Combustion Theory and Modelling, 2021 Taylor & Francis
Vol. 25, No. 5, 940-967, https://doi.org/10.1080/13647830.2021.1962981 e Taylor & Francis Group

'.) Check for updates

Numerical methodology for spontaneous wrinkling of centrally ignited
premixed flames — linear theory

Shikhar Mohan ©®* and Moshe Matalon

Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign,
Urbana, IL, USA

(Received 30 September 2020; accepted 19 July 2021)

An improved embedded-manifold/Navier—Stokes numerical methodology is developed
to simulate the propagation of premixed flames within the context of the hydrodynamic
theory. The method is computationally tractable, permitting calculations to not only
be extended to larger physical domains but also to span a broader parametric space
of physicochemical parameters. The focus of this paper is to examine the susceptibil-
ity of centrally ignited, freely propagating and outwardly expanding circular flames to
small amplitude disturbances and observe the flame’s development through the onset of
the hydrodynamic instability. The numerical simulations, validated by a linear stability
analysis, show that for mixtures with Lewis numbers above criticality, thermo-diffusive
effects exert stabilising influences which dominate at small flame radii, initially sup-
pressing the growth of all disturbances. Consistent with the linear theory, simulations
show the flame initially remaining stable and demonstrate the existence of a particular
mode which is the first to grow. This mode is said to dictate the cellular pattern observed
experimentally at the onset of instability. The variation in critical flame radius with
respect to the Markstein length and thermal expansion coefficients are in quantitative
agreement with these analytical results.

Keywords: Darrieus—Landau instability; expanding flames; spontaneous wrinkling;
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1. Introduction

Large-scale premixed flames are always susceptible to hydrodynamic instabilities. These
instabilities are known to partially contribute to the cellular appearance of spherical flames
in lean methane-air, and hydrogen-air mixtures and almost wholly in lean mixtures of
heavier hydrocarbons and rich hydrogen-air mixtures. The presence of the hydrodynamic
instability was originally identified in the pioneering works of Darrieus [1] and Landau [2],
and is referred to nowadays as the Darrieus—Landau (DL) instability. In the aforemen-
tioned works, the flame was idealised as a structureless surface, separating burnt gases from
unburnt mixture, and propagating at constant speed; it was shown that planar deflagrations
were unconditionally unstable. Recognising that this result was not valid for disturbances
with wavelength comparable to the flame thickness, Markstein [3] introduced a correction
to the flame speed proportional to the local flame-front’s curvature, albeit as a phenomeno-
logical refinement, illustrating that diffusive processes may exert stabilising influences on
the shorter wavelength disturbances. However, the functional dependence between this
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parameter, later becoming known as the Markstein length, to physicochemical parameters
of the system remained unclear.

The stability of planar flames was clarified by the more rigorous asymptotic studies of
Pelce & Clavin [4], Frankel & Sivashinsky [5] and Matalon & Matkowsky [6], which
accounted for diffusion processes occurring inside the flame zone using a multi-scale
approach. The flame speed in this systematic approach was found to depend on the local
flame stretch rate; this combined the effects of curvature and hydrodynamic strain-rate,
and the revised stability analysis showed conclusively that for planar flames diffusion
effects have a stabilising influence on short wavelength disturbances when the effective
Lewis number of the mixture is above a critical value, slightly below one. In addition,
these studies related the previously ad-hoc Markstein length to meaningful physicochem-
ical properties of the mixture. Whilst the conclusions drawn by these three independent
studies were identical, the mathematical approaches were different. Pelce & Clavin and
Frankel & Sivashinsky first linearised the governing equations about a planar flame solu-
tion, and then used a multi-scale approach to incorporate the effects of diffusion with the
perturbed equations. Instead, Matalon & Matkowsky derived a generalised framework for
treating flames of arbitrary shape in arbitrary flow fields to examine the stability of planar
flames. This more generalised formulation, referred to below as the hydrodynamic theory,
was subsequently cast in a coordinate-free form [7] which allowed the dynamics of flames
other than those in a planar configuration to be studied, such as the stability of centrally
ignited and outwardly growing flames; the focus of the present work.

The stability of spherically expanding flames was first examined by Istratov &
Librovich [8] using a Markstein model. Their results suggested that, for some range
of Markstein lengths, the initial phase of flame propagation is associated with a period
of decay for all disturbances, and that the onset of instability corresponds to a critical
Reynolds number (based on the flame radius). This critical Reynolds number was seen to
vary as a function of the thermal expansion ratio. Using the hydrodynamic formulation,
Bechtold & Matalon [9] re-examined this stability problem and derived stability criteria
for freely expanding spherical flames that accounted for both, realistic gas expansion as
well as the influences of molecular and thermal diffusion occurring inside the flame zone.
This analysis was later updated by Addabbo et al. [10] to incorporate effects due to sto-
ichiometry and more realistic temperature-dependent transport coefficients. These studies
conclusively showed that when the effective Lewis number of the mixture was above crit-
icality, the expanding flame was initially stable to small amplitude disturbances before
growing once the flame had achieved a critical radius. Visually, this corresponds to a flame
that initially propagates smoothly until reaching a certain size beyond which the stabilising
influences exerted by molecular/thermal diffusion are diminished resulting in a corrugated
front. The effective Lewis number was found to be a stoichiometry-weighted average of
the individual Lewis numbers of the fuel and oxidiser, with the deficient component in the
mixture weighting more heavily [11]. Accordingly, cellular flames are observed in mixtures
where the deficient component is less mobile (or heavier), such as lean hydrocarbon-air or
rich hydrogen-air mixtures. The linear stability analysis also confirmed the existence of a
critical wavenumber perturbation that would be the first to grow such that, when exceeding
the critical radius, the flame becomes spontaneously covered by a large number of cells,
and provided estimates of the upper and lower bounds of the cell sizes.

These predictions are consistent with the observations made by Groff [12] in an early
experiment on confined spherical flames in lean propane-air mixtures where cells with
distinct polyhedral structures became noticeable once the flame had reached a critical size.
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Since the light-reactant was in excess and thus thermo-diffusive effects were stabilising, he
concluded that the irregularity in flame shape was largely due to the DL instability. It was
further noted that the point of transition to cellularity was strongly affected by the thermal
expansion parameter. The onset of cellularity in flames with radii significantly larger than
the laminar flame thickness, and the dependence on mixture composition and pressure
level predicted in the theory of Bechtold & Matalon [9, 10] were later confirmed in a
series of experiments [13—18]. The experimental work demonstrated that the amplification
of hydrodynamic disturbances by thermal expansion morphed the flame topology into a
fractal-like pattern and led to self-acceleration and enhancement in propagation speed.

