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ABSTRACT: Using a recently developed many-body nonadiabatic molecular dynamics
(NA-MD) framework for large condensed matter systems, we study the phonon-driven
nonradiative relaxation of excess electronic excitation energy in cubic and tetragonal phases
of the lead halide perovskite CsPbI3. We find that the many-body treatment of the electronic
excited states significantly changes the structure of the excited states’ coupling, promotes a
stronger nonadiabatic coupling of states, and ultimately accelerates the relaxation dynamics
relative to the single-particle description of excited states. The acceleration of the
nonadiabatic dynamics correlates with the degree of configurational mixing, which is
controlled by the crystal symmetry. The higher-symmetry cubic phase of CsPbI3 exhibits
stronger configuration mixing than does the tetragonal phase and subsequently yields faster
nonradiative dynamics. Overall, using a many-body treatment of excited states and
accounting for decoherence dynamics are important for closing the gap between the
computationally derived and experimentally measured nonradiative excitation energy
relaxation rates.

Nonadiabatic (NA) molecular dynamics (MD) is a
promising method for revealing mechanisms and

characterizing the dynamics of NA processes. Multiple NA-
MD studies of bulk perovskites have been undertaken to date,
providing insight into the role of cation1 and halide2 identity,
symmetry breaking at grain boundaries,3 and vacancies4 in
determining the kinetics of such processes. Other works have
reported NA-MD studies of the nonradiative hot carrier
relaxation and electron−hole recombination processes in
perovskite nanocrystals,5 2D perovskites,6−8 and related
heterostructure systems.9−11 Currently, NA-MD simulations
of complex systems such as condensed phase or nanoscale
materials, including lead halide perovskites (LHPs), rely on the
use of a single-particle (SP) description of the electronic
excited states.12−18 Within this description, the Coulomb and
exchange interactions between electrons and holes are
neglected, and the electrons and holes are considered free
particles.
While the SP treatment of the electronic states has been

shown to be reasonable under certain conditions,19 it breaks
down in many other cases.20,21 Notably, for systems possessing
symmetry, electronic state degeneracies become important,
suggesting that the true excited states may be best described by
the superpositions of such (nearly)-degenerate states. Under
such conditions, the static electronic correlation becomes
important to include, because nearly all excited states, but the
lowest few, typically contain multiple SP excitations (Slater
determinants). A many-body (MB) description of the excited
electronic states is also necessary in quantum-confined
systems22−25 and at low temperatures,26,27 where exciton

formation may be strongly favored. Furthermore, modeling
processes that involve excited states’ interaction, such as
triplet−triplet annihilation and photon upconversion,28−31

singlet fission,32−34 and excimer formation,35,36 would also
require stepping beyond the commonly adopted SP approx-
imation and extending the NA methodology to the MB
(multiconfigurational) treatment of the electronic states.
NA-MD calculations that utilize a high-level description of

electronic excited states (naturally including MB effects) are
routinely possible nowadays directly for relatively small
molecular systems37−41 or via QM/MM approaches for larger
systems. In contrast, the inclusion of MB effects in the NA-MD
of nanoscale, periodic, and extended molecular systems can be
prohibitively expensive. While an MB description of electronic
excited states in condensed matter systems is possible,42−48

such calculations are extremely expensive for their routine
applications in dynamics. A number of works have reported
various approaches to incorporate MB effects into the NA-MD
in the past. Nakai49 utilized the time-dependent density
functional tight-binding (TD-DFTB)50,51 approach to model
NA-MD in LHPs. Bonafe52 have recently developed an
Ehrenfest TD-DFTB approach to modeling coupled elec-

Received: December 24, 2020
Accepted: March 1, 2021
Published: March 4, 2021

Letterpubs.acs.org/JPCL

© 2021 American Chemical Society
2444

https://dx.doi.org/10.1021/acs.jpclett.0c03799
J. Phys. Chem. Lett. 2021, 12, 2444−2453

