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Direct Computation of LFSR-Based Stored Tests
for Broadside and Skewed-Load Tests

Irith Pomeranz

Abstract—Using both broadside and skewed-load tests for
delay faults provides a higher fault coverage and more compacted
test sets. An earlier work showed that it is possible to share
input test data between broadside and skewed-load tests, and
thus reduce the input test data volume. This paper develops
an algorithm for computing stored tests that can be used for
applying both broadside and skewed-load tests in the context of
a specific test data compression method. Under this method, a
programmable linear-feedback shift-register is used for on-chip
decompression. In the stored test data, a stored test consists of
a seed and two primary input vectors. The seed determines the
scan-in state of the applied broadside or skewed-load test as well
as the additional scan-in vector required for a skewed-load test. In
the algorithm developed in this paper, stored tests are computed
directly without first computing broadside or skewed-load tests.
This avoids situations where the tests cannot be compressed or
do not have common input test data.

Index Terms—Broadside tests, linear-feedback shift-register
(LFSR), skewed-load tests, test data compression, test gener-
ation, transition faults.

I. INTRODUCTION

Test data compression methods reduce the test data volume
by storing compressed tests and compacted output responses
[1]-[19]. On-chip, decompression logic is used for loading the
input test data into the circuit. Output compaction logic is used
for capturing the output response.
When the same input test data is used for applying several

different tests, the input test data volume is reduced further [9],
[10], [12], [14], [15], [16], [18]. In [12], a stored test consists
of a scan-in state, two primary input vectors (for two clock
cycles of a test), and two additional scan-in vectors. These
are used for applying one broadside (launch-on-capture) and
two skewed-load (launch-on-shift) tests. The skewed-load tests
differ in the scan-in vector used in the scan shift cycle that
follows the scan-in operation. The advantages of using both
types of tests are: (1) it is possible to achieve a higher delay
fault coverage since some delay faults are only detected by
broadside tests while others are only detected by skewed-load
tests; and (2) it is possible to achieve higher levels of test
compaction by selecting the test type that leads to the detection
of more faults [20]-[21]. The number of stored tests for the
application of broadside and skewed-load tests is reduced in
[12] by applying three tests based on every stored test.
The approach in [12] is developed without considering a

specific test data compression method. It starts from a test
set that consists of broadside and skewed-load tests where the
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two test types are generated separately. It extracts from the
test set triples that consist of scan-in states, pairs of primary
input vectors, and additional scan-in vectors for skewed-load
tests (two are used in [12]). Each triple is then associated
with three tests, a broadside test and two skewed-load tests.
Unnecessary triples are removed, and remaining triples are
modified to increase their contribution to the fault coverage.
This allows additional triples to be removed.
A more effective algorithm for the computation of common

input test data for broadside and skewed-load tests has the
characteristics discussed next. Such an algorithm is developed
in this paper.
(1) The algorithm considers a specific method for test data

compression. In this paper, a linear-feedback shift-register
(LFSR) is used as the on-chip decompression logic, and
stored test data includes seeds for the LFSR. A seed is
associated with the pair of primary input vectors required for
applying a test. The same seed is also used for producing the
additional scan-in vector required for a skewed-load test. Thus,
a stored test consists of a seed and a pair of primary input
vectors. One broadside and one skewed-load test are applied
based on every stored test. Scan-in vectors for skewed-load
tests are not stored. A programmable LFSR is used for a
higher fault coverage [2], [13].
(2) Existing test generation procedures do not generate

common input test data for broadside and skewed-load tests.
Instead, they generate the two types of tests separately. Even
if a test set that consists of broadside and skewed-load tests
is generated for a specific test data compression method,
it does not utilize the possibility of sharing input test data
between the two test types. Moreover, if scan-in states are
modified as in [12] to allow sharing of input test data between
broadside and skewed-load tests, it is necessary to check that
the modified scan-in states can be compressed by the test data
compression method. To address these issues, the procedure
described in this paper generates stored tests directly. In par-
ticular, it generates seeds for the LFSR instead of generating
scan-in states. Every stored test sj is associated with two
applied tests, a broadside test bj and a skewed-load test wj .
The contribution of sj to the fault coverage consists of the
combined contribution of bj and wj . The procedure generates
sj directly, and evaluates it based on the number of faults
detected by bj and wj .

The procedure for constructing a stored test set consists of
two subprocedures. The first subprocedure generates an initial
stored test set randomly. A stored test in the initial test set is
constructed by randomly specifying a seed and two primary
input vectors. This provides an initial fault coverage and an
initial level of sharing of input test data between broadside
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and skewed-load tests. As an alternative, the initial stored
test set can be computed by any test generation procedure
for broadside and skewed-load tests that accommodates the
constraints of the test data compression method.
The second subprocedure modifies stored tests in order to

increase the contribution of each one to the fault coverage.
When a stored test sj is modified, the goal is to increase the
combined contribution of the broadside test bj and the skewed-
load test wj to the fault coverage. The modification is carried
out by complementing bits of sj one by one. Bit comple-
mentation was shown to be effective for test compaction in
[22]. It is also used for the input test data in [12]. In [17] and
[19], an LFSR-based test generation procedure modifies seeds
by complementing their bits one by one in order to achieve
diagnosis objectives or detect path delay faults. In this paper,
this approach is applied to stored tests that include LFSR
seeds and pairs of primary input vectors in order to increase the
combined contribution to the fault coverage achieved by the
broadside and skewed-load tests obtained from every stored
test. Modifying seeds (as in [17] and [19]) instead of scan-
in states (as in [12] and [22]) has a significant advantage in
computational effort since seeds have significantly fewer bits
than scan-in states.
The second subprocedure is applied iteratively using exist-

