PRESERVE: Static Test Compaction that Preserves
Individual Numbers of Tests

Irith Pomeranz

Abstract— A comprehensive test set targets faults of different types to
ensure that defects of different types are detected. When test compaction
is carried out for such a test set, it is advantageous if the compacted test
set contains a compact test set for each fault type separately. In this case, if
one (or more) of the fault types is found to be more important to detect,
a compact test set for it can be extracted without further processing.
This paper describes the first test compaction procedure for transition
and stuck-at faults, where by construction, the compact test set contains
compact test sets for each fault type separately. Experimental results for
benchmark circuits demonstrate the ability to compact a comprehensive
test set under this condition.

Index Terms— Broadside tests, skewed-load tests, stuck-at faults, test
compaction, transition faults.

I. INTRODUCTION

Different types of faults are targeted during test generation to derive
a comprehensive test set capable of detecting different types of detects
[1]-[7]. Faults can be static (such as stuck-at faults or single-pattern
cell-aware faults [8]) or dynamic (such as transition faults or two-
pattern cell-aware faults). Among static and dynamic cell-aware faults
there are faults that model different types of defects, and can also be
considered as different types of faults. Different types of faults can be
considered together by a test generation procedure that is designed for
this purpose [1]. Another option is to use a generalized fault model
to represent different types of faults uniformly [2], [3], [6]. In the
more commonly used approach, faults of different types are targeted
consecutively, topping off a test set for one type of faults with tests
for undetected faults of another type [4], [5].

For simplicity of discussion, this paper considers the scenario
where a test set is generated for stuck-at and transition faults.
However, the discussion is applicable whenever several different
types of faults are considered, including cell-aware faults that are
partitioned based on the types of defects they model. Considering
transition and stuck-at faults, and the scenario where top-off tests are
used, a test set for transition faults is likely to be topped off with
tests for stuck-at faults. The reason is that broadside (launch-off-
capture) and skewed-load (launch-off-shift) tests for transition faults
[9]-[10] already detect most of the stuck-at faults. Therefore, only
small numbers of tests for undetected stuck-at faults need to be added.

In the approach described in [7], single-cycle tests for stuck-at
faults are transformed into skewed-load tests to ensure that tests for
stuck-at faults also detect transition faults (this is not the case for
single-cycle tests). The transformation allows higher levels of test
compaction to be achieved when the set of target faults consists of
both transition and stuck-at faults. In general, higher levels of test
compaction are achieved if a single test set is computed where every
test can detect target faults of all the fault types. The transformation
of single-cycle tests into skewed-load tests as in [7] does not require
any fault simulation, and it is guaranteed that a skewed-load test will
detect the same stuck-at faults as the single-cycle test from which it
is derived.

Suppose that a test set T; is generated for transition and stuck-
at faults (the discussion applies to any other combination of fault
types). It is important for the discussion in this paper to partition 7;

Irith Pomeranz is with the School of Electrical and Computer Engineer-
ing, Purdue University, West Lafayette, IN 47907, U.S.A. (e-mail: pomer-
anz@ecn.purdue.edu).

This work was supported in part by NSF grant CCF-1714147

(a) Ttr.i Tcom,i Tsaﬁi
(b) Ttr 0 Tsn 0
(C) Ttr,i Tc'am N Tsa,i

Fig. 1. Test set for transition and stuck-at faults

into a subset T3, C T; of tests needed only for transition faults,
a subset Ts,; C T; of tests needed only for stuck-at faults, and a
subset Teom; C T; of tests needed for both types of faults. Such
a partition is not unique, and it will be obtained by construction in
the procedure described in this paper. The partition is illustrated by
Figure 1(a). With this partition, the subset T3, UTcom,; is a transition
fault test set, and the subset Tsq; U Teom,; is a stuck-at test set. As
discussed later, it is advantageous if T3, U Tcom, 1S a compact test
set for transition faults, and Tsa, U Teom,; is a compact test set for
stuck-at faults.

When T is compacted for the two fault types together, as in [7], a
set covering procedure [11] is needed for finding transition and stuck-
at test sets from the tests in 7;. From these test sets it is possible
to find T}, Tsa; and Teom,;. The transition and stuck-at test sets
Tir; UTeom; and Tsq, UTeom, may not be as compact as individual
test sets that are computed for transition and stuck-at faults directly.
This is illustrated by Figure 1(b) that shows compact test sets Ty, o
and T,q,0 for transition and stuck-at faults, respectively. In general,
such test sets do not share any tests, and Teom,0 = (. Although
|Ttr,0| + [Tsa,0| > |T3], we have that |Tir 0| < |T¢ri| +|Teom,:| and
|Tsa,0] < |Tsa,i|+|Teom,:|. The increase in the number of tests in the
individual transition and stuck-at test sets contained in 73 supports
the reduction in the total number of tests of Tj.

