Fig. 1 for the (2, 1)-mode of the GW strain.

B. Phasing analysis

In this subsection we discuss briefly the phase evolution
for the different configurations by considering the phase
differences between them for the (2, 2)-mode of the GW
strain A. Note that the irrotational case SLy(*) is aligned
with the SLy(“~) configuration in the interval @& :=
Mwy, € [0.040,0.048] for the analysis purpose.

In Fig. 11, the phase differences are shown for the
spinning configurations with respect to the nonspinning
configuration (top panel). It is clearly visible that the

44 ===-SLy(M-SLy(00) ——G| y(+=)_5 y(00)——G| y (% )_G|y(00)
SLy(\)-SLy(00) SLy(«)-S|Ly(00) SLy(H)-
{ —==-SLy("/)-SLy(00)

15 20 25 30 35 40
u[ms]

FIG. 11. Top panel: Phase differences for all spinning con-
figurations with respect to the irrotational case for the (2, 2)-mode
of the GW strain. The errors represented by the shaded regions
are estimated by computing the phase differences for different
resolutions. Note again that the irrotational case data used,
namely R3 (0.118 M) and R4 (0.078 M) resolutions, are
not of exactly the same resolution as the other configurations
simulated and therefore the error estimates should be taken as
conservative estimates. Bottom panel: Estimate of spin-orbit and
spin-spin contribution to the phase from the aligned/antialigned
configurations as described in the text.

effectively antialigned systems undergo accelerated inspiral
and the aligned systems undergo decelerated inspiral.
These phase differences are again dominated by the
leading-order spin-orbit coupling. The irrotational case
and the SLy(“~) case are almost indistinguishable with
negligible difference with respect to phase difference.

To isolate the effect of different contributions to the
phase evolution we consider, similar to the binding energy
discussion, different linear combinations of the numerical
simulations, but we emphasize that this analysis is not
gauge invariant; i.e., it only allows for a qualitative
interpretation. In particular, we consider for the spin-orbit
contribution,

SLyv(™] = #ISLy( Y
¢[SLy ]247[ y ]’ (14)

$so =
and for the spin-spin contribution,

¢[5Ly(TT)] + ¢[SLy(W)]

5 — $ISLy ™. (15)

Pss =

To estimate the effect of precession, we also compute

(N = (N
gl;c_\/iqﬁ[SLy\/]ng[SLy/\]’ (16)

where the factor v/2 is introduced to compensate for the
fact that the effective spin of the precessing configurations
is smaller than for the spin-aligned setups.

Figure 11 (bottom panel) shows these contributions.
Considering the spin-orbit contribution, we find almost no
difference between the spin-aligned and the precessing
setups; in fact, the difference between both contributions
can not be resolved with our simulations; cf. solid green
line in the bottom panel of Fig. 11 and the discussion on
waveform accuracy in Appendix B. Overall, the spin-orbit
contribution dominates so that the spin-spin effect is about
a factor 3 smaller. Considering our error estimate, we find
that for the last few orbits, the spin-spin contribution is
reliably measured as nonzero.

In order for a more quantitative analysis, we analyze the
phasing of the waves by considering ¢(@®). We fit ¢(d)
with a function,

4 ]
n—=0 4n@

flé) = , (17)

4 ]
neo by

eliminating this way the residual eccentricity oscillations in
the NR data. We then align the curves to start at the same
frequency @ = 0.038. The phase comparison is restricted to
the frequency interval & = [0.038, 0.18] which corresponds
to physical GW frequencies ~455-2153 Hz. Figure 12
summarizes our results of the comparison of the accumu-
lated phase difference in the mentioned frequency interval.
Overall, we again find the dominant spin-orbit contribution
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FIG. 12. ¢(®) accumulated in & € [0.038, 0.18] for all the
configurations considered for the R4 resolution.

to give rise to the different accumulated phases at a
particular frequency for the different configurations.
Precession effects are again hardly visible. One can also
see in the inset plot in Fig. 12 that the SLy(®") and SLy(~~)
are indistinguishable considering the accumulated phases
for the dominant GW mode.