ing and new random stored tests. By modifying stored tests to
increase their contribution to the fault coverage, the procedure
increases the fault coverage of the applied test set. It also
reduces the number of stored tests, thus increasing the sharing
of input test data between broadside and skewed-load tests,
and reducing the input test data volume. Finally, the procedure
is applied selectively in an attempt to eliminate from the set
of stored tests the ones that detect single faults. This reduces
the number of stored tests further, reducing the input test data
volume and increasing the sharing of input test data further.
In general in the context of test data compression, the

second subprocedure modifies the stored tests computed for
a particular approach to test data compression. As stored tests
are modified, applied tests are computed and simulated to
check the effects of the modification. As a special case, this
approach is applicable when the initial test set is computed
by solving linear equations for a linear decompression logic.
Existing test generation procedures do not guarantee sharing
of test data between broadside and skewed-load tests, and the
second subprocedure contributes to such sharing. The second
subprocedure can also be applied to the stored tests when
different approaches are used for producing more than one
applied test from every stored test as in [9], [10], [12], [14],
[15], [16] or [18].
The paper is organized as follows. The format of a stored

test and the resulting applied tests are described in Section II.
A procedure for generating a stored test set where every stored
test is used for applying a broadside and skewed-load test is
described in Section III. Experimental results are presented in
Section IV.

II. STORED AND APPLIED TESTS

This section describes the format of a stored test and how
the applied broadside and skewed-load tests are obtained.

TABLE I
EXAMPLE TESTS

j test pj,0 vj,0 pbj,1/p
w
j,1 vj,1

0 b0 01111010110010 001 11111010110000 100
0 w0 01111010110010 001 00111101011001 100
1 b1 01011001000111 100 00000001000100 101
1 w1 01011001000111 100 10101100100011 101

A stored test is denoted by sj = 〈σj , vj,0, vj,1〉. It consists
of a seed σj for the LFSR, and two primary input vectors,
vj,0 and vj,1. Suppose that the longest scan chain has K state
variables. When the seed σj is loaded into the LFSR, and
the LFSR is clocked for K clock cycles, it produces a scan-
in state denoted by pj,0. After an additional clock cycle, the
LFSR produces the scan-in vector qj .
The stored test sj is used for applying two tests, a broadside

test and a skewed-load test. The broadside test is denoted by
bj = 〈pj,0, vj,0; pbj,1, vj,1〉. Here, pj,0 and vj,0 are the present-
state and primary input vector for the first clock cycle of the
test; and pbj,1 and vj,1 are the present-state and primary input
vector for the second clock cycle. After pj,0 is scanned in,
the two primary input vectors vj,0 and vj,1 are applied in two
consecutive functional capture cycles. The state pbj,1 is the
next-state obtained for pj,0 and vj,0 during the first functional
capture cycle. This is also the present-state for the second
functional capture cycle.
The skewed-load test is denoted by wj = 〈pj,0, vj,0; pwj,1,

vj,1〉. After pj,0 is scanned in, the primary input vector vj,0
is applied in scan shift mode with scan-in vector qj produced
by the LFSR. The state pwj,1 is the resulting next-state. The
second clock cycle of the test is a functional capture cycle
where the primary input vector vj,1 is applied with the circuit
in state pwj,1.
For illustration, ISCAS-89 benchmark circuit s298 is con-

sidered next. The circuit has three primary inputs, and 14 state
variables that are included in a single scan chain. The scan
chain is shifted to the right. The 4-bit primitive LFSR from
[23] is used for this example.
Two stored tests are considered, s0 = 〈0010, 001, 100〉 and

s1 = 〈1111, 100, 101〉. The resulting broadside and skewed-
load tests are shown in Table I. When σ0 = 0010 is loaded
into the LFSR, and the LFSR is clocked for 14 clock cycles,
the scan-in state p0,0 = 01111010110010 is obtained. With an
additional clock cycle, the LFSR produces the scan-in vector
q0 = 0. This yields the broadside and skewed-load tests b0
and w0 shown in Table I.
For s1, the scan-in state is p1,0 = 01011001000111 and the

additional scan-in vector is q1 = 1. This yields the broadside
and skewed-load tests b1 and w1 shown in Table I.
Table I demonstrates that the input values to the combina-

tional logic during the first clock cycles of bj and wj are the
same. The tests differ significantly in the second clock cycle.
This allows them to detect different faults.
Although the two test types are stored using common test

data, it is not necessary to alternate between them during
test application. Instead, it is possible to first apply all the
broadside tests, and then apply all the skewed-load tests (or
vice versa).
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(init) construct a random stored test s j ; if s j
detects yet-undetected faults, add it to S0

apply forward-looking reverse order
fault simulation to S0

assign i = 0

assign i = i +1

(mod1) for every s j ∈Si−1, if s j detects
yet-undetected faults, improve s j and add the

improved stored test to Si

(mod2) construct a random stored test s j and
improve it; if s j detects yet-undetected faults,

add it to Si

apply forward-looking reverse order
fault simulation to Si

(mod3) for every s j ∈Si that detects a single fault,
modify other tests in Si in an attempt to remove s j