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 A

T
 B

U
FF

A
L

O
 S

T
A

T
E

 U
N

IV
 N

E
W

 Y
O

R
K

 o
n 

O
ct

ob
er

 1
4,

 2
02

1 
at

 1
3:

10
:2

9 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Brendan+Smith"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mohammad+Shakiba"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alexey+V.+Akimov"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jpclett.0c03799&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.0c03799?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.0c03799?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.0c03799?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.0c03799?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.0c03799?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jpclcd/12/9?ref=pdf
https://pubs.acs.org/toc/jpclcd/12/9?ref=pdf
https://pubs.acs.org/toc/jpclcd/12/9?ref=pdf
https://pubs.acs.org/toc/jpclcd/12/9?ref=pdf
pubs.acs.org/JPCL?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acs.jpclett.0c03799?ref=pdf
https://pubs.acs.org/JPCL?ref=pdf
https://pubs.acs.org/JPCL?ref=pdf


tron−nuclear dynamics within the DFTB+50 package and
applied it to study the excited-state dynamics in several
example systems. The Tretiak group has developed the
NEXMD53,54 software package that relies on the collective
electron oscillator (CEO) approach55,56 for NA-MD modeling
in extended organic systems. A number of schemes based on
the TD-DFT description of electronic excited states have been
reported recently57−59 as an affordable way of incorporating
MB effects into NA-MD,60,61 including our own implementa-
tion using the neglect-of-back-reaction approximation (NBRA)
of NA-MD within the Libra software.62,63 Despite these recent
advances, the use of the SP description of electronic excited
states in the NA-MD of nanoscale and periodic systems is still
prevailing. To date, little attention has been paid to critically
assessing the approximate approaches in view of the more
rigorous methods currently available. Thus, an assessment of
the role of MB effects in the NA-MD of such extended systems
is of high importance.
In this work, we report our studies of MB effects in the NA-

MD of periodic condensed matter systems under conditions
favoring high (quasi) degeneracies of the electronic states, as
may be the case for LHPs. In particular, we focus on modeling
excess excitation energy relaxation in the CsPbI3 LHP, which is
known to exist in the cubic and tetragonal phases (among
others). Our expectation here is that the difference in
symmetries of the crystal structures of the two phases can
affect the degeneracies of electronic states, leading to
differences in the many-body composition of the excited
electronic states for the two systems. In this way, we examine
the role of crystal symmetry on the NA dynamics in condensed
matter systems. Furthermore, we assess the role that MB
effects have in the NA-MD by studying the dynamics in these
two systems at both the MB and SP levels.
We employ atomistic models of the cubic and tetragonal

phases of CsPbI3 composed as 2 × 2 × 2 supercells and

containing 40 and 160 atoms, respectively (Figure 1, panels a
and c, insets). The geometry optimization, molecular
dynamics, ground-state density functional theory (DFT), and
TD-DFT calculations are performed using the CP2K software
package.64,65 In the electronic structure calculations, the
valence electrons for all atom types are described using a
mixed Gaussian and plane-wave basis set. The exchange and
correlation of the valence electrons is described by the
Perdew−Burke−Ernzerhof (PBE)66 density functional.
Although, this pure density functional has a number of well-
known problems,67−71 the use of generally more reliable hybrid
functionals in the MD calculations such as those undertaken in
the present work is prohibitively expensive. We anticipate that
the qualitative trends discussed in this work will hold even if
the hybrid functionals are used, except for the cases explicitly
discussed later. The effects of the core electrons are accounted
for using Goedecker−Teter−Hutter (GTH)72 pseudopoten-
tials. The plane-wave basis is determined by the charge density
cutoff of 300 Ry. The double-ζ-valence-polarized (DZVP)
basis set73 is used as the Gaussian basis. To ensure the
accuracy of the force calculations, the k-point sampling uses
the 4 × 4 × 4 and 2 × 2 × 2 Monkhorst−Pack grids74 for the
cubic and tetragonal systems, respectively. Dispersion inter-
actions are accounted for using Grimme’s DFT-D3 dispersion
correction.75 Each system is first thermalized to 300 K using
MD followed by production MD. The production MD
trajectories are run for 1.8 ps and are sampled using nuclear
integration time steps of 1 fs. Thermal effects of the bath are
described by a canonical sampling through velocity rescaling
(CSVR)76 thermostat with a time constant of 200 fs, as was
used in a previous study by Uratani and Nakai, which is within
the range of phonon modes for this perovskite.49 For all
geometry optimization calculations, optimization is performed
using the Broyden−Fletcher−Goldfarb−Shannon (BFGS)
algorithm.77 The geometry optimization process is continued

