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ABSTRACT: We present a new state tracking algorithm based on a stochastic state
reassignment that reflects the quantum mechanical interpretation of the state time-overlaps.
We assess the new method with a range of model Hamiltonians and demonstrate that it
yields the results generally consistent with the deterministic min-cost algorithm. However,
the stochastic state tracking algorithm reduces magnitudes of the state population
fluctuations as the quantum system evolves toward its equilibrium. The new algorithm
facilitates the thermalization of quantum state populations and suppresses the population
revivals and oscillations near the equilibrium in many-state systems. The new stochastic
algorithm has a favorable computational scaling, is easy to implement due to its conceptual
transparency, and treats various types of state identity changes (trivial or avoided crossings
and any intermediate cases) on equal footing.

Nonadiabatic molecular dynamics (NA-MD) is a powerful
method to study the dynamics of excited states,1−5

including charge and energy transfer processes in various
systems. In particular, quantum-classical trajectory surface
hopping (TSH) algorithms, such as the Tully’s fewest switches
surface hopping (FSSH),6 are the most widely used techniques
due to their conceptual simplicity and computational efficiency
that enable a straightforward use of the TSH-like algorithms in
modeling of nonadiabatic dynamics (NAD) in complex
systems.7−20 The TSH-based NAD calculations rely on the
classical path approximation (CPA),6,21 according to which
nuclei evolve classically, following the Newtonian equations of
motion. Each trajectory evolves on a state-specific potential
energy surface (PES). At every moment in time, each
trajectory can be associated with only a single electronic
state, which may change stochastically with the probabilities
determined by the evolution of electronic degrees of freedom.
Such evolution is dictated by the time-dependent Schrodinger
equation (TD-SE):

ℏ ∂Ψ
∂

= Ψi
r t
t

H r R t r t
( , )

( ; ( )) ( , )
(1)

Here, ψΨ = ∑r t c t r R t( , ) ( ) ( ; ( ))i i i is the overall wave
function of the system, where {ψi(r;R(t))} are the electronic
basis functions of the system, parametrically dependent on the
overall geometry of the system, (R(t)), {ci(t)} are the
amplitudes of the electronic states, and H(r;R(t)) is the CPA
Hamiltonian. The latter is an operator that depends function-
ally on time and electronic coordinates (r) but depends only
parametrically on nuclear geometries, R(t).
The detailed description of the TSH-based NA-MD

procedure has been given many times already,2,6,20,22,23 so

there is no need to dive into these details here. What is
important for the current discussion is the fact that the identity
(the character) of the electronic basis functions used in eq 1
may change over time, unless they are chosen as diabatic. The
adiabatic basis states are, however, more commonly used. The
adiabatic states are obtained by solving the time-independent
Schrodinger equation (TISE) and are ordered according to
their energies, so the energy of a state “1” is not larger than the
energy of state “2”. However, because these states depend on
nuclear geometry, their character may change due to the
adiabatic evolution of the system. In other words, at a later
integration time step t + Δt the state “1” may become more
similar to the state “2” at an earlier time step t and vice versa,
ψ1(t + Δt) ≈ ψ2(t) and ψ2(t + Δt) ≈ ψ1(t) (Figure 1a). In this
situation, known as a trivial crossing, the mapping of the state
identities and their physical/chemical properties (e.g., charge
localization) to their index becomes time dependent. Such
mapping needs to be tracked in time so that the population of
each state index can be correctly associated with the physical
process of charge transfer. This mapping is applied before the
TSH hop probability is computed.
The trivial crossing problem has attracted a lot of attention

from various researchers.24−30 Its occurrence is facilitated by
small electronic (diabatic) coupling of the involved diabatic
states and by the degeneracies of the energy levels. The latter
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scenario is common in complex systems with many states
belonging to dense manifolds with rich possibilities for trivial
crossings and avoided crossings.31 In particular, systems like
molecular crystals,32 conjugated aromatic polymers,33 or
chromophore assemblies34 are remarkable in this regard
because having multiple nearly identical molecular sites
(molecules or monomers) separated by long distances is the
condition that favors the energetic degeneracies and vanish-
ingly small electronic couplings. The trivial crossings are also
facilitated by a complex interplay of the multiple inactive
“bath” modes and by molecular and nuclear vibration
symmetries35 which all facilitate the adiabatic state crossing
in the multidimensional spaces of nuclear coordinates. As an
example, an avoided crossing may exist in a 1D problem (one
nuclear degree of freedom), but it can be converted to a
conical intersection or a more general trivial crossing as the
dimensionality of the nuclear degrees of freedom subspace
increases. This situation is more typical in photoexcited
systems, where conical intersections play the vital role in
determining the dynamics of photochemical processes.36

