
1

PRESERVE: Static Test Compaction that Preserves
Individual Numbers of Tests

Irith Pomeranz

Abstract—A comprehensive test set targets faults of different types to
ensure that defects of different types are detected. When test compaction
is carried out for such a test set, it is advantageous if the compacted test
set contains a compact test set for each fault type separately. In this case, if
one (or more) of the fault types is found to be more important to detect,
a compact test set for it can be extracted without further processing.
This paper describes the first test compaction procedure for transition
and stuck-at faults, where by construction, the compact test set contains
compact test sets for each fault type separately. Experimental results for
benchmark circuits demonstrate the ability to compact a comprehensive
test set under this condition.

Index Terms—Broadside tests, skewed-load tests, stuck-at faults, test
compaction, transition faults.

I. INTRODUCTION

Different types of faults are targeted during test generation to derive
a comprehensive test set capable of detecting different types of detects
[1]-[7]. Faults can be static (such as stuck-at faults or single-pattern
cell-aware faults [8]) or dynamic (such as transition faults or two-
pattern cell-aware faults). Among static and dynamic cell-aware faults
there are faults that model different types of defects, and can also be
considered as different types of faults. Different types of faults can be
considered together by a test generation procedure that is designed for
this purpose [1]. Another option is to use a generalized fault model
to represent different types of faults uniformly [2], [3], [6]. In the
more commonly used approach, faults of different types are targeted
consecutively, topping off a test set for one type of faults with tests
for undetected faults of another type [4], [5].

For simplicity of discussion, this paper considers the scenario
where a test set is generated for stuck-at and transition faults.
However, the discussion is applicable whenever several different
types of faults are considered, including cell-aware faults that are
partitioned based on the types of defects they model. Considering
transition and stuck-at faults, and the scenario where top-off tests are
used, a test set for transition faults is likely to be topped off with
tests for stuck-at faults. The reason is that broadside (launch-off-
capture) and skewed-load (launch-off-shift) tests for transition faults
[9]-[10] already detect most of the stuck-at faults. Therefore, only
small numbers of tests for undetected stuck-at faults need to be added.

In the approach described in [7], single-cycle tests for stuck-at
faults are transformed into skewed-load tests to ensure that tests for
stuck-at faults also detect transition faults (this is not the case for
single-cycle tests). The transformation allows higher levels of test
compaction to be achieved when the set of target faults consists of
both transition and stuck-at faults. In general, higher levels of test
compaction are achieved if a single test set is computed where every
test can detect target faults of all the fault types. The transformation
of single-cycle tests into skewed-load tests as in [7] does not require
any fault simulation, and it is guaranteed that a skewed-load test will
detect the same stuck-at faults as the single-cycle test from which it
is derived.

Suppose that a test set Ti is generated for transition and stuck-
at faults (the discussion applies to any other combination of fault
types). It is important for the discussion in this paper to partition Ti

Irith Pomeranz is with the School of Electrical and Computer Engineer-
ing, Purdue University, West Lafayette, IN 47907, U.S.A. (e-mail: pomer-
anz@ecn.purdue.edu).

This work was supported in part by NSF grant CCF-1714147

Ttr,i Tcom,i Tsa,i(a)

Ttr,0 Tsa,0(b)

Ttr,i Tcom,i Tsa,i(c)

Fig. 1. Test set for transition and stuck-at faults

into a subset Ttri ⊆ Ti of tests needed only for transition faults,
a subset Tsai ⊆ Ti of tests needed only for stuck-at faults, and a
subset Tcomi ⊆ Ti of tests needed for both types of faults. Such
a partition is not unique, and it will be obtained by construction in
the procedure described in this paper. The partition is illustrated by
Figure 1(a). With this partition, the subset Ttri∪Tcomi is a transition
fault test set, and the subset Tsai ∪ Tcomi is a stuck-at test set. As
discussed later, it is advantageous if Ttri ∪ Tcomi is a compact test
set for transition faults, and Tsai ∪ Tcomi is a compact test set for
stuck-at faults.
When Ti is compacted for the two fault types together, as in [7], a

set covering procedure [11] is needed for finding transition and stuck-
at test sets from the tests in Ti. From these test sets it is possible
to find Ttri , Tsai and Tcomi . The transition and stuck-at test sets
Ttri ∪Tcomi and Tsai ∪Tcomi may not be as compact as individual
test sets that are computed for transition and stuck-at faults directly.
This is illustrated by Figure 1(b) that shows compact test sets Ttr,0

and Tsa,0 for transition and stuck-at faults, respectively. In general,
such test sets do not share any tests, and Tcom,0 = ∅. Although
|Ttr,0|+ |Tsa,0| > |Ti|, we have that |Ttr,0| ≤ |Ttr,i|+ |Tcom,i| and
|Tsa,0| ≤ |Tsa,i|+|Tcom,i|. The increase in the number of tests in the
individual transition and stuck-at test sets contained in Ti supports
the reduction in the total number of tests of Ti.
When Ti is generated by topping off a transition fault test set with

stuck-at tests, the transition fault test set Ttr,i ∪ Tcom,i consisting of
the first tests in Ti is compact. For stuck-at faults it is necessary to
apply a set covering procedure to find the test set contained in Ti