Figure 1. Thermally averaged projected density of states for the considered CsPbI3 systems and schematics of some of the considered electronic
excitations. (a) pDOS for the cubic phase; (b) schematic of electronic excitation resulting in ∼0.8 eV of excess electronic energy for the cubic
phase; (c) pDOS for the tetragonal phase; (d) schematic of electronic excitation resulting in ∼0.4 eV of excess electronic energy for the tetragonal
phase.
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for each structure until the maximum force on each atom
becomes less than 15 meV/Å and the maximum geometry
change becomes less than 0.002 Bohr.
For both systems, the thermally averaged electronic band

gaps are roughly 1.8 eV (Figure 1), which is in good agreement
with experiments.78,79 Thermal averaging is done over all the
configurations sampled by the MD trajectories. We find that
averaging yields a converged pDOS (Figure S1). Considering
the level of electronic structure calculations used in this work,
such a good agreement of the band gap values for these LHPs
likely stems from the known error cancellation that occurs
when using pure functionals without spin−orbit coupling
(SOC) effects. The projected density of states (pDOS)
calculations reveal that for both systems, the valence bands
are primarily composed of atomic orbitals of the iodine atoms,
whereas the conduction bands are composed primarily of lead
orbitals with a smaller fraction of iodine orbitals (Figure 1), in
agreement with previous theoretical works.80,81 The main
differences between the cubic and tetragonal phases is the
increased pDOS in the latter, which is a consequence of a
larger size of the cell. Thus, one may expect faster relaxation of

excess electronic energy in the tetragonal phase. In addition,
the tetragonal system has two groups of conduction band
states in the energy window 2−4 eV, whereas the cubic has
only one. The group of states near 2 eV is split into 3 substates
in the cubic system in the static structure (Figure S1), but this
fine structure is hidden in the thermally averaged pDOS
(Figure 1). The two bands of the tetragonal system do not
show any notable fine structure in the static calculations. The
pDOS structure can be rationalized by the system symmetries:
the 3-fold splitting of a single band in the cubic structure can
be attributed to the 3-fold symmetry of the system, whereas the
presence of the two notably split bands in the tetragonal
system can be attributed to a notable anisotropy of its crystal
structure, with at least 2 distinct directions (e.g., c vs a or b).
We compare properties relevant for NA-MD calculations

computed at the SP and MB levels (Figure 2). As was shown
earlier,82,83 NACs between distinct Slater determinants (SDs)
can be reduced to the NACs between orbitals. For this reason,
the basis of single SD excitations is considered a SP
description. In contrast, the MB electronic states are described
by superpositions of the SD excitations. Because the densities