When T; is generated by topping off a transition fault test set with
stuck-at tests, the transition fault test set 7%, ; U Tom,: consisting of
the first tests in 7; is compact. For stuck-at faults it is necessary to
apply a set covering procedure to find the test set contained in T}
[11]. In this case, the stuck-at test set Tsq,; U Teom,; may be larger
than a test set computed directly for stuck-at faults.

In the general context where a single test set 7; targets several
fault types to achieve test compaction as in Figure 1(a), the test sets
for the individual fault types included in 7; are important for the
following reason.

Depending on the types of defects present in faulty units, one (or
more) of the fault types considered may be more effective than the
others in modeling defects. Thus, a test set for one (or more) fault
types may be more important to apply. Especially if 7; is a large test
set, it may need to be truncated to address constraints related to the
tester memory or test application time. In this case, it is important
to be able to identify a smaller test set for the relevant fault types.
In a specific scenario described in [12], a test set is generated with
requirements for >99% stuck-at fault coverage, >95% transition fault
coverage, some coverage of cell-aware and small delay faults, and
an upper bound on the number of tests. Because of overheads related
to initialization of the chip and translation of the test data, there is
an overflew in test data volume. The test engineer calculates that
5% of the tests need to be removed. This needs to be done without
compromising on the hard fault coverage requirements.

Based on this discussion, the procedure described in this paper
produces a compact test set 7; for transition and stuck-at faults, but
ensures that the subset of tests included in 7; for each one of the

Toyi Ty
Top.i
Ty,
Thei
TC,i
Tea,
Tq;
Ty,
T(’,i
Teyi
T,

Fig. 2. Test set for six fault models

fault types alone is not larger than a compact test set for this fault
type. Referring to Figure 1, the procedure produces 7; such that
|Ttr,i| + |Tcom,i| - |Ttr,0| and |Tsa,i| + |Tcom,i| - |T€a,0| while
T; is as small as possible. This is illustrated by Figure 1(c). In the
scenario from [12], 7; allows one to avoid omitting tests that will
decrease the stuck-at or transition fault coverage.

In the procedure described in this paper, the partition of 7; into
Tiryis Tsa,i and Teom,; is obtained by construction. Thus, it is not
required to use a set covering procedure for obtaining individual test
sets for transition and stuck-at faults. The procedure starts with Ty =
Tir0 U Tsa,0 and Teom,0 = 0. For ¢ > 4, it adds a test to Teom,;
only if it can remove one test from 7%,; and one test from Tsq ;.
In this way, it preserves the numbers of tests in the transition and
stuck-at test sets Ty, UTcom, and Tsq; UTcom,; included in T3, while
reducing the number of tests in 7;.

This is the first paper to describe a test compaction procedure for
several fault types that preserves the numbers of tests in compact
test sets for the individual fault types, and it achieves this goal by
construction.

To extend the discussion to more than two fault types, it is
important to note that the computational complexity of computing
common tests increases as the number of fault types increases.
In addition, fewer common tests are likely to exist. Instead, the
procedure described in this paper can be applied without modification
to pairs of fault types. This is illustrated in Figure 2, where six fault
types denoted by a, b, ..., f are considered. Fault types a and b are
considered to produce the set of common tests denoted by Tq 5 ; in
Figure 2. Fault types ¢ and d, and fault types e and f, are considered
in a similar way. Next, common tests are found out of T} ; and Tt ;
to form the set denoted by T} . ;. In a similar way, T4 ¢ and 15 5 ;
are formed. Every time a test is added to a common set, the total
number of tests is reduced by one. After considering each fault type
twice, additional common tests are less likely to exist.

The paper is organized as follows. Section II provides an overview
of the test compaction procedure, and discusses how the procedure
ensures that, as T; is compacted, it continues to contain compact
test sets for transition and stuck-at faults individually. The procedure
described in Section Il updates Ty = Tir,0UTsq,0 when Tsq.0 detects
transition faults that are not detected by 7%,,0, or 1%, 0 detects stuck-at
faults that are not detected by 7sq,0. An iteration of test compaction is
described in Sections IV and V. The need for an iterative procedure is
discussed in Section VI. Experimental results for benchmark circuits
are presented in Section VII.

II. COMPACT INDIVIDUAL TEST SETS

The test compaction procedure described in this paper accepts
compact test sets 73,0 and Tsq,0 for transition and stuck-at faults,

respectively, as shown in Figure 1(b). Several options are possible
for the test types in Ty, 0 and Ts4,0. In general, the test compaction
procedure is developed under the assumption that every test type in
the test sets it considers is suitable for every fault type it considers.
The specific scenario considered in this paper is the following.