Several solutions to identifying trivial crossing have been
proposed to date. Fernandez-Alberti et al.28 relied on the “min-
cost” matching algorithm, also known as the Munkres−Kuhn
or the “Hungarian” method. In this approach, the states’
identity reassignment is made by minimizing the “cost”
function. In a nutshell, the overlaps of the adiabatic states at
different times are first computed:

ψ ψ+ Δ = ⟨ | + Δ ⟩S t t t t t t( , ) ( ) ( )ij i j (2)

The state index mapping, i → j, then corresponds to
maximizing time-overlaps, Sij(t,t + Δt), provided the mapping
is bijective. Ryabinkin el al.27 suggested a somewhat simplified
procedure, where the elements of the time-overlap matrix,
Sij(t,t + Δt), are first rounded up or down to 0 or ±1, O(t,t +
Δt) = round[S(t,t + Δt)], and the resulting matrix O(t,t + Δt)
is regarded as the state mapping operator. Recently, Qiu et al.24

pointed out that the trivial crossings may involve both active
states on which the nuclei currently evolve and the nonactive
ones at the same time. Accordingly, four scenarios are possible,
which can be handled by applying the self-consistent FSSH
(SC-FSSH) scheme reported earlier by Wang et al.26 up to two
times to detect possible trivial crossings at the source and
target states. The resulting crossingcorrected FSSH (CC-

FSSH) methodology24 provided notable advantages in
efficiency and accuracy over the local diabatization and SC-
FSSH schemes. Additional computational savings are achieved
via adaptive reduction of the size of a subspace of states among
which the trivial crossings are possible (narrow energy
window).37 It is worth mentioning that the min-cost approach
of Fernandez-Alberti et al.28 utilizes a state windowing strategy
to reject unphysical state reassignments and reduce the costs of
calculations by modifying the cost function with an exponential
attenuation factor.
Although the mentioned approaches have been demon-

strated to be successful in many situations, there are two
potential conceptual problems with these approaches. First, the
decision of the states’ assignment becomes nontrivial when
there are more than one comparable matrix elements Sij(t,t +
Δt) (e.g., consider several different js for a fixed i, Figure 1b).
Although the algorithm may eventually pick only one of the
many options, there is no solid ground for favoring one of the
options to another. Physical intuition tells that if Sij(t,t + Δt) ≈
Sij′(t,t + Δt),j ≠ j′, that is when there are degenerate or nearly
degenerate states involved, the reassignments of the initial state
i to either j or j′ should occur with comparable frequencies
since the original state i is similar to both of the states j and j′
to a comparable extent. In this regard, the rounding scheme of
Ryabinkin et al.27 could break the bijective mapping, leading to
the ambiguity in state reassignment. For instance, if matrix
elements + Δ ≈ ′ + Δ >S t t S t t( ) ( )ij ij

1
2
, their rounding leads

to two 1’s, so the original state i could be mapped to both
states j and j′, at which point one would need to use an
additional criterion to decide on whether the state i transforms
to state j or to state j′. It is desirable that the state tracking
algorithm would not break the bijectivity of the state mapping
and could account for a situation with multiple comparable
time-overlap matrix elements where the states’ reassignment
may be ambiguous.
The second concern is related to the conceptual/

implementation complexity of the existing methods. In
particular, the min-cost algorithm requires a lot of bookkeeping
and is not straightforward to implement and modify. The
algorithm also originates as an abstract optimization problem
rather than an approach based on quantum mechanical
grounds. As far as the CC-FSSH method is concerned, it
involves many conditional operations (e.g., accounting for four

Figure 1. An illustration of two trivial crossing types: (a) a situation when the state tracking is straightforward because the mapping is nearly
deterministic; (b) a potentially problematic situation when state assignment may become ambiguous because of notable state mixing during the
time step.
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types of crossings) and additional procedures that go beyond
the standard TSH (e.g., FSSH) prescription and may require
substantial efforts in ensuring the correctness of its
implementation.
In this work, we introduce a simple algorithm that resolves

the potentially ambiguous state assignment problem, is
conceptually simple (which translates into its simple
implementation that is easy to integrate with standard TSH
schemes), and has a favorable computational complexity. The
algorithm is designed to address only the state assignment
problem and is meant to be used alongside any of the existing
TSH algorithms for nonadiabatic dynamics. In particular, in
this work we utilize it with Tully’s FSSH scheme6 as
implemented in the Libra package.38

