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Abstract

For more than 25 years, the amyloid hypothesis-the paradigm that amyloid is the primary
cause of Alzheimer’s disease—has dominated the Alzheimer’s community. Now, increasing evi-
dence suggests that tissue atrophy and cognitive decline in Alzheimer’s disease are more closely
linked to the amount and location of misfolded tau protein than to amyloid plaques. How-
ever, the precise correlation between tau pathology and tissue atrophy remains unknown. Here
we integrate multiphysics modeling and Bayesian inference to create personalized tau-atrophy
models using longitudinal clinical images from the the Alzheimer’s Disease Neuroimaging Ini-
tiative. For each subject, we infer three personalized parameters, the tau misfolding rate, the
tau transport coefficient, and the tau-induced atrophy rate from four consecutive annual tau
positron emission tomography scans and structural magnetic resonance images. Strikingly, the
tau-induced atrophy coeflicient of 0.13/year (95% CI: 0.097-0.189) was fairly consistent across
all subjects suggesting a strong correlation between tau pathology and tissue atrophy. Our per-
sonalized whole brain atrophy rates of 0.68-1.68%/year (95% CI: 0.5-2.0) are elevated compared
to healthy subjects and agree well with the atrophy rates of 1-3%/year reported for Alzheimer’s
patients in the literature. Once comprehensively calibrated with a larger set of longitudinal im-
ages, our model has the potential to serve as a diagnostic and predictive tool to estimate future
atrophy progression from clinical tau images on a personalized basis.

1 Introduction

Alzheimer’s disease is associated with the production and propagation of misfolded oligomers of
amyloid-8 and tau proteins which have been found to accumulate in the form of amyloid-5 plaques
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and tau neurofibrillary tangles in the brains of patients [1]. Aggregated plaques of amyloid oligomers
outside of neuronal cells can impair neuronal function at the synapses and cause neuroinflammation
through the activation of microglial cells 2, 3]. Hyperphosphorylated tau protein is produced inside
neuronal cells and aggregates in neurofibrillary tangles that disrupt the axonal transport of nutri-
ents [4]. Figure 1 illustrates the molecular level neuropathology of Alzheimer’s disease. The early
amyloid cascade hypothesis posits that amyloid aggregates are the primary catalyst of Alzheimer’s
disease and its related cognitive decline [5, 6, 7]. In recent years however, the focus has shifted to
hyperphosphorylated tau protein as a main agent in disease progression, as multiple studies have
found a direct correlation between the amount and distribution of misfolded tau protein and cog-
nitive impairment in Alzheimer’s patients [8, 9, 10, 11, 12]. Similarly, there appears to be a strong
association of pathological tau with tissue atrophy. Tau pathology and cortical atrophy have been
observed to follow the same stereotypical spatiotemporal pattern [13, 14, 15, 16|, and tau positron
emission tomography (PET) signal has been found to be a more reliable predictor for atrophy than
either amyloid PET or baseline cortical thickness [11].
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Figure 1: Neuropathology of Alzheimer’s disease. Amyloid-$ peptides are produced by the
cleavage of amyloid precursor protein in the membrane of neurons. In the extracellular space,
amyloid-3 peptides form flexible soluble oligomers. Fibers of amyloid-5 oligomers assemble into
amyloid-g plaques, which interfere with neural function. Plaque formation triggers microglial
activation and neuroinflammation. Inside the neurons, hyperphosphorylated tau proteins form
neurofibrillary tangles, which displace organelles and disrupt vesicular transport. Neurons die and
cause brain atrophy. Atrophy manifests itself in a thinning of the cerebral cortex, a widening of
the cortical sulci, a growing of the ventricles, a shrinkage of the entorhinal cortex and the
hippocampus, and a marked loss in brain volume. Ultimately, brain atrophy results in a
progressive cognitive decline.

Mathematical modeling represents a promising, non-invasive means of investigating the mech-
anisms and characteristics of neurodegenerative diseases. Due to its direct correlation with tissue
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atrophy and cognitive symptoms in Alzheimer’s disease, tau pathology is a specifically interesting
target for modeling, as it bears high potential for the prediction of disease progression timelines
and the evaluation of potential future treatments. Several studies have focused on models for tau
pathology and their validation with cross-sectional or longitudinal patient data [17, 18, 19]. We
have previously proposed a network diffusion model to simulate misfolded tau protein propagation
and shown that it can capture individual patient pathology by learning its model parameters from
tau PET data of 76 subjects using Bayesian inference [20]. Similarly, several mathematical models
have been used to shed light on the potential interplay between atrophy dynamics and the prion-
like progression of misfolded tau deposition [21, 22, 23, 24]. Yet, to date, there is no physics-based
model that integrates atrophy dynamics and Bayesian learning with multimodal neuroimaging data
of both tau pathology and tissue atrophy.

Here we focus on two primary objectives: First, we conduct a brief review of atrophy dynamics
in Alzheimer’s disease which motivates our physics-based network diffusion model of coupled tau
progression and atrophy evolution. Second, we perform an inaugural Bayesian inference study to
personalize its tau and atrophy parameters. This study lays the foundation for larger, predictive
network atrophy studies and for the further development of more comiplex coupled tau and atrophy
models. The remainder of the manuscript is organized as follows: In Section 2, we review literature
on how atrophy manifests in Alzheimer’s disease and establish a link between the progression of
atrophy and the spatiotemporal evolution of misfolded tau protein. Section 3 introduces a network
proteopathy model augmented with an atrophy model motivated by the literature. In Section
4, we present experimental tau and atrophy data for four subjects from the Alzheimer’s Disease
Neuroimaging Initiative [25] and demonstrate how to personalize the model using a probabilistic
Bayesian approach. We discuss the features of our model in Sections 5 and 6, and offer concluding
remarks and practical perspectives in Section 7.