The overall objective of this work is to examine the evolution of outwardly propagat-
ing flames numerically using the hydrodynamic theory which, unlike fully resolved, direct
numerical simulations of the complete equations, is computationally efficient. The cal-
culations can thereby be extended to adequately large domains such that the growth of
boundary effects are suppressed and prevented from contaminating the solution. Equally
importantly, it permits a systematic examination of intricate flame dynamics for a wider
range of parameters, of which there are two namely: the unburnt-to-burnt density ratio,
which is proportional to the heat released by the chemical reactions, and the Markstein
length that lumps the reactive and diffusive properties of the mixture, the equivalence
ratio and the system’s pressure level. The hydrodynamic theory is particularly applica-
ble as the flame becomes increasingly thin the larger it grows, especially in the regime
where self-acceleration and self-turbulisation become distinctly observable. To this end,
a numerical methodology, one adept at reproducing the fine-grained structures frequently
reported in outwardly growing flames, based on the hydrodynamic theory is developed;
it is an improvement on the hybrid level-set/Navier—Stokes scheme proposed by Rastige-
jev & Matalon [19], Creta & Matalon [20] and used in subsequent works [21, 22]. As
a first step in its implementation, the early phase of propagation of outwardly growing
circular flames is examined. This includes the linear regime when the amplitude of distur-
bances remains small and evolves at a rate comparable to the overall flame propagation
velocity, and the early nonlinear development that extends the flame evolution to a regime
beyond what may be considered as the “onset of instability”. Analytical expressions for
the growth rate of arbitrary modes and key conditions (flame radii and critical wavenum-
ber that determine stability) are derived using a linear stability analysis, similar to that
of Bechtold & Matalon [9] for spherically expanding flames, as functions of physically
meaningful parameters. These theoretical results not only provide insight into the initial
transient behaviour of the flame, but serve as a measure of numerical fidelity when extend-
ing the numerical methodology to the highly nonlinear regime, which will be the subject
of a subsequent article.

2. The hydrodynamic model

The hydrodynamic theory is based on a multi-scale approach that exploits the various
length scales associated with the combustion process. Typically, the diffusion length
characterising the flame thickness, and defined as [y = D,,/S; where Dy, is the thermal
diffusivity of the mixture and S; the laminar flame speed, is much smaller than the length
L characterising the hydrodynamic field, such that § = [s/L < 1. As a consequence, the
flame can be treated as a thin layer where transport processes dominate, whilst the chemical
reactions due to the large activation energy are confined to a yet thinner layer within this
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zone. Therefore, when viewed on the much larger hydrodynamic length-scale, the flame
devolves into a moving interface, described by v (x, r) = 0, that separates the burnt prod-
ucts in the region ¥ > 0 from the unburnt mixture in the region ¥ < 0; here x is the vector
position and ¢ the time variable. The flow field is obtained by integrating the Euler equa-
tions with O(8) viscous corrections on either side of the flame and imposing mass and
momentum conservation across the interface in the form of modified Rankine—Hugoniot
jump conditions. The flame speed, defined as the propagation speed relative to the unburnt
gas, is the laminar flame speed Sy with an O(§) correction that accounts for the stretch rate
and is modulated by a Markstein length that mimics the diffusion and chemical reaction
processes occurring inside the flame zone. Further details of the hydrodynamic model can
be found in [6, 7, 11].

In the following, a Markstein-type model is adopted, retaining for simplicity the O(5)
corrections only to the flame speed relation, which enables a comparison with numerical
simulations of the hydrodynamic model developed so far for such conditions. For planar
flames, this simplification has been shown to slightly shift the critical Lewis number above
which diffusion effects have stabilising influences on the flame dynamics, but otherwise
provides the same stability results as predicted by the more rigorous asymptotic study [23].
The mathematical problem thus consists of

V-v=0 (D
av
0 <§ + (v - V)v> =-Vp 2)

where v is the velocity, p the pressure and p the density of the mixture given by

_ {,ou for Y (x,1) < 0 3)

ey foryx,n)>0"

where the subscripts # and b stand for “unburnt” and “burnt”, respectively. These equations
are to be solved on either side of the flame subject to the Rankine—Hugoniot (RH) relations

[o(v-n—V)]=0
[mx (vxn)]=0 “
[p+pv-m - -n=V)[=0

where [[ - ]| denotes the jump operator, and

no YV, L
VY]

=

V| ot

are, respectively, the unit vector normal to the flame surface pointing towards the burnt gas
region, and the propagation speed (measured with respect to a fixed coordinate system).
The flame speed, defined as the propagation speed relative to the incoming flow, namely
Sy = v*- n— V; where v* is the gas velocity evaluated at the flame front on its unburnt
side, is given by

Sp=8,— LK (5)
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where K is the flame stretch rate given by
K=-V;k —n-Vx(v'xn) (6)

with k = — V - n the local curvature of the flame front [24]. The second term on the right-
hand side of (6) corresponds to the surface extension resulting from velocity gradients
along the flame surface and may be expressed as —V,-v;, where V; is the surface gradi-
ent and v} the component of the velocity vector tangent to the flame surface. Since v} is
continuous across the flame, the stretch rate is uniquely defined on the interface, regardless
of whether evaluated on its unburnt or burnt side. The proportionality coefficient £ in the
flame speed-flame stretch relation (6) is the Markstein length, an expression for which can
be found in [11]. Finally, it is noted that the hydrodynamic model is valid only for £ > 0,
which constitutes the range of interest of the present study.

It is often stated that flame stretch may be expressed as a combination of curvature and
strain, which is correct in the asymptotic limit considered in the hydrodynamic model.
Indeed, expanding the right-hand side of (6) and using the leading order approximation
Sy ~ Sp, one finds that

K=8Sx—-—n-E-n+V.v

where E is the strain-rate tensor, which reduces to
K=Sx+Ks K¢=-n-E-n 7

when V .v=0. Else, in computations that resolve the flame structure, the use of
Equation (7) underestimates the stretch rate, and the reported value of stretch depends
on the representative surface within the flow field that is selected to represent the “flame
surface”. An unambiguous and unique value consistent with the hydrodynamic theory
results if the additional constraint V - v = 0 is imposed when evaluating the stretch rate,
as suggested in [25].