if Si is not improved relative to Si−1,
assign Si = Si−1

NI

NL ⋅ NR,0

fault
coverage
increased

NL ⋅ NR,1

Fig. 1. Procedure for generating a stored test set

III. GENERATING A STORED TEST SET

This section describes a procedure for generating a stored
test set where every stored test is used for applying a broadside
and skewed-load test. The procedure attempts to ensure that
both tests together increase the fault coverage as much as
possible. However, if only one of the tests increases the fault
coverage, it is possible to avoid the application of the other
test.
The procedure considers a given set L of LFSRs. A set

of LFSRs can be implemented by a programmable LFSR
with minimal additional logic compared with a single LFSR
[2]. The use of multiple LFSRs increases the achievable fault
coverage and makes it easier to compress tests [2], [13]. The
LFSRs in L are assumed to have distinct numbers of bits, and
an LFSR is described by its number of bits. Consequently, we
have that L = {l0, l1, ..., lNL−1}, with l0 < l1 < ... < lNL−1.
As a special case it is possible to consider a single LFSR by
using NL = 1, and L = {l0}.
The overall flow of the procedure for computing a stored

test set is illustrated by Figure 1. The next subsections describe
the generation of an initial set of stored tests, and the iterative
procedure that modifies stored tests in order to reduce their

number and increase the fault coverage. The initial set of
stored tests is denoted by S0. The iterative procedure produces
sets of stored tests denoted by S1, S2, ....
Any one of the sets of stored tests that the procedure

produces may contain tests that are not necessary for achieving
the fault coverage. The procedure eliminates unnecessary
stored tests by applying forward-looking reverse order fault
simulation. During this process it considers the broadside test
bj and the skewed-load test wj together for every stored test
sj . The procedure removes sj from the stored test set if neither
bj nor wj is necessary for detecting any target faults.

A. Initial Set of Stored Tests

The initial set of stored tests is denoted by S0. Its construc-
tion is referred to as init in Figure 1. Initially, S0 = ∅, and F
contains all the target faults (transition faults in this paper). For
every number of LFSR bits lk ∈ L, the procedure generates
NR,0 stored tests randomly, where NR,0 is a constant. To
construct a stored test sj = 〈σj , vj,0, vj,1〉, the procedure
specifies the bits of σj , vj,0 and vj,1 randomly. It computes the
broadside and skewed-load tests bj and wj obtained from sj .
It then simulates F under bj and wj . If any fault is detected
by either bj or wj , the procedure adds sj to S0, and removes
the detected faults from F . Otherwise, sj is discarded.

In the case of s298 with L = {4, 5} and NR,0 = 10, the
procedure includes a total of 15 stored tests in S0. Forward-
looking reverse order fault simulation reduces the number of
stored tests in S0 to 13. Of these tests, seven use the 4-bit and
six use the 5-bit LFSR. The transition fault coverage of the
initial test set is 63.93%.

B. Improving the Set of Stored Tests

For i > 0, an improved set of stored tests Si is first
computed by modifying stored tests from Si−1. This is referred
to as mod1 in Figure 1. The goal of the modification is
to reduce the number of stored tests and increase the fault
coverage by increasing the number of faults that each stored
test detects. A larger increase is likely to occur when both
the broadside and skewed-load test obtained from a stored
test contribute to the fault coverage. Thus, the sharing of
input test data between the two test types is improved by the
modification.
The procedure also modifies additional randomly con-

structed stored tests. This is referred to as mod2 in Figure
1.
Once a new set of stored tests Si is obtained, the procedure

attempts to eliminate the stored tests in Si that detect single
faults. This is referred to asmod3 in Figure 1. For every stored
test sj ∈ Si that detects a single fault, the procedure attempts
to modify every other test in Si so as to detect the fault that
sj detects. When this is successful, sj can be removed, and
no additional stored tests are considered for sj .

The three parts of the procedure, where it considers existing
and new random stored tests, and attempts to remove tests that
detect single faults, are described below.
The final set Si is considered improved compared with Si−1

if its fault coverage is higher than that of Si−1, or the number
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of bits required for storing it is lower than that of Si−1. If
Si is not improved relative to Si−1, the procedure assigns
Si = Si−1. It then uses Si = Si−1 for computing Si+1.
The procedure will obtain Si+1 �= Si because of the random
decisions made during the construction of a new set of stored
tests.
The procedure terminates after NI iterations where the test

set is not improved, for a constant NI .

C. Using Existing Stored Tests

This subsection describes the first part of the modification
procedure (mod1 in Figure 1).
The modification procedure initially assigns Si = ∅, and

includes all the target faults in the set F . It also reorders Si−1

such that stored tests appear by order of ascending number
of LFSR bits. This is important for ensuring that Si uses
LFSRs with the smallest possible numbers of bits. Among
the stored tests with the same number of LFSR bits, the tests
are ordered by descending number of detected faults. This
ensures that more effective tests will be considered earlier for
contributing new tests to Si.
To construct Si, the procedure considers every stored test

sj ∈ Si−1. It computes the tests bj and wj , and simulates F
under both tests. Let the number of detected faults be nj . If
nj = 0, the procedure does not consider sj any further, and
it does not add a stored test to Si based on sj in this case.
This contributes to a reduction in the number of stored tests.
Otherwise, the procedure continues as follows.
For every bit k of sj , the procedure considers the stored test

skj obtained by complementing bit k. For the modified stored
test the procedure computes the broadside and skewed-load
tests bkj and wk