2 Brain atrophy in Alzheimer’s disease

In this section, we summarize the characteristic clinical features of atrophy in Alzheimer’s disease,
its temporal evolution, and its correlation to hyperphosphorylated tau protein. These observations
lay the foundation for our physics-based models that couple the spatiotemporal evolution of tau
pathology and tissue atrophy in Section 3.

2.1 Characteristics of atrophy

Tissue atrophy-is a classical hallmark of neurodegenerative diseases. In Alzheimer’s disease, atrophy
is regionally heterogeneous and presents in the form of volume loss, morphological changes, and
cortical thinning in the gray matter of the brain [26, 14, 16, 27, 28|, typically accompanied by white
matter lesions [29], white matter tract changes [30, 31|, and enlargement of the lateral ventricles
[32]. The stereotypical spatiotemporal sequence of atrophy changes in the neocortex aligns with
the topographic pattern of neurofibrillary tau tangles [14, 13]. Usually, volume loss is first observed
in the medial temporal lobe, including the hippocampus and the entorhinal cortex, two structures
whose volume changes are established biomarkers for Alzheimer’s disease progression [33]. With
advancing disease, an increasing number of neocortical regions is affected by atrophy, initially the
lateral temporal lobe, subsequently the parietal and frontal lobes. The sensorimotor and visual
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cortices are typically spared from atrophy until late in the disease [15]. Figure 1 illustrates the organ
level neuropathology of Alzheimer’s disease: volume loss in the hippocampus, cortical thinning,
morphological changes like the widening of cortical sulci, and the enlargement of the lateral ventricles
as a consequence of a volume loss in adjacent gray matter structures.

2.2 Dynamics of atrophy

Numerous brain imaging studies have investigated the characteristics of atrophy evolution in the
pre-clinical and clinical phases of Alzheimer’s disease in comparison to healthy aging. These studies
are commonly based on longitudinal magnetic resonance imaging (MRI) of a cohort of subjects
combined with longitudinal cognitive assessments. Regional and global brain volume changes are
evaluated from serial MRIs using a multitude of automated and semi-automated algorithms for
image registration, segmentation, and morphometry.

Atrophy rates are higher in pre-symptomatic and symptomatic Alzheimer’s patients
than in healthy controls. Throughout the course of a lifespan, all human brains exhibit a certain
amount of tissue atrophy [34, 35, 36]. Increased cerebral atrophy is a widely-accepted biomarker
for Alzheimer’s disease. Patients diagnosed with Alzheimer’s disease or mild cognitive impairment
(MCI) show elevated rates of cortical thinning and volume loss in the hippocampus and across the
whole brain compared to cognitively normal older adults [37, 38]. A study that compared hip-
pocampal atrophy rates in mutation carriers for familial Alzheimer’s disease and non-carriers found
that atrophy rates were significantly higher in mutation carriers, even before the onset of cognitive
symptoms, and that the difference between the two groups increased over time [39]. Similarly, in
a cohort of 240 subjects, whole brain atrophy rates were elevated for pre-symptomatic subjects
who were later diagnosed with Alzheimer’s disease within six years after conclusion of the image
acquisition [40].

Atrophy rates accelerate with disease progression. A commonly observed characteris-
tic of Alzheimer related atrophy is an accelerated volume loss over the course of the disease. For
example, whole brain atrophy rates and rates of ventricular enlargement were found to increase as
patients progress from MCI to Alzheimer’s disease [41, 42]. Whole brain atrophy rates were found
to accelerate with age even in cognitively normal controls, but acceleration increased by a factor of
1.5 in Alzheimer’s patients [43]. Two potentially intertwined explanations have been proposed for
these accelerated whole brain atrophy rates: global acceleration could either stem from true accel-
eration of regional atrophy rates in already affected brain areas, or from the successive involvement
of more brain regions as the disease progresses [41]. There is evidence of regional atrophy rates
accelerating locally with disease severity when volume change is evaluated in different lobes [44] or
even individual neocortical regions [45]. While atrophy rates appear to increase in all cortical re-
gions with progressing cognitive impairment, the extent of local acceleration differs across areas [45].

Atrophy rates may decelerate at late disease stages. Observations of accelerating atrophy
rates in Alzheimer’s disease are ubiquitous, but some evidence points towards decelerating atrophy
rates beyond a characteristic inflection point. In a study that compared global cortical thinning
rates in cognitively normal, MCI, and Alzheimer’s subjects, results indicate that atrophy rates first
accelerate, but then decelerate with decreasing Mini Mental State Exam score. Even though data
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points from the low end of exam scores are sparse, the authors conclude that tissue atrophy follows
a sigmoid like curve over the course of Alzheimer’s disease with an inflection point around a Mini
Mental State Exam score of 21 [37]. Another study identified decelerating hippocampal atrophy
rates around five years before death while atrophy rates in middle frontal and inferior temporal lobes
continued to accelerate until death [46]. A similar study found that atrophy rates in the middle
temporal lobe, while increasing significantly from cognitively normal to mild cognitive impairment,
did not increase further with transition to Alzheimer’s disease. The study concludes that the middle
temporal lobe might reach maximum atrophy rates already during mild cognitive impairment [44].

