
1

Broadside Tests for Transition and Stuck-at Faults

Irith Pomeranz

Abstract—A recent work showed that it is possible to transform a
single-cycle test for stuck-at faults into a skewed-load test that detects
the same stuck-at faults without performing logic or fault simulation. By
using this transformation, it is possible to generate a compact skewed-
load test set for stuck-at and transition faults. The advantage for test
compaction is related to the fact that the test set contains a single test
type. For cases where broadside tests are preferred over skewed-load tests,
this paper studies the possibility of transforming a single-cycle test into a
broadside test, and generating a compact broadside test set for stuck-at
and transition faults. The paper addresses several challenges in order to
achieve this goal without resorting to sequential test generation or state
justification that have a high computational complexity. Experimental
results for benchmark circuits demonstrate the levels of test compaction
that can be achieved using small numbers of observation points.

Index Terms—broadside tests, stuck-at faults, test compaction, transi-
tion faults.

I. INTRODUCTION

Stuck-at and transition faults are commonly considered as neces-
sary to detect. Additional fault models may be targeted to further
improve the quality of a test set [1]-[6]. The discussion in this paper
is applicable to any combination of fault models where some require
single-cycle tests, and others, two-cycle tests.

In general, stuck-at faults are detected by single-cycle tests, while
transition faults require two-cycle tests. In a standard scan circuit,
broadside (launch-on-capture, or LOC) tests [7], or skewed-load
(launch-on-shift, or LOS) tests [8] may be used for transition faults.
Accordingly, test generation procedures typically produce single-
cycle tests for stuck-at faults, and two-cycle tests for transition faults.
The two-cycle tests detect both types of faults, while the single-cycle
tests detect only single stuck-at faults. Therefore, the two-cycle tests
are preferred for test compaction.

A recent work [9] showed that a single-cycle test for a stuck-at fault
f can be transformed into a skewed-load test that detects f without
performing logic or fault simulation. This is achieved by duplicating
the single-cycle test during the second clock cycle of a skewed-load
test. Consequently, instead of using a single-cycle test set for stuck-at
faults, and a skewed-load test set for transition faults, it is possible
to transform single-cycle tests into skewed-load tests, and produce
a skewed-load test set for both fault models. The advantage is in
the ability to compact the test set. While single-cycle tests do not
detect transition faults, skewed-load tests detect both stuck-at and
transition faults. Moreover, a skewed-load test that was transformed
from a single-cycle test may detect more stuck-at and transition faults
than a skewed-load test that was generated for transition faults. These
properties are used for producing a compact skewed-load test set for
both stuck-at and transition faults.

Skewed-load tests require the scan enable input to change at-
speed between the first and second cycle of the test [10]-[11].
Broadside tests avoid this requirement. Consequently, broadside tests
are sometimes preferred over skewed-load tests.

This paper studies the possibility of generating a broadside test set
for stuck-at and transition faults in order to support test compaction
when broadside tests are preferred over skewed-load tests. The paper
achieves this goal without performing sequential test generation for
stuck-at faults over the two clock cycles of a broadside test. This

Irith Pomeranz is with the School of Electrical and Computer Engineer-
ing, Purdue University, West Lafayette, IN 47907, U.S.A. (e-mail: pomer-
anz@ecn.purdue.edu).

This work was supported in part by NSF grant CCF-1714147

would have been required for generating broadside tests for stuck-
at faults directly. Instead, the paper relies on a transformation of
single-cycle tests for stuck-at faults into broadside tests that does not
require complex processing. To make this possible, the paper needs
to address several challenges as discussed next.
Transforming a single-cycle test for a stuck-at fault f into a

broadside test by duplicating the single-cycle test during the second
functional capture cycle of a broadside test requires a state justifica-
tion procedure that has a high computational complexity. In addition,
state justification is not always possible. Moreover, the broadside test
may not detect f even if the transformation is possible. To avoid these
complications, the paper suggests a transformation that duplicates
the single-cycle test during the first functional capture cycle of a
broadside test without any logic or fault simulation.
The transformation suggested in this paper does not guarantee that

the broadside test will detect the same stuck-at faults as the single-
cycle test. Therefore, stuck-at faults need to be simulated under the
two clock cycles of a broadside test in order to determine accurately
whether a fault is detected. Fault simulation may reveal that additional
stuck-at faults are detected accidentally by the broadside test. This
will contribute to test compaction. However, the main contribution to
test compaction comes from using tests for stuck-at faults to detect
transition faults.
To increase the possibility that stuck-at faults will be detected by a