3. Numerical methodology

The nonlinear free-boundary hydrodynamic problem is numerically implemented as a
combination of two modules, as originally proposed by Rastigeyev and Matalon [26].
The first involves embedding the flame interface (curves in two-dimensional flows) as a
level set of an associated Cartesian scalar field ¥ (X, 7). A continuum approach is preferred
wherein discontinuities in density are smeared over a few computational grid cells. The
flame is therefore represented by a mollified Heaviside function of the form

p(Y) = pu+ % (ou = pp) (1 + tanh%) ®)
where & represents a numerical flame thickness and is taken to be an integer multiple
of the uniform grid spacing Ax. The flame interface is identified as the zeroth level-set
(i.e. ¥ = 0) of the scalar field. Along the front, the density is a constant %(,0,4 + pp) and
varies normal to the flame surface taking values p, and p, on the unburnt and burnt sides,
respectively. Although by adopting a continuum approach an artificial flame thickness 4 is
introduced, the equations for the velocity and pressure fields can be integrated in a single
sweep over the entire domain in contrast to discontinuous approaches. The integration is
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accomplished by means of a modified version of [AMR [27] which is a time-dependent,
low Mach number, incompressible Navier—Stokes solver. The Navier—Stokes equations
with a sufficiently large Reynolds number were used in lieu of the Euler Equations (1)
and (2), in order to add a small degree of dissipation to the system. The two modules are
linked through the introduction of a singular source term into Equation (1), namely

ad 1
V.v= ,Oquﬁ ; 9

which accounts for the effects of gas expansion on the flow field, and through the flow
speed dependence on flame stretch. As & — 0, the distribution (8) approaches the piece-
wise constant function (3) and, when integrating the governing equations with the source
term (9), the RH relations are recovered.

The definition of the propagation speed V/ is recast into the level-set equation

%—FWIVWI:O (10)

ot
used to update the scalar field ¥ (x, ) and, consequently, the density field. The discreti-
sation of the term V,|Vi| = Vf(l//xz—l- 1//),2)1/ 2 is handled by a Hamilton—Jacobi WENO
procedure. Approximations to the left and right-sided derivatives of v, (¥, and ¥,
respectively), and similarly of v, are calculated using fifth-order WENO schemes [28]. An
upwinding procedure described by Fedkiw et al. [29] based on modifications to Godunov’s
method is then used. The level-set field ¥ is advanced in time using a second-order
Total-Variation Diminishing (TVD) Runge—Kutta scheme.

The quantities Vy, Sy and K (including x and Ky) are strictly defined on the flame inter-
face whereas the level-set field evolves on a fixed Cartesian grid. To reconcile between
the two meshes, a high-order geometrical closest point method [30, 31] is used to propa-
gate surface data in a direction normal to the local flame surface onto the Cartesian grid.
The method closely follows the implementation described by Saye [32] and is presented
briefly here. Initially, a sweep of the domain is performed at the start of each iteration to
identify “irregular cells”. A grid cell is classified as irregular if it contains a portion of the
interface i.e., grid cells at which the scalar ¥ changes signs at any one of its vertices. At
each irregular cell, a fifth-order polynomial approximation p(x) of ¥ between grid points
is constructed using a stencil of 24 grid points in two-dimensions and 88 grid points in
three-dimensions. The interface is then sampled using the constructed polynomial approx-
imations by “projecting” initial guess values onto the zero level set for each irregular cell.
The irregular cells are divided into smaller sub-cells, and the centres of each sub-cell form
the set of initial guess values. The following equation is then solved iteratively

_Px)Vp(s)
[Vp(xi)|?

to project the guess values onto the zeroth level set of the polynomial p(x) until the
convergence criterion

Xit1 = X;

[xit1 — x| < 0.01,/n,. Ax

is met, where n,. denotes the number of sub-cells created. The outcome of this sampling
procedure is a set of scattered points S that approximate the flame interface along with
their associated interpolants.
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e sampling point r¢ >0
® closest point

® query point

cp(xq) /%o

P <0

Figure 1. The mapping between a query point X, its (perpendicular) closest point projection onto
the zeroth level set curve cp(xq) and the sampling point xo whose associated polynomial is used to
describe the local topology (colour online).

For an arbitrary query point x,, the closest point on ¥ = 0 is determined by first locating
X0, which is the closest point in the set S to x,,. This “nearest neighbour” search problem is
optimally solved by constructing a k-d tree. Next, the closest point cp(x,) to X,4, which lies
on the zero level set of p(x) associated to X, is identified; see Figure 1. This step requires
the solution to a minimum distance optimisation problem, which can be accomplished by
minimising the square distance from the query point X, to a point X, subject to the constraint
that x be on the zeroth level-set of the polynomial p(x). This step can be implemented
using the method of Lagrange multipliers. The outcome of this procedure is a mapping
that links each query point x, to the corresponding closest point on the flame surface, i.e.
cp(x,). Once interfacial quantities are known at these Lagrangian mesh points, they can be
extended back onto the Cartesian grid points. A common method for extending a function &
defined on the interface is to make it constant along characteristics of the distance function,
i.e. fox (X) = £ (cp(X)).

To minimise computational cost, a mask is created around the flame surface such that
all grid points that lie within a distance BW, Ax from the set of points in S, with BW, an
integer, are tagged. Interfacial quantities are extended only in this banded region. The cost
of the closest point extension, however, is directly proportional to the number of closest
point queries made, which increases significantly if this high-order approximation is used
throughout the entire banded region. To further minimise the cost, a secondary sub-mask
is created which tags grid cells within a radius of BW; Ax of the interface, with integer
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Figure 2. Dual masking; the flame interface is enclosed by two bands where the inner band uses the
more accurate closest point extension methodology while the outer uses a pseudo-time PDE-based
approach in the interest of minimising computational time (colour online).

BW,; < BW,. Interfacial quantities are extended using the closest point method only within
the inner band; a less accurate, but faster pseudo-time PDE-based approach is used to
populate mesh points in the outer band, as discussed below. Figure 2 illustrates the concept
of banding with BW; = 2 and BW, = 4.

The polynomial representations constructed are also used to evaluate the surface normal
n and mean curvature «. The normal n and its derivatives at a point y on the interface are
evaluated as follows

vy

"0 =19yl

Vn(y) = ﬁ(l —nn") D’y (I — nn') R

where 1 is a unitary matrix and D*y is the Hessian matrix, whilst « (y) = tr(Vn)(y).
The switch to this approach from a finite differences based approach used previously
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became necessary owing to the increased susceptibility of circular and spherical flames
to numerical noise that often distorts curvature computations. These inaccuracies in curva-
ture lead to irregularities in curvature profiles along the flame surface and thus erroneous
growth-rate profile predictions.