Alzheimer’s related atrophy rates are higher in patients with early disease onset.
In paradox to the general trend that atrophy rates tend to increase with age, imaging studies have
consistently identified higher atrophy rates for younger symptomatic patients than for older patients
[47, 41, 48]. This is consistent with the theory that Alzheimer’s disease progresses more aggressively
in patients with early disease onset [49, 50]. Table 1 summarizes the observed regional and whole
brain atrophy rates from multiple clinical studies. Most of the included studies offer a comparison
between Alzheimer’s patients at various stages of disease and cognitively normal, age-matched con-
trols, providing evidence for increased atrophy rates in Alzheimer’s disease and regional acceleration
of atrophy rates with disease progression.

2.3 Evidence relating atrophy to tau pathology

Increasing evidence suggests that there is a close correlation between tau pathology and atrophy
dynamics. In a study that combined longitudinal structural MRI within four years of death with
postmortem neurofibrillary tangle autopsy, subjects with high tau burden showed higher gray mat-
ter loss in the medial and lateral temporal lobes compared to those with low tau burden [56].
Cross-sectional imaging studies have also shown that the pattern of neurodegeneration inferred
from structural MRI mirrors the canonical progression of tau deposition in the brain [13, 9, 14].
Longitudinal imaging studies have consistently identified close correlations between regional tau
PET signal intensity and a subsequent decrease in regional volume or cortical thickness in amyloid
positive subjects and MCI or Alzheimer patients [57, 12, 58, 10]. A recent study based on baseline
amyloid and tau PET scans as well as baseline and follow-up structural MRIs for 32 patients during
the early clinical stages of Alzheimer’s disease, revealed the global tau PET intensity as a good pre-
dictor for future cortical thinning. Additionally, the results indicate a strong voxel-wise correlation
between tau PET signal and future atrophy. Both on the global and local levels, tau PET was a
stronger predictor for atrophy than amyloid PET or baseline cortical thickness [11].

3 A network model for tau pathology and atrophy

In this manuscript, we adapt the Fisher-Kolmogorov model [59] to characterize the local production
and global spreading of misfolded tau protein across the brain. The continuous model is defined by

de .
a:le(K-VC)—FOéC[l—C], (1)
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Table 1: Atrophy rates. Reported whole brain and regional atrophy rates. Key: n, cohort size;
C, controls; AD, Alzheimer’s disease; AD-EQO, early-onset/familial AD; MCI-S, stable MCI;
MCI-P, MCI progressing to AD; C-S, stable controls; C-MCI, controls progressing to MCI;

AD-fast, fast progressing AD; AD-slow, slow progressing AD.

study subjects atrophy rate in mean (SD) other observations
%/year unless specified
whole brain
Chan et al. (2003) [51] AD-EO n=12 2.8 (95% CI 2.3-3.3) annual volume loss rises by 0.32 %/year2
Ridha et al. (2006) [39] C-S n=25 0.0 (0.57) atrophy rates significantly higher in mutation
C-MCI n=>5 0.52 (0.51) carriers compared to controls, discrepancy in-
MCI-P n=6 1.82 (0.87) creases over time
AD-EO n=5 1.79 (0.74)
Sluimer et al. (2008) [48] AD-EO n=26 2.2 (1.1) higher atrophy rates in early-onset AD
AD n=39 1.7 (0.8)
Jack et al. (2004) [52] C n=40 0.4 (0.3) atrophy rates are higher in subjects who progress
C-MCI n=15 0.8 (0.5) from C to MCI than in non-progressors, and
AD-slow n=32 0.6 (0.7) higher in AD with fast cognitive decline than in
AD-fast n=33 1.4 (1.1) subjects with slow cognitive decline
Henneman et al. (2009) [42] C n=34 0.6 (0.6) significant difference in atrophy rates between
MCI n—44 1.3 (0.9) groups (C, MCI, AD)
AD n=64 1.9 (0.9)
Leung et al. (2013) [47] C n=205 0.63 (95% CI 0.53-0.72) acceleration in atrophy rates between groups (C,
MCI n=352  1.01 (95% CI 0.92-1.1) MCI, AD) but not evidence of acceleration within
AD n=156 1.41 (95% CI 1.23-1.59) groups
hippocampus
Barnes et al. (2008) [53] C n=212 1.41 (95% CI 0.52-2.3) meta-analysis of nine studies on hippocampal at-
AD n=595  4.66 (95% CI 3.92-5.4) rophy rates
Henneman et al. (2009) [42] C n=34 2.2 (1.4) significant difference in atrophy rates between
MCI n—=44 3.8 (1.2) groups (C, MCI, AD)
AD n=64 4.0 (1.2)
Leung et al. (2013) [47] C n=205 1.22 (95% CI 0.9-1.55) hippocampal atrophy rates accelerate by 0.22
MCI n=352 3.20 (95% CI 2.82-3.57) % /year
AD n=156  5.19 (95% CI 4.44-5.94)
Jack et al. (2004) [52] C n=40 1.4 (1.2) atrophy rates are higher in subjects who progress
C-MCI n=15 3.3 (2.4) from C to MCI than in non-progressors, and
AD-slow n=32 3.0 (4.5) higher in AD with fast cognitive decline than in
AD-fast n=33 3.6 (3.2) subjects with slow cognitive decline
McDonald et al. (2009) [45] C n=137  0.86 (1.27) atrophy rates in all neocortical regions accelerate
MCI n=231 2.39 (2.26) with clinical impairment in AD, atrophy is not
AD n=104  3.64 (2.12) linear or uniform across regions
entorhinal cortex
Jack et al. (2004) [52] c n=40 2.9 (2.6)
C-MCI n=15 5.1 (5.1)
AD-slow n=32 8.0 (5.8)
AD-fast n=33 8.4 (9.2)
Miller et al. (2013) [54] C n=81 1.0 (3.3)
C-MCI n=20 2.7 (3.1)
McDonald et al. (2009) [45] C n=137  0.52 (1.13) atrophy rates in all neocortical regions accelerate
MCI n=231 1.93 (1.56) with clinical impairment in AD, atrophy is not
AD n=104  2.50 (1.13) linear or uniform across regions
medial temporal lobe
Sluimer et al. (2009) [44] C n=34 0.6 (0.7) atrophy rate in medial temporal lobe already
MCI n=44 1.5 (0.7) reaches maximum before transition from MCI to
AD n=64 1.5 (0.7) AD
Rusinek et al. (2004) [55] C n=21 0.37 (0.34) annual atrophy rate increases with disease pro-
AD n=18 left: 2.2, accel. 0.73 %/year? gression in AD
right: 1.8, accel. 0.34 %/yearz
ventricular expansion
Jack et al. (2004) [52] C n=40 1.7 (0.9) expansion rates are higher in subjects who
C-MCI n=15 3.4 (1.6) progress from C to MCI than in non-progressors,
AD-slow n=32 4.3 (3.3) and higher in AD with fast cognitive decline than
AD-fast n=33 6.4 (3.7) in subjects with slow cognitive decline
Leung et al. (2013) [47] C n=205 1.34 mL/year (95% CI 1.09-1.6) rate of ventricular expansion accelerates in MCI
MCI n=352 2.69 mL/year (95% CI 2.38-3.01) and AD subjects
AD n=156  4.04 mL/year (95% CI 3.34-4.75)