broadside test whose first functional capture cycle duplicates a single-
cycle test, the paper observes that fault effects of stuck-at faults are
propagated to the primary outputs or next-state variables during the
first clock cycle of such a broadside test. Accordingly, the paper uses
two options. The first option is related to the observation of primary
output values. For transition faults, the primary output values are
observed only during the second clock cycle of a broadside test.
For stuck-at faults, it is sometimes important to observe the primary
output values during the first clock cycle of a broadside test. The
paper considers this option, and uses it when it increases the stuck-at
fault coverage achieved by broadside tests.
The second option is based on the insertion of observation points

on selected state variables that receive fault effects of stuck-at faults.
The insertion of observation points on state variables is used in [12]
for increasing the fault coverage of a built-in test generation scheme
that produces multicycle broadside tests. It is also used in [13] for
compacting a multicycle broadside test set. In [14]-[15] it is used for
observation of fault effects during scan shift cycles to support test
compaction. In this paper, this design-for-testability (DFT) approach
makes it possible to obtain a test set for stuck-at and transition faults
that consists only of broadside tests without performing sequential
test generation for stuck-at faults. Experimental results for benchmark
circuits show that at most a small number of observation points is
needed. In addition, the same observation points can be used for
other purposes. It is also possible to insert observation points into
the combinational logic of the circuit [16]. However, when such
observation points are used for transition faults, they allow transitions
to be propagated through shorter paths, preventing small delay defects
from being detected. Considering only stuck-at faults, the effects of
observation points inside the combinational logic on the ability to
compact the test set are expected to be small. Thus, it is sufficient
to use observation points on state variables to allow broadside tests
to detect stuck-at faults, and avoid the routing of observation points
that are internal to the combinational logic.
After a broadside test set is obtained that detects all the detectable

stuck-at and transition faults, static test compaction is applied to
the broadside test set to reduce the number of tests. The ability to
compact the test set is illustrated by Figure 1. The left part of Figure 1
shows the conventional case where a two-cycle broadside test set for

2

2cyc

1cyc

2cyc

1cyc

2cyc

1cyc

2cyc 2cyc

transform obs po obs sv compact

Fig. 1. Test compaction

TABLE I
NOTATION

symbol meaning symbol meaning
sv state variables w1

i single-cycle test
po primary outputs pi scan-in state of w1

i

f.c. fault coverage ui primary input vector of w1
i

tr transition faults w2
i two-cycle test based on w1

i
sa stuck-at faults
ti two-cycle test T broadside transition fault test set
si scan-in state of ti W 1 single-cycle stuck-at test set
vi primary input vector of ti W 2 broadside test set based on W 1

symbol meaning
Tbase, Tpo , Tsv , Tcomp test sets obtained during test compaction
n1
base, n

1
po numbers of faults detected by single-cycle tests

transition faults is complemented with single-cycle tests for stuck-at
faults. In this paper, single-cycle tests are translated into broadside
tests to obtain a broadside test set with the same or lower number
of tests compared with the conventional case. This is achieved by
transforming single-cycle tests into two-cycle tests, and observing
primary outputs and state variables. The test set is then compacted
to reduce the number of tests below that of the conventional case.
Figure 1 illustrates these steps that yield a compact broadside test
set.

The paper is organized as follows. The transformation of a single-
cycle test into a broadside test is discussed in Section II. The
procedure for deriving a compact broadside test set for stuck-at and
transition faults is described in Section III. Experimental results are
presented in Section IV. Table I summarizes the notation used, and
provides the short forms in the header of Table II.

II. TRANSFORMING A SINGLE-CYCLE INTO A BROADSIDE TEST

A single-cycle test is denoted by w1
i = 〈pi, ui, 1〉, where pi is the

scan-in state, and ui is the primary input vector that is applied during
a functional capture cycle. The test ends with a scan-out operation.
The primary output values are observed during the functional capture
cycle of the test.

A broadside test is denoted by ti = 〈si, vi, 2〉, where si is the
scan-in state, and vi is a primary input vector that is applied during
two consecutive functional capture cycles. Broadside tests with equal
primary input vectors are commonly used to avoid the need to change
the primary input vector at-speed during a test. The test ends with
a scan-out operation. The primary output values are observed during
the second functional capture cycle of the test.