j . It simulates F under bkj and wk
j , and finds

the number of detected faults, nk
j . If n

k
j ≥ nj , the procedure

prefers skj over sj . It assigns sj = skj and nj = nk
j . Otherwise,

it discards skj .
The procedure considers all the bits of sj in a random order

NM times, for a constant NM .
An important difference between the modification of sj and

a random search is that the procedure discards modifications
that decrease the number of faults detected by sj . The search
is thus guided by the best stored test obtained to increase the
number of detected faults.
The procedure may increase the number of faults detected

by a stored test sj without detecting all the faults that it
originally detected. Thus, it is possible that if sj is considered
again, the procedure will again obtain nj > 0. To accommo-
date this possibility, the procedure considers all the stored tests
in Si−1 again. This continues as long as the procedure is able
to produce additional tests that increase the fault coverage.
In the example of s298, the procedure constructs the set S1

as described in Table II. The first time the procedure considers
the stored test s0 ∈ S0, the broadside test b0 detects 31 faults,
and the skewed-load test w0 detects 56 faults, for a total of 87
detected faults. By modifying s0, the procedure increases the
number of faults detected by b0 to 79. The number of faults
detected by w0 is decreased to 49. This is accepted since the
total number of detected faults is increased for s0 to 128.

TABLE II
IMPROVING EXISTING STORED TESTS

original modified
j bj wj bj wj

0 31 56 79 49
1 14 12 36 53
2 6 1 29 23
3 20 14 11 39
4 9 7 14 17
5 1 1 3 29
6 3 1 9 7
7 1 11 1 11
8 3 0 1 8
9 6 0 1 17
10 0 3 5 1
11 6 4 11 5
0 0 7 0 7
1 1 0 2 0
3 5 2 6 2
6 1 0 1 0
10 0 3 2 2
1 1 0 1 0
10 0 3 0 3

The first time s3 is considered, the procedure reduces the
number of faults that b3 detects from 20 to 11, and increases
the number of faults that w3 detects from 14 to 39. This is
accepted since the total number of detected faults is increased
for s3 from 34 to 50.
For the stored tests s8 and s9, the skewed-load tests w8 and

w9 initially do not detect any faults. The procedure increases
their numbers of detected faults to 8 and 17, respectively, thus
increasing the sharing of input test data between broadside and
skewed-load tests.
Similar improvements are obtained for the first 12 tests from

S0. The last test from S0 does not detect any additional faults,
and it does not contribute a stored test to S1.

The second time the procedure considers the stored test s0 ∈
S0, the broadside test b0 does not detect any faults, and the
skewed-load test w0 detects seven faults. The procedure does
not increase the numbers of detected faults.
As the procedure performs additional iterations over the

stored tests in S0, fewer stored tests contribute to S1. The
procedure includes 19 tests in S1 to achieve an improved fault
coverage of 81.38%.
An increase in the number of stored tests occurs when the

procedure increases the fault coverage significantly, as in the
case of s298. When the fault coverage is not increased, or
when the increase is small, the procedure reduces the number
of stored tests.

D. Using New Random Stored Tests

To improve the fault coverage further after considering all
the stored tests in Si−1, the procedure also modifies new
random stored tests (mod2 in Figure 1). As for the initial
test set, the procedure constructs a random stored test sj by
specifying all its bits randomly. It then improves the stored
test by modifying its bits one by one. A modified stored test
that increases the fault coverage is added to Si.
The procedure generates NR,1 new random stored tests

for every number of LFSR bits lk ∈ L, where NR,1 is a
parameter of the procedure.
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TABLE III
IMPROVING NEW RANDOM STORED TESTS

original modified
j bj wj bj wj

1 0 0 1 0
2 0 0 2 0
0 0 0 3 0
1 0 1 0 6
2 0 4 0 4
3 2 0 2 0
4 0 1 0 1
5 0 0 0 4
7 0 0 0 4
8 0 0 0 3

In the example of s298, using NR,1 = 10, the procedure
finds two new stored tests for the 4-bit LFSR, and eight
new stored tests for the 5-bit LFSR as shown in Table III.
The value of j is the index of a new stored test. An index is
assigned separately for every number of LFSR bits. The fault
coverage for s298 is increased to 86.41% by adding the stored
tests from Table III to S1. Forward-looking reverse order fault
simulation reduces the number of stored tests in S1 to 26.
It is interesting to note that, for the new stored tests in Table

III, either the broadside or skewed-load test detects new faults.
Thus, sharing of input test data does not occur. The procedure
will improve the sharing of input test data in the step described
next, and when it performs another iteration.

E. Eliminating Stored Tests that Detect Single Faults

In the example of s298, after constructing S1, the set of
stored tests contains two tests that detect single faults, s15
that detects f305, and s17 that detects f221. Sharing of input
test data does not occur for such tests, and they increase the
number of tests while detecting only one fault. The procedure
attempts to eliminate such tests from the test set in order to
reduce the number of tests and increase the sharing of input
test data (mod3 in Figure 1).
It should be noted that numbers of detected faults are

determined by fault simulation with fault dropping. The step
of removing tests that detect single faults is described next.
The procedure considers every test sj ∈ Si that detects

only one fault. Let the single fault detected by sj be fj .
The procedure considers every other test sm ∈ Si that has
not been marked for removal from the test set. Using the
same modification process as above, the procedure attempts
to modify sm such that it would continue to detect the same
faults, and in addition, detect fj . When this is successful, the
procedure marks that fj is detected by sm, and that sj can be
removed from the test set.
Stored tests at the beginning of Si detect relatively large

numbers of faults. Such tests are difficult to modify so as to
detect an additional fault. To avoid unnecessary computations,
the procedure considers for modification a stored test sm only
if m ≥ NS , for a parameter NS .
This step changes the stored tests in Si. Therefore, the

procedure performs fault simulation of the modified set even
if no test is removed in order to capture the increase in the
fault coverage.