6
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where ¢ denotes the concentration of misfolded tau protein, and K denotes the diffusion tensor
that contains information about the speed and directionality of protein propagation. The growth
coefficient o captures how much misfolded protein is produced or cleared locally. We discretize the
Fisher-Kolmogorov model on a network that represents the structural brain connectome. Suppose
that G = { E, N } is the undirected graph of a structural brain connectome with edges E and nodes
N that represent the anatomical regions of interest. A weighted adjacency matrix W is defined
by the rule W;; = Wj; > 0 whenever n; is connected to n; by an edge e;; in £ and W;; = 0
otherwise. In this manuscript, we use an adjacency matrix constructed from diffusion tensor images
of 426 participants of the human connectome project [60]. The network contains N = 83 nodes,
each representing a cortical or subcortical brain region. Each edge e;; of the graph represents a
tractographic approximation of the white matter connections between two regions of interest and is
associated with a measure of the average fiber number n;; and fiber length ¢;; along this connection.
In line with a previous study [61], we define the weights of the adjacency matrix as W;; = n;;/ Elzj.
The files used to create the adjacency matrix are freely available [62, 63| as is the final adjacency
matrix [64].

The weighted graph Laplacian L associated with the adjacency matrix W is then defined as

L=D-W, (2)
where D is a diagonal matrix defined by the row-sum of the weighted adjacency matrix as
N
D;; = Z VVM with Wij = nw/ffj . (3)
j=1

The Laplacian allows us to discretize the model on the network,

N

dCi

E:—pZLijCj'f‘OéCi[l—Ci], (4)
J=1

where the quantity ¢; denotes the normalized concentration of toxic tau protein in regions i =

1,2,...,N, pis a transport coefficient, o is a growth coefficient, and L;; are the entries of the

weighted graph Laplacian.

Motivated by the observations of Section 2, we couple the tau evolution model of Equation (4)
to an atrophy model of the following form,

dg;
E:[l_Qi]GcCh (5)

and express atrophy in terms of a regional relative atrophy marker 0 < ¢; < 1 for each node
1=1,2,..., N in the connectome graph. The model postulates that the atrophy rate in a region of
interest progresses based on the current atrophy level, g;, and the current amount of misfolded tau,
¢i, mitigated by a global tau-induced atrophy coefficient G.. The dynamics of Equation (5) capture
several known features of the atrophy dynamics discussed in Section 2. The direct dependency of
the atrophy rate on the nodal protein concentration ¢;, which itself follows a sigmoid curve over the
course of the disease, allows us to capture the acceleration of atrophy rates observed in numerous
longitudinal imaging studies. The saturation term [1 — ¢;] in Equation (5) ensures an asymptotic
deceleration of atrophy rates towards the later stages of the disease.
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4 Model personalization using medical images

Our coupled tau-atrophy model contains three global parameters: a global transport coefficient p, a
growth coefficient «, and a tau-induced atrophy coefficient G.. We have previously personalized the
transport and growth coefficients p and « of Equation (4) using Bayesian inference and longitudinal
tau PET data [20]. Here we also include structural information from magnetic resonance images to
personalize the atrophy coefficients G..

4.1 Subject data

We use longitudinal tau PET and structural imaging data from four subjects of the Alzheimer’s Dis-
ease Neuroimaging Initiative database [25] to prototype our model personalization using Bayesian
inference. Two subjects were classified as cognitively normal (CN), two were classified as late mild
cognitively impaired (LMCI). All four subjects were previously identified as amyloid positive [65].
All four subjects received four consecutive annual AV-1451 tau PET and T1 structural MRI scans,
with an average time of 1.08 years between scans.