To compute velocity gradients along the flame surface, a stable interpolation technique
based on the translative properties of the Dirac delta function coupled together with the RH
conditions is used. Since the mass flux normal to the flame surface, i = p(v-n — Vy) =
pSy, is continuous across the flame, the integration of 7 8(n) across the entire domain,
where n represents the normal distance from 1 = 0 towards the burnt gas, yields

v*m:pr(v.n)a(n)dnJrqu. (11)
Pb + Pu Pb + Pu
The tangential velocity component does not experience a jump, so that a similar integra-
tion, leads to

nx(v*xn):/[nx(vxn)]é(n)dn. (12)

In the above equations, it must be emphasised that n represents the unit normal vec-
tor to the flame surface and not the local level set field. Utilizing a normal to the local
level set field was found to negatively impact well-known predictions, such as the onset
of instability of a planar flame. The gas velocity at the interpolation points, shown in
green on Figure 3, are evaluated using a WENO interpolation (described in [31]). The
collocation points are straightforward to construct once the direction of the normal is
known. This approach is a modified version of the method proposed in [26], where the
integration in (11)—(12) was performed in a two- or three-dimensional box formed by a
number of cells of the Cartesian grid. Although the results are not affected by this choice
when the flame surface is weakly curved, the one-dimensional integration is preferred
when the flame becomes sufficiently corrugated. The stretch rate may be evaluated from
the relation K = Sy« + K, with the straining component determined from Ky = dv,,/dn

O interpolation points

® X*

Figure 3. Evaluation of the gas velocity at a Lagrangian point (marked in red) on the flame inter-
face by performing a one-dimensional integration along the normal with respect to a delta function
(red curve) (colour online).
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evaluated at the interface; here v, =V - n is the normal component of the velocity vector.
The introduction of a numerical flame thickness, however, necessitates imposing the con-
straint V - v = 0, as discussed above. Alternatively, the stretch rate K may be evaluated
directly from (6) as attempted in [22]; in this regard, the polynomial approximation of the
flame surface of the closest point method provides a more accurate way of computing the
surface gradient.

The propagation speed V; along the interface is evaluated from the definition of Sy in
conjunction with Equation (5), namely

V, =v*-n— (S, — LK). (13)

The grid cells that form the sub-mask are then populated with their corresponding closest
point data. The values in the inner sub-mask serve as Dirichlet boundary conditions for a
less-accurate, but faster hyperbolic PDE-based extension method [33]. Here, to extend a
quantity f, the following equation

of Vy

—+SW) ——-Vf=0

P W) VU f
is solved iteratively in the outer mask where S (/) is a smeared signum function on . This
is done so that the initialised signed-distance level set function 1 maintains its properties
as the simulation progresses.

4. Analytical results

A premixed flame originating from an ignition source and freely propagating outwards into
an infinitely large space (in two-dimensions) containing the combustible mixture is con-
sidered. Using polar coordinates, all variables are expressed in terms of the radial distance
r and the polar angle 6. The hydrodynamic theory is valid once the flame attains a radius
Ry larger than the flame thickness, such that § = s /Ry < 1. Consequently, the propagat-
ing flame separates a pocket of burnt gas from the fresh unburnt mixture, as illustrated
in Figure 4. If the state of the mixture, including pressure, density and temperature, are
scaled with respect to their values in the fresh mixture, and Ry, S; and Ry/S; are used
as representative length, speed and timescales, respectively, the problem can be recast
in a dimensionless form comprising of Equations (1)- (4) with the flame speed relation
expressed as Sy = 1 — oK, where a = L/I; is the Markstein number. The only other
parameter is the density ratio, or thermal expansion parameter ¢ = p,/pp, Which is also
equal to the temperature ratio 7j /T, and hence proportional to the heat release. For future
reference, the “reduced” Markstein number M = L/Ry = S« is also defined and will be
used in the numerical computations. Below, the same symbols will be used to express
dimensionless variables.

Since § < 1, the solution of the expanding flame will be sought by expanding all
variables in powers of §.

4.1. Basic state

The basic state, corresponds to an outwardly propagating and symmetric circular flame
given instantaneously by » = R(¢). The continuity equation implies that the pocket of burnt
gas in ¥ < R(f) remains motionless, while the radial velocity « in unburnt gas, r > R(?), is
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Y >0
burned gas

Y <0

unburned gas

i -~

N ?
Figure 4. Schematic representation of a perturbed centrally ignited outgrowing flame; the flame

surface is represented by ¥ (r,0) = R[1 4+ ¢(0)] — r = 0 (the dashed curve) with the unperturbed
circular flame r = R(¢) shown as the solid curve (in red) (colour online).

inversely proportional to r. Mass conservation across the front and the flame speed relation
then yield

0 for r < R(t)
u= oa\ R s (14)
(a—l)(l —5?) = forr>R()
dR oo
E:o(l—(S?). (15)

The stretch rate K = o /R, which results directly from (6), can be also expressed as a com-
bination of curvature k = 1/R and strain Kg = (0 —1)/R, both of which diminish as the
flame grows bigger. As aresult, the expanding flame for mixtures that admit positive Mark-
stein length experiences an increase in the propagation speed that tends towards a constant
value proportional to the heat release. The effect of strain rate is to reduce the propagation
speed, therefore increasing the time that it takes for the flame to (approximately) reach a
steady rate.

Since dp/dr =0 in the burnt gas region, the pressure in the enclosed region r <
R(t) varies in time but remains spatially independent. In the unburnt gas, r > R(f), the
momentum equation implies

- 3 s

dR o—1 —1)2R?
» _ " +(1—25ﬂ)—(0 )
or dt r 7
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which can be integrated to determine the pressure field. The expression for p(r,f) is not
provided, as only the pressure gradient is required in the subsequent analysis.
Whilst the explicit expression

R=(1+4+o0t)—6oaln(l+ot), (16)

can be obtained by integrating Equation (15) for 6 < 1 with R(0) = 1, the notation R(¢)
will be used below to express the flame position with the understanding that it must be
expanded in powers of §, retaining terms correct to O(§) only.