TABLE IV
COMPARISON OF TEST SETS

circuit tests f.c.
s1423 50 98.66
s5378 170 97.86
s9234 258 93.32
s13207 373 96.83
s15850 300 95.13
s35932 34 89.78
b04 42 99.78
b14 267 94.55
b20 355 95.77
s38584 393 93.79
b15 423 97.32
b21 468 92.36
b22 528 94.97
aes core 273 99.99
des area 112 100.00
i2c 84 98.81
sasc 34 99.77
simple spi 56 99.14
spi 460 99.70
systemcaes 158 99.84
systemcdes 74 99.98
tv80 663 97.86
usb phy 40 99.05
wb dma 138 99.68

In the example of s298, without limiting the tests that will
be considered for modification, the procedure modifies s18 to
detect f305. It thus removes s15 from S1.

IV. EXPERIMENTAL RESULTS

The procedure illustrated by Figure 1 was applied to transi-
tion faults in benchmark circuits using the following parameter
values.
For a circuit with K state variables, the set L of LFSRs

consists of primitive LFSRs from [23] with numbers of bits
b0 = 4, b1 = 5, ..., bNL−1 = min{K/4, 130}. The upper
bound of K/4 ensures that a stored seed requires at most
a fourth of the number of bits required for storing a scan-in
state uncompressed. For larger circuits the upper bound of 130
ensures a smaller ratio.
In the worst case, a 130-bit programmable LFSR requires

129 XOR gates and the same number of multiplexers. Seven
bits are required for encoding 127 LFSRs with four to 130
bits. Thus, the encoding of an LFSR requires a seven-input
AND gate. The AND gate is also driven by the last bit of the
LFSR. This yields a total of at most 127 eight-input AND
gates as part of the multiplexers. Assuming that an LFSR
has three non-zero terms, which is the maximum in [23], all
the multiplexers together have a total of 3 · 127 = 381 OR
gate inputs. This worst case does not occur for any of the
benchmark circuits considered.
The procedure considers NR,0 = 1000 random stored tests

for the initial set S0, and NR,1 = 5 random stored tests for
improving a set Si when i > 0.
The procedure improves a stored test by considering its bits

NM = 4 times. It considers tests for modification starting with
NS = |Si|/4. It terminates after NI = 4 iterations that do not
improve the set of stored tests. These parameter values were
selected based on experiments showing that larger parameter
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TABLE V
EXPERIMENTAL RESULTS (WITH AND WITHOUT SHARING)

circuit sv iter rand rem tests share incr LFSRs bits storage decr f.c. incr ntime
sasc 117 0 0 0 80 67.50 0.00 8 5.74 2859 0.00 99.772 0.000 1.00
sasc 117 1 0 0 72 62.50 -5.00 8 6.18 2605 8.88 99.772 0.000 5.96
sasc 117 4 0 0 59 66.10 -1.40 8 6.36 2145 24.97 99.772 0.000 17.87
sasc 117 10 0 0 73 0.00 0.00 6 5.89 2620 23.21 99.772 0.000 35.31
des area 128 0 0 0 279 56.27 0.00 2 4.01 134482 0.00 100.000 0.000 1.00
des area 128 1 0 5 115 53.91 -2.36 1 4.00 55430 58.78 100.000 0.000 339.29
des area 128 6 0 4 104 61.54 5.27 1 4.00 50128 62.73 100.000 0.000 1766.46
des area 128 4 0 2 114 0.00 0.00 1 4.00 54948 63.81 100.000 0.000 1128.20
usb phy 98 0 0 0 82 68.29 0.00 9 6.55 2833 0.00 99.049 0.000 1.00
usb phy 98 1 0 0 66 74.24 5.95 9 7.15 2320 18.11 99.049 0.000 4.20
usb phy 98 5 0 0 82 0.00 0.00 9 7.56 2916 11.80 99.049 0.041 16.63
systemcdes 190 0 0 0 144 73.61 0.00 3 4.27 38055 0.00 99.983 0.000 1.00
systemcdes 190 1 0 1 78 83.33 9.72 3 4.14 20603 45.86 99.983 0.000 47.52
systemcdes 190 2 0 1 69 86.96 13.35 3 4.16 18227 52.10 99.983 0.000 93.28
systemcdes 190 9 0 3 111 0.00 0.00 3 4.14 29319 45.34 99.983 0.000 417.10
s1423 74 0 0 0 102 56.86 0.00 13 6.79 4161 0.00 98.278 0.000 1.00
s1423 74 1 0 2 82 60.98 4.11 12 6.54 3324 20.12 98.349 0.070 6.97
s1423 74 9 0 0 68 72.06 15.20 12 7.56 2826 32.08 98.665 0.387 41.57
s1423 74 20 0 0 91 0.00 0.00 13 7.81 3805 19.35 98.665 0.281 99.57
s13207 669 0 0 0 698 34.24 0.00 103 29.25 63692 0.00 94.370 0.000 1.00
s13207 669 1 15 14 620 39.52 5.28 97 33.12 58973 7.41 95.777 1.408 16.10
s13207 669 30 0 12 439 52.16 17.92 41 54.74 51247 19.54 96.832 2.462 348.16
s13207 669 25 0 9 552 0.00 0.00 70 52.38 63140 10.88 96.832 2.060 243.90
b04 66 0 0 0 67 50.75 0.00 8 5.27 1961 0.00 99.650 0.000 1.00
b04 66 1 0 0 48 64.58 13.84 7 5.23 1403 28.45 99.781 0.131 4.17
b04 66 2 0 0 45 73.33 22.59 7 5.22 1315 32.94 99.825 0.175 7.33
b04 66 7 0 0 60 0.00 0.00 8 5.25 1755 25.73 99.825 0.482 22.58