Figure 2. Comparison of densities of excited states and thermally averaged nonadiabatic couplings for the cubic (a, c, and e) and tetragonal (b, d,
and f) phases of CsPbI3. The thermally averaged NACs are computed at the SP (c and d) and MB (e and f) levels.
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of excited states are rather high, we considered only finite
energy windows of excited states to compute: roughly 0.9 eV
for the cubic and 0.5 eV for the tetragonal phases. At the MB
level, 151 and 76 excited states fit into these energy spans for
the cubic and tetragonal phases, respectively. These MB states
are formed in the basis of 229 and 118 unique SDs for the
cubic and tetragonal systems, respectively. However, some of
these excitations are outside of the energy windows considered
and therefore may be excluded from the SP-only modeling and
calculations. Following the earlier approximation82 commonly
used in many SP-based NA-MD studies,84−93 the energies of
the SP excited states are estimated via the differences of orbital
energies, neglecting the Coulomb and exchange integrals.
Somewhat surprisingly, the densities of the excited states

computed at both SP and MB levels for each system are nearly
the same (Figure 2, panels a and b). This similarity indicates
that the excitonic effects (static correlation and Coulombic
interaction of electron−hole pairs) are relatively small. This
result is consistent with experimental studies reporting small
exciton binding energies in LHPs.94,95 Small excitonic effects in
the presently studied systems are also expected because of the
lack of quantum confinement on one hand and the use of a
pure density functional on the other. As suggested by Izmaylov
and Scuseria,96 and as also follows from other studies,97

capturing excitonic effects in TD-DFT calculations requires the
functional with the correct asymptotic behavior of the
exchange, such as achieved via the use of hybrid functionals,
especially the long-range corrected ones. However, such
calculations are prohibitively expensive, and we leave this
question an open problem.
Given the similarity of the DOS in the MB and SP bases,

one may expect that the NACs in the MB and SP excitation
bases would be comparable. However, a detailed analysis of the
NACs between the pairs of MB and SP states breaks this
expectation. The first distinction comes in the structure of the
NAC matrices. At the SP excitation level, the time-averaged
NACs between electronic states have a scattered-like
appearance (Figure 2, panels c and d). Such a structure arises
because in the space of SP states of type HOMO−N →
LUMO+M, with varying N and M, and ordered by energy, the
corresponding SDs may differ by more than one electron
excitation, leading to zero coupling between such pairs of
states. On the other hand, the MB electronic excited states are
composed of multiple SP transitions, and two MB states may
become coupled via the coupling of the underlying SDs. As a
result, the NAC matrix has a more “filled-in” structure when
computed in the basis of MB excited states (Figure 2, panels e
and f). Furthermore, we find that the probability distributions
of the NACs between MB states is shifted toward larger values
compared to the probability distributions of the NACs
between SP states (Figure S2). This means that one is more
likely to encounter larger magnitudes of NACs during the
course of the dynamics if MB effects are accounted for. The
probability to find near-zero NACs is higher at the SP level
than at the MB level. For both cubic and tetragonal phases, the
probability to find NAC values greater than ca. 0.2 meV in
absolute value is larger in the MB basis than the SP basis
(Figure S2, panels a and d). The probability of finding NACs
with the absolute values of 5−50 meV is small for both
systems, which is orders of magnitude smaller than to
encounter NACs in the range 0−0.5 meV. However, for all
values of NAC magnitudes, the probability density is
consistently larger at the MB level that it is at the SP level.

Taken together, we expect that both the shift of the NAC
probability density toward larger values and the changed
structure of the NAC matrix should accelerate the excited-state
dynamics (e.g., excited-state relaxation) when computed at the
MB level relative to dynamics at the SP level.
It is illustrative to discuss the origin of the difference in the

NAC magnitudes computed at the SP and MB levels. At every
time instant, the MB states, {Ψi}, are given by a unitary
transformation (U) of the SP excitations, {Φi }: Ψi = ∑jUjiΦj.
The NACs between the MB states are given by dij

MB =

Ψ Ψ∂
∂t ji = ∑ * Φ Φ∂

∂U Ua b ia bj a t b, + ∑ *⟨Φ|Φ ⟩ ∂
∂U Ua b ia a b t bj, =

∑ * + ∑ * ∂
∂U d U U Ua b ia ab bj a ia t aj,

SP . Here, we utilized the ortho-

normalization of the SP states, ⟨Φi|Φj⟩ = δij. Under the special
case of the time-independent transformation matrix U,