Tau data preparation. The processing of the tau AV1451-PET data by ADNI followed
standard protocols |25, 66]. Briefly, for each subject, the PET images were co-registered to a cor-
responding high-resolution T1 weighted MRI, which had been segmented into 68 cortical and 15
subcortical regions according to the Desikan-Killiany atlas [67]. Each segmented region of interest
corresponds to one node of our brain network from Section 3. For each region of interest, a PET
standardized uptake value ratio was calculated using the inferior cerebellum as reference region.
Since tau PET recordings in subcortical regions are known to be contaminated by off-target bind-
ing in the choroid plexus and nearby vascular structures [68, 69, 70|, we exclude these regions from
our analysis. To compare the clinically recorded PET tau values to our computationally simulated
tau values, we map them into the range from zero to one. Briefly, we previously computed a re-
gional tau positivity threshold of ¢"*¥ = 1.1 based on fitting a two-component Gaussian mixture
model to the raw tau PET data from a larger cohort of 76 subjects [20]. We set values below
this threshold to zero and normalize the remaining values with respect to the maximum occur-
ring standardized uptake value ratio in our previous study, such that the normalized values cP°
range from zero to one; 0 < cP* < 1. For each subject, we set the initial conditions for the protein
field in our model to the tau uptake values measured in the baseline PET scan 5™ (t = 0) = cP**(tp).

Atrophy data preparation. We process the structural data using FreeSurfer [71]| via the
Clinica [72] t1-freesurfer-longitudinal pipeline. This image processing pipeline consists of a sequence
of different tools of the FreeSurfer software and involves the computation of a subject-dependent
template space, segmentation of subcortical structures, extraction of cortical surfaces, parcellation of
cortical regions, cortical thickness estimation, and the extraction of volume and thickness estimates
in the template space at different points in time. We compute the volumes for all 83 cortical and
subcortical brain regions that coincide with the 83 nodes of our brain network model from Section 3.
We use the regional volumes measured at the baseline scan, vj*", as reference points to which we
normalize the regional volumes of all follow-up visits within each subject, v™" = p™V / . We
then define the measured nodal atrophy as the relative reduction in volume, ¢™ = 1 — v™" with

mri mri

an initial atrophy value of ¢g" = 1 — v§*™ = 0. For each subject, we set the initial conditions for
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the atrophy field in our model to zero in all regions ¢*™(t = 0) = 0.

4.2 Bayesian inference

For each subject, we infer a personalized parameter set that most accurately explains the image
data given the model in Equations (4) and (5). The parameter set ¥ = { p®,a®, G3 } consists of a
personalized transport coefficient p%, growth coefficient o, and tau-induced atrophy coefficient G¥.
We approximate the posterior distribution p(ﬂ\D ) of the parameters ¥ given the imaging data D( )
using Bayesian inference,

ey = POWID) o)
p9ID(@) = B T (®

where p(D(t)|9) is the likelihood, p(19) are the priors, and p(D(t)) is the evidence.

For each subject, we specify a likelihood function that relates the computationally predicted
tau and atrophy values at each region and time point, { ¢*™(¢;), ¢*™(#;) } to the clinically recorded
tau and atrophy values, { cP°*(¢;), ¢™(¢;) }. The time points ¢; for i = 0, 1,2,3 are associated with
the four consecutive years at which the PET and structural scans were recorded for each subject.
To account for clinical measurement noise, we assume that the likelihood between the clinically
recorded data D (t) and D,(t) and the computationally predicted data Dy (t,9) and D,(t,9),

p(Dy(t)[9) ~ Normal(mean = Dy(t;9), width = ;)

. 7
p(Da,(t)|9) ~ Normal(mean = D,(t,9), width = a,). ")

is normally distributed around the computationally predicted data with likelihood widths of oy for
tau and o, for atrophy.

For the priors, we select weakly informative prior distributions for all model parameters in the
set 9 = { p®,0°, G} } in addition to priors for the noise parameters that dictate the likelihood widths
o; and of. Table 2 summarizes the selection of our prior distributions.

Table 2: Prior distributions. Prior distributions for the personalized transport coefficient,
growth coefficient, tau-induced atrophy coefficient, and the likelihood width.

Parameter Distribution

s TruncatedNormal(0 < p® < 10, mean=0, std=5)
a® Normal(mean=0, std=5)
G% TruncatedNormal(0 < G§ < 10, mean=0, std=5)

’ oy, o8 InverseGamma(shape=2, scale=3) ‘

With the likelihood from Equation (7) and the prior distributions from Table 2, we compute the
posterior distributions p(¥|Dy(t)) and p(#|D,(t)) for the model parameters 9 using Bayes’ theorem,

PO ) o ) MDD p(9)
p(D.(1) p(Da(1))

p(9|Dy(t)) = (®)
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We adopt approximate inference techniques to numerically evaluate Equations (8) and personal-
ize our model using the imaging data. We implement our model using two widely used Julia
packages, the DifferentialEquations library and the Turing probabilistic programming library. The
DifferentialEquations library [73] allows us to solve the differential equations (4) and (5) in time, to
produce the model predictions Dy (t,1) and D,(t,1). The Turing probabilistic programming library
[74] serves to implement a Bayesian Markov Chain Monte Carlo sampling approach. It supports
several different samplers from which we select the No-U-Turn sampler [75] to design a Hamiltonian
Markov Chain Monte Carlo method. For each subject, we sample five chains with 1000 tuning
samples and 5000 posterior samples per chain.

For each subject, we calculate the posterior model predictions and credible intervals for the
global tau and atrophy evolution by propagating the uncertainty of each model parameter’s posterior
distribution through our model. These predictions indicate how tau pathology and tissue atrophy
may evolve over the next 30 years in each subject, based on the assumptions of our model and the
information from the longitudinal imaging data.