fc5 10

share

20

10

-10

storage

60

40

20

-20

-40

share
storage

Fig. 2. Percentage of sharing and storage

values increase the computational effort but do not contribute
significantly to the quality of the results.
As a reference point, Table IV provides the number of tests

and the transition fault coverage for one of two test sets that
consists of broadside and skewed-load tests. (1) The test set
from [12] when it is available. (2) A test set computed without
requiring broadside and skewed-load tests to share input test
data. In both cases, the constraints of a test data compression
method are not considered. It is important to note that the
constraints of a test data compression method are known to

increase the number of stored tests. They can also reduce the
achievable fault coverage.
For further comparison, the procedure from Figure 1 is

applied without sharing of input test data between broadside
and skewed-load tests. Every stored test sj is associated with
a single test type, and only a test of this type is applied based
on sj . The same property is maintained as stored tests are
modified to increase the number of faults they detect. The
number of random stored tests considered is doubled to allow
random stored tests to achieve a similar fault coverage.
The results of the procedure from Figure 1 are given in

Tables V and VI. On up to three separate rows, the results
are reported for S0, S1, and the iteration where the final set
of stored tests is obtained with sharing of input test data. The
results for additional iterations are given in Table VI for two
circuits, spi and wb dma, to demonstrate the possibility of
terminating the procedure earlier. For several circuits in Table
V, an additional row shows the final results obtained without
sharing of input test data.
For every set, after the circuit name, column sv shows the

number of state variables. Column iter shows the iteration i of
the procedure. For i > 0, column rand shows the number of
new modified random stored tests that are added to Si. Column
rem shows the number of tests that detect single faults and
the procedure removes from the set.
Column tests shows the number of stored tests in Si.

Column share shows the percentage of stored tests for which
both the broadside and skewed-load test increases the fault
coverage, and needs to be applied. A higher percentage implies
better sharing of input test data between broadside and skewed-
load tests. Column incr that follows shows the increase in the
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TABLE VI
EXPERIMENTAL RESULTS (WITH SHARING)