The transition fault test set 7%, consists of both broadside and
skewed-load tests. This is important for achieving the highest possible
transition fault coverage. It is also important for test compaction. The
stuck-at test set Tsq,0 is a single-cycle test set. Every single-cycle test
is transformed into a skewed-load test as described in [7]. Initially,
To = Ttr,O U Tsa,Oy and Tcom,O = @

Starting from 7y the procedure produces compact test sets 171, 1o,
.... For 4 > 1, the procedure maintains the partition of 7; into T3, ;,
Tsa,i and Teom,; as shown in Figure 1(c). This is important for the
following reason.

Let the set of transition faults be F%,, and let the set of stuck-at
faults be Fs,. To determine the fault coverage of T;, Fy, is simulated
only under T3y ; U Tcom,:, and Fs, is simulated only under 1%, ; U
Teom,i- This implies that the procedure maintains 7%y ; U Tcom,: as a
test set for transition faults, and T%sq,; UTcom,; as a test set for stuck-
at faults. The procedure ensures that the numbers of tests in these
subsets do not increase for ¢ > 1. It thus ensures that 7; continues to
contain compact test sets for transition and stuck-at faults individually
as it is compacted.

The procedure first updates Ty by checking whether any of the
tests in Tsq,0 detects transition faults that are not detected by T3, 0.
This is based on the experimental observation that, after a single-
cycle test for stuck-at faults is transformed into a skewed-load test, it
sometimes detects transition faults that are not detected by 7%, 0. This
occurs even when a commercial tool generates broadside and skewed-
load tests for transition faults. When this occurs, the skewed-load test
is moved from Tiq,0 t0 Teom,0. This implies that the test is also used
for detecting transition faults. For completeness, the procedure also
simulates stuck-at faults under the tests in T}, . If a stuck-at fault is
detected, the procedure moves the test from 73,0 to Tcom,o-

Moving tests from Tsq,0 0 Ttr0 t0 Teom,0 increases the number
of tests in the test sets 13,0 UT com,0 and Tsq,0UTcom,0 for detecting
transition and stuck-at faults, respectively. This is accepted to support
the increase in the fault coverage when 73,0 U Teom,0 is used as a
transition fault test set, or Tsq,0 U Tcom,0 is used as a stuck-at test
set. This is the only step where the numbers of tests in the individual
test sets may be increased.

Next, in an iterative process, for ¢ > 1, the procedure uses the
test set 731 obtained in iteration ¢ — 1 to produce a test set T as
shown in Figure 1(c). Initially, 73 = T5_1. This implies that T}, ; =
Ttr,i—ly T@a,i = Lsa,i—1, and Tcom,i — Lcom,i—1- The procedure
repeats a process where it attempts to move a test t; from either
Tiri of Tsa,; 10 Teom,i- This is acceptable when the inclusion of ¢;
in Tcom,; allows the procedure to remove a test from 7sq,; or T4y,
respectively. Effectively, adding ¢; to T¢.om,; removes two tests, one
from 7%, ; and one from T, ;, thus contributing to the compaction of
T;. With this process, the set Tcom,; is such that | Ty i| + [Teom,i| =
|Ttr,i—1|+|Tcom,i—1|7 and |Tsa,i|+|Tcom,i| - |T€a,i—1|+|Tcom,i—1|-
Thus, test compaction is achieved without increasing the numbers of
tests in the individual transition and stuck-at test sets.

The procedure has the option of modifying ¢; to ensure that it
can replace tests from 7%, ; and Tsq,;. An iteration of the procedure
without test modification is described in Section IV. An iteration of
the procedure with test modification is described in Section V.

ITII. ADDITIONAL FAULT COVERAGE

This section describes the use of tests from 7,0 and 7%, o for the
detection of transition and stuck-at faults, respectively.

Initially, To = Tir0 U Tsa,0, and Teom,0 = 0. Fault simulation
with fault dropping is carried out for F3, under 7%, 0, and F, under
Tsa,0, to remove detected faults from consideration.

Next, for every test t; € Tsq,0, the procedure performs fault simu-
lation with fault dropping of F}, under ¢;. If any faults are detected,
the procedure moves t; from Tsq,0 to Teom,0. With Teom,0 # 0,
the transition fault test set contained in 7o is T%r,0 U Tcom,0, and it
detects transition faults that are not detected by 7% 0.

For completeness, the procedure also checks in a similar way
whether tests for transition faults detect additional stuck-at faults.
The procedure is summarized next as Procedure 0.