4.2. Linear stability analysis

Since the basic state is continuously varying in time, stability or instability cannot be
defined in the classical sense. Instead, instability is determined by the tendency of the flame
to become continuously more distorted. Accordingly, if at a given instant the disturbance
increases but the basic state grows more rapidly, the flame is considered momentarily sta-
ble since the disturbance relative to the flame front would appear decaying. On the other
hand, if at a given instant the perturbation grows at a faster rate than the basic state, the
flame is momentarily unstable. At the onset of instability, the perturbation starts growing at
a rate faster than the underlying circular flame thereby resulting in a surface that becomes
increasingly corrugated in time. It is therefore convenient to express the distorted flame
front as

Yv=R®[1+¢@,0]—r=0, 17)

such that the decay/growth of ¢(0,t), which represents the distortion of the flame front
relative to the basic state, determines whether the flame is stable or not. The velocity and
pressure fields are also decomposed accordingly

V=90 +V (6,0, p=pri1)+p 0,0,

where the “overbar” represents the unperturbed (basic) state whilst the “prime” identifies
fluctuations about the mean. When introduced in Equations (1) and (2), and the resulting
equations linearised about the basic state, one finds

V.V =0,
Bv/ = / / = / (18)
P E+(v~V)v+(V~V)V =-Vp'.

These equations must be solved subject to the jump conditions (4) across the perturbed
interface (17) and the flame speed relation (5), appropriately linearised. In addition,
v,p' — 0asr — oo.

With the unit normal given by n ~ (—1, ¢y) and «’, v' denoting the velocity components
in the r and 0 directions, the velocities normal and tangential to the flame surface are
v, = —it — u' and vy = @, + V', respectively. The local curvature, propagation speed and
stretch rate are

1
K~ I_i’(l — ¢ =), Vi~—R —(Rp),

R, 1 1,
K~ E+¢’_E¢9"+§V6+O(8)

where subscripts with respect to the independent variables denote partial differentiation,
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and use has been made of u* — R, ~ —1 + O(§). The propagation speed and jump condi-
tions may then be expressed at, and across the mean flame position r = R(¢), using a Taylor
expansion, as follows:

Atr=R" (1)

/ Sa /
W = (@ =Dg+ (Ro) + = (— o (0= 1o + Ry, = 9o + 1) (19)

Across r = R(t)

, Sa(o—1) ,
[]=—-(c—De+ T(cﬂp + Ry; — @o0 +v9)
-1
mm=w—nw—@%;low (20)
28a (o —1
[[p/]] =—(c—1ep+ %(— %O’(O’—Z)QD + Ro; — @og +Vé)

The method of solving Equations (18) is different in each of the two regions. In the unburnt
gas, the velocity field is irrotational and can therefore be expressed in terms of a velocity
potential &, such that
Vo =0, V=V,
T @1
V(p +¥~I—V-V> =0.

In the burnt gas, the flow is no longer potential. However, since v = 0, the perturbed
equations reduce to
v’
- _V /’ V2 - ,
P ot L 22)
V.V =0.

Decomposition into normal modes, yields

W(r,0,0)=Urne", V(0,1 =V,

P (r,0,1) =P(r,0)e"™, 0,1 =A()e",
where the integer n represents the perturbation wavenumber. For convenience, a rescaled
time T = (o — 1)t is introduced and, since conditions (19) and (20) are applied at a moving

interface, the coordinate x = r/R(T) is defined such that the position of the unperturbed
flame is represented by x = 1 for all times. These transformations yield

3 1o 9 3 OoR 0

—_— = =, —_— =0— — — X—

or _ Rox’ ar 9T R ox
where the “dot” signifies differentiation with respect to 7. In the unburnt gas region (x >
1), Equations (21) become
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with
_ oa\o—1
R~T—8calnT, u~(1—3—) . (23)
T X
In the burnt gas region (x < 1), Equation (22) becomes
,0°P N P b
— +x— —nP=
x? ox
U R U 1 0P V- id@xU)
aT Rax_RBx T on ooax

It is then a straightforward matter to integrate these equations in their respective regions,
applying the conditions (19) and (20) at x = 1 along with the requirement that all
perturbations decay far downstream.

All variables are expanded in powers of §, namely in the form U = Uy + §U; + - - -,
and solve recursively. To leading order, the solution in the unburnt gas region is

Bo(T By(T
o )x—(n+l)’ Vo = in of )x—(n-t-l)’
T T

Po = (BO(T)+ Bot )> X"+ (o — )——2 O(T) K~ (42).

U():—I’l

In the burnt gas region, the solution is

Py = Co(T) X", Uy =—nGo(T)x""' + Dy(xT),
i 8(xDy)
n

Vo = —inGo(T)x" ' +
0x

)

where By=By(T), Go=Gy(T), Dy=Dy(xT) remain to be determined, and Cy(T) results
from

T
Go(T) = T”"/ 77" Co(t)dr .

The unknown functions By, Dy, Gy and the amplitude of the flame-front perturbation A, are
determined from the four conditions (19) and (20) which, to leading order, and after some
algebraic manipulations' yield

aTzdﬁJr(za—l)TA +nBy=0
dT 0 0o—VY,

7= Ao+ D Go=0
—ol——o —nGy =0,
dr 0 0 0

(0 —1)TAy — By + L 40D
O"_ J— —
0 0 n? dT

—TGy(T) =0,

(0—1g+0 2 4 Ly 4 799 (4 1)Gy =0

o— o— + — — —(n— =0.

O ar T ar 0

Since Dy is a function of the product x7,, the order of differentiation with respect to x and
T are interchangeable, a property that has been used in deriving the above equations. The
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system can be further reduced to a single differential equation for the amplitude Ay, namely

aTZ(:;% + bT% + cAg =0, 24
with
a=(o+n, b=2n"+ 2+40)n,
c=—[(c=1)/oln® +[Bo—1)/c1n® + 2on.
This equation admits solutions of the form 7* where the exponent w satisfies the quadratic

equation aw’ + (b — a)w + ¢ = 0. Of the two roots, the one that corresponds to instability
is

—(b—a)++/(b—a)?—4dac
o= .
Up to a constant, that depends on the initial conditions at 7 = 1, the remaining amplitudes
are given by
Ag=T" Bo=pT""", Do=pT’ Go=pT" Co=pT",
with
pr=010-20—-0w)/n, pr=oc(w+1)+pn,
B3=—llc—1)+(cwo+o+mpil/fs, Ps=(w+1)—n

To O(§), the procedure is similar except that now the equations involve non-
homogeneous terms arising from the expansion (23) of R(T) and u(x,T). The solution
in the unburnt gas region is

B((T
U =—-n [% + ao B 7% 'In T:| x b,

B\(T
v :in[ 1 )—1—0(0/31 T"’llnT} XD

. o B wot|[o—1 ©
Plz—Bl(T)——}—n ——I—C{G,Bl(lllT—l)T -1,
X T K2 X"

and in the burnt gas region
Py =Ci(T)x",
Ui = —nG(T)x"' + D, (xT) + ao [ym”’l — (X" T+ y3x?) In T] 77!,
Dy
n