A broadside test is shown in Figure 2. At the end of the first
functional capture cycle the fault-free circuit is in a state that is
denoted by si,1. At the end of the second functional capture cycle
the fault-free circuit is in a state that is denoted by si,2.

The stuck-at fault where line g is stuck-at the value a is denoted by
g/a. The transition fault that delays the a → a′ transition on line g
is denoted by g : a → a′. Figure 2 shows the conditions required for
detecting the transition fault g : a → a′. The value g = a is required

si si,1 si,2

vi vi

g = a g = a′/a

Fig. 2. Broadside test

pi pi,1 pi,2

ui ui

g/a g/a

Fig. 3. Transforming a single-cycle into a broadside test

during the first functional capture cycle. The fault g/a needs to be
detected during the second functional capture cycle.
Let w1

i = 〈pi, ui, 1〉 be a single-cycle test that detects the fault
g/a. Referring to Figure 2, a transformation of w1

i into a broadside
test ti = 〈si, vi, 2〉 can be performed by requiring that si,1 = pi
and vi = ui. In this case, the second functional capture cycle of the
broadside test duplicates the single-cycle test, and the expectation
is that f will be detected during this clock cycle of the broadside
test. However, this transformation suffers from three issues. (1) To
obtain si,1 = pi under a broadside test it is necessary to compute a
scan-in state si such that pi is the next-state obtained for si and ui.
This computation requires a state justification procedure, with a high
computational complexity. (2) Given pi and ui, a scan-in state si for
a broadside test may not exist. (3) Even if si exists, the stuck-at fault
g/a may be activated during the first functional capture cycle of the
test, causing the faulty circuit to reach a state other than si,1 = pi
in the second cycle. In this case, f may not be detected.
Instead of using a transformation that requires a state justification

procedure, the transformation suggested in this paper uses the single-
cycle test w1

i = 〈pi, ui, 1〉 to define the broadside test w2
i =

〈pi, ui, 2〉. This test is shown in Figure 3. This transformation
duplicates the single-cycle test during the first functional capture
cycle of the broadside test.
If a stuck-at fault g/a is detected by the single-cycle test w1

i ,
the broadside test activates the fault in the first functional capture
cycle, and propagates fault effects to the primary outputs or next-
state variables. Thus, the state pi,1 may be obtained in the fault-free
but not the faulty circuit. Fault simulation for a stuck-at fault g/a is
carried out over the two functional capture cycles of the broadside
test to determine whether the fault is detected.

III. GENERATING A COMPACT BROADSIDE TEST SET

Several test sets are computed in this section in order to eventually
compute a compact test set that consists only of broadside tests, and
detects all the detectable stuck-at and transition faults.
The input to the procedures described in this section consists of

two test sets. A test set T consists of broadside tests for transition
faults. A test set W 1 consists of single-cycle tests for stuck-at faults.
Both test sets are compact. The set of target faults F consists of
stuck-at and transition faults.
The test set W 1 is transformed into a broadside test set W 2 by

transforming every single-cycle test w1
i = 〈pi, ui, 1〉 ∈ W 1 into the

broadside test w2
i = 〈pi, ui, 2〉 ∈ W 2.

The test sets T and W 1 can be generated under the constraints
of a test data compression method. The first steps of the procedure
(including the transformation of W 1 into W 2) do not change scan-
in states or primary input vectors. Therefore, the test sets remain

3

applicable under the same test data compression method. The last
step of test compaction can be applied under the constraints of the
same method.

A. Test Set Tbase

The test set Tbase is constructed by performing fault simulation
with fault dropping of T , W 2 and W 1, in this order.

Initially, Tbase = ∅, and F contains all the target faults. For every
test ti ∈ T , fault simulation with fault dropping is carried out for F
under ti. If any fault from F is detected, ti is added to Tbase. After
T is considered, all the detectable transition faults, and some of the
stuck-at faults, are detected (accurate fault simulation is carried out
to account for the fact that a stuck-at fault may be activated in the
first or second clock cycle of a broadside test).

Next, for every test w2
i ∈ W 2, fault simulation with fault dropping

is carried out for F under w2
i . If any fault from F is detected, w2

i

is added to Tbase. After W 2 is considered, additional stuck-at faults
are detected.