Procedure 0: Additional fault coverage

1) Assign To = Tir0 U Tsa,0-

2) Perform fault dropping fault simulation of Fi, under 7%, 0.

3) Perform fault dropping fault simulation of F, under T%sq,0.

4) For every test t; € Tsq0:

a) Perform fault dropping fault simulation of F%, under ¢;.
b) If any faults are detected, move ¢; t0 Teom,0-

5) For every test t; € Tir0:

a) Perform fault dropping fault simulation of F§, under ¢;.
b) If any faults are detected, move ¢; t0 Tcom,o-

Since no new tests are added to Tp, its number of tests does not
change. However, it is possible to obtain |T%r0| + [Teom,o0| > |Tir,0]
or |Tsa,0| + |Teom,0| > |Tsa,0| to support the increase in the fault
coverage. The test compaction procedure considers |Tr0|+ [Tecom,o|
and |T’sq,0| + |Tcom,0| as the numbers of tests to preserve in compact
test sets for transition and stuck-at faults individually.

IV. TEST COMPACTION WITHOUT TEST MODIFICATION

This section describes iteration ¢ > 1 of the test compaction
procedure without test modification. The procedure reduces the
number of tests in 7; relative to the number of tests in 7;_1 by
repeating a step where it moves a test from 7%, ; or Tsq,i t0 Tcom,:
unmodified, and removes a test from T, ; or Ty ;, respectively.

Initially, 7; = T;—1. This implies that 7%, ; = Tiri—1, Tsa,i =
Tsa,ifl, and Tcom,i — Lcom,i—1-

In a preprocessing step to test compaction, the procedure performs
fault simulation with fault dropping of Fi, under Tom, ; followed by
Tir,i. The subset of faults that a test ¢; € T},; detects is denoted by
Dy i(t). In a similar way, the procedure performs fault simulation
with fault dropping of F, under T.om,; followed by T, ;. The subset
of faults that a test t; € Tsq,; detects is denoted by Daa,i(t;).

The procedure considers every test t; € T3, ; U Tsq,4, €ach one
alone. The tests are considered in a random order since it is unknown
in advance which tests will be effective for test compaction.

When the procedure considers a test t; € T3, it attempts to find
a test ¢, € Tsq,s such that ¢; detects all the stuck-at faults detected
by tx. In this case, the procedure moves t; from 7%, ; t0 Tcom,:, and
removes tj from T, ;. Overall, the number of tests in T; decreases
by one (one test is moved, and one test is removed). The numbers
of tests in T3y i U Teom.i and Tsa i U Teom.i remain the same.

To check whether t; € T}, ; detects all the stuck-at faults detected
by any test tx € Tsa,i, the procedure considers the set Fi, of all
the stuck-at faults. It performs fault simulation of Fi, under ¢;. The
subset of detected faults is denoted by Esq,i(t;).

The procedure compares Esq:(t;) with Dsq ;(tx) for every test
ty, € Tsq,i- If it finds a test ¢y such that Dsq i(tr) C Esq,i(t;), it
uses t; and t; to reduce the number of tests in 7;. Specifically, it
moves t; from T4 ; t0 Teom,i, and removes ti from Ty, ;. In this
case it does not compare ¢; with any other tests from Ts,,;. In a
similar way, the procedure considers every test t; € Tsq,;.

It is important to note that the subsets Dsq,;(tx) and Dyr;(tx) are
obtained by fault simulation with fault dropping. Even when the test
sets are compact, small subsets are obtained for tests at the end of
the test set. This allows tests to be moved to Teom, ;.

The procedure is summarized next as Procedure 1. Procedure 1
associates a flag denoted by try(t;) with every test t; € Ty i UTsq,i-
The flag try(¢;) indicates whether ¢; still needs to be considered for
test compaction. It is initially one, and changed to zero after ¢; has
been considered.

Procedure 1: Iteration of test compaction without test modification

1) Assign T; = T;—1.

2) Perform fault simulation with fault dropping of F%, under
Teom,: followed by T, ;. For every test t; € i, find the
subset of faults Dy, ;(t;) that the test detects.

3) Perform fault simulation with fault dropping of Fs, under
Teom,i followed by Tsq,;. For every test t; € Tsq,s, find the
subset of faults Dsq ;(t;) that the test detects.

4) For every test t; € Tyr; U Tsq,; assign try(t;) = 1.

5) If try(t;) = 0 for every test tj € Tyr; U Tsa,i, StOp.

6) Select a test t; € Tiri U Tsq,i with try(t;) = 1. Assign
try(t;) = 0.