=∂
∂ U 0

t
, one can show that the average magnitude of the

NACs in the two bases are equal, as for instance could be
quantified by ∑i,j|dij |

2. Using the fact that the matrix U is a
u n i t a r y t r a n s f o rm a t i o n , o n e c a n s h ow t h a t
∑ | | = ∑ | |∈{ } ∈{ }d di j ij i j ij, MB

2
, SP

2. Thus, the average magnitude

of the coupling would not depend on whether the SP or MB
description of excited states is used. However, in most
situations, the transformation matrix U is time-dependent,
because of the time-dependence of the Hamiltonian via its
parametric dependence on nuclear trajectories. As such, the

term ∑ * ∂
∂U Ua ia t aj can not be neglected. It is this term that is

responsible for the difference in the average NAC magnitudes
(as quantified by the centers of gravity in the probability
density distributions shown in Figure S2). In other words, the
time-dependence of the MB states composition in terms of the
corresponding SP states determines the difference in average
NACs . Hav ing s a id tha t , e ven the cond i t i on
∑ | | = ∑ | |∈{ } ∈{ }d di j ij i j ij, MB

2
, SP

2 does not imply a similarity of

the dynamics computed in the two bases. The relative
magnitude of the couplings between “equivalent” states (if
such a mapping of the SP to MB basis can be made) may be
changed, such that some channels of the dynamics may be
favored in one basis over the other. Finally, although our
current calculations suggest faster dynamics in the MB basis,
there is no reason to expect this to be a general trend. In

principle, there is no limitation for the term ∑ * ∂
∂U Ua ia t aj to take

values opposite in sign to those of the ∑a,bUia*dab
SPUbj term, thus

decreasing the effective NACs in the MB basis as opposed to
those in the SP basis.
Comparing the crystal symmetries, we find that NACs are

larger in the cubic system than in the tetragonal one (Figures 2
and S2). This difference can be rationalized by the larger
degree of configurational mixing in the cubic system. We
quantify the degree of configurational mixing by the squared
amplitudes of the configuration interaction coefficients of
dominant SDs entering the composition of the MB states
(Figures S3 and S4). Our analysis shows that the first few
excited states are mainly SP in both systems at their optimized
geometries, which validates the widely used SP approximation
in modeling NA processes such as electron−hole recombina-
tion.85,98,99 In the tetragonal system, electronic states retain a
strong SP character for many of the low-lying electronic states
(Figures S4), whereas in the cubic system, all but the lowest
excited states exhibit significant configurational mixing (Figure
S3). We attribute such a pronounced mixing of the SP states to
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the increased symmetry present in the cubic system. High
symmetry leads to high degeneracy of electronic states in the
space of SP transitions and promotes their mixing in the MB
picture. At lower temperatures, when thermally induced atomic
motion is reduced, the symmetry of the crystal structure is
better preserved. This explains the stronger configurational
mixing present at the optimized geometries (0 K, Figure S3,
panels a and b; Figure S4, panels a and b) compared to the
thermally sampled set of configurations at 300 K (Figure S3,
panels c and d; Figure S4, panels c and d). At 300 K, the
atomic motion breaks the symmetry and reduces the degree of
configurational mixing. However, the influence of the systems’
symmetry is still present. For the cubic system, significant
configurational mixing of the electronic states is still present at
300 K, especially for higher-energy excitations.
To directly assess the role of MB effects on the NA

dynamics, we conduct explicit NA-MD calculations using the
fewest switches surface hopping (FSSH),100 Belyaev−Leb-
edev−Landau−Zener (BLLZ),101,102 and several decoherence
correction methodologies,103−105 as also detailed in the section
4 of the Supporting Information. We employ a recently
developed interface of the Libra software for NA-MD
calculations62,63 and the CP2K64 code. The details of our
computational setups are summarized in section 5 of the
Supporting Information. Further details of our NA-MD
framework are discussed elsewhere.106 The dynamics of excess
electronic excitation energy relaxation for the considered
systems is quantified by fitting the average excess electronic
excitation energy relaxation dynamics over all NA-MD
trajectories to the following functional form:

i

k
jjjjj

i
k
jjjjj

y
{
zzzzz
y

{
zzzzz

i

k

jjjjjjj
i
k
jjjjj

y
{
zzzzz

y

{

zzzzzzzτ τ
= − + − −f t E A

t
E A

t
( ; ) exp ( )exp0

1
0

2

2

(1)