The key idea of the approach is the interpretation of the
time-overlaps, eq 2. Consider re-expanding any current state
(at time t), ψi(t) in the basis of the time-evolved (at time t +
Δt) states, ψj(t + Δt):

∑ψ ψ= + Δt a t t( ) ( )i
k

k i k,
(3)

Assuming the orthonormality of each set, one finds that

ψ ψ= ⟨ + Δ | ⟩ = + Δa t t t S t t t( ) ( ) ( , )j i j i ij, (4)

The measure of a similarity of a state ψi(t) to any state ψj(t +
Δt) is then given by the squares of quantum amplitudes, |aj,i|

2 =
|Sij(t,t + Δt)|2 = |Sij(t,t + Δt)|2. In other words, the probability
for a state ψi(t) to become a state ψj(t + Δt) adiabatically
(state identity change) is

=
| + Δ |

∑ | + Δ |→P
S t t t

S t t t

( , )

( , )i j
ij

k ik

2

2
(5)

Equation 5 is the key of the proposed algorithm. Instead of
the deterministic state reassignment utilized by other
algorithms, we use a stochastic reassignment. That is, state
identities can be reassigned to any other one at every step with
the probabilities proportional to the squared magnitudes of the
corresponding time-overlaps. Importantly, in our approach, the
reassignment process involves not only the active states but
also all initial and all final states. This means that for any state
to change its index, there should be no conflicting identity
changes associated with other states. The states’ reassignment
based on eq 5 reflects the adiabatic mechanism of quantum
state transfer (switching from one state to another due to
change of the states’ identities). As mentioned above, eq 5 is to
be used in combination with standard TSH schemes of the
user’s choice (e.g., FSSH) which would account for non-
adiabatic mechanisms of quantum state transfer (switching due
to nonadiabatic coupling).
Based on eq 5 for probabilities of the adiabatic state

transitions i → j, we compute the probabilities for the
collective transitions of all states:

∏=
| |→

∈ ∈
→P

P
P

1
I J

i I j J
i j

, (6)

Here, I = (i1, i2, ···, iN) and J = (j1, j2, ···, jN) are the multistate
indices that reflect the ordering (permutations) of all adiabatic
states before and after a proposed state identity change, N is
the number of states, and | | = ∑ ∏ ∈ ∈ →P PI J i I j J i j, , is the

Figure 2. Some possible scenarios of the state identity evolution in a three-level system. The color of the wavepacket represents the character of the
state, such that the time-overlaps are larger for the states of the same color. (a) No trivial crossings in all states. (b) All states experience trivial
crossing, leading to the states to permute their identities as [1,2,3]→ [2,3,1]. (c) A situation when two of the states (ψ1 and ψ2) at the time step t +
Δt have strong mixing of the states ψ1(t) and ψ2(t), so that state indices can permute as [1,2,3] → [1,2,3] or [1,2,3] → [2,1,3] with comparable
probabilities. (d) The proposed nonbijective permutations are rejected.
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normalization factor (with the double sum effectively running
over all possible permutations). The products of eq 6 are used
to determine the states’ reassignments. Because at this level we
use the collective indices (possible permutations), the decision
on state identity reassignment is made collectively and reflects
the potential changes of the identities of all states, not just a
single one (e.g., the active state). For instance, for a 3-state
system (e.g., Figure 2) the product of the type P =
P1→1P2→2P3→3 would be proportional (up to the normalization
factor |P|) to the probability for all three states to keep their
identities unchanged (no state reassignments). As we
mentioned above, the regular TSH hopping schemes
(including frustrated hops) are still applied alongside the
state tracking algorithm. Stated differently, the algorithm
computes the probabilities of each possible state identity
permutation, using eqs 5 and 6, and it accepts one of the such
permutations with the corresponding probabilities.
We illustrate the idea of the algorithm by considering