7 Ift; € Tiryit

a) Perform fault simulation of F§, under ¢;, and find the
subset of detected faults Fqq,(t;).
b) Assign found = 0. For every test ti € T5sq,i, as long as
found = 0, if Dsa,i(tk) g Esaﬂ'(t]‘)I
i) Move t; from Tir; t0 Teom,i-
ii) Remove t from Tsq ;.
iii) Assign found = 1.
8) If tj € Tyt
a) Perform fault simulation of Fj, under ¢;, and find the
subset of detected faults Fyr i (¢;).
b) Assign found = 0. For every test ¢t € T3, 4, as long as
found = 0, if Dtr,i(tk) g Etr,i(tj)i
i) Move t; from Tsa,; t0 Teom,i-
ii) Remove t from 1%, ;.
iii) Assign found = 1.

After applying Procedure 1, the number of tests in 7; is decreased
by |Teom,i| — |Teom,i—1| relative to the number of tests in T;_1. We
also have that |Ttr z| + |T(‘om z| = |Ttr1 1| + |Tcom i— 1| =
|Ttr O| + |Tcom O| and |Tsa z| + |Tcom z| — |Tsa i— 1| + |T(‘om i— 1| -

|Tsa,0| + |Tcom,0|v

V. TEST COMPACTION WITH TEST MODIFICATION

An iteration of test compaction with test modification is described
in this section.

An iteration ¢ with test modification proceeds as in Section IV
to consider every test t; € Tir; U Tsq,;. Suppose that t; € Ty ;.
Without test modification, after computing Fsq,i(t;), the procedure
searches for a test tx € Tsq,; such that Dsq i(tk) C Fsa,i(t;). If
this condition is satisfied, ¢; and ¢, are used for compacting T;.
When test modification is an option, it is applied to t; and ¢ if
|Dsa,i(tr) \ Esa,i(t;)| < A, for a constant A. Thus, ¢; detects all
but A faults that ¢, detects.

The goal of the test modification procedure is to obtain a test t;
that detects all the faults in D¢r;(t;) U Dsa,i(tx). A smaller value
of A makes it more likely that ¢;; can be found. Test generation
targeting the faults in Dy ;(t;) U Dsqa,i(tx) can be used for this
purpose. The implementation used in this paper starts from t; = t;.
It modifies ¢; , by complementing its bits one by one. A complemen-
tation is accepted if it does not cause t; to lose the detection of