[11]. In this case, the stuck-at test set Tsa,i ∪ Tcom,i may be larger
than a test set computed directly for stuck-at faults.
In the general context where a single test set Ti targets several

fault types to achieve test compaction as in Figure 1(a), the test sets
for the individual fault types included in Ti are important for the
following reason.
Depending on the types of defects present in faulty units, one (or

more) of the fault types considered may be more effective than the
others in modeling defects. Thus, a test set for one (or more) fault
types may be more important to apply. Especially if Ti is a large test
set, it may need to be truncated to address constraints related to the
tester memory or test application time. In this case, it is important
to be able to identify a smaller test set for the relevant fault types.
In a specific scenario described in [12], a test set is generated with
requirements for >99% stuck-at fault coverage, >95% transition fault
coverage, some coverage of cell-aware and small delay faults, and
an upper bound on the number of tests. Because of overheads related
to initialization of the chip and translation of the test data, there is
an overflew in test data volume. The test engineer calculates that
5% of the tests need to be removed. This needs to be done without
compromising on the hard fault coverage requirements.
Based on this discussion, the procedure described in this paper

produces a compact test set Ti for transition and stuck-at faults, but
ensures that the subset of tests included in Ti for each one of the

2

Ta, f ,i

Tb,c,i

Td ,e,i

Ta,b,i

Tc,d ,i

Te, f ,i

Ta,i

Tb,i

Tc,i

Td ,i

Te,i

T f ,i

Fig. 2. Test set for six fault models

fault types alone is not larger than a compact test set for this fault
type. Referring to Figure 1, the procedure produces Ti such that
|Ttr,i| + |Tcom,i| = |Ttr,0| and |Tsa,i| + |Tcom,i| = |Tsa,0| while
Ti is as small as possible. This is illustrated by Figure 1(c). In the
scenario from [12], Ti allows one to avoid omitting tests that will
decrease the stuck-at or transition fault coverage.

In the procedure described in this paper, the partition of Ti into
Ttr,i, Tsa,i and Tcom,i is obtained by construction. Thus, it is not
required to use a set covering procedure for obtaining individual test
sets for transition and stuck-at faults. The procedure starts with T0 =
Ttr,0 ∪ Tsa,0 and Tcom,0 = ∅. For i ≥ i, it adds a test to Tcom,i

only if it can remove one test from Ttr,i and one test from Tsa,i.
In this way, it preserves the numbers of tests in the transition and
stuck-at test sets Ttri ∪Tcomi and Tsai ∪Tcomi included in Ti, while
reducing the number of tests in Ti.

This is the first paper to describe a test compaction procedure for
several fault types that preserves the numbers of tests in compact
test sets for the individual fault types, and it achieves this goal by
construction.

To extend the discussion to more than two fault types, it is
important to note that the computational complexity of computing
common tests increases as the number of fault types increases.
In addition, fewer common tests are likely to exist. Instead, the
procedure described in this paper can be applied without modification
to pairs of fault types. This is illustrated in Figure 2, where six fault
types denoted by a, b, ..., f are considered. Fault types a and b are
considered to produce the set of common tests denoted by Ta,b,i in
Figure 2. Fault types c and d, and fault types e and f , are considered
in a similar way. Next, common tests are found out of Tb,i and Tc,i

to form the set denoted by Tb,c,i. In a similar way, Td,e,i and Ta,f,i

are formed. Every time a test is added to a common set, the total
number of tests is reduced by one. After considering each fault type
twice, additional common tests are less likely to exist.

The paper is organized as follows. Section II provides an overview
of the test compaction procedure, and discusses how the procedure
ensures that, as Ti is compacted, it continues to contain compact
test sets for transition and stuck-at faults individually. The procedure
described in Section III updates T0 = Ttr,0∪Tsa,0 when Tsa,0 detects
transition faults that are not detected by Ttr,0, or Ttr,0 detects stuck-at
faults that are not detected by Tsa,0. An iteration of test compaction is
described in Sections IV and V. The need for an iterative procedure is
discussed in Section VI. Experimental results for benchmark circuits
are presented in Section VII.