C. Comparison with precessing tidal
GW approximant

One important advantage of full numerical relativity
simulations is their potential usage for the validation of
existing waveform approximants. Until now, the only
two existing precessing, tidal waveform models are
IMRPhenomPv2_NRTidal [70] and IMRPhenomPv2_NRTidalv2 [71].
We focus on the comparison against IMRPhenomPv2_NRTidalv2
in the following.

IMRPhenomPv2_NRTidalv2 is a phenomenological, fre-
quency domain, tidal-precessing model that augments the

aligned-spin binary black hole model, IMRPhenomD [72,73]
with the NRTidalv2 [71] tidal description. In addition, it
incorporates all the relevant EOS-dependent spin-spin effects
and cubic-in-spin effects at 2PN, 3PN, and 3.5PN, and in
addition a tidal amplitude correction that is added to the
binary black hole amplitude. To ensure that the system can
describe precession effects, the aligned-spin waveform is
modified by following the framework outlined in [74,75].

We align the IMRPhenomPv2_NRTidalv2 waveforms with the
numerical relativity waveforms by varying the time trans-
lations and phase shifts. To obtain the phase and time shift,
we minimize the phase difference between the waveforms
in the time interval u € [5, 18] ms which corresponds to
roughly 8 GW cycles. In addition, we also vary slightly the
“reference frequency” at which the orientation of individual
spins is fixed for the construction of the precessing
IMRPhenomPv2_NRTidalv2 model. While the numerical rela-
tivity simulations have an initial frequency of ~407 Hz, we
use 410 Hz instead to account for the initial transition
caused by gauge changes in the simulation.

The comparison among the precessing systems
SLy(”/) (left panel) and SLy(™) (right panel) and the
IMRPhenomPv2_NRTidalv2 model is shown in Fig. 13 for two
inclination angles, 1 = 0 (face on) in the top panels and
1 = /2 (edge on) in the bottom panels. We find that the
model is in good agreement with the NR waveforms and
also captures precessing motion, i.e., the modulation of the
GW strain, adequately as shown in bottom panels. The
phase difference between the numerical relativity wave-
forms and IMRPhenomPv2_NRTidalv2 is about 1 rad for an
inclination of 1 =0 and about 1.2 rad for : = 7/2, just
before the merger.

SLy(”/) SLy(\™)
—o ——NR----- IMRPhenomPv2 NRTidalv2 & | .  ——NR----- IMRPhenomPv2_NRTidalv2
= "
~
ey
~
=
~
L
=
~
I
o 0.005{ =%
< .
% 0.000
<
= —0.00
0 10 20 30 40 0 10 20 30 40
u[ms] u[ms]

FIG. 13. Rescaled GW strains for the precessing systems SLy(”"/") (left panel) and SLy(™™) (right panel) (blue, solid curves) for the
R4 resolution compared with the IMRPhenomPv2_NRTidalv2 model (black, dashed curve). Results for /, are shown in the first and third
panels and for &, are shown in the second and fourth panels for the inclinations : = 0 (face on) in top panels and 1 = z/2 (edge on) in
bottom panels. Note that we find small differences in the amplitudes (as visible in the i, panels for the 1 = z/2 case) indicating the

importance of future GW waveform model development.
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FIG. 14. Spectrograms and the corresponding contours for all the
configurations computed using the GW strain 4. An inclination
angle of 1 = z/2 is assumed for all the plots and a logarithmic
color scale is used. All individual chunks of the spectrogram have a
length of ~2 ms and a tapering with a tanh function is applied
before Fourier transforming to minimize oscillations.

D. Postmerger

To understand the postmerger evolution of the GW
signal we compute the spectrograms as described in
[65]. Figure 14 shows the spectrograms for all the con-
figurations under the assumption of 1 = 7 /2. In Table V we
report important characteristic frequencies, namely, the
merger frequency and the postmerger frequencies f;, the
dominant f, frequency, and f;.