TABLE I
EXPERIMENTAL RESULTS
tests tot/ com f.c tot/max0
circuit proc iter tr sa com tot tot0 max0 tr0 sa0] sal tr sa ntime [7]
aes_core 0 0 273 208 0 481 1.000 1.762 0 0 0 0 99.992 100.000 3.00
aes_core 1 1 265 200 8 473 0983 1.733 1 7 0 0 99.992 100.000 27.41
aes_core 2 1 262 197 11 470 | 0977 1722 1 7 0 3 99.992 100.000 1952.10
aes_core 2 2 261 196 12 469 0975 1.718 1 7 0 4 99.992 100.000 3611.61 0.972
§35932 0 0 30 20 0 50 1.000 1.667 0 0 0 0 89.781 89.809 3.83
§35932 1 1 28 18 2 48 0.960 1.600 1 1 0 0 89.781 89.809 10.13
§35932 2 1 27 17 3 47 0.940 1.567 1 1 1 0 89.781 89.809 293.50 1.552
systemcaes 0 0 158 121 0 279 1.000 1.766 0 0 0 0 99.841 99.995 3.03
systemcaes 1 8 118 81 40 239 0.857 1513 30 10 0 0 99.841 99.995 144.35
systemcaes 2 1 105 68 53 226 | 0.810 1.430 30 10 7 6 99.841 99.995 2295.13
systemcaes 2 8 81 44 71 202 | 0724 1.278 32 10 22 13 99.841 99.995 9879.02 0.987
$38584 0 0 393 146 0 539 1.000 1372 0 0 0 0 93.785 95.852 434
$38584 1 2 353 106 40 499 0926 1.270 10 30 0 0 93.785 95.852 70.13
$38584 2 1 329 82 64 475 0.881 1.209 10 30 2 22 93.785 95.852 5654.68
538584 2 6 310 63 83 456 | 0.846 1.160 10 34 6 33 93.785 95.852 17593.30 0.930
$5378 0 0 215 122 0 337 1.000 1.567 0 0 0 0 97.866 99.131 3.34
$5378 1 2 181 88 34 303 0.899 1.409 9 25 0 0 97.866 99.131 61.89
$5378 2 1 161 68 54 283 0.840 1.316 9 25 1 19 97.866 99.131 3246.17
$5378 2 9 127 34 88 249 0.739 1.158 17 25 15 31 97.866 99.131 14658.28 0.949
wb_dma 0 0 138 64 2 204 1.000 1457 0 0 0 0 99.692 100.000 3.12
wb_dma 1 3 106 32 34 172 | 0.843 1.229 18 14 0 0 99.692 100.000 81.39
wb_dma 2 1 98 24 42 164 | 0804 1.171 18 14 2 6 99.692 100.000 2652.69
wb_dma 2 3 96 22 44 162 | 0794 1.157 18 14 2 8 99.692 100.000 6611.54 0.912
b20 0 0 243 196 188 627 0.951 1.455 0 0 0 0 95.446 95.744 5.07
b20 1 7 137 90 294 521 0.791 1.209 76 30 0 0 95.446 95.744 45.13
b20 2 1 110 63 321 494 | 0750 1.146 | 76 30 7 20 95.454 95.744 405.48
b20 2 5 87 40 344 471 0715 1.093 83 32 14 27 95.454 95.744 997.96 1.729
bl4 0 0 235 235 113 583 0975 1.675 0 0 0 0 94.482 95.532 474
bl4 1 15 36 36 312 384 | 0642 1.103 | 177 22 0 0 94.482 95.532 63.14
bl4 2 1 33 33 315 381 0.637 1.095 | 177 22 0 3 94.488 95.532 105.78
bl4 2 2 32 32 316 380 | 0.635 1.092 | 178 22 0 3 94.488 95.532 139.44 1.668
tv80 0 0 647 459 41 1147 | 0.996 1.667 0 0 0 0 98.080 99.591 3.96
tv80 1 8 286 98 402 786 | 0.682 1.142 | 299 62 0 0 98.080 99.591 161.76
tv80 2 1 259 71 429 759 0.659 1.103 | 299 62 16 11 98.080 99.591 1269.03
tv80 2 5 231 43 457 731 0.635 1.062 | 309 63 26 18 98.080 99.591 4091.78 1.026
§9234 0 0 296 157 3 456 1.000 1.525 0 0 0 0 93.313 93.475 4.59
§9234 1 5 219 80 80 379 0.831 1.268 65 12 0 0 93.313 93.475 76.47
§9234 2 1 192 53 107 352 | 0772 1.177 65 12 4 23 93.313 93.475 705.33
§9234 2 10 151 12 148 311 0.682 1.040 | 76 14 17 38 93.313 93.475 2240.39 1.088
538417 0 0 499 116 6 621 0.994 1230 0 0 0 0 99.568 99.471 3.52
$38417 1 3 422 39 83 544 | 0870 1.077 0 71 0 0 99.568 99.471 192.86
$38417 2 1 406 23 99 528 0.845 1.046 0 71 1 15 99.568 99.471 2655.80
$38417 2 2 402 19 103 524 | 0.838 1.038 0 79 2 16 99.568 99.471 4084.56 0.866
§13207 0 0 436 244 1 681 0.999 1.558 0 0 0 0 96.824 98.462 4.05
$13207 1 3 222 30 215 467 0.685 1.069 | 139 75 0 0 96.824 98.462 81.20
$13207 2 1 205 13 232 450 | 0.660 1.030 | 139 75 8 9 96.824 98.462 594.46
513207 2 2 203 11 234 448 0.657 1.025 | 139 75 9 10 96.824 98.462 893.32 0.891
bl5 0 0 397 306 104 807 0.989 1.611 0 0 0 0 98.311 98.660 3.85
bl5 1 7 123 32 378 533 0.653 1064 | 245 29 0 0 98.311 98.660 66.80
bl5 2 1 113 22 388 523 0.641 1.044 | 245 29 5 5 98.317 98.660 189.39
bl5 2 4 101 10 400 511 0.626 1.020 | 246 31 8 11 98.325 98.660 359.70 1.204
515850 0 0 355 130 2 487 0992 1.364 0 0 0 0 95.116 96.682 423
515850 1 4 227 2 130 359 0.731 1.006 | 40 88 0 0 95.116 96.682 88.01 0.971
spi 0 0 460 405 1 866 1.000 1.879 0 0 0 0 99.708 99.985 3.10
spi 1 8 63 8 398 469 0.542 1017 | 359 38 0 0 99.708 99.985 56.70
spi 2 1 58 3 403 464 | 0536 1.007 | 359 38 3 2 99.708 99.985 82.35
spi 2 2 56 1 405 462 0.533 1.002 | 359 38 5 2 99.708 99.985 92.23 0.938
des_area 0 0 112 118 0 230 1.000 1.949 0 0 0 0 100.000 100.000 3.01
des_area 1 8 0 6 112 118 0.513 1.000 | 112 0 0 0 100.000 100.000 76.47 1.723

any of the faults it already detects out of D¢y (¢5) U Dsq,i(t). It
terminates successfully if ¢; j detects all these faults.