V) = —inG(T)x" '+ +iao [y = (" ) InT] T,

with
T
G(T) = T""/ 7" Ci(t)dt

n*(w—n+1)
Vi=——""5—

w+1
n

nw
B, y2= _nﬂs, =0wh, =

(w—n)? w 13
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where the unknown functions B, =B(T), Gi=G(T), Dy=D(xT) remain to be
determined. As before, By, G|,D; and the correction to the amplitude A; are deter-

mined from the O(§) corrections of the four conditions (19) — (20). After some algebraic
manipulations, one finds

dA
UT2d_T1 + 20 —DTA| 4+ nBy = ao[(Ji +J;In T)T*],

dAl ’ w—1
— 0Tt —0Ay+ Dy =Gy = ao[(r+ 15T,

T d(TD)) , "
—(0—DTA =B + — a TG\(T) = ac[(J3 + J;In T)T],
n
dBl n dGl / w—1
(0 —1DA, +0d_T + ?31 + Td_T —(n—-1G, = ao[(J4 +J;InT)T ]

with
Ji=20—w—n*(1-p)) /o — 1
Jl=0w—np
h=00—0+n’(1-p) - n
Lh=r+y-ow
J3=—yi/n—(c—1)
Jy=ya/n+ya/n+ B
Jo=[20*(1=B1) /0 — 0 +2(w+D](0—1) +np
Jy=—np.
This system can be reduced to a single non-homogeneous equation for A, namely

2d2A1 dAl w—1
aT m-Fde—T-FCA] Z(XG(H1+H21HT)T (25)

with the differential operator identical to that in (24) and the constant H, and H, given by

n ,  nw nty, n? n?
H =—(cow+2n)Ji+n)) — —J)h — —=+ —J3 — —Jy,
o o c o o

n ,  ho n’ , n? ,
Hy=—(co+2nJ, — —JL+—J;——J,.
o o o o
It can be verified that the particular solution of Equation (25) is
A =ao(—oInT+ Q) T,
with

2 +[50 +2w (o +1)—3]n?
— (02—20w2—4aa)+2a +2w— l)n—oa)[a)(a —1)+20]

2[{(c + DHw +n+ o]
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Therefore, the amplitude of a disturbance with wavenumber n, scaled by its initial value,
evolves in time according to

AT) = T [1 + S (%M + %) n 0(52)} . (26)
Although similar expressions can be derived for the amplitude of the pressure and
velocities, their exact form is not needed in the following discussion.

To isolate the influence that each of the two components of stretch, curvature and strain,
exert on the flame stability, the entire analysis was repeated assuming that the flame
speed relation (5) is replaced by Sy = S;(1 — L«). The results reveal that the evolution
of disturbances is still represented by the expression (26), except now

B 2+ [(0+200w— 1)/(7]n2 + [(4o +2aa)+02—1)/0]n —wlw(oc+1) +20]

0 2[(c + Hw+n+o]

Finally, it is noted that the linear stability results of the expanding circular flames pre-
sented above bear similarity to the results of spherically expanding flames [9, 10], but
differ in the details; in particular the dependence of the expressions for w and Q on n and
0.

4.3. Growth rate

Using R to now represent the dimensional mean radius of the perturbed flame as the
independent variable, Equation (26) may be rewritten, correct to O(8), as

P R)
(YT ik e o)
Ao Ry R In(R/Ry)

where A( here is the initial amplitude, and Ry the initial flame size. To leading order,
A = Ap(R/Ry)® and, for a perturbation of given wavenumber, the growth rate w is mod-
ulated solely by the thermal expansion parameter o. At a given instant, stability (and
instability) depend on whether w is negative (or positive). Figure 5 illustrates the marginal
stability diagram which comprises a curve segregating the unstable region from the stable
one. It demonstrates that in the absence of thermal expansion (o = 1), all perturbations
exhibit a negative growth-rate (w < 0). For finite values of thermal expansion (o > 1);
however, there exists a wavenumber ny above which the flame becomes unstable. The
instability, which is due to gas expansion, is the well-known hydrodynamic instability.
Indeed, in the limit of both, n >> 1 and R > R, with k = n/R fixed, which corresponds to
a disturbance of wavenumber k (scaled with 1/Rj) on a nominally curved, or nearly planar
flame propagating at a speed R ~ oS¢, one finds that

—o0+Voi+or—0 kR
o+1 o’

,

w ~

DL

such that A ~ exp(w,, kSrt), which is the well-known Darrieus—Landau result.
The O(§) correction to the growth rate, contained in the second term of ¢ (R) propor-
tional to the Markstein length £, mimics the effects of thermal and molecular diffusion and
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2 4 6 8 10 12 14 16

Figure 5. Neutral stability diagram showing regions of stability/instability based on the leading
term of (26), or the asymptotic limit § — O.

is significant only during the early stages of propagation. Its effect becomes gradually less
important when the flame grows bigger and has a negligible influence when £L/R — 0; a
limit in which the flame is hydrodynamically unstable. The growth/decay in amplitude of
a disturbance of wavenumber n given by

1dA 1 L -
m—ﬁ(“"ﬁ@ 28)

shows that for mixtures with £ > 0, the flame surface initially grows faster than distur-
bances evolve on its surface. Thermo-diffusive effects exert a stabilising influence on
all disturbances, which are limited to relatively short wavelength bounded by the flame
circumference. When R > (Q/w)L, on the other hand, the expanding flame is unable
to suppress the growth of the disturbances due to hydrodynamic effects and the flame
becomes unstable. For mixtures with £ < 0, thermo-diffusive effects have a destabilising
influence and disturbances on the flame surface grow immediately upon their inception;
possible stabilising effects could occur when the flame size is on the order of the flame
thickness (or R < Ry), a limit not considered here. Indeed, experiments involving propa-
gating spherical flames have shown that in mixtures deficient in the less mobile reactant,
such as the fuel in lean (heavy) hydrocarbon-air or the oxidiser in rich hydrogen-air mix-
tures, the flame surface acquires a corrugated appearance only once it grows to a certain
size. It is noted parenthetically that, in contrast to molecular and thermal diffusion, viscous
effects (neglected in this study), play a secondary role on flame stability [4, 6]; they exert a
stabilising influence, when variation in the mixture viscosity across the flame is accounted
for [11, 34].

