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Abstract— Using both broadside and skewed-load tests for
delay faults provides a higher fault coverage and more compacted
test sets. An earlier work showed that it is possible to share
input test data between broadside and skewed-load tests, and
thus reduce the input test data volume. This paper develops
an algorithm for computing stored tests that can be used for
applying both broadside and skewed-load tests in the context of
a specific test data compression method. Under this method, a
programmable linear-feedback shift-register is used for on-chip
decompression. In the stored test data, a stored test consists of
a seed and two primary input vectors. The seed determines the
scan-in state of the applied broadside or skewed-load test as well
as the additional scan-in vector required for a skewed-load test. In
the algorithm developed in this paper, stored tests are computed
directly without first computing broadside or skewed-load tests.
This avoids situations where the tests cannot be compressed or
do not have common input test data.

Index Terms— Broadside tests, linear-feedback shift-register
(LFSR), skewed-load tests, test data compression, test gener-
ation, transition faults.

I. INTRODUCTION

Test data compression methods reduce the test data volume
by storing compressed tests and compacted output responses
[1]-[19]. On-chip, decompression logic is used for loading the
input test data into the circuit. Output compaction logic is used
for capturing the output response.

When the same input test data is used for applying several
different tests, the input test data volume is reduced further [9],
[10], [12], [14], [15], [16], [18]. In [12], a stored test consists
of a scan-in state, two primary input vectors (for two clock
cycles of a test), and two additional scan-in vectors. These
are used for applying one broadside (launch-on-capture) and
two skewed-load (launch-on-shift) tests. The skewed-load tests
differ in the scan-in vector used in the scan shift cycle that
follows the scan-in operation. The advantages of using both
types of tests are: (1) it is possible to achieve a higher delay
fault coverage since some delay faults are only detected by
broadside tests while others are only detected by skewed-load
tests; and (2) it is possible to achieve higher levels of test
compaction by selecting the test type that leads to the detection
of more faults [20]-[21]. The number of stored tests for the
application of broadside and skewed-load tests is reduced in
[12] by applying three tests based on every stored test.

The approach in [12] is developed without considering a
specific test data compression method. It starts from a test
set that consists of broadside and skewed-load tests where the
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two test types are generated separately. It extracts from the
test set triples that consist of scan-in states, pairs of primary
input vectors, and additional scan-in vectors for skewed-load
tests (two are used in [12]). Each triple is then associated
with three tests, a broadside test and two skewed-load tests.
Unnecessary triples are removed, and remaining triples are
modified to increase their contribution to the fault coverage.
This allows additional triples to be removed.

A more effective algorithm for the computation of common
input test data for broadside and skewed-load tests has the
characteristics discussed next. Such an algorithm is developed
in this paper.

(1) The algorithm considers a specific method for test data
compression. In this paper, a linear-feedback shift-register
(LFSR) is used as the on-chip decompression logic, and
stored test data includes seeds for the LF'SR. A seed is
associated with the pair of primary input vectors required for
applying a test. The same seed is also used for producing the
additional scan-in vector required for a skewed-load test. Thus,
a stored test consists of a seed and a pair of primary input
vectors. One broadside and one skewed-load test are applied
based on every stored test. Scan-in vectors for skewed-load
tests are not stored. A programmable LF SR is used for a
higher fault coverage [2], [13].

(2) Existing test generation procedures do not generate
common input test data for broadside and skewed-load tests.
Instead, they generate the two types of tests separately. Even
if a test set that consists of broadside and skewed-load tests
is generated for a specific test data compression method,
it does not utilize the possibility of sharing input test data
between the two test types. Moreover, if scan-in states are
modified as in [12] to allow sharing of input test data between
broadside and skewed-load tests, it is necessary to check that
the modified scan-in states can be compressed by the test data
compression method. To address these issues, the procedure
described in this paper generates stored tests directly. In par-
ticular, it generates seeds for the LF'SR instead of generating
scan-in states. Every stored test s; is associated with two
applied tests, a broadside test b; and a skewed-load test wj.
The contribution of s; to the fault coverage consists of the
combined contribution of b; and w;. The procedure generates
s; directly, and evaluates it based on the number of faults
detected by b; and w;.

The procedure for constructing a stored test set consists of
two subprocedures. The first subprocedure generates an initial
stored test set randomly. A stored test in the initial test set is
constructed by randomly specifying a seed and two primary
input vectors. This provides an initial fault coverage and an
initial level of sharing of input test data between broadside



and skewed-load tests. As an alternative, the initial stored
test set can be computed by any test generation procedure
for broadside and skewed-load tests that accommodates the
constraints of the test data compression method.

The second subprocedure modifies stored tests in order to
increase the contribution of each one to the fault coverage.
When a stored test s; is modified, the goal is to increase the
combined contribution of the broadside test b; and the skewed-
load test w; to the fault coverage. The modification is carried
out by complementing bits of s; one by one. Bit comple-
mentation was shown to be effective for test compaction in
[22]. It is also used for the input test data in [12]. In [17] and
[19], an LF'S R-based test generation procedure modifies seeds
by complementing their bits one by one in order to achieve
diagnosis objectives or detect path delay faults. In this paper,
this approach is applied to stored tests that include LFSR
seeds and pairs of primary input vectors in order to increase the
combined contribution to the fault coverage achieved by the
broadside and skewed-load tests obtained from every stored
test. Modifying seeds (as in [17] and [19]) instead of scan-
in states (as in [12] and [22]) has a significant advantage in
computational effort since seeds have significantly fewer bits
than scan-in states.