possible state reordering situations in a 3-state system (Figure
2). In a first scenario, none of the states experience significant
character change, and all probabilities for each state to keep its
original index are close to one, Pi→i ≈ 1 (Figure 2a). In this
situation, the probability for the overall state index
permutation to stay an identity permutation, [1,2,3] →
[1,2,3], is also close to one, P = P1→1P2→2P3→3 ≈ 1. In a
second scenario, one may encounter one or more clear trivial
crossings at the same time (Figure 2, panels b and c). The
clarity in this context means that the probabilities of the
corresponding transformations are close to one, Pi→j ≈ 1, i ≠ j.
This scenario is the most suitable for the deterministic
approaches mentioned. The deterministic algorithms are
therefore expected to handle these situations well. As before,
the probability of the overall permutations (e.g., [1,2,3] →
[2,3,1] as shown in Figure 2a) is close to 1, but only
approximately; there is still a possibility for less likely state
index permutations to occur which can be regarded as a
manifestation of electronic tunneling. We emphasize that the
algorithm does not introduce nuclear tunneling since the
nuclei are still treated fully classically using trajectory surface
hopping. Finally, in a third scenario one may encounter
multiple permutations that can occur with notable proba-
bilities. For instance, one may have the original states ψ1(t)
and ψ2(t) strongly mix within the integration time step interval,
[t,t + Δt], making the new states ψ1(t + Δt) and ψ2(t + Δt)
resemble each of the two starting states. In this case, the
probabilities of the state changes ψ1(t) → ψ1(t + Δt) and ψ1(t)
→ ψ2(t + Δt) as well ψ2(t) → ψ1(t + Δt) and ψ2(t) → ψ2(t +
Δt) may all be comparable to each other. As a result, the state
index permutations [1,2,3] → [1,2,3] and [1,2,3] → [2,1,3]
should be possible and occur with comparable probabilities.
This is the situation the present stochastic state tracking
algorithm is designed to handle, since it would simply consider
each of the possible permutations with the corresponding
overall probabilities. On the contrary, the deterministic
algorithms would always pick only one of the permutations.
As far as the implementation of the algorithm goes, there is

an important aspect that we comment on. There are several
ways the algorithm can be implemented. One approach would
be to consider a sequential assignment of each state index
followed by the renormalization of state index reassignment
probabilities, Pi→j. However, such an approach would yield
different results depending on the order in which the states are
excluded. Our early experimentations with such an approach

showed that it may lead to incorrect state population dynamics.
Thus, it is important to handle the reassignments of all states
collectively, as also described above. In this approach, one can
construct all possible state permutations and compute the
probabilities of each of them to occur. By selecting the
permutation with the corresponding probabilities, one selects a
unique state identity reassignment every time. The apparent
drawback of this approach is the scaling of its computational
costs. Since the number of possible permutations of N states
grows as N!, such a scheme is unpractical for all but systems
with a very small number of states (e.g., N < 5). Thus, our
ultimate implementation of the stochastic assignment
procedure is as follows. For each initial state i, i = 1, ···N,
we propose a change to a state j with the probability Pi→j. We
then verify if the overall reassignment is bijective; that is, there
are no reassignments of different initial states to the same final
state index (Figure 2d). If the overall permutation is bijective,
it is accepted and the all state indices are reassigned according
to such proposed permutation. If the permutation is problem-
atic, it is rejected and the procedure is repeated until an
acceptable permutation is found. Provided enough attempts, a
proper permutation can always be found. In practice, the
likelihood of such an event depends on the probabilities for
multiple states to “become” a common one. Under such
conditions, the number of unsuccessful (and eventually
rejected) attempts may be quite large, which may be a
potential limitation of this approach. We shall also comment
that the proposed state identity “transitions” in Figure 2d are
not to be confused with the “frustrated” hops done as the part
of the regular TSH algorithms for nonadiabatic transitions.
The latter are needed to impose the physically meaningful
energy partitioning between electrons and nuclei, whereas the
former is simply a way to ensure that the stochastic adiabatic
“transitions” respect the bijectivity.
By construction, the stochastic state tracking algorithm