Figure 6 graphs the time history of the amplitude A as a function of flame size R obtained
from Equation (27) for perturbations with different wavenumbers n, for a mixture with
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Figure 6. Variation in normalised amplitude A as a function of flame size as predicted by linear the-
ory for a range of wavenumbers # in the absence (left figure) and presence (right figure) of strain-rate
effects; the unburnt mixture into which the flame is propagating is characterised by M = 0.03 and
o =>5.

o =5and M = L/Ry = 0.03. The left figure is based on the hypothetical case in which
the flame speed depends only on curvature with hydrodynamic strain not affecting the
propagation; the right figure corresponds to the case in which the flame speed depends on
the stretch rate that includes both curvature and strain effects. In both cases, the evolution
of the different perturbations is qualitatively similar. The amplitude of each perturbation
decays initially during a period where curvature/stretch effects are significant with the ini-
tial rate of decay of larger wavenumber perturbations being greater owing to a large number
of corrugations on the flame surface. This translates to larger peak curvatures and, by exten-
sion, stretch rates. As the flame becomes progressively larger, the stabilising influence of
stretch diminishes and beyond a certain radius, the perturbations begin to grow. The graphs
further demonstrate that the inclusion of strain further suppresses these disturbances and
delays the point at which they begin to grow, consistent with the results in [35] for planar
flames. Upon closer inspection, it is also seen that there exists a disturbance, characterised
by wavenumber 7., which is the first to grow. The corresponding flame radius, henceforth
referred to as the critical radius, at which this disturbance begins to grow marks the onset
of the instability.

The thermo-diffusive influence on flame stability, which play a crucial role in stabilising
the short wavelength disturbances for £ > 0 is consistent with the stability results of planar
flames. Once again, by considering the limit of both, » > 1 and R > Ry with k = n/R
fixed,

@) +w,)
o+ (o + Doy,

0 k*R?
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and, since for such a large flame R ~ ot, Equation (27) simplifies to

J(U + a)DL)(l + wDL) k2i| SL[
o+ (o + Do,

A ~ exp |:a)DLk - L

similar to the stability result of a planar flame [35]; see also [23].
Similar to the stability results attained for spherically expanding flames [10], curves of
marginal stability are obtained by setting the right-hand side in (28) equal to zero, such that

L Q(o,n)
Pe = —
lf a)(n)

where Pe = R/l; = RS; /Dy, is the Péclet number. For a given o, the curve traces a
peninsula-like shape in the n— Pe plane, with the nose determining the critical flame size
and wavenumber at the onset of instability. The region enclosed by the peninsula identi-
fies the range of unstable modes npi, < 1 < npy,y for a given flame radius R. Disturbances
with wavelength larger than 27 R /ny,;, are stabilised by stretch, whereas disturbances with
wavelength shorter than 27 R/np, are stabilised by the influences of diffusion. It can be
verified that the upper branch of the marginal curve asymptotes to the line R = LI"n}; .,
where I' is a constant that depends only on o, whilst the lower branch asymptotes to the
line n=n. where n’. is a constant that depends only on o. Hence, for a given mix-
ture (fixed o), the smallest possible cell size, Apin = 27R/n’ = 2w LT, is a constant,
whilst the largest possible cell size, Anax = 27 R/n). = (27 /n . )R, increases linearly as
the flame expands, and may split eventually into smaller cells. This development, however,
cannot be predicted by linear theory and will be discussed in a subsequent paper. Curves of
neutral stability are graphed below; see, for example, Figures 10 and 11 in the numerical

results section.

5. Numerical Results

A flame kernel with an initial radius of 1 is initialised at the centre of a square domain
of length L = 48. Through numerical experimentation, this was deemed large enough to
ensure that boundary effects did not pollute the solution. All reported simulations are
performed at a grid resolution of 128 points per unit length. Realistic zero-Neumann
boundary conditions are prescribed for ¥ and v whilst the pressure is set equal to zero
hence simulating an open, constant pressure domain.

5.1. Unperturbed flame

In the absence of disturbances, the expanding circular flame propagates smoothly for all
time ¢ > 0, as shown in Figure 7. The graph illustrates the variation in propagation speed
d(R)/dt as a function of flame position in the absence (top panel) and presence (bottom
panel) of strain-rate effects, for different values of the thermal expansion parameter. In
anticipation of deformations to the circular flame surface, R) = L/(2m) is defined to rep-
resent an effective flame radius where L is the flame length or perimeter. As the flame’s
radius becomes large, the effects of flame stretch diminish and the propagation speed tends
to the asymptotic value dR/dt ~ o predicted by the theory. The incorporation of strain-rate
effects (solid lines), inhibits the acceleration experienced by the flame-front, an aspect that
will become pertinent in later discussions.
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()

Figure 7. The propagation speed as a function of flame position in the absence (top panel) and pres-
ence (bottom panel) of strain-rate effects, for thermal expansion parameter values o = 4,5,6,7,8
and M = 0.04; the asymptotic behaviour dR/dt ~ o is shown by the dotted line.

5.2. Flame wrinkling

This predicted behaviour shown in Figure 6 is corroborated numerically by perturbing the
initial kernel with the form r = 1 4+ A cos nf with Ay = 1073 and n € [9, 19]. The flame,
in each case, is then allowed to propagate freely. At each instant, the perturbations on the
flame surface are computed and normalised as follows

R)

A discrete Fast Fourier transform (DFFT) of this signal is taken and the amplitude of the
disturbance corresponding to n is measured.

The outcome is illustrated in Figures 8 and 9, where the former corresponds to flame
propagation at a speed that depends solely on curvature (neglecting the influences of strain-
rate) and the latter where the flame speed depends on the stretch rate, which includes
both curvature and strain-rate. The left panel of Figure 8, which depicts the variation in
the normalised amplitudes growth rates with respect to the effective flame radius, is in
agreement with the outcome of linear theory. The relative amplitude of each perturbation
initially decays, with larger wavenumber perturbations decaying more rapidly. At some
finite radius, the growth rates approach a minimum beyond which the relative amplitude
of perturbation begins to grow. As alluded to previously, each perturbation reaches a min-
imum at a different flame radius. The perturbation with wavenumber n, which is first to
grow, determines the critical radius R, that marks the onset of instability. This is shown in
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Figure 8. Stability results of an outgrowing flame propagating at a speed that depends solely on
curvature (strain-rate effects neglected), for mixtures with M = 0.04 and ¢ = 6. The left panel
corresponds to the normalised growth rate, computed numerically, of various integer wavenumber
disturbances as a function of the flame size; the right panel displays a comparison of the numerically
computed values of the wavenumber at the onset of instability with the linear theory results.

the panel on the right, which graphs (circles) for each disturbance the flame position where
the growth rate attains its minimum value, or the marginally stable states. The nose of this
peninsula-like curve corresponds to the critical flame size R, and wavenumber n,. Super-
imposed alongside the numerical results is the marginal stability curve derived from linear
theory. The results display an overall good quantitative agreement; the minimal offset is
attributed to the fact that in the numerical implementation, the flame is not infinitesimally
thin but is diffused over a few grid points. While a reduction in the numerical flame thick-
ness translates this curve closer to the analytical result, it results in undesirable numerical
artefacts. It should be noted that if the initial amplitude is halved or doubled, the same
growth rate is obtained which is consistent with the linear theory results.