The second subprocedure is applied iteratively using exist-
ing and new random stored tests. By modifying stored tests to
increase their contribution to the fault coverage, the procedure
increases the fault coverage of the applied test set. It also
reduces the number of stored tests, thus increasing the sharing
of input test data between broadside and skewed-load tests,
and reducing the input test data volume. Finally, the procedure
is applied selectively in an attempt to eliminate from the set
of stored tests the ones that detect single faults. This reduces
the number of stored tests further, reducing the input test data
volume and increasing the sharing of input test data further.

In general in the context of test data compression, the
second subprocedure modifies the stored tests computed for
a particular approach to test data compression. As stored tests
are modified, applied tests are computed and simulated to
check the effects of the modification. As a special case, this
approach is applicable when the initial test set is computed
by solving linear equations for a linear decompression logic.
Existing test generation procedures do not guarantee sharing
of test data between broadside and skewed-load tests, and the
second subprocedure contributes to such sharing. The second
subprocedure can also be applied to the stored tests when
different approaches are used for producing more than one
applied test from every stored test as in [9], [10], [12], [14],
[15], [16] or [18].

The paper is organized as follows. The format of a stored
test and the resulting applied tests are described in Section II.
A procedure for generating a stored test set where every stored
test is used for applying a broadside and skewed-load test is
described in Section III. Experimental results are presented in
Section I'V.

II. STORED AND APPLIED TESTS

This section describes the format of a stored test and how
the applied broadside and skewed-load tests are obtained.

TABLE I
EXAMPLE TESTS

test Pj,0 V35,0
bo 01111010110010 001
wo | 01111010110010 001
by 01011001000111 100
wi | 01011001000111 100

pé’. 1/p;{’1 V5,1
11111010110000 100
00111101011001 100
00000001000100 101
10101100100011 101

—— o o w.

A stored test is denoted by s; = (0, v;,0,v;,1). It consists
of a seed o; for the LF'SR, and two primary input vectors,
v;,0 and v; 1. Suppose that the longest scan chain has K state
variables. When the seed o; is loaded into the LF'SR, and
the LF'SR is clocked for K clock cycles, it produces a scan-
in state denoted by p; . After an additional clock cycle, the
LF SR produces the scan-in vector g;.

The stored test s; is used for applying two tests, a broadside
test and a skewed-load test. The broadside test is denoted by
bj = (pj.0,vj,0; P51, v51). Here, pjo and v; ¢ are the present-
state and primary input vector for the first clock cycle of the
test; and p?yl and v; 1 are the present-state and primary input
vector for the second clock cycle. After p;o is scanned in,
the two primary input vectors v; o and v;,; are applied in two
consecutive functional capture cycles. The state P?',1 is the
next-state obtained for p; o and v; o during the first functional
capture cycle. This is also the present-state for the second
functional capture cycle.

The skewed-load test is denoted by w; = (pj.0, vj0; PY1
vj1). After p;o is scanned in, the primary input vector v,
is applied in scan shift mode with scan-in vector ¢; produced
by the LF'SR. The state p}; is the resulting next-state. The
second clock cycle of the test is a functional capture cycle
where the primary input vector v;; is applied with the circuit
in state p;.

For illustration, ISCAS-89 benchmark circuit s298 is con-
sidered next. The circuit has three primary inputs, and 14 state
variables that are included in a single scan chain. The scan
chain is shifted to the right. The 4-bit primitive LF'SR from
[23] is used for this example.

Two stored tests are considered, so = (0010, 001, 100) and
s1 = (1111,100,101). The resulting broadside and skewed-
load tests are shown in Table I. When ¢ = 0010 is loaded
into the LF'SR, and the LF SR is clocked for 14 clock cycles,
the scan-in state pg,o = 01111010110010 is obtained. With an
additional clock cycle, the LF'SR produces the scan-in vector
go = 0. This yields the broadside and skewed-load tests by
and wg shown in Table I.

For s1, the scan-in state is p; o = 01011001000111 and the
additional scan-in vector is qg; = 1. This yields the broadside
and skewed-load tests b; and w; shown in Table 1.

Table I demonstrates that the input values to the combina-
tional logic during the first clock cycles of b; and w; are the
same. The tests differ significantly in the second clock cycle.
This allows them to detect different faults.

Although the two test types are stored using common test
data, it is not necessary to alternate between them during
test application. Instead, it is possible to first apply all the
broadside tests, and then apply all the skewed-load tests (or
vice versa).



(init) construct a random stored test s ;; if' s ;
detects yet-undetected faults, add it to S,

'

apply forward-looking reverse order
fault simulation to Sy

'

assigni =0

'

assigni=i+1

'

Np - Ngo

fault

(mod1) for every s; € S;, if s ; detects
yet-undetected faults, improve s ; and add the coverage
improved stored test to S; increased

'

(mod?2) construct a random stored test s ; and
improve it; if s; detects yet-undetected fjalults,
additto S;

'

apply forward-looking reverse order
fault simulation to S;

'

(mod3) for every s; € S; that detects a single fault,
modify other tests in §; in an attempt to remove s ;

'

NL'NRI

N; if S; is not improved relative to S; 4,
assign S; = Si
Fig. 1. Procedure for generating a stored test set

III. GENERATING A STORED TEST SET

This section describes a procedure for generating a stored
test set where every stored test is used for applying a broadside
and skewed-load test. The procedure attempts to ensure that
both tests together increase the fault coverage as much as
possible. However, if only one of the tests increases the fault
coverage, it is possible to avoid the application of the other
test.