Step 7)b) of Procedure 1 is modified as follows to accommodate
the test modification option. A similar modification is performed to
Step 8)b).

Procedure 2: Step 7)b) of test compaction with test modification

1) Assign found = 0. For every test t; € Tsq,i, as long as

found = 0, if |Dsa,i(tk) \ Esa,i(t;)] < A:
a) Attempt to find a test ¢; that detects all the faults in
Dtr,i(t]‘) U Dsayi(tk). If tik is found:

1) Add t]‘,k to Tcom,iv
ii) Remove ¢; from T}, ;.
iii) Remove ti from Tsq ;.

iv) Assign found = 1.

VI. ITERATIONS

This section discusses the need for iterating the procedures from
Sections IV and V.

At the beginning of iteration ¢ > 1, 7; = T;_;. The procedure
performs fault simulation with fault dropping of F%, first under Tcom,:
and then under 7%, ;. Similarly, it performs fault simulation with
fault dropping of Fi, first under 7.om ; and then under T, ;. This
associates a set of detected faults Dy, ;(t;) with every test t; € Ty s,
and Dsq,i(t;) with every test t; € Tsq,;.

If iteration ¢ moves tests from Ty, ; or Tsa,i to Teom,i, fault
simulation at the beginning of iteration ¢ + 1 can result in smaller
subsets of detected faults Dy ;41 (t;) for t; € Tir i41 OF Dsa it1(t5)

for t; € Tsa,i+1. With smaller subsets of detected faults, the
conditions Dyr i+1(tx) C Eirit1(t5)s Dsa,i+1(tk) C Fsa,it1(t;),
|Dirit1(tre)\Eeri1(t5)| < Aand |Dsa,ig1(tr)\Esa,it1(tj)] < A
may be satisfied for additional pairs of tests. Thus, it may be possible
to compact ;41 further.

Starting from Ty = Tir0 U Tsa,0, Procedure O is applied once
to update the partition of the test set 7p into subsets. The test
modification step included in Procedure 2 implies that Procedure 2
has a higher computational complexity than Procedure 1. Therefore,
Procedure 1 is applied first. It is applied iteratively as long as it
reduces the number of tests in 7;. Finally, Procedure 2 is applied
iteratively as long as it reduces the number of tests in 75.

VII. EXPERIMENTAL RESULTS

This section presents the results of the test compaction procedure
for benchmark circuits.

Procedure 2 is applied with A = 4 as the maximum number of
additional faults that a modified test needs to detect.

The results are given in Table I. The first row for every circuit
describes the test set obtained by Procedure 0. The second row
describes the test set obtained in the last iteration of Procedure 1
where it reduces the number of tests. If Procedure 2 reduces the
number of tests, the next rows show the results after the first iteration,
and the last one that reduces the number of tests. Intermediate
iterations (not reported) show that the procedure can be terminated
earlier without a significant loss in test compaction.

For every test set, column proc shows which procedure is applied.
Column ¢ter shows the iteration ¢ of the procedure. Column tests
shows the numbers of tests in T4, ;, Tsa,is Teom,: and T;. With both
broadside and skewed-load tests in 7%, 0, it is possible to reach a
transition fault coverage that is similar to the stuck-at fault coverage,
and a similar level of test compaction.

Column tot/ shows two ratios. Subcolumn tot0 shows the ratio
|T3|/|To|. This is the reduction in the total number of tests. Subcol-
umn maz0 shows the ratio |T;|/max{|Tir0| + |Tcom,ol, |Tsa 0| +
|Tcom,o0|}- A compact test set for transition and stuck-at faults is at
least as large as a compact test set for one of the fault types alone.
The larger of the two test sets contains the number of tests in the
denominator. The ratio shows by how much the compact test set
for both fault types is larger than this lower bound. The circuits are
arranged by decreasing order of this ratio.

Column com shows the number of times a test is moved from
Tiri to Teom,i, followed by the number of times a test is moved
from Tsq,i to Tcom,i, Without and with modification.

Column f.c. shows the transition fault coverage followed by the
stuck-at fault coverage. Column ntime shows the runtime for the
computation of 7; divided by the runtime for fault simulation with
fault dropping of Tp. This is referred to as the normalized runtime.