The evolution of these disturbances when effects of strain-rate are accounted for is
graphed in Figure 9. The behaviour is qualitatively similar to the preceding discussion
and good quantitative agreement with linear theory is demonstrated. More significantly,
it shows that despite the smaller Markstein number selected (M = 0.02 instead of 0.04),
which reduces the stabilising influence exerted by thermo-diffusive effects, the incorpo-
ration of strain-rate effects in the flame speed expression dampens the growth-rate of the
perturbations thereby allowing the flame to remain stable up to a larger radius. The sub-
stantial role that strain-rate effects play in delaying the onset of instability, absent in earlier
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Figure 9. Stability results of an outgrowing flame propagating at a speed that depends on flame
stretch, namely when both curvature and strain-rate effects are considered, for mixtures with
M = 0.02 and 0 = 6; the left and right panels display similar plots as in Figure 8.
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Figure 10. The marginal stability peninsula for increasing values of the thermal expansion
parameter o, for a fixed Markstein number M = 0.02 (colour online).

numerical studies [36-38], has not been previously recognised. The former two works are
based on weakly nonlinear Sivashinsky type equations derived in the limit of small ther-
mal expansion ratios whilst the latter uses a simplified flame speed relation which omits
the straining effects of the underlying flow field.
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Figure 11. The marginal stability peninsula for increasing values the increasing Markstein number
M, for a fixed value of o = 5 (colour online).

Having established the marked influence of strain in further stabilising the expanding
flame, the effect of varying the thermal expansion parameter, whilst maintaining the Mark-
stein number is illustrated in Figure 10. As o increases, the nose of the peninsula shifts
towards the right indicating a delay in the onset of instability. This is attributed to the
fact that larger gas expansion, or heat release, causes the underlying flame to propagate
relatively faster than the superimposed disturbances leading to an increasingly smoother
surface for a greater duration. Additionally, there is a subtle increase in n.. Similarly, Figure
11 depicts the marginal stability peninsula for four distinct Markstein numbers maintain-
ing the same thermal expansion parameter (o = 5). It can be seen that as M increases,
the peninsula translates further to the right. This is explained by the increased thermal and
molecular diffusion brought about by the increased Lewis number. Equivalently, it can be
interpreted as an increase in flame thickness § (recall M = §£) which also leads to greater
stability.

Since disturbances in actuality are irregular, the evolution of an initially imposed
polychromatic disturbance is examined. Such disturbances may be expressed in the form

r=1+ ZAk cos(med + i)
k

where the phases ¥ are chosen randomly in the interval [0, 7], with small amplitudes
Ayg. For the subsequent experiment, k = 6 was selected with disturbances of wavenum-
bers n =[9, 19], phases ¥ =[0.23, 0.017, 1.09, 1.08, 0.68, 0.42] and amplitudes
A =120, 1.57, 1.97, 1.75, 1.37, 1.48] x 1073. As before, the flame is allowed to evolve
freely and the evolution of different wavenumbers are tracked; the results of which are
graphed in Figure 12. For comparison, the turning points for monochromatic perturba-
tions are superimposed on the graph under identical conditions i.e. M = 0.02 and 0 = 5.
Despite the simultaneous presence of perturbations with varying wavenumbers and differ-
ing amplitudes, the growth rates are not affected. This is shown in the lack of alteration
of the turning points when compared to monochromatic disturbances. It demonstrates that,
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Figure 12. Stability results of an outgrowing flame subject to an initially imposed polychromatic
disturbance, for mixtures with M = 0.02 and o = 6; the left and right panels display similar plots
as in Figure 8 (colour online).

at least while the amplitude of the disturbances is small, the wavenumber interaction is
negligible and that linear theory is still valid.

6. Conclusions

The embedded-manifold/Navier—Stokes methodology developed in this paper to address
the nonlinear free-boundary hydrodynamic problem, obtained in the asymptotic limit in
which the flame thickness is small compared to all other length scales, is a significant
improvement of earlier versions. The refinements include (i) the application of a high-
order geometrical closest point method to propagate surface quantities that are strictly
defined on the flame surface onto the Cartesian grid used to solve the flow field; (ii) a
high-order (fifth-order in this study) polynomial approximation of the interface to evaluate
the unit vector normal to the flame surface and its gradients, as well as the local curva-
ture; (iii) a stable interpolation technique to evaluate flow quantities at the Lagrangian
mesh distributed along the flame interface. The method, applied to outgrowing flames (in
two-dimensions) was shown to be efficient and robust, capturing with sufficient accuracy
analytical results, including the long time propagation of symmetric smooth flames, the
onset of the hydrodynamic instability and the early development of the cellular flame.
The analytical results and the supporting computational study have conclusively demon-
strated that in the linear regime, where stretch has a tangible effect and the Lewis number of
the mixture is above criticality, the relative amplitude of the perturbations initially undergo
a sustained period of decay wherein the flame surface becomes progressively smoother
before becoming cellular. The critical radius at which this transition occurs is shown to



Combustion Theory and Modelling 965

be a function of the physicochemical parameters of the mixture, increasing with the ther-
mal expansion and Markstein number. The substantial role that strain-rate effects play in
delaying the onset of instability is demonstrated.

Experimental results which have examined the propagation of spherical flames have
shown that a flame only adopts a cellular appearance at a radii larger than that predicted by
linear theory. The onset was similarly noted in the present simulations to occur at a larger
flame radius. This indicates that both phenomena are observed when the relative amplitude
reaches a size much larger than its initial magnitude. While variable transport properties
have been attributed to the underestimation of the critical radius [10], a more fundamental
reason for the delay is that the disturbance preserves it co-sinusoidal distribution for a
significant duration after the critical radius.

Note

1. The details can be found in [39] and will be omitted. Note, however, there are several typos
in the thesis which have been corrected here. The interested reader should also consult the
equivalent discussion on spherical flames presented in [9].
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