The procedure considers a given set L of LF'SRs. A set
of LF'SRs can be implemented by a programmable LFSR
with minimal additional logic compared with a single LF.SR
[2]. The use of multiple LF'S Rs increases the achievable fault
coverage and makes it easier to compress tests [2], [13]. The
LFEFSRsin L are assumed to have distinct numbers of bits, and
an LF'SR is described by its number of bits. Consequently, we
have that L = {lo,ll, ...,lNLfl}, with [p < 1 < ... < ZNL71~
As a special case it is possible to consider a single LF'SR by
using N, =1, and L = {io}.

The overall flow of the procedure for computing a stored
test set is illustrated by Figure 1. The next subsections describe
the generation of an initial set of stored tests, and the iterative
procedure that modifies stored tests in order to reduce their

number and increase the fault coverage. The initial set of
stored tests is denoted by Sy. The iterative procedure produces
sets of stored tests denoted by S1, So, ...

Any one of the sets of stored tests that the procedure
produces may contain tests that are not necessary for achieving
the fault coverage. The procedure eliminates unnecessary
stored tests by applying forward-looking reverse order fault
simulation. During this process it considers the broadside test
b; and the skewed-load test w; together for every stored test
s;. The procedure removes s; from the stored test set if neither
b; nor w; is necessary for detecting any target faults.

A. Initial Set of Stored Tests

The initial set of stored tests is denoted by .Sy. Its construc-
tion is referred to as init in Figure 1. Initially, Sg = (), and F’
contains all the target faults (transition faults in this paper). For
every number of LF'SR bits l;, € L, the procedure generates
Npg,o stored tests randomly, where Ngr o is a constant. To
construct a stored test s; = (0;,v;j0,v;1), the procedure
specifies the bits of o}, v;,¢ and v;; randomly. It computes the
broadside and skewed-load tests b; and w; obtained from s;.
It then simulates F' under b; and wj. If any fault is detected
by either b; or w;, the procedure adds s; to Sy, and removes
the detected faults from F'. Otherwise, s; is discarded.

In the case of s298 with L = {4,5} and Ng = 10, the
procedure includes a total of 15 stored tests in Sy. Forward-
looking reverse order fault simulation reduces the number of
stored tests in Sy to 13. Of these tests, seven use the 4-bit and
six use the 5-bit LF'SR. The transition fault coverage of the
initial test set is 63.93%.

B. Improving the Set of Stored Tests

For ¢ > 0, an improved set of stored tests S; is first
computed by modifying stored tests from S;_;. This is referred
to as modl in Figure 1. The goal of the modification is
to reduce the number of stored tests and increase the fault
coverage by increasing the number of faults that each stored
test detects. A larger increase is likely to occur when both
the broadside and skewed-load test obtained from a stored
test contribute to the fault coverage. Thus, the sharing of
input test data between the two test types is improved by the
modification.

The procedure also modifies additional randomly con-
structed stored tests. This is referred to as mod2 in Figure
1.

Once a new set of stored tests S; is obtained, the procedure
attempts to eliminate the stored tests in S; that detect single
faults. This is referred to as mod3 in Figure 1. For every stored
test s; € S; that detects a single fault, the procedure attempts
to modify every other test in \S; so as to detect the fault that
s; detects. When this is successful, s; can be removed, and
no additional stored tests are considered for s;.

The three parts of the procedure, where it considers existing
and new random stored tests, and attempts to remove tests that
detect single faults, are described below.

The final set \S; is considered improved compared with S;_1
if its fault coverage is higher than that of S;_;, or the number



of bits required for storing it is lower than that of S;_;. If
S; is not improved relative to S;_1, the procedure assigns
S; = S;—1. It then uses S; = S;_1 for computing S;;1.
The procedure will obtain S; 11 # S; because of the random
decisions made during the construction of a new set of stored
tests.

The procedure terminates after N; iterations where the test
set is not improved, for a constant Nj.

C. Using Existing Stored Tests

This subsection describes the first part of the modification
procedure (modl in Figure 1).

The modification procedure initially assigns S; = 0, and
includes all the target faults in the set F'. It also reorders S;_1
such that stored tests appear by order of ascending number
of LFSR bits. This is important for ensuring that S; uses
LFSRs with the smallest possible numbers of bits. Among
the stored tests with the same number of LF'SR bits, the tests
are ordered by descending number of detected faults. This
ensures that more effective tests will be considered earlier for
contributing new tests to .S;.

To construct S;, the procedure considers every stored test
sj € S;—1. It computes the tests b; and w;, and simulates F
under both tests. Let the number of detected faults be n;. If
nj = 0, the procedure does not consider s; any further, and
it does not add a stored test to .S; based on s; in this case.
This contributes to a reduction in the number of stored tests.
Otherwise, the procedure continues as follows.

For every bit k of s;, the procedure considers the stored test
sf obtained by complementing bit k. For the modified stored
test the procedure computes the broadside and skewed-load
tests bf and w;?. It simulates F' under b? and wé“ and finds
the number of detected faults, n? If nf > n;, the procedure
prefers s% over s;. It assigns s; = s¥ and n; = n¥. Otherwise,
it discards sé“

The procedure considers all the bits of s; in a random order
Ny times, for a constant N,.