addresses the requirements we discussed above. First, it
naturally resolves possibly ambiguous state assignments (e.g.,
see Figure 1b). Considering that one has to run a sufficiently
large number of trajectories to obtain reliable statistics, the
stochastic nature of assignment is not a problem. Quite on the
contrary, it is more consistent with the quantum mechanical
interpretation of the time-overlaps and may have a potential to
account for some amount of quantum mechanical (electronic)
tunneling, as alluded to above. If a state at time t is similar to
more than one state at time t+Δt, one should be able to
account for possible quantum mechanical branching (of
adiabatic transitions). The definition of state change
probabilities, eq 5, also implies that if a state does not really
change adiabatically (Sii(t,t + Δt) = 1,Sij(t,t + Δt) = 0,∀j ≠ i),
the assignment procedure will ensure the state’s identity does
not change (i stays i), as one would expect in the adiabatic
limit. In the case the matrix elements are reasonably close to
unity, the state’s identity would stay unchanged with a high
(nearly 100%) probability. A similar situation is the case of
avoided crossings. In fact, the avoided crossing with the large
adiabatic gap (strong electronic coupling) is the adiabatic limit.
As the electronic coupling of the diabatic states decreases, one
may still be in the regime of avoided crossings but with larger
nonadiabatic couplings. In this situation, the application of eq
5 provides a natural treatment of state tracking, intermediate
between the fully adiabatic dynamics (where no state changes
occur) and the trivial crossings (where the state changes occur
with nearly 100% probability). Thus, eq 5 provides a simple
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and general way of handling three types of state identity
change scenarios on equal footing.
Second, the algorithm accounts for possible changes of

states’ identities for all states, not just the active one. In this
regard, it naturally covers the four types of situations the
crossing corrected state tracking algorithm is designed to
handle. In doing so, the stochastic tracking algorithm does not
require a complex set of conditional (often nested) statements
and keeps conceptual and implementation simplicity. Third,
the definition of the algorithm (e.g., Figure 2) ensures that the
state reordering always stays bijective and there are no

situations when two current states ψi(t) and ψi’(t) both map
into the same new state ψj(t + Δt).
To demonstrate the utility of the devised stochastic state

tracking algorithm, we consider several model problems of a
spin-boson type that correspond to various regimes that may
be encountered in complex systems with multiple electronic
states. The detailed description of the parameters for each
model is given in the Supporting Information, Section 1. In the
diabatic representation, the Hamiltonian matrix elements are
represented as displaced harmonic oscillators, all coupled to
the same single nuclear degree of freedom, x:

Figure 3. A simple 2-state model: (a) diabatic and (b) adiabatic state energies as the functions of the nuclear coordinate. Projections of the first (c)
and second (d) adiabatic states on the diabatic states as the function of nuclear coordinate. Populations of all adiabatic states as a function of time
as computed using FSSH with one of the state tracking options: (e) no state tracking, (f) min-cost tracking, and (g) stochastic tracking algorithm.
Thick lines correspond to the FSSH results, and the thin lines correspond to the SOFT dynamics.
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= + −H E k x x
1
2

( )ii i i i
2

(7a)

= = ≠H V const i j,ij ij (7b)

The off-diagonal elements of the electronic Hamiltonian, eq
7b, are taken to be constant and are varied to control the
topology of adiabatic state intersections/crossing as well as the
degree of mixing of diabatic states in adiabatic ones. Such spin-
boson type models are suitable to mimic typical energy levels’
dynamics and multiple state crossings, often observed in
complex (e.g., solid-state or nanoscale) systems.
Since this work focuses on the identification and handling of

trivial (and less trivial) crossings, we conduct all the TSH
calculations using the FSSH algorithm implementation in the

Libra package.38 Note that the current calculations utilize the
original FSSH scheme, including explicit treatment of
electron−nuclear back-reaction. The dynamics parameters are
provided in the Supporting Information, Section 2. For all
considered models, the dynamics is computed using different
state tracking options, i.e., no state tracking, min-cost, and the
current stochastic. In addition, a numerically exact integration
of the TD-SE on a 1D grid is conducted using the split
operator Fourier transform (SOFT) method of Kosloff and
Kosloff,39 also available in Libra. The numerically exact
dynamics is computed only to provide a general guidance on
how the accurate state population dynamics shall look like. We
do not aim to assess the role of the state tracking algorithm in
providing accurate population dynamics, since FSSH does not