circuit sv iter rand rem tests share incr LFSRs bits storage decr f.c. incr ntime
b14 247 0 0 0 334 47.60 0.00 43 13.19 26448 0.00 81.583 0.000 1.00
b14 247 1 7 6 261 56.70 9.10 38 13.64 20787 21.40 84.674 3.091 4.82
b14 247 56 0 2 384 42.19 -5.42 26 26.96 35698 -34.97 94.936 13.353 291.27
b22 709 0 0 0 827 51.03 0.00 92 20.56 71582 0.00 86.377 0.000 1.00
b22 709 1 24 16 635 63.62 12.59 80 25.10 57850 19.18 89.093 2.716 5.71
b22 709 7 2 16 870 46.55 -4.48 71 51.11 101884 -42.33 94.575 8.198 36.17
i2c 128 0 0 0 132 59.09 0.00 25 9.61 5756 0.00 90.163 0.000 1.00
i2c 128 1 5 0 114 55.26 -3.83 25 12.25 5272 8.41 94.406 4.242 3.23
i2c 128 33 0 1 102 55.88 -3.21 16 21.99 5711 0.78 98.858 8.695 80.92
b21 494 0 0 0 568 46.13 0.00 86 22.46 50247 0.00 81.104 0.000 1.00
b21 494 1 22 13 472 55.30 9.17 83 27.17 43974 12.48 84.397 3.292 5.25
b21 494 36 0 13 645 43.57 -2.56 37 72.98 89641 -78.40 93.098 11.993 195.53
b20 494 0 0 0 565 46.73 0.00 78 19.54 48330 0.00 86.237 0.000 1.00
b20 494 1 13 8 447 62.42 15.69 74 22.82 39702 17.85 88.907 2.671 4.60
b20 494 19 1 6 582 44.85 -1.88 46 53.25 69401 -43.60 95.056 8.820 73.25
s5378 179 0 0 0 412 39.08 0.00 38 12.37 33935 0.00 97.337 0.000 1.00
s5378 179 1 3 4 357 36.97 -2.10 40 13.10 29668 12.57 97.517 0.179 35.49
s5378 179 10 0 5 295 41.69 2.62 33 17.59 25838 23.86 97.753 0.415 251.07
s35932 1728 0 0 0 63 92.06 0.00 3 4.37 4685 0.00 89.781 0.000 1.00
s35932 1728 1 0 0 55 90.91 -1.15 3 4.38 4091 12.68 89.781 0.000 4.00
s35932 1728 7 0 0 49 95.92 3.85 3 4.43 3647 22.16 89.781 0.000 21.81
s9234 228 0 0 0 491 45.62 0.00 53 18.57 27776 0.00 85.851 0.000 1.00
s9234 228 1 19 8 464 45.91 0.28 52 21.95 27816 -0.14 89.625 3.774 6.10
s9234 228 40 0 8 399 51.88 6.26 31 32.86 28274 -1.79 93.134 7.283 176.83
aes core 530 0 0 0 666 78.83 0.00 8 7.26 348489 0.00 99.992 0.000 1.00
aes core 530 1 0 1 579 82.73 3.90 8 7.58 303153 13.01 99.992 0.000 220.28
aes core 530 10 0 0 501 90.02 11.19 8 8.07 262561 24.66 99.992 0.000 1467.82
b15 447 0 0 0 782 50.26 0.00 104 28.38 78494 0.00 88.939 0.000 1.00
b15 447 1 37 12 743 48.72 -1.53 101 39.58 82903 -5.62 96.901 7.962 7.24
b15 447 51 0 10 554 64.80 14.55 76 59.19 72681 7.41 98.749 9.810 280.97
systemcaes 670 0 0 0 370 59.19 0.00 21 8.06 193903 0.00 99.841 0.000 1.00
systemcaes 670 1 0 3 309 66.02 6.83 21 8.70 162131 16.39 99.841 0.000 102.13
systemcaes 670 14 0 2 249 73.09 13.90 19 11.26 131287 32.29 99.841 0.000 1125.24
tv80 359 0 0 0 1191 22.17 0.00 86 28.85 65324 0.00 92.528 0.000 1.00
tv80 359 1 47 18 1076 27.42 5.25 84 32.31 62739 3.96 96.219 3.691 14.77
tv80 359 47 0 21 836 36.36 14.20 53 46.70 60775 6.96 98.423 5.895 584.52
simple spi 131 0 0 0 130 58.46 0.00 15 6.34 4724 0.00 97.068 0.000 1.00
simple spi 131 1 3 1 100 58.00 -0.46 15 6.96 3696 21.76 97.304 0.236 5.27
simple spi 131 46 0 0 69 75.36 16.90 16 16.29 3194 32.39 99.188 2.120 140.10
s15850 597 0 0 0 524 42.18 0.00 95 26.30 28455 0.00 92.475 0.000 1.00
s15850 597 1 29 13 481 42.00 -0.18 95 35.44 30516 -7.24 93.791 1.316 5.63
s15850 597 45 0 9 351 59.83 17.65 30 63.97 32281 -13.45 95.043 2.568 164.71
s38584 1452 0 0 0 1188 57.91 0.00 108 24.19 57253 0.00 92.804 0.000 1.00
s38584 1452 1 24 27 979 66.39 8.48 102 28.02 50929 11.05 93.296 0.492 7.54
s38584 1452 20 0 17 705 79.29 21.38 76 52.23 53740 6.14 93.768 0.964 103.10
spi 229 0 0 0 740 49.59 0.00 37 9.77 73832 0.00 98.329 0.000 1.00
spi 229 1 3 11 621 53.30 3.71 33 11.15 62816 14.92 99.332 1.003 68.81
spi 229 2 3 7 577 56.67 7.08 33 12.28 59016 20.07 99.515 1.186 123.35
spi 229 5 2 7 508 65.94 16.35 33 14.64 53158 28.00 99.641 1.312 244.60
spi 229 12 0 6 477 67.30 17.70 31 16.28 50694 31.34 99.699 1.370 501.37
spi 229 24 0 9 468 69.66 20.06 27 16.38 49788 32.57 99.724 1.395 945.93
wb dma 523 0 0 0 353 46.46 0.00 69 22.03 159567 0.00 98.605 0.000 1.00
wb dma 523 1 5 12 297 52.19 5.73 61 28.76 136253 14.61 99.402 0.797 48.65
wb dma 523 2 2 6 271 54.98 8.52 56 30.59 124820 21.78 99.456 0.852 81.64
wb dma 523 5 0 6 245 59.18 12.72 53 33.84 113641 28.78 99.607 1.003 158.58
wb dma 523 13 1 6 228 59.65 13.19 49 40.18 107201 32.82 99.746 1.142 322.61
wb dma 523 23 0 6 206 67.48 21.02 43 39.50 96718 39.39 99.758 1.154 527.03

percentage of sharing. The circuits are arranged by ascending
order of this parameter.

Column LFSRs shows the number of LFSRs from L that
are used by the stored tests in Si. Column bits shows the
average number of bits in a seed of the stored test set. Denoting
the average by lave and the number of state variables by K ,
the level of test data compression obtained per test is equal
to K/lave. The selection of L ensures that this value is at
least four for smaller circuits, and larger than four for larger

circuits.

Column storage shows the number of bits required for
storing Si. The number of bits includes the seeds and the
primary input vectors. Assuming that every stored test is used
for applying both a broadside and a skewed-load test, and the
two test types are applied separately, no extra bits are included
for the test type (two bits are required for every stored test to
indicate which one of the two test types should be applied,
and this is negligible compared with the seeds and primary
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TABLE VII
EXPERIMENTAL RESULTS (SMALLER SETS OF LFSRS)

circuit sv iter rand rem tests share incr LFSRs bits storage decr f.c. incr ntime
s5378 179 0 0 0 412 39.08 0.00 38 12.37 33935 0.00 97.337 0.000 1.00
s5378 179 10 0 5 295 41.69 2.62 33 17.59 25838 23.86 97.753 0.415 251.07
s5378 179 0 0 0 365 43.01 0.00 8 38.71 39680 0.00 95.713 0.000 1.00
s5378 179 20 0 2 241 46.89 3.87 6 37.43 25891 34.75 97.875 2.162 1457.84
s5378 179 0 0 0 354 42.37 0.00 8 16.87 30752 0.00 95.713 0.000 1.00
s5378 179 39 0 0 263 39.92 -2.45 8 16.79 22827 25.77 97.781 2.068 3285.47