II. COMPACT INDIVIDUAL TEST SETS

The test compaction procedure described in this paper accepts
compact test sets Ttr,0 and Tsa,0 for transition and stuck-at faults,

respectively, as shown in Figure 1(b). Several options are possible
for the test types in Ttr,0 and Tsa,0. In general, the test compaction
procedure is developed under the assumption that every test type in
the test sets it considers is suitable for every fault type it considers.
The specific scenario considered in this paper is the following.
The transition fault test set Ttr,0 consists of both broadside and

skewed-load tests. This is important for achieving the highest possible
transition fault coverage. It is also important for test compaction. The
stuck-at test set Tsa,0 is a single-cycle test set. Every single-cycle test
is transformed into a skewed-load test as described in [7]. Initially,
T0 = Ttr,0 ∪ Tsa,0, and Tcom,0 = ∅.
Starting from T0 the procedure produces compact test sets T1, T2,

.... For i ≥ 1, the procedure maintains the partition of Ti into Ttr,i,
Tsa,i and Tcom,i as shown in Figure 1(c). This is important for the
following reason.
Let the set of transition faults be Ftr , and let the set of stuck-at

faults be Fsa. To determine the fault coverage of Ti, Ftr is simulated
only under Ttr,i ∪ Tcom,i, and Fsa is simulated only under Tsa,i ∪
Tcom,i. This implies that the procedure maintains Ttr,i ∪Tcom,i as a
test set for transition faults, and Tsa,i∪Tcom,i as a test set for stuck-
at faults. The procedure ensures that the numbers of tests in these
subsets do not increase for i ≥ 1. It thus ensures that Ti continues to
contain compact test sets for transition and stuck-at faults individually
as it is compacted.
The procedure first updates T0 by checking whether any of the

tests in Tsa,0 detects transition faults that are not detected by Ttr,0.
This is based on the experimental observation that, after a single-
cycle test for stuck-at faults is transformed into a skewed-load test, it
sometimes detects transition faults that are not detected by Ttr,0. This
occurs even when a commercial tool generates broadside and skewed-
load tests for transition faults. When this occurs, the skewed-load test
is moved from Tsa,0 to Tcom,0. This implies that the test is also used
for detecting transition faults. For completeness, the procedure also
simulates stuck-at faults under the tests in Ttr,0. If a stuck-at fault is
detected, the procedure moves the test from Ttr,0 to Tcom,0.
Moving tests from Tsa,0 or Ttr,0 to Tcom,0 increases the number

of tests in the test sets Ttr,0∪Tcom,0 and Tsa,0∪Tcom,0 for detecting
transition and stuck-at faults, respectively. This is accepted to support
the increase in the fault coverage when Ttr,0 ∪ Tcom,0 is used as a
transition fault test set, or Tsa,0 ∪ Tcom,0 is used as a stuck-at test
set. This is the only step where the numbers of tests in the individual
test sets may be increased.
Next, in an iterative process, for i ≥ 1, the procedure uses the

test set Ti−1 obtained in iteration i − 1 to produce a test set Ti as
shown in Figure 1(c). Initially, Ti = Ti−1. This implies that Ttr,i =
Ttr,i−1, Tsa,i = Tsa,i−1, and Tcom,i = Tcom,i−1. The procedure
repeats a process where it attempts to move a test tj from either
Ttr,i or Tsa,i to Tcom,i. This is acceptable when the inclusion of tj
in Tcom,i allows the procedure to remove a test from Tsa,i or Ttr,i,
respectively. Effectively, adding tj to Tcom,i removes two tests, one
from Ttr,i and one from Tsa,i, thus contributing to the compaction of
Ti. With this process, the set Tcom,i is such that |Ttr,i|+ |Tcom,i| =
|Ttr,i−1|+|Tcom,i−1|, and |Tsa,i|+|Tcom,i| = |Tsa,i−1|+|Tcom,i−1|.
Thus, test compaction is achieved without increasing the numbers of
tests in the individual transition and stuck-at test sets.
The procedure has the option of modifying tj to ensure that it

can replace tests from Ttr,i and Tsa,i. An iteration of the procedure
without test modification is described in Section IV. An iteration of
the procedure with test modification is described in Section V.

III. ADDITIONAL FAULT COVERAGE

This section describes the use of tests from Tsa,0 and Ttr,0 for the
detection of transition and stuck-at faults, respectively.

3

Initially, T0 = Ttr,0 ∪ Tsa,0, and Tcom,0 = ∅. Fault simulation
with fault dropping is carried out for Ftr under Ttr,0, and Fsa under
Tsa,0, to remove detected faults from consideration.

Next, for every test tj ∈ Tsa,0, the procedure performs fault simu-
lation with fault dropping of Ftr under tj . If any faults are detected,
the procedure moves tj from Tsa,0 to Tcom,0. With Tcom,0 �= ∅,
the transition fault test set contained in T0 is Ttr,0 ∪ Tcom,0, and it
detects transition faults that are not detected by Ttr,0.