Figure 4. A four-state model with degenerate states and variable couplings: (a) diabatic and (b) adiabatic state energies as the functions of the
nuclear coordinate. Projections of the adiabatic states on each of the diabatic states as the function of nuclear coordinate (c−f). Populations of all
adiabatic states as a function of time as computed using FSSH with one of the state tracking options: (g) no state tracking, (h) min-cost tracking,
and (i) stochastic tracking algorithm.
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account for other quantum effects such as quantization of
nuclear DOFs and electronic decoherence. Comparing and
discussing accuracies would require using more sophisticated
methods than FSSH which might be a totally separate study
and goes beyond the scope of this work. For this reason, we
primarily assess the quality of the new method by comparing
its performance with that of the well-established but
conceptually different min-cost algorithm. Therefore, the
results of the SOFT dynamics for models II and III are only
available in the Supporting Information, Section 3.
The nuclear subsystem is represented by a single degree of

freedom with an effective mass of m = 2,000 a.u. In all TSH
calculations, 2000 trajectories are utilized, although the results
converge already with 500 trajectories. The initial coordinates
and momenta of all particles (trajectories) are sampled from
the normal distributions with the mean values of both
coordinates and momenta specified below. The variances of

these properties are given by σ =x a
2 1

2
and σ = ℏ

p
a2

2

2

, where

= ω
ℏa m and ω = k

m
. Here, =k 0.005 Ha

Bohr2 is chosen as the

curvature of the diabatic surfaces that define the probability
distributions. Note although we generally choose this
parameter to be consistent with the force constants that
appear in eqs 7a and 7b, they may be chosen freely. Such a
scheme corresponds to sampling from the ground state of the

0th diabatic potential energy surface (centered on x = 0). The
chosen model and particle parameters yield the characteristic
frequency of ω ≈ 0.158 a.u., which is 2121 cm−1, a typical
value for many condensed-matter environments. The coupled
electron−nuclear dynamics for all models is integrated for
10000 steps with the integration time step of 1 a.u., thus
corresponding to approximately 250 fs trajectories. The
convergence with respect to the number of trajectories and
size of the time step is confirmed for all models (Section 4 of
the Supporting Information). We find that the number of
trajectories and the integration time step required to achieve
the converged results are generally comparable for any state
tracking option.
Model I. The first model is represented by two noninteracting
(V01 = V10 = 0) diabatic surfaces (Figure 3a), leading to the
conical intersection in the adiabatic representation (Figure 3b).
The trajectories are initialized on the ground adiabatic state
(index 0) with the mean of the probability density distribution
being −4.0 a.u. for coordinate and 2.0 a.u. for momentum. As
the projection in Figure 3c demonstrates, the adiabatic state 0
in this region is completely composed of the diabatic state 0.
Because the diabatic surfaces are uncoupled, the dynamics can
be understood as the evolution of the trajectories on the red
diabatic parabola. Because of the initial conditions, the
trajectories have enough kinetic energy to pass the region of
surface crossing (x = 0) after which the diabatic state 0

Figure 5. A 12-state model with variable electronic couplings: (a) diabatic and (b) adiabatic state energies as the functions of the nuclear
coordinate. Populations of all adiabatic states as a function of time as computed using FSSH with one of the state tracking options: (c) no state
tracking, (d) min-cost tracking, and (e) stochastic tracking algorithm.
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coincides with the adiabatic state 1, which is also seen in the
projection in Figure 3d. Thus, the dynamics shall consist of
periodic transfer of the entire population between the adiabatic
states 0 and 1. This dynamics is indeed observed with
numerically exact integration of the TD-SE (Figure 3, panels
e−g, thin lines) as well as in FSSH calculations with state
tracking done by the min-cost (Figure 3f, thick lines) and
stochastic (Figure 3g, thick lines) algorithms. Because the
coupling between diabatic states is constant, and its derivative
with respect to the nuclear coordinate is zero, the nonadiabatic
coupling between the adiabatic states is also zero. Thus, once
started on the adiabatic surface 0 and not accounting for state
tracking, one predicts no population transfer from the initial
adiabatic state (Figure 3e, thick lines).
Model II. Next, we consider a four-state model, in which the
diabatic states 0 and 1 are degenerate, H00 = H11, and all the
states are weakly coupled to each other, V03 = V30 = V12 = V21 =
0.002 Ha and Vij = 0.002 Ha ∀ i, j, i ≠ j for all other pairs of
states. All four states also cross in one point (in a diabatic
representation), as illustrated in Figure 4a. As a result, the
topology of the adiabatic energy surfaces features the trivial
crossings, multiple avoided crossings, and the regions of near
degeneracy of adiabatic states (Figure 4b). Remarkably, the
point at x ≈ 8 features an avoided crossing between state 2
(purple) and two states (0 and 1) that become nearly
degenerate past this point (x > 8) but are well separated in the
range 0 < x < 8. As the analysis of the adiabatic-to-diabatic
state projections (Figure 4, panels c−f) shows, in the regions x
< 0 and x > 10, the composition of the adiabatic states 0 and 1
are similar in the regard that they both mix about 50% of
diabatic states 0 and 1 each. A similar situation occurs for the
adiabatic states 2 and 3 in the region 0< x < 10. Thus, one may
expect the adiabatic transitions ψ0(t) → ψ0(t + Δt) and ψ0(t)
→ ψ1(t + Δt) to be potentially competitive with each other in
the first range and the transitions ψ2(t)→ ψ2(t + Δt) and ψ2(t)
→ ψ3(t + Δt) to be competitive in another range.
In our calculations, the trajectories are initialized on