An important difference between the modification of s; and
a random search is that the procedure discards modifications
that decrease the number of faults detected by s;. The search
is thus guided by the best stored test obtained to increase the
number of detected faults.

The procedure may increase the number of faults detected
by a stored test s; without detecting all the faults that it
originally detected. Thus, it is possible that if s; is considered
again, the procedure will again obtain n; > 0. To accommo-
date this possibility, the procedure considers all the stored tests
in S;_1 again. This continues as long as the procedure is able
to produce additional tests that increase the fault coverage.

In the example of s298, the procedure constructs the set S
as described in Table II. The first time the procedure considers
the stored test sg € Sy, the broadside test by detects 31 faults,
and the skewed-load test wg detects 56 faults, for a total of 87
detected faults. By modifying sg, the procedure increases the
number of faults detected by by to 79. The number of faults
detected by wq is decreased to 49. This is accepted since the
total number of detected faults is increased for sy to 128.

TABLE II
IMPROVING EXISTING STORED TESTS

original modified
J | by wj | by wy
0|31 56|79 49
1 14 12 | 36 53
2 6 1 29 23
3 20 14 11 39
4 9 7 14 17
5 1 1 3 29
6 3 1 9 7
7 1 11 1 11
8 3 0 1 8
9 6 0 1 17
10 0 3 5 1
11 6 4 11 5
0 0 7 0 7
1 1 0 2 0
3 5 2 6 2
6 1 0 1 0
10| 0 3 2 2
1 1 0 1 0
10 0 3 0 3

The first time sg is considered, the procedure reduces the
number of faults that b3 detects from 20 to 11, and increases
the number of faults that w3 detects from 14 to 39. This is
accepted since the total number of detected faults is increased
for s3 from 34 to 50.

For the stored tests sg and sg, the skewed-load tests wg and
wy initially do not detect any faults. The procedure increases
their numbers of detected faults to 8 and 17, respectively, thus
increasing the sharing of input test data between broadside and
skewed-load tests.

Similar improvements are obtained for the first 12 tests from
So. The last test from Sy does not detect any additional faults,
and it does not contribute a stored test to Sy.

The second time the procedure considers the stored test sg €
So, the broadside test by does not detect any faults, and the
skewed-load test wq detects seven faults. The procedure does
not increase the numbers of detected faults.

As the procedure performs additional iterations over the
stored tests in Sy, fewer stored tests contribute to S;. The
procedure includes 19 tests in .Sy to achieve an improved fault
coverage of 81.38%.

An increase in the number of stored tests occurs when the
procedure increases the fault coverage significantly, as in the
case of s298. When the fault coverage is not increased, or
when the increase is small, the procedure reduces the number
of stored tests.

D. Using New Random Stored Tests

To improve the fault coverage further after considering all
the stored tests in S;_;, the procedure also modifies new
random stored tests (mod2 in Figure 1). As for the initial
test set, the procedure constructs a random stored test s; by
specifying all its bits randomly. It then improves the stored
test by modifying its bits one by one. A modified stored test
that increases the fault coverage is added to .S;.

The procedure generates Np 1 new random stored tests
for every number of LFSR bits I, € L, where Ng is a
parameter of the procedure.



TABLE III
IMPROVING NEW RANDOM STORED TESTS

original modified
wi | b wj
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In the example of 5298, using Ng 1 = 10, the procedure
finds two new stored tests for the 4-bit LF'SR, and eight
new stored tests for the 5-bit LF'SR as shown in Table III.
The value of j is the index of a new stored test. An index is
assigned separately for every number of LF'S R bits. The fault
coverage for 5298 is increased to 86.41% by adding the stored
tests from Table III to .S;. Forward-looking reverse order fault
simulation reduces the number of stored tests in .Sy to 26.

It is interesting to note that, for the new stored tests in Table
II1, either the broadside or skewed-load test detects new faults.
Thus, sharing of input test data does not occur. The procedure
will improve the sharing of input test data in the step described
next, and when it performs another iteration.

E. Eliminating Stored Tests that Detect Single Faults

In the example of s298, after constructing Si, the set of
stored tests contains two tests that detect single faults, s;5
that detects fsp5, and s17 that detects foo1. Sharing of input
test data does not occur for such tests, and they increase the
number of tests while detecting only one fault. The procedure
attempts to eliminate such tests from the test set in order to
reduce the number of tests and increase the sharing of input
test data (mod3 in Figure 1).

It should be noted that numbers of detected faults are
determined by fault simulation with fault dropping. The step
of removing tests that detect single faults is described next.

The procedure considers every test s; € .S; that detects
only one fault. Let the single fault detected by s; be f;.
The procedure considers every other test s,, € S; that has
not been marked for removal from the test set. Using the
same modification process as above, the procedure attempts
to modify s,, such that it would continue to detect the same
faults, and in addition, detect f;. When this is successful, the
procedure marks that f; is detected by s,,, and that s; can be
removed from the test set.

Stored tests at the beginning of S; detect relatively large
numbers of faults. Such tests are difficult to modify so as to
detect an additional fault. To avoid unnecessary computations,
the procedure considers for modification a stored test s,,, only
if m > Ng, for a parameter Ng.

This step changes the stored tests in .S;. Therefore, the
procedure performs fault simulation of the modified set even
if no test is removed in order to capture the increase in the
fault coverage.