We find that for our chosen EOS and masses the
dominant f,-peak frequency lies at £3400 Hz. In addition
to the f,-peak frequency other side peaks and frequencies
are visible. These peaks are harmonics of the f, frequency
and have amplitudes that are typically 2 to 3 orders of
magnitude smaller.” These peaks correspond to emission at
about f; ~ 1800 Hz and f3 =~ 5600 Hz, respectively.

3Note that we follow in our notation [22] and not [76] about the
classification of f; and f3.

TABLE V. Postmerger properties. The columns give the name
of the configuration, the dimensionless merger frequency Mg,
the dimensionful merger frequency fm, (in Hz), and the
dominant postmerger frequencies extracted from the (2, 1)-,
(2, 2)-, and (3, 3)-modes of GW strain 4. We mark “(---)” for
cases where the frequencies could not be extracted properly.

fmrg fl f2 f3
Name Moy, (Hz) (Hz) (Hz) (Hz)
SLy(t) 0.165 1974 1845 3358 5187
SLy(™\/" 0.170 2034 1794 3557 5446
SLy(//) 0.177 2118 1826 3620 5351
SLy(<~) 0.150 1795 e 3431 5855
SLy(«™) 0.150 1795 o 3400 e
SLy(NN) 0.143 1711 1826 3463 5257
SLy(H) 0.140 1675 . 3447 5918

We find that the merger frequencies are higher for the
aligned-spin cases than for the antialigned cases; cf. [77].
The postmerger frequencies reported in Table V are
obtained from the individual modes of the GW strain
and in some cases were not available possibly due to low
signal amplitude or the lifetime of the remnant before BH
formation. However, in Fig. 14 where the spectrogram
was obtained from /% those frequencies are visible albeit
with smaller amplitudes relative to the prominent f,
frequency. The frequency estimates have typical uncertain-
ties of ~50-100 Hz.

For comparison, the estimates for the dominant f,
frequency using Ref. [78] Eq. (8) gives a frequency of
~3372 Hz and the quasiuniversal relation of Ref. [79]
Eq. (13) gives a frequency of ~3435 Hz. Both relations do
not include spin effects and their estimates are below our
simulation results, but are generally in agreement if the
uncertainties of the quasiuniversal relations and our
numerical relativity simulations are taken into account.
This is interesting and hints toward the fact that while spin
affects the postmerger dynamics, it only has a minor effect
on the main postmerger emission frequency as outlined
in [80]. Other previous simulations clearly showed spin
effects [21], so that we conclude that more simulations
focusing specifically on the postmerger evolution are
needed to solve the existing tension.

V1. SUMMARY

In this article we have continued our systematic study of
the BNS parameter space where we had previously focused
on the effect of the mass ratio [81], spin [23], and
eccentricity [65]; now, we have investigated the influence
of the spin orientation. For this purpose, we have studied
seven different configurations, from which two setups have
aligned/antialigned spins and five setups have misaligned
spins; cf. Table I for the simulation details. All configu-
rations are simulated for multiple grid resolutions to
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provide an estimate for the uncertainty of our results;

cf. Table II.

In the following, we want to summarize our main
findings:

(i) Depending on the particular spin configuration, we
have systems showing a “bobbing” motion of the
orbital plane, i.e., an up- and downward movement
of the plane, and systems showing a “wobbling”
motion in which the orbital plane precesses. For
“wobbling” systems the (2, 1)-mode of the GW
signal is significantly stronger than for the “bob-
bing” or aligned-spin setups.

(i1) Spin-orbit and spin-spin contributions to the binding
energy can be extracted from our simulations, but no
clear imprint of precession effects is visible in our
simulations independent of the spin orientation.

(iii) Only for the “wobbling” configurations the emitted

GWs carry angular momentum that is not parallel to
initial orbital angular momentum; cf. Fig. 4.

(iv) The lifetime of the formed HMNS depends on the
effective spin of the system and not on the orienta-
tion of the spin, so that systems with positive y.g
have more angular momentum support at merger and
consequently a delayed BH formation in the post-
merger stage. In these cases, the disk mass increases
while the final BH mass decreases.