Such a fitting function has been used in past NA-MD studies to
characterize the decay of excess excitation energy in condensed
matter and nanoscale systems.1,13,107 This form accounts for
the Gaussian decay kinetics typical for coherent dynamics of
electrons in dense manifolds of excited states in the short-time
range and the exponential decay kinetics typical for incoherent
dynamics at the longer time scales or in the sparse manifolds of
excited states. The overall relaxation time scale is then
computed according to

τ τ τ= +
−A

E
E A

E
( )

0
1

0

0
2

(2)

The MB effects on the NA dynamics can be best seen by
comparing the excitation energy excess decay kinetics at the
FSSH level for both systems. When MB effects are accounted
for, the relaxation of excess excitation energy is accelerated by
the factor of 2.6 (Figure 3). Moreover, the inclusion of MB
effects qualitatively changes the dynamics. At the MB level, it is
typically the case that the exponential component in eq 1 is
smaller than it is in the SP basis (e.g., see Table S1 of the
Supporting Information), which signifies that coherent
dynamics is prominent in the MB basis. The coherent
dynamics in the MB basis is favored by the more extensive
coupling of all states to each other as compared to the SP
picture. At the SP level, the dynamics exhibits little to no decay
for the first 100 fs and is followed by a slow decay (Figure 3a).
In the SP basis, the decay kinetics is dominated by the
exponential component in eq 1 (e.g., see Table S1 of the
Supporting Information), which signifies that the coherent
dynamics is suppressed or intrinsically slower in the SP basis.
This suppression of the coherent dynamics can be explained by
larger energy gaps between the coupled states. In this regard,
one should not be mislead by the apparently similar densities
of excited states in the SP and MB bases (Figure 2, panels a
and b). Although the densities are similar, they do not reflect
the structure of the coupling of the statesthe energetically
nearby SP states may be uncoupled, whereas the average
energy gaps between the coupled states would be larger in this
basis.
We compute the time scales of excess excitation energy

decay in both cubic and tetragonal phases of CsPbI3 using both
the SP and MB description of excited states and several NA-
MD methodologies (Table 1, also see section 6 of the
Supporting Information for more details). Our main
observation is that the dynamics with the MB effects accounted
for is generally faster than it is in the basis of SP states. This
conclusion is consistent with the changes of the NAC matrix
structure discussed above. The inclusion of the MB effects
accelerates the dynamics more in the cubic system than it does
in the tetragonal system: the time scales are decreased by the
factor of 1.4−2.6 in the cubic system and by a factor of only
1.6 in the tetragonal one in comparison to the corresponding
SP-based time scales. Such trends are also consistent with
slightly larger NACs in the cubic system than in the tetragonal,
as a consequence of the crystal symmetries (e.g., see Figures
S2−S4).
As expected, accounting for electronic decoherence (via ID-

A104 and mSDM103,105 methods) leads to slowing the
dynamics down relative to FSSH. Of the two decoherence-
corrected TSH schemes tested, the ID-A typically yields a