For completeness, the procedure also checks in a similar way
whether tests for transition faults detect additional stuck-at faults.
The procedure is summarized next as Procedure 0.
Procedure 0: Additional fault coverage

1) Assign T0 = Ttr,0 ∪ Tsa,0.
2) Perform fault dropping fault simulation of Ftr under Ttr,0.
3) Perform fault dropping fault simulation of Fsa under Tsa,0.
4) For every test tj ∈ Tsa,0:

a) Perform fault dropping fault simulation of Ftr under tj .
b) If any faults are detected, move tj to Tcom,0.

5) For every test tj ∈ Ttr,0:
a) Perform fault dropping fault simulation of Fsa under tj .
b) If any faults are detected, move tj to Tcom,0.

Since no new tests are added to T0, its number of tests does not
change. However, it is possible to obtain |Ttr,0|+ |Tcom,0| > |Ttr,0|
or |Tsa,0| + |Tcom,0| > |Tsa,0| to support the increase in the fault
coverage. The test compaction procedure considers |Ttr,0|+ |Tcom,0|
and |Tsa,0|+ |Tcom,0| as the numbers of tests to preserve in compact
test sets for transition and stuck-at faults individually.

IV. TEST COMPACTION WITHOUT TEST MODIFICATION

This section describes iteration i ≥ 1 of the test compaction
procedure without test modification. The procedure reduces the
number of tests in Ti relative to the number of tests in Ti−1 by
repeating a step where it moves a test from Ttr,i or Tsa,i to Tcom,i

unmodified, and removes a test from Tsa,i or Ttr,i, respectively.
Initially, Ti = Ti−1. This implies that Ttr,i = Ttr,i−1, Tsa,i =

Tsa,i−1, and Tcom,i = Tcom,i−1.
In a preprocessing step to test compaction, the procedure performs

fault simulation with fault dropping of Ftr under Tcom,i followed by
Ttr,i. The subset of faults that a test tj ∈ Ttr,i detects is denoted by
Dtr,i(tj). In a similar way, the procedure performs fault simulation
with fault dropping of Fsa under Tcom,i followed by Tsa,i. The subset
of faults that a test tj ∈ Tsa,i detects is denoted by Dsa,i(tj).

The procedure considers every test tj ∈ Ttr,i ∪ Tsa,i, each one
alone. The tests are considered in a random order since it is unknown
in advance which tests will be effective for test compaction.

When the procedure considers a test tj ∈ Ttr,i, it attempts to find
a test tk ∈ Tsa,i such that tj detects all the stuck-at faults detected
by tk. In this case, the procedure moves tj from Ttr,i to Tcom,i, and
removes tk from Tsa,i. Overall, the number of tests in Ti decreases
by one (one test is moved, and one test is removed). The numbers
of tests in Ttr,i ∪ Tcom.i and Tsa,i ∪ Tcom.i remain the same.

To check whether tj ∈ Ttr,i detects all the stuck-at faults detected
by any test tk ∈ Tsa,i, the procedure considers the set Fsa of all
the stuck-at faults. It performs fault simulation of Fsa under tj . The
subset of detected faults is denoted by Esa,i(tj).

The procedure compares Esa,i(tj) with Dsa,i(tk) for every test
tk ∈ Tsa,i. If it finds a test tk such that Dsa,i(tk) ⊆ Esa,i(tj), it
uses tj and tk to reduce the number of tests in Ti. Specifically, it
moves tj from Ttr,i to Tcom,i, and removes tk from Tsa,i. In this
case it does not compare tj with any other tests from Tsa,i. In a
similar way, the procedure considers every test tj ∈ Tsa,i.

It is important to note that the subsets Dsa,i(tk) and Dtr,i(tk) are
obtained by fault simulation with fault dropping. Even when the test
sets are compact, small subsets are obtained for tests at the end of
the test set. This allows tests to be moved to Tcom,i.
The procedure is summarized next as Procedure 1. Procedure 1

associates a flag denoted by try(tj) with every test tj ∈ Ttr,i∪Tsa,i.
The flag try(tj) indicates whether tj still needs to be considered for
test compaction. It is initially one, and changed to zero after tj has
been considered.
Procedure 1: Iteration of test compaction without test modification
1) Assign Ti = Ti−1.
2) Perform fault simulation with fault dropping of Ftr under

Tcom,i followed by Ttr,i. For every test tj ∈ Ttr,i, find the
subset of faults Dtr,i(tj) that the test detects.

3) Perform fault simulation with fault dropping of Fsa under
Tcom,i followed by Tsa,i. For every test tj ∈ Tsa,i, find the
subset of faults Dsa,i(tj) that the test detects.