input vectors). Column decr shows the percentage reduction
in the number of storage bits required for Si relative to S0.
Column f.c. shows the transition fault coverage achieved

by Si. Column incr shows the increase in the transition fault
coverage relative to S0. A larger increase in the fault coverage
sometimes requires more stored tests, and a higher number of
bits for storage of Si. It can also reduce the sharing of input
test data between broadside and skewed-load tests.
Column ntime shows the normalized runtime, where the

cumulative runtime for computing S0, S1, ..., Si is divided
by the runtime for computing S0. The computation of S0 is
dominated by fault simulation with fault dropping of 2NLNR,0

tests.
The following points can be seen from Tables V and VI. The

procedure increases the fault coverage of S0 when it is lower
than the highest fault coverage achievable by broadside and
skewed-load tests. The increase is significant for several of the
circuits. Thus, the procedure is able to provide a meaningful
fault coverage increase when needed. In most of the cases,
the final fault coverage is equal or close to that achievable by
broadside and skewed-load tests that are not constrained by a
test data compression method.
The parameter that measures the ability of the procedure to

share input test data between broadside and skewed-load tests
is the percentage of sharing shown under column share. This
is the percentage of stored tests for which both the broadside
and skewed-load test needs to be applied. An increase in
the fault coverage, or a reduction in the number of storage
bits, can hide an improvement in the percentage of sharing.
Nevertheless, this parameter is improved for many of the
circuits in Tables V and VI.
An increase in the fault coverage can also hide a reduction

in the number of storage bits because more stored tests are
needed to support the increased fault coverage. This results
in a negative number under column decr. Nevertheless, the
reduction in the number of storage bits is significant in many
cases. Moreover, when the procedure is not allowed to share
input test data between broadside and skewed-load tests, the
number of stored tests, and the storage requirements of the
stored test set, are significantly higher.
For further illustration of the procedure with sharing of

input test data, Figure 2 shows the percentage increase in
sharing and the percentage reduction in storage as a function
of the increase in the fault coverage considering several of
the circuits from Tables V and VI. The increase in the fault
coverage is shown on the horizontal axis. On the vertical
axis, the small circles show the increase in the percentage of
sharing, and the large circles show the percentage reduction in

storage. Figure 2 shows that a reduction in the percentage of
sharing, and an increase in the number of storage bits, typically
go together with a high increase in the fault coverage.
The average number of LFSR bits typically increases as

the procedure performs additional iterations. The number of
storage bits decreases for many of the circuits because the
number of stored tests is reduced significantly when somewhat
larger LFSRs are used. The number of different LFSRs
typically decreases as the average number of LFSR bits is
increased.
The normalized runtime after one iteration is similar for

circuits of different sizes. This implies that the procedure
scales similar to a fault simulation procedure. It should be
noted in this regard that the procedure modifies seeds, and not
scan-in states that have a significantly larger number of bits.
The average number of bits in a seed (the average number of
LFSR bits) is similar for circuits of different sizes.
The normalized runtime per iteration typically decreases

as the procedure performs additional iterations. This occurs
because the number of tests is reduced, and in spite of the
increase in the average number of LFSR bits.
The procedure can be terminated earlier without a signif-

icant impact on its effectiveness. This is illustrated by spi
and wb dma in Table VI. The earlier termination can be
implemented using a runtime limit or a lower value of NI .
Finally, it is possible to reduce the set of LFSRs that

the procedure is allowed to use in order to reduce the hard-
ware overhead associated with the programmable LFSR. To
demonstrate this point, the procedure is run for s5378 with
two sets of eight LFSRs. The first set is defined by b0 = 37,
b1 = 38, ..., b7 = 44. For the second set, b0 = 15, b1 = 16, ...,
b7 = 22. These sets were selected based on the maximum and
average number of LFSR bits obtained for s5378 in Table
VI.
Table VII shows the results obtained for s5378 with these

sets of LFSRs. The results from Table VI are repeated for
ease of comparison. The results in every case are shown for
S0 and for the final iteration of the procedure. It can be seen
from Table VII that the procedure is effective with a limited
set of LFSRs as well.

V. CONCLUDING REMARKS

This paper developed an algorithm for computing stored
tests that can be used for applying both broadside and skewed-
load tests. The algorithm was developed for the case where a
programmable linear-feedback shift-register (LFSR) is used
for on-chip decompression. A stored test consists of a seed for
the LFSR and two primary input vectors. The seed determines
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the scan-in state of the applied broadside and skewed-load
tests, as well as the additional scan-in vector required for the
skewed-load test. In the algorithm developed in this paper,
stored tests are computed directly without first computing
broadside or skewed-load tests. This avoids situations where
the tests cannot be compressed or do not have common input
test data. The algorithm consisted of the generation of random
stored tests, and the modification of stored tests to increase
the fault coverage contribution achieved by the broadside
and skewed-load tests they apply. Experimental results for
transition faults in benchmark circuits demonstrated the ability
of the procedure to share stored tests between broadside
and skewed-load tests while increasing the fault coverage
and reducing the number of stored tests and their storage
requirements.
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