Figure 3. Excess electronic energy relaxation dynamics computed with the FSSH methodology in cubic CsPbI3: (a) at the SP level and (b) at the
MB level.
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faster dynamics than mSDM. In contrast to all the NAC-based
TSH methods used (FSSH, ID-A, and mSDM), the energy-
based BLLZ method predicts highly similar dynamics of the
excited states at both the MB and SP levels. MB effects can
influence the dynamics in two ways. One is via the wave
functions (and hence the NACs), via the mixing of excited
SDs, as discussed above, which we refer to as weak excitonic
effects. The other is via the energies of the excitonic states,
which we refer to as strong excitonic effects. As discussed
previously, the strong excitonic effects would manifest
themselves in quantum-confined systems and require the use
of density functionals with the proper asymptotic behavior of
the exchange terms97 (pragmatically speaking, the use of range-
corrected hybrid functionals). In other words, the strong
excitonic effects would manifest themselves via a notable
exciton binding energy. For the systems considered in this
work, the densities of the MB and SP excited states agree with
each other (Figure 2, panels a and b), suggesting the exciton
binding energies are small and the SP picture works as far as
the energies of the electronic excited states are concerned. This
observation agrees with the 10 meV value for cubic CsPbI3
reported by the prior studies.94,95 This energy is smaller than
thermal energy at room temperature, so the excitonic effects
are negligible. The similarity of the densities of excited states at
the SP and MB levels explains the insensitivity of the energy-
based BLLZ to the level of the description of excited-state
energies. This behavior may be regarded as a consequence of
the lack of strong excitonic effects or inability to capture it,
which can be a consequence of the lack of quantum
confinement (3D systems) and the use of pure density
functional. With the “strong excitonic effects” ruled out in the
present study, we conclude that acceleration of the NA-MD we
observe in periodic LHPs can be attributed to the “weak”
excitonic effects, that is, the mixing of the quasi-degenerate
states, which in turn can be affected by a system’s symmetry.
We anticipate though that applying the current approach to

2D or 0D perovskites/systems and/or using hybrid functionals
(which is prohibitively expensive at this point) may change the
computed time scales and the qualitative comparison of the
time scales computed with the BLLZ approach. In this regard,
recent work by Liu et al.60 demonstrated that accounting for
strong excitonic effects in quantum-confined systems like the
MoS2/WS2 heterojunction may lead to up to a 10-fold
acceleration of the dynamics compared to the commonly used
SP Kohn−Sham-DFT prescription of excited states. Such an

acceleration is notably larger than the approximately 2.6-fold
acceleration because of weak excitonic effects seen in the
present work, although the two values cannot be compared
directly as they are obtained for distinct systems.
An analysis of Table 1 shows that the computed energy

relaxation time scales may be in a good agreement with the
reported experimental data depending on the combination of
the excited states’ description level and the TSH methodology
used. Such agreements and disagreements should be taken
critically because they may be due to fortuitous error
cancellations or the lack of known effects that are too
expensive to include, respectively. At the MB level, the FSSH
calculations for the cubic system are in excellent agreement
with the experimental time scales of approximately 476 fs of
Bretschneider et al.108 At the SP level, the computed time
scales are nearly twice as slow: 1.1−1.2 ps for a range of initial
excitation energy levels. These time scales are consistent with
the values reported in a previous computational study that
relied on a similar SP description of excited states.1 In contrast,
Shen et al.109,110 report time scales in the range of 1−30 ps
depending on the carrier density, with a subpicosecond (0.8−
1.0 ps) range for low carrier densities studied in their
experiment. One may think that the FSSH at the SP level
yields a reasonable agreement with the experiment. However,
the FSSH does not account for decoherence effects present in
realistic systems. Thus, one needs to shift attention to the ID-A
and mSDM results. At the MB level, the dynamics computed
using these schemes comes into closer agreement with the ca. 1
ps time scales of Shen et al.109,110 The SP description would
overestimate the time scales by approximately a factor of 2
compared to the data of Shen et al. and by a factor of 4−5
compared to the data of Bretschneider et al. Thus, the
inclusion of even weak excitonic effects is critical for merging
the gap between computed and experimentally measured time
scales of excitation energy relaxation.
The above discussion should be taken critically. Our