4) For every test tj ∈ Ttr,i ∪ Tsa,i assign try(tj) = 1.
5) If try(tj) = 0 for every test tj ∈ Ttr,i ∪ Tsa,i, stop.
6) Select a test tj ∈ Ttr,i ∪ Tsa,i with try(tj) = 1. Assign

try(tj) = 0.
7) If tj ∈ Ttr,i:

a) Perform fault simulation of Fsa under tj , and find the
subset of detected faults Esa,i(tj).

b) Assign found = 0. For every test tk ∈ Tsa,i, as long as
found = 0, if Dsa,i(tk) ⊆ Esa,i(tj):
i) Move tj from Ttr,i to Tcom,i.
ii) Remove tk from Tsa,i.
iii) Assign found = 1.

8) If tj ∈ Tsa,i:
a) Perform fault simulation of Ftr under tj , and find the

subset of detected faults Etr,i(tj).
b) Assign found = 0. For every test tk ∈ Ttr,i, as long as

found = 0, if Dtr,i(tk) ⊆ Etr,i(tj):
i) Move tj from Tsa,i to Tcom,i.
ii) Remove tk from Ttr,i.
iii) Assign found = 1.

After applying Procedure 1, the number of tests in Ti is decreased
by |Tcom,i| − |Tcom,i−1| relative to the number of tests in Ti−1. We
also have that |Ttr,i| + |Tcom,i| = |Ttr,i−1| + |Tcom,i−1| = ... =
|Ttr,0|+ |Tcom,0| and |Tsa,i|+ |Tcom,i| = |Tsa,i−1|+ |Tcom,i−1| =
... = |Tsa,0|+ |Tcom,0|.

V. TEST COMPACTION WITH TEST MODIFICATION

An iteration of test compaction with test modification is described
in this section.
An iteration i with test modification proceeds as in Section IV

to consider every test tj ∈ Ttr,i ∪ Tsa,i. Suppose that tj ∈ Ttr,i.
Without test modification, after computing Esa,i(tj), the procedure
searches for a test tk ∈ Tsa,i such that Dsa,i(tk) ⊆ Esa,i(tj). If
this condition is satisfied, tj and tk are used for compacting Ti.
When test modification is an option, it is applied to tj and tk if
|Dsa,i(tk) \ Esa,i(tj)| ≤ Δ, for a constant Δ. Thus, tj detects all
but Δ faults that tk detects.
The goal of the test modification procedure is to obtain a test tj,k

that detects all the faults in Dtr,i(tj) ∪ Dsa,i(tk). A smaller value
of Δ makes it more likely that tj,k can be found. Test generation
targeting the faults in Dtr,i(tj) ∪ Dsa,i(tk) can be used for this
purpose. The implementation used in this paper starts from tj,k = tj .
It modifies tj,k by complementing its bits one by one. A complemen-
tation is accepted if it does not cause tj,k to lose the detection of