TABLE IV
COMPARISON OF TEST SETS

circuit tests f.c.
s1423 50 98.66
$5378 170 97.86
$9234 258 93.32
$13207 373 96.83
s15850 300 95.13
$35932 34 89.78
b04 42 99.78
bl4 267 94.55
b20 355 95.77
$38584 393 93.79
bl5 423 97.32
b21 468 92.36
b22 528 94.97
aes_core 273 99.99
des_area 112 100.00
i2c 84 98.81
sasc 34 99.77
simple_spi 56 99.14
spi 460 99.70
systemcaes 158 99.84
systemcdes 74 99.98
tv80 663 97.86
usb_phy 40 99.05
wb_dma 138 99.68

In the example of s298, without limiting the tests that will
be considered for modification, the procedure modifies s;g to
detect f305. It thus removes s15 from Sy.

IV. EXPERIMENTAL RESULTS

The procedure illustrated by Figure 1 was applied to transi-
tion faults in benchmark circuits using the following parameter
values.

For a circuit with K state variables, the set L of LFSRs
consists of primitive LFSRs from [23] with numbers of bits
bop = 4, by = 5, ..., by,—1 = min{K/4,130}. The upper
bound of K/4 ensures that a stored seed requires at most
a fourth of the number of bits required for storing a scan-in
state uncompressed. For larger circuits the upper bound of 130
ensures a smaller ratio.

In the worst case, a 130-bit programmable LF'S R requires
129 XOR gates and the same number of multiplexers. Seven
bits are required for encoding 127 LFSRs with four to 130
bits. Thus, the encoding of an LF'SR requires a seven-input
AND gate. The AND gate is also driven by the last bit of the
LFSR. This yields a total of at most 127 eight-input AND
gates as part of the multiplexers. Assuming that an LF'SR
has three non-zero terms, which is the maximum in [23], all
the multiplexers together have a total of 3 - 127 = 381 OR
gate inputs. This worst case does not occur for any of the
benchmark circuits considered.

The procedure considers Ng ¢ = 1000 random stored tests
for the initial set Sy, and Ng 1 = 5 random stored tests for
improving a set S; when ¢ > 0.

The procedure improves a stored test by considering its bits
Njps = 4 times. It considers tests for modification starting with
Ng = |S;|/4. It terminates after N; = 4 iterations that do not
improve the set of stored tests. These parameter values were
selected based on experiments showing that larger parameter



TABLE V
EXPERIMENTAL RESULTS (WITH AND WITHOUT SHARING)

circuit | sv |itr rand rem | tests share incr | LFSRs  bits | storage decr | fec. incr | ntime
sasc 117 0 0 0 80 67.50  0.00 8 5.74 2859 0.00 99.772  0.000 1.00
sasc 117 1 0 0 72 62.50  -5.00 8 6.18 2605 8.88 99.772  0.000 5.96
sasc 117 4 0 0 59 66.10 -1.40 8 6.36 2145 24.97 99.772  0.000 17.87
sasc 117 10 0 0 73 0.00 0.00 6 5.89 2620 23.21 99.772  0.000 35.31
des_area 128 0 0 0 279 56.27 0.00 2 4.01 134482 0.00 100.000  0.000 1.00
des_area 128 1 0 5 115 5391 -236 1 4.00 55430  58.78 | 100.000  0.000 339.29
des_area 128 6 0 4 104 61.54 527 1 4.00 50128 62.73 | 100.000 0.000 | 1766.46
des_area 128 4 0 2 114 0.00 0.00 1 4.00 54948 63.81 | 100.000 0.000 | 1128.20
usb_phy 98 0 0 0 82 68.29 0.00 9 6.55 2833 0.00 99.049  0.000 1.00
usb_phy 98 1 0 0 66 74.24 595 9 7.15 2320 18.11 99.049  0.000 4.20
usb_phy 98 5 0 0 82 0.00 0.00 9 7.56 2916 11.80 | 99.049  0.041 16.63
systemcdes | 190 0 0 0 144 73.61 0.00 3 4.27 38055 0.00 99.983 0.000 1.00
systemcdes | 190 1 0 1 78 83.33 9.72 3 4.14 20603 45.86 | 99.983 0.000 47.52
systemcdes | 190 2 0 1 69 86.96  13.35 3 4.16 18227 52.10 | 99.983 0.000 93.28
systemcdes | 190 9 0 3 111 0.00 0.00 3 4.14 29319 4534 | 99.983 0.000 | 417.10
s1423 74 0 0 0 102 56.86  0.00 13 6.79 4161 0.00 98.278 0.000 1.00
s1423 74 1 0 2 82 60.98  4.11 12 6.54 3324 20.12 | 98.349  0.070 6.97
s1423 74 9 0 0 68 72.06 15.20 12 7.56 2826 32.08 98.665 0.387 41.57
s1423 74 20 0 0 91 0.00 0.00 13 7.81 3805 19.35 98.665 0.281 99.57
s13207 669 0 0 0 698 3424  0.00 103 29.25 63692 0.00 94370  0.000 1.00
s13207 669 1 15 14 620  39.52  5.28 97 33.12 | 58973 7.41 95.777 1.408 16.10
$13207 669 | 30 0 12 439  52.16 17.92 41 54.74 | 51247 19.54 | 96.832 2.462 348.16
$13207 669 | 25 0 9 552 0.00 0.00 70 52.38 63140 10.88 96.832 2.060 | 243.90
b04 66 0 0 0 67 50.75 0.00 8 5.27 1961 0.00 99.650  0.000 1.00
b04 66 1 0 0 48 64.58 13.84 7 5.23 1403 28.45 99.781 0.131 4.17
b04 66 2 0 0 45 7333 22.59 7 5.22 1315 3294 | 99.825 0.175 7.33
b04 66 7 0 0 60 0.00 0.00 8 5.25 1755 25.73 99.825 0.482 22.58
Shﬁre Stojf‘ge increase the number of stored tests. They can also reduce the
b o share 0 achievable fault coverage.
w0l % O storage For further comparison, the procedure from Figure 1 is
® applied without sharing of input test data between broadside
o] . . .
0 20 and skewed-load tests. Every stored test s; is associated with
° . . . .
© a single test type, and only a test of this type is applied based
10 ©0 on s;. The same property is maintained as stored tests are
®o 20 modified to increase the number of faults they detect. The
© ° number of random stored tests considered is doubled to allow
random stored tests to achieve a similar fault coverage.
e o . . .
A - The results of the procedure from Figure 1 are given in
5 © 10 fc Tables V and VI. On up to three separate rows, the results
o ° are reported for Sy, S1, and the iteration where the final set
° 20 of stored tests is obtained with sharing of input test data. The
10 results for additional iterations are given in Table VI for two
o circuits, spi and wb_dma, to demonstrate the possibility of
40 terminating the procedure earlier. For several circuits in Table