simulations do not explicitly include SOC effects, which have
been shown to significantly accelerate dynamics in LHPs.111 At
the same time, we use a pure density functional instead of the
computationally more expensive hybrid functionals, and it has
been demonstrated before that the use of hybrid functionals
may slow down the dynamics.68 It is possible that the two
approximations may counter each other’s effect, although we
cannot tell to what extent. Nonetheless, as shown in this work,
weak excitonic effects may lead to a notable acceleration of the
dynamics. This effect is likely to hold regardless of what
functional is used and whether the SOC effects are included,
although further studies on this matter would be highly
desirable.
Another potential limitation of the current methodology, as

well as of other similar techniques, concerns the treatment of
electron and phonon k-points. On one hand, including a larger
number of k-points (or, equivalently, using a larger supercell)
could increase the density of electronic states and accelerate
the decay dynamics. On the other hand, describing the
transitions between the k-points requires accounting for
phonon quantization (q-points), which would require a
different computational methodology that is not available in
the current scheme. Such calculations may also involve an
extremely large number of k-points,112 which is prohibitively
expensive for the atomistic systems considered here (especially
at the TD-DFT level). At the same time, enabling relaxation
channels that include multiple k-points may slow the decay

Table 1. Excited-State Energy Decay Time Constants, τ (fs),
Computed Using Various Surface Hopping Methods at
Either the SP or MB Description of the Electronic Excited
Statesa

experiment, 1. 4 eV, 0.8 eV
476, Bretschneider et al.,108

∼1000 Shen et al.109,110

cubic FSSH ID-A mSDM BLLZ

MB 0.8 eV 480 1209 1187 486
SP 0.8 eV 1226 1757 2492 444
MB 0.4 eV 679 1120 1645 984
SP 0.4 eV 1116 1323 1858 889

tetragonal FSSH ID-A mSDM BLLZ
MB 0.4 eV 1002 1617 1823 1865
SP 0.4 eV 1655 2424 3090 1843

aE0 (eV) is the initial excess electronic excitation energy used in the
calculation setup and the fitting function, eq 1.
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dynamics, because a fraction of the relaxation will take place
across different k-points or at k-points other than the Γ-point.
In our experience, NACs are larger for the k-points closer to
the Γ-point and are smaller across the k-points, at least for
direct gap semiconductors. Thus, on average, enabling
relaxation dynamics across multiple k-point states may lead
to a slower average decay of the excited states, which may
counter the effect of the increased densities of states. Overall,
the inclusion of multiple k-points may or may not be another
factor to lower the gap between the computationally derived
carrier relaxation times (on the higher end) and the
experimentally determined ones (on the smaller end). For
both outcomes, however, MB effects are expected to accelerate
the dynamics of the excited-state relaxation, whether it brings
the computed results closer to or farther away from the
experimental references.
In summary, we show that including MB effects in NA-MD

simulations may greatly accelerate the nonradiative relaxation
of excess electronic excitation energy. We demonstrate that for
the CsPbI3 perovskite, this acceleration factor reaches a value
of 2.6 but nonetheless is sufficient to bring the computed NA-
MD time scales into a closer agreement with experiments. The
nonadiabatic excess electronic excitation energy relaxation
rates are larger in systems with high symmetry, such as in the
cubic phase of CsPbI3, as compared to the lower-symmetry,
tetragonal phase. High spatial symmetry facilitates the mixing
of multiple excited SDs comprising the excited states, leads to
an increased coupling between the excited states, and leads to
faster NA-MD.
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Schiffmann, F.; et al. CP2K: An Electronic Structure and Molecular
Dynamics Software Package - Quickstep: Efficient and Accurate
Electronic Structure Calculations. J. Chem. Phys. 2020, 152, 194103.
(65) Hutter, J.; Iannuzzi, M.; Schiffmann, F.; VandeVondele, J.
CP2K: Atomistic Simulations of Condensed Matter Systems. Wiley
Interdiscip. Rev. Comput. Mol. Sci. 2014, 4, 15−25.
(66) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient
Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865−3868.
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