4

TABLE I
EXPERIMENTAL RESULTS

tests tot/ com f.c. tot/max0
circuit proc iter tr sa com tot tot0 max0 tr0 sa0 tr1 sa1 tr sa ntime [7]
aes core 0 0 273 208 0 481 1.000 1.762 0 0 0 0 99.992 100.000 3.00
aes core 1 1 265 200 8 473 0.983 1.733 1 7 0 0 99.992 100.000 27.41
aes core 2 1 262 197 11 470 0.977 1.722 1 7 0 3 99.992 100.000 1952.10
aes core 2 2 261 196 12 469 0.975 1.718 1 7 0 4 99.992 100.000 3611.61 0.972
s35932 0 0 30 20 0 50 1.000 1.667 0 0 0 0 89.781 89.809 3.83
s35932 1 1 28 18 2 48 0.960 1.600 1 1 0 0 89.781 89.809 10.13
s35932 2 1 27 17 3 47 0.940 1.567 1 1 1 0 89.781 89.809 293.50 1.552
systemcaes 0 0 158 121 0 279 1.000 1.766 0 0 0 0 99.841 99.995 3.03
systemcaes 1 8 118 81 40 239 0.857 1.513 30 10 0 0 99.841 99.995 144.35
systemcaes 2 1 105 68 53 226 0.810 1.430 30 10 7 6 99.841 99.995 2295.13
systemcaes 2 8 81 44 77 202 0.724 1.278 32 10 22 13 99.841 99.995 9879.02 0.987
s38584 0 0 393 146 0 539 1.000 1.372 0 0 0 0 93.785 95.852 4.34
s38584 1 2 353 106 40 499 0.926 1.270 10 30 0 0 93.785 95.852 70.13
s38584 2 1 329 82 64 475 0.881 1.209 10 30 2 22 93.785 95.852 5654.68
s38584 2 6 310 63 83 456 0.846 1.160 10 34 6 33 93.785 95.852 17593.30 0.930
s5378 0 0 215 122 0 337 1.000 1.567 0 0 0 0 97.866 99.131 3.34
s5378 1 2 181 88 34 303 0.899 1.409 9 25 0 0 97.866 99.131 61.89
s5378 2 1 161 68 54 283 0.840 1.316 9 25 1 19 97.866 99.131 3246.17
s5378 2 9 127 34 88 249 0.739 1.158 17 25 15 31 97.866 99.131 14658.28 0.949
wb dma 0 0 138 64 2 204 1.000 1.457 0 0 0 0 99.692 100.000 3.12
wb dma 1 3 106 32 34 172 0.843 1.229 18 14 0 0 99.692 100.000 81.39
wb dma 2 1 98 24 42 164 0.804 1.171 18 14 2 6 99.692 100.000 2652.69
wb dma 2 3 96 22 44 162 0.794 1.157 18 14 2 8 99.692 100.000 6611.54 0.912
b20 0 0 243 196 188 627 0.951 1.455 0 0 0 0 95.446 95.744 5.07
b20 1 7 137 90 294 521 0.791 1.209 76 30 0 0 95.446 95.744 45.13
b20 2 1 110 63 321 494 0.750 1.146 76 30 7 20 95.454 95.744 405.48
b20 2 5 87 40 344 471 0.715 1.093 83 32 14 27 95.454 95.744 997.96 1.729
b14 0 0 235 235 113 583 0.975 1.675 0 0 0 0 94.482 95.532 4.74
b14 1 15 36 36 312 384 0.642 1.103 177 22 0 0 94.482 95.532 63.14
b14 2 1 33 33 315 381 0.637 1.095 177 22 0 3 94.488 95.532 105.78
b14 2 2 32 32 316 380 0.635 1.092 178 22 0 3 94.488 95.532 139.44 1.668
tv80 0 0 647 459 41 1147 0.996 1.667 0 0 0 0 98.080 99.591 3.96
tv80 1 8 286 98 402 786 0.682 1.142 299 62 0 0 98.080 99.591 161.76
tv80 2 1 259 71 429 759 0.659 1.103 299 62 16 11 98.080 99.591 1269.03
tv80 2 5 231 43 457 731 0.635 1.062 309 63 26 18 98.080 99.591 4091.78 1.026
s9234 0 0 296 157 3 456 1.000 1.525 0 0 0 0 93.313 93.475 4.59
s9234 1 5 219 80 80 379 0.831 1.268 65 12 0 0 93.313 93.475 76.47
s9234 2 1 192 53 107 352 0.772 1.177 65 12 4 23 93.313 93.475 705.33
s9234 2 10 151 12 148 311 0.682 1.040 76 14 17 38 93.313 93.475 2240.39 1.088
s38417 0 0 499 116 6 621 0.994 1.230 0 0 0 0 99.568 99.471 3.52
s38417 1 3 422 39 83 544 0.870 1.077 0 77 0 0 99.568 99.471 192.86
s38417 2 1 406 23 99 528 0.845 1.046 0 77 1 15 99.568 99.471 2655.80
s38417 2 2 402 19 103 524 0.838 1.038 0 79 2 16 99.568 99.471 4084.56 0.866
s13207 0 0 436 244 1 681 0.999 1.558 0 0 0 0 96.824 98.462 4.05
s13207 1 3 222 30 215 467 0.685 1.069 139 75 0 0 96.824 98.462 81.20
s13207 2 1 205 13 232 450 0.660 1.030 139 75 8 9 96.824 98.462 594.46
s13207 2 2 203 11 234 448 0.657 1.025 139 75 9 10 96.824 98.462 893.32 0.891
b15 0 0 397 306 104 807 0.989 1.611 0 0 0 0 98.311 98.660 3.85
b15 1 7 123 32 378 533 0.653 1.064 245 29 0 0 98.311 98.660 66.80
b15 2 1 113 22 388 523 0.641 1.044 245 29 5 5 98.317 98.660 189.39
b15 2 4 101 10 400 511 0.626 1.020 246 31 8 11 98.325 98.660 359.70 1.204
s15850 0 0 355 130 2 487 0.992 1.364 0 0 0 0 95.116 96.682 4.23
s15850 1 4 227 2 130 359 0.731 1.006 40 88 0 0 95.116 96.682 88.01 0.971
spi 0 0 460 405 1 866 1.000 1.879 0 0 0 0 99.708 99.985 3.10
spi 1 8 63 8 398 469 0.542 1.017 359 38 0 0 99.708 99.985 56.70
spi 2 1 58 3 403 464 0.536 1.007 359 38 3 2 99.708 99.985 82.35
spi 2 2 56 1 405 462 0.533 1.002 359 38 5 2 99.708 99.985 92.23 0.938
des area 0 0 112 118 0 230 1.000 1.949 0 0 0 0 100.000 100.000 3.01
des area 1 8 0 6 112 118 0.513 1.000 112 0 0 0 100.000 100.000 76.47 1.723

any of the faults it already detects out of Dtr,i(tj) ∪ Dsa,i(tk). It
terminates successfully if tj,k detects all these faults.