adiabatic state 2. Their initial coordinates are sampled from
a normal distribution centered around x = −5 a.u. with zero
mean momentum. With such starting conditions, all
trajectories have enough energy to explore all the regions of
the designed model and hence experience all the types of
topologies. The computed evolution of the populations
(Figure 4, panels g−i) can be understood in the following
way. The initial population of the state 2 depletes rapidly once
the trajectories travel down to the region of multiple crossings
at x ≈ 0. Here, the population is split into 10−40% and
deposited in each of the four states. As the slope of the
adiabatic surface E2 suggests, the state converts to adiabatic
state 1 (green) and then 0 (red) as one passes x = 0 in the
positive direction. Such transitions need to be tracked. Without
the tracking (Figure 4g), only a small population of ca. 0.1 is
transferred to state 1. When the tracking is enabled, one
determines to stay on the current state (which is now relabeled
as 1) with a higher probability, so about 0.4 population is
accumulated on it. Accumulation of the population on state 0
follows the decay of transient population of state 1, if the states
are tracked. If they are not tracked, the state 0 is populated in
parallel with the decay of the state 2. Importantly, the
population dynamics computed with both min-cost and
stochastic state tracking algorithms are nearly identical. The
minor differences are negligible in comparison to the dynamics
when population is not tracked.

Model III. Finally, we consider a 12-state model with a dense
manifold of electronic states (Figure 5, panels a and b). The
PES are nearly parallel to each other, so the energy gap
fluctuations are expected to be rather small. This model is
designed to mimic a typical situation one encounters in
modeling of excited states dynamics in condensed matter
systems. However, unlike in most condensed-matter systems,
the diabatic energy levels are made to cross with many other
such surfaces in two areas. In such points (x ≈ −4 and x ≈ 6),
all adiabatic surfaces are coupled to adjacent states and to
states that are two indices away (i.e., state 1 is coupled to states
2 and 3). As a result, one may end up with the time-overlaps
for many pairs of states being comparable, hence favoring the
accumulation of the overall difference in the dynamics with
states tracked with min-cost or stochastic algorithms.
For this model, the trajectories are initialized in the highest

excited state. Their initial coordinates are sampled from a
normal distribution centered around x = −8 a.u., which
corresponds to a high-energy region. The initial momentum is
zero on average, but the slope of the adiabatic surface creates
the force sufficient to quickly drive the trajectories in the
region of their strong coupling. As in the previous example, the
trajectories have enough energy to explore various topologies
of the adiabatic PES manifold encountered in this model.
In NAD calculations with this model, we observe a rapid

depopulation of the initial state (Figure 5, panels c−e, purple
line) concerted with the populations transfer into several other
states. This rapid depopulation of the initial state is followed by
the coherent population transfer between several states. The
oscillatory features level out at longer time scales, equilibrating
the populations of multiple states. Interestingly, despite the
construction of the model to favor similarities among multiple
states (comparable time-overlaps), the state tracking does not
make much difference in the computed dynamics. This may be
attributed to the rapid population transfer between states that
leads to quick thermalization of their populations. In this
scenario, it becomes less critical to know the details of the
mechanism by which the equilibrium populations are achieved.
Despite the overall similarity of the dynamics computed
without state tracking or with any of them, there is a slight
difference in the dynamics computed with the min-cost (Figure
5d) and stochastic state tracking (Figure 5e) algorithms.
Namely, the stochastic algorithm leads to somewhat smaller
fluctuations of populations of all states once they reach the
near-equilibrium values. This effect may reflect the small
probability of the adiabatic population transfer between states
captured by the algorithm.
Finally, we compare the computational scaling of the min-