The ratio tot/maz0 for the procedure from [7] is shown in the
last column of Table I for comparison. A direct comparison with [7]
is not possible since only skewed-load tests are used in [7], and test
compaction does not preserve the numbers of tests for the individual
fault types. However, the ratio tot/max0 can be computed using the
final number of tests in [7] for tot, and the number of transition or
stuck-at fault tests in the initial test set for max0.

The following points can be seen from Table I. Procedure 1 finds
significant numbers of tests in T}, ; and Tsq,; that can be used for
removing tests from the other subset. This allows it to reduce the
number of tests in 7; without increasing the number of tests required
for detecting each fault type alone.

By modifying tests from 7%, ; and Ts,,:, Procedure 2 finds addi-
tional tests that can replace pairs of tests. It thus reduces the number

of tests in 7; further without increasing the number of tests required
for detecting transition or stuck-at faults alone.

The ratio under column tot/mazx0 shows that the final test set T
obtained by the test compaction procedure is within 10-20% of its
lower bound for most of the circuits. This indicates that a significant
level of test compaction is achieved. The ratio is in a similar range
to the ratio obtained for [7].

For most of the circuits, tests for transition faults are more effective
in detecting both fault types and thus providing test compaction. How-
ever, there are non-trivial numbers of stuck-at tests that contribute to
test compaction.

The normalized runtime of Procedure 2 is significantly higher than
that of Procedure 1. The runtime of Procedure 2 is higher for circuits
where a slower reduction in the number of tests is obtained. When
Procedure 2 performs a large number of iterations, it is possible to
terminate it earlier without a significant loss in test compaction.

VIII. CONCLUDING REMARKS

This paper described a test compaction procedure for transition and
stuck-at faults. The unique feature of the procedure is that it ensures
that the compact test set contains compact test sets for each one of
the fault types alone. To achieve this goal the procedure maintains a
partition of the compact test set into a subset of tests that are used
only for transition faults, a subset that is used only for stuck-at faults,
and a common subset used for both fault types. Test compaction is
achieved by increasing the number of common tests, and reducing
the number of tests that are used only for one of the fault types.
Experimental results for benchmark circuits demonstrate the ability
to compact a test set under these conditions.

REFERENCES

[1] L. N. Reddy, I. Pomeranz and S. M. Reddy, "COMPACTEST-II: A
Method to Generate Compact Two-pattern Test Sets for Combinational
Logic Circuits”, in Proc. Intl. Conf. on Computer-Aided Design, 1992,
pp. 568-574.

[2] R. Desineni, K. N. Dwarkanath and R. D. Blanton, "Universal Test

Generation using Fault Tuples”, in Proc. Intl. Test Conf., 2000, pp. 812-

819.

S. M. Reddy, G. Chen, J. Rajski, I. Pomeranz, P. Engelke and B. Becker,

”A Unified Fault Model and Test Generation Procedure for Interconnect

Opens and Bridges”, in Proc. Europ. Test Symp., 2005, pp. 22-27.

S. Goel and R. A. Parekhji, "Choosing the Right Mix of At-Speed

Structural Test Patterns: Comparisons in Pattern Volume Reduction and

Fault Detection Efficiency”, in Proc. Asian Test Symp., 2005, pp. 330-

336.

[5] S. Alampally, R. T. Venkatesh, P. Shanmugasundaram, R. A. Parekhji
and V. D. Agrawal, ”An Efficient Test Data Reduction Technique through
Dynamic Pattern Mixing Across Multiple Fault Models”, in Proc. VLSI
Test Symp., 2011, pp. 285-290.

[6] C.-H. Wu and K.-J. Lee, "Transformation of Multiple Fault Models to
a Unified Model for ATPG Efficiency Enhancement”, in Proc. Int. Test
Conf., 2016, pp. 1-10.

[7]1 1. Pomeranz, ”Skewed-Load Tests for Transition and Stuck-at Faults”,
IEEE Trans. on Computer-Aided Design, Vol 38, No. 10, Oct. 2019, pp.
1969-1973.

[8] F. Hapke and J. Schloeffel, “Introduction to the Defect-oriented Cell-
aware Test Methodology for Significant Reduction of DPPM Rates”, in
Proc. European Test Symp., 2012, pp. 1-6.

[9] J. Savir and S. Patil, ”Scan-Based Transition Test”, IEEE Trans. on
Computer-Aided Design, Aug. 1993, pp. 1232-1241.

[10] J. Savir and S. Patil, “Broad-Side Delay Test”, IEEE Trans. on
Computer-Aided Design, Aug. 1994, pp. 1057-1064.

[11] M. Abramovici, M. A. Breuer and A. D. Friedman, Digital Systems
Testing and Testable Design, IEEE Press, 1995.

[12] Anonymous Reviewer.

3

=

[4

=