Step 7)b) of Procedure 1 is modified as follows to accommodate
the test modification option. A similar modification is performed to
Step 8)b).
Procedure 2: Step 7)b) of test compaction with test modification

1) Assign found = 0. For every test tk ∈ Tsa,i, as long as
found = 0, if |Dsa,i(tk) \ Esa,i(tj)| ≤ Δ:

a) Attempt to find a test tj,k that detects all the faults in
Dtr,i(tj) ∪Dsa,i(tk). If tj,k is found:

i) Add tj,k to Tcom,i.
ii) Remove tj from Ttr,i.
iii) Remove tk from Tsa,i.

iv) Assign found = 1.

VI. ITERATIONS

This section discusses the need for iterating the procedures from
Sections IV and V.
At the beginning of iteration i ≥ 1, Ti = Ti−1. The procedure

performs fault simulation with fault dropping of Ftr first under Tcom,i

and then under Ttr,i. Similarly, it performs fault simulation with
fault dropping of Fsa first under Tcom,i and then under Tsa,i. This
associates a set of detected faults Dtr,i(tj) with every test tj ∈ Ttr,i,
and Dsa,i(tj) with every test tj ∈ Tsa,i.
If iteration i moves tests from Ttr,i or Tsa,i to Tcom,i, fault

simulation at the beginning of iteration i + 1 can result in smaller
subsets of detected faults Dtr,i+1(tj) for tj ∈ Ttr,i+1 or Dsa,i+1(tj)

5

for tj ∈ Tsa,i+1. With smaller subsets of detected faults, the
conditions Dtr,i+1(tk) ⊆ Etr,i+1(tj), Dsa,i+1(tk) ⊆ Esa,i+1(tj),
|Dtr,i+1(tk)\Etr,i+1(tj)| ≤ Δ and |Dsa,i+1(tk)\Esa,i+1(tj)| ≤ Δ
may be satisfied for additional pairs of tests. Thus, it may be possible
to compact Ti+1 further.

Starting from T0 = Ttr,0 ∪ Tsa,0, Procedure 0 is applied once
to update the partition of the test set T0 into subsets. The test
modification step included in Procedure 2 implies that Procedure 2
has a higher computational complexity than Procedure 1. Therefore,
Procedure 1 is applied first. It is applied iteratively as long as it
reduces the number of tests in Ti. Finally, Procedure 2 is applied
iteratively as long as it reduces the number of tests in Ti.

VII. EXPERIMENTAL RESULTS

This section presents the results of the test compaction procedure
for benchmark circuits.

Procedure 2 is applied with Δ = 4 as the maximum number of
additional faults that a modified test needs to detect.

The results are given in Table I. The first row for every circuit
describes the test set obtained by Procedure 0. The second row
describes the test set obtained in the last iteration of Procedure 1
where it reduces the number of tests. If Procedure 2 reduces the
number of tests, the next rows show the results after the first iteration,
and the last one that reduces the number of tests. Intermediate
iterations (not reported) show that the procedure can be terminated
earlier without a significant loss in test compaction.

For every test set, column proc shows which procedure is applied.
Column iter shows the iteration i of the procedure. Column tests
shows the numbers of tests in Ttr,i, Tsa,i, Tcom,i and Ti. With both
broadside and skewed-load tests in Ttr,0, it is possible to reach a
transition fault coverage that is similar to the stuck-at fault coverage,
and a similar level of test compaction.

Column tot/ shows two ratios. Subcolumn tot0 shows the ratio
|Ti|/|T0|. This is the reduction in the total number of tests. Subcol-
umn max0 shows the ratio |Ti|/max{|Ttr,0| + |Tcom,0|, |Tsa,0| +
|Tcom,0|}. A compact test set for transition and stuck-at faults is at
least as large as a compact test set for one of the fault types alone.
The larger of the two test sets contains the number of tests in the
denominator. The ratio shows by how much the compact test set
for both fault types is larger than this lower bound. The circuits are
arranged by decreasing order of this ratio.

Column com shows the number of times a test is moved from
Ttr,i to Tcom,i, followed by the number of times a test is moved
from Tsa,i to Tcom,i, without and with modification.

Column f.c. shows the transition fault coverage followed by the
stuck-at fault coverage. Column ntime shows the runtime for the
computation of Ti divided by the runtime for fault simulation with
fault dropping of T0. This is referred to as the normalized runtime.