Fig. 2. Percentage of sharing and storage

values increase the computational effort but do not contribute
significantly to the quality of the results.

As a reference point, Table IV provides the number of tests
and the transition fault coverage for one of two test sets that
consists of broadside and skewed-load tests. (1) The test set
from [12] when it is available. (2) A test set computed without
requiring broadside and skewed-load tests to share input test
data. In both cases, the constraints of a test data compression
method are not considered. It is important to note that the
constraints of a test data compression method are known to

V, an additional row shows the final results obtained without
sharing of input test data.

For every set, after the circuit name, column sv shows the
number of state variables. Column iter shows the iteration ¢ of
the procedure. For ¢ > 0, column rand shows the number of
new modified random stored tests that are added to .S;. Column
rem shows the number of tests that detect single faults and
the procedure removes from the set.

Column tests shows the number of stored tests in .S;.
Column share shows the percentage of stored tests for which
both the broadside and skewed-load test increases the fault
coverage, and needs to be applied. A higher percentage implies
better sharing of input test data between broadside and skewed-
load tests. Column incr that follows shows the increase in the



TABLE VI
EXPERIMENTAL RESULTS (WITH SHARING)

circuit SV iter rand rem | tests  share incr LFSRs bits storage decr f.c. incr ntime
bl4 247 0 0 0 334 47.60  0.00 43 13.19 26448 0.00 81.583 0.000 1.00
bl4 247 1 7 6 261 56.70 9.10 38 13.64 20787 21.40 | 84.674 3.091 4.82
bl4 247 56 0 2 384 4219 542 26 26.96 35698 -34.97 | 94936  13.353 291.27
b22 709 0 0 0 827 51.03 0.00 92 20.56 | 71582 0.00 86.377 0.000 1.00
b22 709 1 24 16 635 63.62  12.59 80 25.10 57850 19.18 | 89.093 2.716 5.71
b22 709 7 2 16 870 4655 -4.48 71 51.11 | 101884  -42.33 | 94.575 8.198 36.17
i2c 128 0 0 0 132 59.09  0.00 25 9.61 5756 0.00 90.163 0.000 1.00
i2c 128 1 5 0 114 5526  -3.83 25 12.25 5272 8.41 94.406  4.242 3.23
i2c 128 33 0 1 102 55.88 -3.21 16 21.99 5711 0.78 98.858 8.695 80.92
b21 494 0 0 0 568 46.13 0.00 86 22.46 50247 0.00 81.104  0.000 1.00
b21 494 1 22 13 472 55.30  9.17 83 27.17 43974 12.48 | 84.397 3.292 5.25
b21 494 36 0 13 645 43.57 -2.56 37 72.98 89641 -78.40 | 93.098 11993 195.53
b20 494 0 0 0 565 46.73 0.00 78 19.54 | 48330 0.00 86.237 0.000 1.00
b20 494 1 13 8 447 62.42  15.69 74 22.82 39702 17.85 | 88.907 2.671 4.60
b20 494 19 1 6 582 4485 -1.88 46 53.25 69401 -43.60 | 95.056 8.820 73.25
s5378 179 0 0 0 412 39.08 0.00 38 12.37 33935 0.00 97.337 0.000 1.00
85378 179 1 3 4 357 3697 -2.10 40 13.10 29668 12.57 | 97.517 0.179 35.49
85378 179 10 0 5 295 41.69 2.62 33 17.59 25838 23.86 | 97.753 0.415 251.07
835932 1728 0 0 0 63 92.06  0.00 3 4.37 4685 0.00 89.781 0.000 1.00
§35932 1728 1 0 0 55 9091  -1.15 3 4.38 4091 12.68 | 89.781 0.000 4.00
835932 1728 7 0 0 49 95.92 3.85 3 4.43 3647 22.16 | 89.781 0.000 21.81
$9234 228 0 0 0 491 45.62  0.00 53 18.57 27776 0.00 85.851 0.000 1.00
$9234 228 1 19 8 464 4591 0.28 52 21.95 27816 -0.14 89.625 3.774 6.10
$9234 228 40 0 8 399 51.88 6.26 31 32.86 28274 -1.79 | 93.134  7.283 176.83
aes_core 530 0 0 0 666  78.83 0.00 8 7.26 348489 0.00 99.992  0.000 1.00
aes_core 530 1 0 1 579 82.73 3.90 8 7.58 303153 13.01 | 99.992  0.000 220.28
aes_core 530 10 0 0 501 90.02 11.19 8 8.07 262561 24.66 | 99.992  0.000 1467.82
bl5 447 0 0 0 782 50.26  0.00 104 28.38 78494 0.00 88.939  0.000 1.00
bl5 447 1 37 12 743 4872  -1.53 101 39.58 82903 -5.62 | 96.901 7.962 7.24
bl5 447 51 0 10 554 64.80 14.55 76 59.19 | 72681 7.41 98.749 9.810 280.97