5 Results

5.1 Imaging data

Figure 2 provides an overview of the regional volume data for our set of four subjects. For subjects 1,
3, and 4 we observe on average monotonically decreasing volumes over time. However, a number
of regions seem to either exhibit an increase or no change in volume compared to the baseline
scan. In all four subjects, we observe a positive correlation between regional tau load and the
average atrophy in a region which agrees well with the assumptions based on which we constructed
our coupled tau-atrophy model. This correlation is stronger in subjects 1,2, and 3 with Pearson
correlation coefficients of R = 0.382, R = 0.397, and R = 0.494 respectively, than in subject 4 with
R = 0.144. The regional volumes in subject 2 evolve less monotonically than those in the other
subjects, and its average volume across all brain regions remains relatively constant over time.
However, the plot shows that certain regions do decrease in volume compared to the baseline scan.
Figure 3 and Figure 4 illustrate the collected tau and atrophy data on a template brain surface to
show the regional distribution of the two fields in each subject.

5.2 Posterior distributions

Figure 5 summarizes the personalized posterior distributions for the parameters of our coupled tau-
atrophy model. All distributions have clearly moved from the weakly informative prior distributions,
indicating successful inference. The estimates for measurement noise in the atrophy data o, are
slightly higher than the estimated noise in the tau data oy, especially for subjects 1 and 2. The
inferred transport coefficients p for subjects 1,2, and 4 are close to zero. Subject 3 seems to exhibit
more pronounced tau dynamics, with an elevated transport coefficient p and growth coefficient «
compared to the rest of the cohort. Subject 4 represents an outlier compared to the other subjects
when examining the inferred growth rate . The tau data from Subject 4 indicates a negative
growth coefficient, which implies that there is more clearance than production of misfolded tau.
The inferred tau-induced atrophy coefficients G, are of similar magnitude for all subjects.
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Figure 2: Subject data. Left: regional volume normalized to baseline over time. Each point

represents one brain region at one visit. Squares represent the average volume across regions.

Each subject’s clinical diagnosis is indicated in the upper left corner. Right: regional atrophy

between visits averaged across all visits over regional tau load averaged across all visits. Fach
point represents one brain region. R indicates the Pearson correlation coefficient.
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Figure 3: Subject data. Normalized misfolded tau concentration cP®* illustrated on a template
brain. Each row summarizes the data for one subject, at baseline year 0 and three follow up scans.
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Figure 4: Subject data. Regional atrophy ¢™" normalized to baseline scan illustrated on a
template brain. Each row summarizes the data for one subject, at baseline year 0 and three follow
up scans.
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Figure 5: Posterior distributions. Personalized posterior distributions for measurement noise in
tau data oy, and volume data o,, the transport coefficient p, the growth coefficient «, and the
tau-induced atrophy coefficient G..
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5.3 Posterior predictive simulations

Figure 6 shows the long- and short-term evolutions of global tau and atrophy predicted by our model
for the four examined subjects. The tau and atrophy dynamics are best captured by our model for
subject 3. We note characteristic sigmoidal curves for normalized global tau and atrophy in the
long-term predictions. All four data points for tau and atrophy lie either within or very close to the
95% credible intervals. Our model captures the dynamics of subject 1 similarly well. Only one of
the tau data points lies outside the 95% credible interval, all atrophy data are consistent with the
model predictions. When looking at the long-term predictions, the subject exhibits almost linear
tau and atrophy dynamics, an observation that is consistent with fairly low transport and growth
coefficients inferred for this individual, as discussed in Section 5.2. Our model does a relatively
poor job in capturing the dynamics of subjects 2 and 4. For subject 2, three out of four tau data
points and two out of four atrophy data points lie outside the 95% credible intervals. By design,
our model cannot account for non-monotonic increases or decreases in tau data; it always predicts
either an overall increasing or an overall decreasing trend for tau. Our model assumptions imply
an increase in atrophy whenever the local tau concentration is positive, which results in an overall
increase in longitudinal atrophy for subject 2, even though the observed atrophy does not seem to
increase much over time. For subject 4, our model infers an overall declining trend in the global
tau concentration from the tau data, again unable to capture the non-monotonically increasing
and decreasing data. Consequently, three out of four tau data points lie outside the 95% credible
interval. Even though the observed trend in global atrophy data is overall increasing, the inferred
negative slope in the tau curve results in a decelerating predicted atrophy rate over time, with whole
brain atrophy projected to level out around a value of 25% after 30 years.

5.4 Personalized atrophy rates

We used our posterior predictive simulations to extract predicted time-dependent atrophy rates for
the whole brain, the hippocampus, and the entorhinal cortex in each subject. Initial and maximal
atrophy rates are presented in Table 3 and may be compared to the observed rates in the literature
summarized in Table 1. Figure 7 shows atrophy rates plotted as a function of time. Subjects 1,2,
and 3 exhibit atrophy rates that first increase over time, reach a maximum value, and then decline.
We see consistently higher atrophy rates in the hippocampus and the entorhinal cortex than on
average across the whole brain, an observation that is in line with the clinical studies summarized
in Table 1. The predicted atrophy rates for subject 1 and subject 2 are in a similar range, while
those predicted rates for subject 3 are almost twice as high. Subject 4 exhibits different atrophy
dynamics than the rest of the cohort, due to the negative inferred growth coefficient, indicating
overall declining tau concentration. The initial atrophy rates inferred for subject 4 are in a similar
range as those for subject 1 and subject 2.