cost and stochastic algorithms (Figure 6) using model time-
overlap matrices that mimic various types of state identity
changes over time (please see Supporting Information, Section
5). We consider four types of time-overlap matrices. The
matrices of the first kind have their main diagonal elements
being close to 1.0, with all other elements set to random small
values (Figure 6, non-deformed). Such matrix type corre-
sponds to a situation when the state identities do not change,
and no state tracking is needed. The other three kinds of
matrices are generated by deforming the well-behaved matrix
of the first kind. One way the matrix is deformed is by
randomly swapping columns (Figure 6, crossings). This
deformation type mimics trivial crossings. Another type of
matrix deformation simulates the degeneracy of the states
during adiabatic dynamics (Figure 6, degeneracy). In this case,
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the large time-overlap element on the diagonal is split in half
and moved unequally to the two closest states. The original
population of these two states is then redeposited into the
diagonal matrix element. The last type of matrix deformation
combines the previous two to account for simultaneous trivial
crossings and state degeneracies (Figure 6, crossings and
degeneracy).
The timing of the min-cost algorithm does not depend on

the type of the matrix, only on the size of the matrix. This
robustness of the min-cost algorithm originates from its
deterministic nature. The optimization algorithm works the
same way no matter the values of the matrix elements. In
contrast, the run time of the stochastic algorithm depends on
the structure of the time-overlap matrix. For the non-deformed
matrices, we observe shorter run times in comparison to the
min-cost. This is because for such matrices the correct state
assignment (identity) is found in one attempt, yet without the
additional machinery of the min-cost algorithm. As a result, the
computing prefactor goes down, although the scaling does not
change. Similarly, the stochastic algorithm has a shorter run
time for the matrices with crossings and no degeneracy. Here,
the correct permutation is also found in one attempt, although
it is not the identity permutation. On the other side of the
complexity spectrum is when multiple states at time t−Δt have
a large overlap with the same state at time t (several elements
of a given column are comparable). In this situation, the
stochastic algorithm will be often proposing the state
reassignments of the type shown in Figure 2d that cannot be
accepted. The probability of an acceptable state reassignment
is small in this case, leading to larger number of attempted
“hops”. Under certain, particularly unfavorable conditions, the
acceptable reassignment may not be found within the
predefined limiting number of attempted hops, leading to
difficulties in convergence of the stochastic state tracking
procedure. Having mentioned that, we also comment that in
many practice calculations with atomistic systems, the time-
overlap matrices have the “non-deformed” or “crossing”
structure, in which cases the stochastic algorithm shall not
have convergence problems.

Although the apparent robustness of the min-cost algorithm
over the new stochastic scheme has a clear practical
convenience, it may hide the underlying problems in the
state identity assignment. The difficulties in converging the
state assignment via the stochastic algorithm may indicate the
presence of the state degeneracies that should be treated
adequately. We remind that given sufficient number of
attempts, a suitable state assignment can be found with the
stochastic algorithm, although at an expense of the increased
computational cost. At the same time, although the min-cost
would find the state reassignment much faster, it may be
systematically selecting one of several possible variants, thus
artificially biasing the dynamics.
In this work, we report the development and assessment of a

new state tracking algorithm based on stochastic state
reassignment that reflects the quantum−mechanical interpre-
tation of the state time-overlaps. We demonstrate that the new
algorithm is generally consistent with the deterministic min-
cost algorithm but is based on a conceptually different
viewpoint. The stochastic state tracking algorithm reduces
the magnitude of the population fluctuations as the quantum
system evolves toward its equilibrium. This effect acts as a
thermalization mechanism suppressing the population revivals
and oscillations near equilibrium. The new stochastic
algorithm is easy to implement due to its conceptual
transparency, although may be more time-consuming than
the min-cost when multiple state degeneracies may arise and
vanish during the dynamics. By its construction, the algorithm
handles all types of state identity changes (trivial and avoided
crossings and anything in between) on the same conceptual
footing. We also hypothesize that the developed stochastic
tracking approach may be able to introduce some degree of
electronic tunneling in superexchange-like models.40,41 Study-
ing this question will require a careful design of a suitable
model, which may be a subject of future studies. To this end,
the results of the FSSH calculations with the stochastic and
min-cost algorithms are very similar for a variety of models
tested in addition to those discussed in this account. The data
presented here are generated with the FSSH and state tracking
methods implemented in the Libra package,38 ver. 4.9.1,42

available via GitHub.
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