systemcaes 670 0 0 0 370 59.19  0.00 21 8.06 193903 0.00 99.841 0.000 1.00
systemcaes 670 1 0 3 309 66.02 6.83 21 8.70 162131 16.39 | 99.841 0.000 102.13
systemcaes 670 14 0 2 249 73.09 13.90 19 11.26 | 131287 3229 | 99.841 0.000 1125.24
tv80 359 0 0 0 1191 22.17 0.00 86 28.85 65324 0.00 92.528 0.000 1.00
tv80 359 1 47 18 1076 2742 5.25 84 32.31 62739 3.96 96.219 3.691 14.77
tv80 359 47 0 21 836 36.36 14.20 53 46.70 60775 6.96 98.423 5.895 584.52
simple_spi 131 0 0 130 58.46  0.00 15 6.34 4724 0.00 97.068 0.000 1.00
simple_spi 131 1 3 1 100 58.00 -0.46 15 6.96 3696 21.76 | 97.304  0.236 5.27
simple_spi 131 46 0 0 69 7536 16.90 16 16.29 3194 32.39 | 99.188 2.120 140.10
515850 597 0 0 0 524 4218 0.00 95 26.30 28455 0.00 92.475 0.000 1.00
s15850 597 1 29 13 481 42.00 -0.18 95 35.44 30516 -7.24 | 93.791 1.316 5.63
s15850 597 45 0 9 351 59.83  17.65 30 63.97 32281 -13.45 | 95.043 2.568 164.71
$38584 1452 0 0 0 1188 5791 0.00 108 24.19 57253 0.00 92.804  0.000 1.00
$38584 1452 1 24 27 979 66.39 8.48 102 28.02 50929 11.05 | 93.296  0.492 7.54
$38584 1452 | 20 0 17 705 79.29  21.38 76 52.23 53740 6.14 93.768 0.964 103.10
spi 229 0 0 0 740 49.59  0.00 37 9.77 73832 0.00 98.329  0.000 1.00
spi 229 1 3 11 621 53.30 3.71 33 11.15 62816 14.92 | 99.332 1.003 68.81
spi 229 3 7 577 56.67 7.08 33 12.28 59016 20.07 | 99.515 1.186 123.35
spi 229 5 2 7 508 6594 1635 33 14.64 53158 28.00 | 99.641 1.312 244.60
spi 229 12 0 6 477 67.30  17.70 31 16.28 50694 31.34 | 99.699 1.370 501.37
spi 229 24 0 9 468 69.66  20.06 27 16.38 49788 32.57 | 99.724 1.395 945.93
wb_dma 523 0 0 0 353 46.46  0.00 69 22.03 | 159567 0.00 98.605 0.000 1.00
wb_dma 523 1 5 12 297 52.19 5.73 61 28.76 | 136253 14.61 | 99.402  0.797 48.65
wb_dma 523 2 6 271 54.98 8.52 56 30.59 | 124820  21.78 | 99.456  0.852 81.64
wb_dma 523 5 0 6 245 59.18 1272 53 33.84 | 113641 28.78 | 99.607 1.003 158.58
wb_dma 523 13 1 6 228 59.65 13.19 49 40.18 | 107201 32.82 | 99.746 1.142 322.61
wb_dma 523 23 0 6 206 67.48 21.02 43 39.50 96718 39.39 | 99.758 1.154 527.03
percentage of sharing. The circuits are arranged by ascending  circuits.

order of this parameter.

Column LF'SRs shows the number of LE'SRs from L that
are used by the stored tests in S;. Column bits shows the
average number of bits in a seed of the stored test set. Denoting
the average by l,,. and the number of state variables by K,
the level of test data compression obtained per test is equal
to K/lave. The selection of L ensures that this value is at
least four for smaller circuits, and larger than four for larger

Column storage shows the number of bits required for
storing S;. The number of bits includes the seeds and the
primary input vectors. Assuming that every stored test is used
for applying both a broadside and a skewed-load test, and the
two test types are applied separately, no extra bits are included
for the test type (two bits are required for every stored test to
indicate which one of the two test types should be applied,
and this is negligible compared with the seeds and primary



TABLE VII
EXPERIMENTAL RESULTS (SMALLER SETS OF LF SRS)

circuit SV iter rand rem | tests  share incr LFSRs bits storage decr f.c. incr ntime
85378 | 179 0 0 0 412 39.08  0.00 38 12.37 | 33935 0.00 | 97.337  0.000 1.00
85378 | 179 | 10 0 5 295 4169 262 33 17.59 | 25838  23.86 | 97.753 0.415 | 251.07
s5378 | 179 0 0 0 365 43.01 0.00 8 38.71 | 39680 0.00 | 95.713  0.000 1.00
s5378 | 179 | 20 0 2 241 4689  3.87 6 37.43 | 25891 3475 | 97.875 2.162 | 1457.84
s5378 | 179 0 0 0 354 4237  0.00 8 16.87 | 30752 0.00 | 95.713  0.000 1.00
s5378 | 179 | 39 0 0 263 39.92  -245 8 16.79 | 22827  25.77 | 97.781  2.068 | 3285.47

input vectors). Column decr shows the percentage reduction
in the number of storage bits required for .S; relative to Sp.