(v) For the precessing systems, mass can be ejected
anisotropically and the final remnant can obtain a
kick of ~40 km/s. The anisotropic mass ejection of
matter contributes more to the final kick velocity
than the anisotropic emission of GWs.

(vi) Configurations with antialigned spin create a larger
ejection of matter compared to spin-aligned systems.

(vii) The precessing and tidal GW approximant IMRPhe-
nomPv2_ NRTidalv2 is capable of describing the inspiral
signal and capturing the precessing motion of the
studied cases.

(viii) For the astrophysically motivated cases in which
only one star has a non-negligible spin, we expect
that there will only be a “wobbling” motion of the
orbital plane and no “bobbing” motion. Addition-
ally, if the spin of the individual star is constant,
spin-orbit effects will have a smaller impact and the
same will be true for the spin-spin terms as there will
only be a self-spin term whereas the spin-spin
interaction term will vanish. Moreover, we still
expect to see an orbital hang-up or speed-up effect
but with a smaller effect on the orbital dynamics.
Other such inferences based on the presented set of
simulation results also follow.

Overall, this work has been a first step toward a better
understanding of precession effects for BNS systems, but
further simulations for unequal-mass systems, unequal
spins, and higher spins need to be studied in the near
future. To allow the best usage of our simulation data, we

will release the waveform signals in the near future as a part
of the CoRe Database [59,60].
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APPENDIX A: RADIATED ENERGY,
ANGULAR MOMENTUM, AND LINEAR
MOMENTUM COMPUTATION

To compute the amount of energy, angular momentum,
and linear momentum radiated away from the system in the
form of gravitational radiation we use the relations as given
on pages 313-316 of [82]. The energy is computed from
the time integral of

2

Z /t APy

dE 2

— = lim

dt  r—w 167 7
Jm

(A1)

The angular momentum vector is computed from the time
integral of

dJ ir to [t
X _lim—1Im Af.mdt//dl./
dt ~ ree32an {;;[m/;

t
2 / (ff,mA*fJn+1 + ff,—mA*f.m_l )dtl}’ (A2)
dj, 72 ! ¢
—2 =1 —R Azf’,mdt//dt/
dt w321 e{fz ,/_oo ,/_oo
t
S / (ff.mA*f’m-i_l - ff.—mA*f’m_l)dtl}’ (A3)

024087-14



GRAVITATIONAL WAVES AND MASS EJECTA FROM BINARY ...

PHYS. REV. D 102, 024087 (2020)

dJZ — £m j4l
a7 = }l)oo E Im{ 2 / / A dtj dt

t
% / A*f.mdt/}’

where, fem =

V(€ +1)
and b.

The radiated linear momentum is calculated from the
time integral of

dP, r? !
— " = lim — d[/Af,m
di  rew 87 ; /_oo

(A4)

VE-m)(+m+1)=
—m(m+1) and Im(a + ib) = ib for real a

1
X / dt’(af.,,,A*"p*’”*] + bf‘_mA*f—l,m-f-l
—00

- bf+1.ln+1A*f+l‘m+1)’ (AS)
Pe_ i r—zz / " ararm
dt roe 167 ‘m ™
t
X / dl‘/(Cf’mA*f'm + df’mA*f_l’m
+ df+1,1nA*f+l’l1l)’ (A6)

where P, = P, + iP), and we defined the quantities

AN -m) ([ +m+1)
@tm = 6+ 1) ’

p oo L =2+ +m)( +m=1)
rm 0l 26-1)2¢+1) ’
B 2m
Coom = m
(e =2) (€ +2)(¢ —m)(Z + m)
dem =7 \/ 2 -1)27+1) ' (A7)
Notethat, [*_ A*"dl’ =y, (t)and [ [ AC"df"dl =

hem(t). A “*” in the above expressions denotes a complex
conjugate. Moreover,

A Yfén’\P4>

2r ‘.
/ / W, Y™™ sin 6 dOdg,

where Y73 are the spherical harmonics of spin weight —2.