6 Discussion

We summarized the characteristics and dynamics of tissue atrophy in Alzheimer’s disease and,
from the observed trends, proposed a mathematical model that couples misfolded tau propagation
and growth with a model of brain atrophy. We performed a Bayesian analysis to personalize our
model parameters from longitudinal multi-model imaging data. Posterior predictions allowed us to
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Figure 6: Posterior predictive modeling. Long- and short-term model predictions for four
subjects. Each subplot shows the globally averaged tau concentration in red or globally averaged
atrophy in blue over time. Gray windows contain detailed views of the first four years of
simulation with data points indicated by black circles. Shaded areas around the curves indicate
95% credible intervals.
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Figure 7: Personalized atrophy rates. Median time-dependent atrophy rates for the whole
brain, the hippocampus, and the entorhinal cortex as predicted by our model for each subject.

Table 3: Personalized atrophy rates. Atrophy rates inferred by our model at time of baseline
scan tg and maximum atrophy rates inferred for each subject across whole brain, in the
hippocampus, and in the entorhinal cortex.

predicted atrophy rates: median (95% CI) in % /year

subject 1 subject 2 subject 3 subject 4
whole brain to 1.63 (1.3-2.0) 0.71 (0.5-0.9) 0.68 (0.5-0.9) 1.53 (1.2-1.9)
max 2.39 (2.0-2.8) 2.61 (1.8-3.4) 5.72 (5.1-6.3) 1.53 (1.2-1.9)
hippocampus 2.93 (1.2-3.9) 0.39 (0.0-1.0) 1.84 (1.0-2.8) 3.03 (2.0-4.4)
max  3.62 (3.0-4.4) 3.47 (1.8-4.6) 5.85 (5.2-6.6) 3.03 (2.0-4.4)
entorhinal to 2.53 (1.8-3.5) 0.41 (0.0-1.0) 2.18 (1.3-3.1) 1.26 (0.4-2.4)
cortex max 3.37 (2.6-4.1) 2.94 (0.7-4.5) 6.4 (5.5-7.2) 1.26 (0.4-2.4)

examine how tau pathology and brain atrophy may develop over three decades in four examined
subjects from the Alzheimer’s Disease Neuroimaging Initiative. From the posterior predictions, we
computed time-dependent annual atrophy rates for each subject and compared these personalized
atrophy rates with the values reported in the literature.

The inferred tau-induced atrophy coefficient G, quantifying the effect of local tau on local tissue
atrophy, was similar across subjects despite the wide spectrum of observed tau and atrophy dynam-
ics. On average, we found a median tau-induced atrophy coefficient of G. = 0.13/year (95%CI :
0.097 — 0.189). The consistency in this parameter is a promising sign towards the ability of ac-
curately predicting personalized future atrophy from tau PET images. Developing a predictive
model of tau and atrophy dynamics may allow for advances in personalized estimations of disease
progression from a set of tau PET images, or estimations of when certain brain functions might be
impaired in an individual patient.

The model given by Equations 4 and 5 reflects key elements of atrophy dynamics discussed in
Section 2, and predicts realistic atrophy rates that are consistent with the values reported in the lit-
erature for the whole brain, the hippocampus, and the entorhinal cortex. The whole brain atrophy
rates in the literature, as summarized in Table 1 range from 0 (0.57) %/year to 0.8 (0.5) %/year
for control or cognitively normal subjects and from 0.6 (0.7) %/year to 2.8 (0.5) %/year for sub-
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jects with mild cognitive impairment or Alzheimer’s disease. Reported hippocampal atrophy rates
lie between 0.86 (1.27) %/year and 3.3 (2.4) %/year for cognitively normal subjects and between
2.39 (2.26) %/year and 5.19 (0.75) %/year for cognitively impaired patients. For the entorhinal
cortex, the reported values range from 0.52 (1.13) %/year to 5.1 (5.1) %/year for cognitively nor-
mal and from 1.93 (1.56) %/year to 8.4 (9.2) %/year for cognitively impaired subjects. Apart from
subject 4, the plots in Figure 7 show atrophy rates first increasing, and then decreasing over time,
consistent with the observations of early atrophy acceleration and late atrophy deceleration. Ad-
ditionally, we see consistently higher atrophy rates in the hippocampus and the entorhinal cortex
than on average across the whole brain. These two regions are known to be affected by tau and
atrophy early in the disease, and their atrophy rates are often used as biomarkers for early diagnosis.
Thus, it makes sense that atrophy rates in the hippocampus and entorhinal cortex are higher than
average and tend to reach their peak rate earlier than the whole brain on average. For subject 1, the
predicted maximum atrophy rates are in good alignment with the rates observed in the literature for
patients with Alzheimer’s disease or mild cognitive impairment. For a cognitively normal subject,
the current diagnosis for subject 1, the starting atrophy rates are on the higher end compared to
the literature, indicating a potential conversion to mild cognitive impairment in the future. This is
plausible due to the positive amyloid status associated with subject 1. Subject 2 exhibits slightly
lower beginning atrophy rates, but similar maximum rates as subject 1, which are also comparable
with the literature. For subject 3, our model predicts a steep increase in atrophy rates over the
first 10 years after the baseline scan. The predicted maximum whole brain atrophy rate is higher
than what is observed on average in the literature, even for Alzheimer’s with fast cognitive decline
and early onset. The maximum hippocampal and entorhinal atrophy rates are on the high end,
but within the range of observed values. Our model predicts declining atrophy rates for subject 4,
starting at about 1.5 %/year for whole brain and entorhinal atrophy rate, and about 3 %/ year
for the hippocampal atrophy rate, and subsequently declining to zero after around 30 years. This
trend does not reflect the observations of accelerating atrophy rates described in Section 2, unless
this subject has already progressed so far in the disease, that we are only observing the decline in
atrophy rates that is described for very late disease stages. The beginning atrophy rates are well
in the range of values reported in the literature for whole brain, hippocampus and entorhinal cortex.