Column f.c. shows the transition fault coverage achieved
by .S;. Column incr shows the increase in the transition fault
coverage relative to Sy. A larger increase in the fault coverage
sometimes requires more stored tests, and a higher number of
bits for storage of S;. It can also reduce the sharing of input
test data between broadside and skewed-load tests.

Column nttme shows the normalized runtime, where the
cumulative runtime for computing Sy, S, ..., S; is divided
by the runtime for computing So. The computation of Sy is
dominated by fault simulation with fault dropping of 2N, Ng o
tests.

The following points can be seen from Tables V and VI. The
procedure increases the fault coverage of Sy when it is lower
than the highest fault coverage achievable by broadside and
skewed-load tests. The increase is significant for several of the
circuits. Thus, the procedure is able to provide a meaningful
fault coverage increase when needed. In most of the cases,
the final fault coverage is equal or close to that achievable by
broadside and skewed-load tests that are not constrained by a
test data compression method.

The parameter that measures the ability of the procedure to
share input test data between broadside and skewed-load tests
is the percentage of sharing shown under column share. This
is the percentage of stored tests for which both the broadside
and skewed-load test needs to be applied. An increase in
the fault coverage, or a reduction in the number of storage
bits, can hide an improvement in the percentage of sharing.
Nevertheless, this parameter is improved for many of the
circuits in Tables V and VL.

An increase in the fault coverage can also hide a reduction
in the number of storage bits because more stored tests are
needed to support the increased fault coverage. This results
in a negative number under column decr. Nevertheless, the
reduction in the number of storage bits is significant in many
cases. Moreover, when the procedure is not allowed to share
input test data between broadside and skewed-load tests, the
number of stored tests, and the storage requirements of the
stored test set, are significantly higher.

For further illustration of the procedure with sharing of
input test data, Figure 2 shows the percentage increase in
sharing and the percentage reduction in storage as a function
of the increase in the fault coverage considering several of
the circuits from Tables V and VI. The increase in the fault
coverage is shown on the horizontal axis. On the vertical
axis, the small circles show the increase in the percentage of
sharing, and the large circles show the percentage reduction in

storage. Figure 2 shows that a reduction in the percentage of
sharing, and an increase in the number of storage bits, typically
go together with a high increase in the fault coverage.

The average number of LFSR bits typically increases as
the procedure performs additional iterations. The number of
storage bits decreases for many of the circuits because the
number of stored tests is reduced significantly when somewhat
larger LFSRs are used. The number of different LFSRs
typically decreases as the average number of LFSR bits is
increased.

The normalized runtime after one iteration is similar for
circuits of different sizes. This implies that the procedure
scales similar to a fault simulation procedure. It should be
noted in this regard that the procedure modifies seeds, and not
scan-in states that have a significantly larger number of bits.
The average number of bits in a seed (the average number of
LF SR bits) is similar for circuits of different sizes.

The normalized runtime per iteration typically decreases
as the procedure performs additional iterations. This occurs
because the number of tests is reduced, and in spite of the
increase in the average number of LF'SR bits.

The procedure can be terminated earlier without a signif-
icant impact on its effectiveness. This is illustrated by spi
and wb_dma in Table VI. The earlier termination can be
implemented using a runtime limit or a lower value of N7j.

Finally, it is possible to reduce the set of LF'SRs that
the procedure is allowed to use in order to reduce the hard-
ware overhead associated with the programmable LFSR. To
demonstrate this point, the procedure is run for s5378 with
two sets of eight LE'S Rs. The first set is defined by by = 37,
by = 38, ..., by = 44. For the second set, by = 15, by = 16, ...,
b7y = 22. These sets were selected based on the maximum and
average number of LF'SR bits obtained for s5378 in Table
VL

Table VII shows the results obtained for s5378 with these
sets of LF'SRs. The results from Table VI are repeated for
ease of comparison. The results in every case are shown for
Sy and for the final iteration of the procedure. It can be seen
from Table VII that the procedure is effective with a limited
set of LF'SRs as well.

V. CONCLUDING REMARKS

This paper developed an algorithm for computing stored
tests that can be used for applying both broadside and skewed-
load tests. The algorithm was developed for the case where a
programmable linear-feedback shift-register (LF SR) is used
for on-chip decompression. A stored test consists of a seed for
the LF'S R and two primary input vectors. The seed determines



the scan-in state of the applied broadside and skewed-load
tests, as well as the additional scan-in vector required for the
skewed-load test. In the algorithm developed in this paper,
stored tests are computed directly without first computing
broadside or skewed-load tests. This avoids situations where
the tests cannot be compressed or do not have common input
test data. The algorithm consisted of the generation of random
stored tests, and the modification of stored tests to increase
the fault coverage contribution achieved by the broadside
and skewed-load tests they apply. Experimental results for
transition faults in benchmark circuits demonstrated the ability
of the procedure to share stored tests between broadside
and skewed-load tests while increasing the fault coverage
and reducing the number of stored tests and their storage
requirements.
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