(A8)

APPENDIX B: CONVERGENCE STUDY

1. Constraint violation and mass conservation

For assessing the accuracy and robustness of our
simulations, we present the L, volume norm of the
Hamiltonian constraint and the conservation of rest mass
in Fig. 15 for the SLy(*"™) case (top panels) and for the
SLy(”"/") case (bottom panels).

Owing to the constraint propagation and damping
properties of the Z4c evolution system the constraint stays
at or below the value of the initial data. Oscillations and
spikes in the constraints during the orbital motion, as seen
in Fig. 15, mainly originate due the inner refinement levels
following the motion of the NSs. After the merger (vertical
dashed lines), those spikes are absent as the stars stay near
the center or move with a very small velocity compared to
during the inspiral phase. At merger the constraint grows
by about 2 orders of magnitude due to regridding and to
the development of large gradients in the solution, but it
remains below the initial level. Subsequently, the violation
is again propagated away and damped. Throughout the
simulation we find that the Hamiltonian constraint violation
improves monotonically with increasing resolution for
the SLy(*") case. For the SLy("/") case, only the lower
three resolutions, R1, R2, and R3 show this trend whereas
for the highest resolution R4, the constraint violation grows
1 order of magnitude at = 22 ms during the regridding of
the grid, but does not decrease afterward; the exact origin of
this effect is currently under investigation, but it seems that

'—R1 —R2 " —R3 R4
o 1078 —SLY(/\") 11 e
— 10710} | 1 E
10711
s> 041
= 03}
s 02}
=0l
* 00
10788
T 10°°
— 1010}
—11
10 0-6 T T T T T
2= 05} H g
= 04l i ]
= 03} 1 ]
= 02} i y
% 8(1) s 11 E
° . I T T T T — —
10 20 30 40 50
t[ms]
FIG. 15. Hamiltonian constraint (first and third panels) and rest

mass conservation (second and fourth panels) for the SLy(~ ™)
case (top) and the SLy(”"/) case (bottom). The merger time,
corresponding to the peak in the (2, 2)-mode of GW strain is
shown as vertical dashed line for each resolution.
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—_ Re(rhzz)}u— 10g10(2.16 X A®rs_pa) — logo(A®Rb_R3)

FIG. 16. Real part of the (2, 2)-mode (top panel) and (2, 1)-
mode (bottom panel) for resolution R4 as well as the phase
difference between different resolutions for the SLy”/") con-
figuration shown versus retarded time. We multiply the amplitude
of the (2, 1)-mode by a factor of 20 for better visibility.

the results presented in the main text are unaffected;
cf. also Fig. 16.

Violations of rest-mass conservation shown in Fig. 15
happen at the mesh refinement boundaries and due to the
artificial atmosphere treatment, and possibly due to mass
leaving the computational domain. From the time evolution

of the mass violation, we find that, independent of the spin
orientation, the resolution R1 shows an increasing mass
during the orbital motion. This is caused by inadequate
resolution and the artificial atmosphere treatment; see e.g.,
[42]. For resolutions R2, R3, and R4 the rest mass stays
constant within 0.1% throughout the simulation time. The
mass loss is caused by the ejected material which decom-
presses while it leaves the central region of the numerical
domain. Once the density drops by 12 orders of magnitude,
the material is counted as atmosphere and is not evolved
further. Consequently, conservation of total mass is vio-
lated. Overall the mass violation is below 0.6% considering
all the resolutions employed in this article.

2. Waveform accuracy

In Fig. 16 we present the GW phase difference between
different resolutions for SLy(~"") during the inspiral up to
the moment of merger, which we define as the time of
maximum amplitude in the (2, 2)-mode. Through the
inspiral we see a monotonic decrease of the phase differ-
ence for increasing resolution. Note that in Fig. 16 we have
scaled the phase difference from R3-R4 assuming second-
order convergence. We find that the rescaled curve agrees
very well with the R2-R3 curve implying that our results
are in the convergent regime with increasing resolution.
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