This study comes with a number of limitations, the first set of which concern the data used in the
study. We constrained our model calibration to a very small, preliminary cohort of four subjects.
However, our work demonstrates the feasibility of inferring model parameters from multi-modal
data and will be expanded to more subjects to test for the overall statistical significance of our
preliminary results. The four examined subjects produced a wide range of tau and atrophy dynam-
ics. Our model does well in explaining the data of subjects 1 and 3 while the results for subjects 2
and 4 suggest that accounting for possible non-monotony in Equation 4 may further improve the
descriptive capacity of the model. Nevertheless, observing the spectrum of possible dynamics and
applicability of the model to even a small preliminary data sample is valuable and highlights the
challenges that might be encountered in a larger study. Another limitation is posed by longitudinal
data availability. In particular, our data was limited to four time points due to the relative novelty
and limited availability of tau PET data in the ADNI database. Specifically, out of the 2492 study
participants with imaging data in ADNI, each has on average 4.57 + 3.318 structural MRI scans,
but only 0.475 + 0.826 tau PET scans. Only 786 participants have tau PET data at all, and out
of those each subject has on average 1.506 + 0.782 longitudinal scans, with a minimum of one scan
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and maximum of five scans per subject. As tau PET becomes a more established imaging modality
across participating study centers, the amount of available longitudinal data will naturally increase,
allowing us to improve our model evaluations and assess its predictive capabilities.

The second set of limitations concern simplifications in our model choice. The sparse availability
of longitudinal data constrains the number of parameters that that can be reliably inferred while
avoiding overfitting. This is an argument for selecting model formulations that balance model ex-
pressiveness with data concerns. For instance, the atrophy model presented in Equation 5 does not
account for purely age-related brain atrophy. It is known that age-related atrophy, as discussed in
Section 2, and the degradation of white matter integrity [76] both occur in the absence of misfolded
tau. White matter degradation is known to alter the fractional anisotropy and mean diffusivity of
the axonal bundles. Correlation studies have suggested a link between white matter degradation
and atrophy but only a weak relationship to tau |77]. In practice, these observations would suggest
coupling the weights of the graph Laplacian, in Equation 4, to the atrophy variable of Equation
5. However, this would introduce another set of parameters to the model and strain the available
data. Furthermore, this type of coupling has been investigated previously in [78], where it was
shown that toxic seeding of tau protein reaches all brain regions before the atrophy variable could
have any impact on the graph diffusion. The effect on the disease course was found to be minimal,
and arguably negligible, even when the parameters were so extreme as to completely disconnect the
network. These results let us to not consider the effect of atrophy on diffusion in our model. How-
ever we do note that the effect of atrophy on the graph Laplacian may play a role in more complex
models, such as those that take regional clearamnce into account. Lastly, limited data availability
prompted us to exclude any attempt to infer deviations in initial conditions, extracted from the
baseline tau PET scan, as a variable in our inference approach. Such an approach would introduce
new distributions to be inferred, at every cortical region. The consideration of more complex tau-
atrophy models may become more viable as longitudinal data becomes more readily available.

Bayesian methods inherently facilitate working with continuously updated data, a feature that
will make it easy to seamlessly update the personalizations with more time points becoming available
in the future. In upcoming work, we plan to investigate the identifiability of more complex tau-
atrophy models, taking into account the limited amount and inherent noisiness of available imaging
data for calibration.

7 Conclusion

We presented a high-level overview of what we know, today, about brain atrophy in Alzheimer’s
disease and demonstrated how we can translate this knowledge into a computational model. Our
model captures a coupling between tau pathology and atrophy, and naturally features an early
acceleration and late deceleration of atrophy rates. This is made possible through a direct depen-
dence on the local concentration of pathological tau and a saturation term. Personalizing our model
with a small data set using a probabilistic approach gives us an initial idea of the ranges of model
parameters and associated uncertainties that might occur in real subject data. Strikingly, the mag-
nitude of the tau-induced atrophy coefficient, a direct indicator for the correlation of misfolded tau
and tissue atrophy, is fairly consistent across all subjects with a median value of 0.13/year. Using
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our personalized model, we created long-term predictions for the tau and atrophy dynamics in four
subjects and discussed the performance of our model for each individual scenario. We observed that
our model generates realistic predictions of atrophy rates that agree well with the rates reported in
the literature. Once comprehensively calibrated with a larger set of longitudinal data, our model
can be used as a personalized diagnostic and predictive tool to estimate future atrophy from tau
PET recordings or serve as a comparative control in treatment studies.
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Statement of Significance

Developing predictive, patient-specific models of Alzheimer's disease pathology and progression
is of paramount importance for effective patient care and potential treatment. Tissue atrophy,
the reduction of brain volume, is an important biomarker for Alzheimer's disease. Similarly, the
pathology associated with tau proteins is thought to play a central role in Alzheimer's disease
progression, local atrophy, and a patient’s cognitive decline. The main question is: how do
combine the mechanisms of tau propagation and atrophy in a single model that can make the
best use of existing data? Here, we first review the dynamics of atrophy in for Alzheimer's disease
and describe a mathematical model that couples tau propagation and atrophy. We then
investigate how to fit the model parameters using the longitudinal structural neuroimaging data
of four subjects, from the ADNI database, and a Bayesian Markov Chain Monte Carlo inference
method. Our approach shows that network neurodegeneration models may hold promise for
the predictive, patient-specific modeling of AD using AV-1451 tau PET and T1 structural MRI data.