The ratio tot/max0 for the procedure from [7] is shown in the
last column of Table I for comparison. A direct comparison with [7]
is not possible since only skewed-load tests are used in [7], and test
compaction does not preserve the numbers of tests for the individual
fault types. However, the ratio tot/max0 can be computed using the
final number of tests in [7] for tot, and the number of transition or
stuck-at fault tests in the initial test set for max0.

The following points can be seen from Table I. Procedure 1 finds
significant numbers of tests in Ttr,i and Tsa,i that can be used for
removing tests from the other subset. This allows it to reduce the
number of tests in Ti without increasing the number of tests required
for detecting each fault type alone.

By modifying tests from Ttr,i and Tsa,i, Procedure 2 finds addi-
tional tests that can replace pairs of tests. It thus reduces the number

of tests in Ti further without increasing the number of tests required
for detecting transition or stuck-at faults alone.
The ratio under column tot/max0 shows that the final test set Ti

obtained by the test compaction procedure is within 10-20% of its
lower bound for most of the circuits. This indicates that a significant
level of test compaction is achieved. The ratio is in a similar range
to the ratio obtained for [7].
For most of the circuits, tests for transition faults are more effective

in detecting both fault types and thus providing test compaction. How-
ever, there are non-trivial numbers of stuck-at tests that contribute to
test compaction.
The normalized runtime of Procedure 2 is significantly higher than

that of Procedure 1. The runtime of Procedure 2 is higher for circuits
where a slower reduction in the number of tests is obtained. When
Procedure 2 performs a large number of iterations, it is possible to
terminate it earlier without a significant loss in test compaction.

VIII. CONCLUDING REMARKS

This paper described a test compaction procedure for transition and
stuck-at faults. The unique feature of the procedure is that it ensures
that the compact test set contains compact test sets for each one of
the fault types alone. To achieve this goal the procedure maintains a
partition of the compact test set into a subset of tests that are used
only for transition faults, a subset that is used only for stuck-at faults,
and a common subset used for both fault types. Test compaction is
achieved by increasing the number of common tests, and reducing
the number of tests that are used only for one of the fault types.
Experimental results for benchmark circuits demonstrate the ability
to compact a test set under these conditions.

REFERENCES

[1] L. N. Reddy, I. Pomeranz and S. M. Reddy, ”COMPACTEST-II: A
Method to Generate Compact Two-pattern Test Sets for Combinational
Logic Circuits”, in Proc. Intl. Conf. on Computer-Aided Design, 1992,
pp. 568-574.

[2] R. Desineni, K. N. Dwarkanath and R. D. Blanton, ”Universal Test
Generation using Fault Tuples”, in Proc. Intl. Test Conf., 2000, pp. 812-
819.

[3] S. M. Reddy, G. Chen, J. Rajski, I. Pomeranz, P. Engelke and B. Becker,
”A Unified Fault Model and Test Generation Procedure for Interconnect
Opens and Bridges”, in Proc. Europ. Test Symp., 2005, pp. 22-27.

[4] S. Goel and R. A. Parekhji, ”Choosing the Right Mix of At-Speed
Structural Test Patterns: Comparisons in Pattern Volume Reduction and
Fault Detection Efficiency”, in Proc. Asian Test Symp., 2005, pp. 330-
336.

[5] S. Alampally, R. T. Venkatesh, P. Shanmugasundaram, R. A. Parekhji
and V. D. Agrawal, ”An Efficient Test Data Reduction Technique through
Dynamic Pattern Mixing Across Multiple Fault Models”, in Proc. VLSI
Test Symp., 2011, pp. 285-290.

[6] C.-H. Wu and K.-J. Lee, ”Transformation of Multiple Fault Models to
a Unified Model for ATPG Efficiency Enhancement”, in Proc. Int. Test
Conf., 2016, pp. 1-10.

[7] I. Pomeranz, ”Skewed-Load Tests for Transition and Stuck-at Faults”,
IEEE Trans. on Computer-Aided Design, Vol 38, No. 10, Oct. 2019, pp.
1969-1973.

[8] F. Hapke and J. Schloeffel, ”Introduction to the Defect-oriented Cell-
aware Test Methodology for Significant Reduction of DPPM Rates”, in
Proc. European Test Symp., 2012, pp. 1-6.

[9] J. Savir and S. Patil, ”Scan-Based Transition Test”, IEEE Trans. on
Computer-Aided Design, Aug. 1993, pp. 1232-1241.

[10] J. Savir and S. Patil, ”Broad-Side Delay Test”, IEEE Trans. on
Computer-Aided Design, Aug. 1994, pp. 1057-1064.

[11] M. Abramovici, M. A. Breuer and A. D. Friedman, Digital Systems
Testing and Testable Design, IEEE Press, 1995.

[12] Anonymous Reviewer.