Finally, for every test w1
i ∈ W 1, fault simulation with fault

dropping is carried out for F under w1
i . If any fault from F is

detected, w1
i is added to Tbase. After W 1 is considered, all the

detectable stuck-at faults are detected.
With this order, the procedure prefers to include in Tbase broadside

tests for both stuck-at and transition faults. It adds single-cycle tests
for stuck-at faults that are not detected by T and W 2.

The number of faults detected by single-cycle tests in Tbase is
denoted by n1

base. If n
1
base = 0, the test sets Tpo and Tsv described

in the next subsections are not needed, and Tpo = Tsv = Tbase.

B. Test Set Tpo

For the test set Tpo, it is noted that a single-cycle test w1
i =

〈pi, ui, 1〉 ∈ W 1 may detect a stuck-at fault f on a primary output. In
this case, the broadside test w2

i = 〈pi, ui, 2〉 ∈ W 2 will propagate a
fault effect of f to a primary output during the first functional capture
cycle. The fault is not considered to be detected because the primary
outputs are not observed during the first functional capture cycle of
a broadside test. This decision is based on the fact that transition
faults are not detected during the first clock cycle after the scan-in
operation. However, stuck-at faults may be detected.

For the test set Tpo, the primary outputs are observed during both
functional capture cycles of a broadside test. Similar to Tbase, the
test set Tpo is constructed by performing fault simulation with fault
dropping of T , W 2 and W 1, in this order.

The number of faults that are detected by single-cycle tests in Tpo

is denoted by n1
po. Observation of the primary outputs during both

functional capture cycles of a broadside test is important if n1
po <

n1
base. Otherwise, if n1

po = n1
base, primary output values are not

observed during the first functional capture cycle, and Tpo = Tbase.
If n1

po = 0, the test set Tsv described in the next subsection is not
computed, and Tsv = Tpo.

C. Test Set Tsv

For the test set Tsv , the goal is to ensure that single-cycle tests are
not needed for the detection of stuck-at faults. This can be achieved
by inserting observation points as discussed next.

Let X1 be the subset of single-cycle tests from W 1 that are
included in Tpo. Let F 1 include every stuck-at fault f ∈ F such
that f is detected by a test w1

i ∈ X1.
Detections on the primary outputs are already considered for the

computation of Tpo. Therefore, a fault f ∈ F 1 requires a single-
cycle test w1

i ∈ W 1 to be included in Tpo because its fault effects

FF C
O
M
P

Y j

a j

y j

b j

Fig. 4. Observation point on state variable

are propagated to the next-state variables under w1
i . As in Figure 3,

let the next-state of the fault-free circuit under pi and ui be pi,1. Let
the next-state of the faulty circuit in the presence of f be qi,1. If pi,1
and qi,1 differ in the value of state variable j, an observation point
on state variable j will allow f to be detected.
Figure 4 shows a flip-flop with a next-state variable Yj and a

present-state variable yj . An observation point may be added on the
next-state variable as a fanout branch aj , or the present-state variable
as a fanout branch bj .
With the observation point aj , a stuck-at fault on Yj will not benefit

from aj . Therefore, in this paper, an observation point is placed on a
present-state variable. With the observation point bj , additional stuck-
at faults will be detected during the second functional capture cycle
of the test. Observation points are used only for the detection of
stuck-at faults.
Figure 4 also illustrates the possibility of using output compaction

logic to capture the values of the observation points. The output
compaction logic that captures primary output values and scan-out
states can also capture the values of the observation points.
The selection of present-state variables for observation point inser-

tion is described next.
The procedure associates with every fault f ∈ F 1 a set of possible

observation points J(f). Initially, J(f) = ∅. For every test w1
i ∈ X1,

the procedure simulates every fault f ∈ F 1 under w1
i . If the fault is

detected on a next-state variable Yj , the index j is added to J(f).
The procedure uses a greedy set covering procedure to select a

subset Jobs such that, for every fault f ∈ F 1, there is an index
j ∈ Jobs of a state variable where f can be detected, or j ∈ J(f).
After inserting observation points on the present-state variables in

Jobs, the test set Tsv is constructed by performing fault simulation
with fault dropping of T and W 2, in this order (it is not necessary
to simulate W 1).

D. Test Set Tcomp

The test set Tsv contains only broadside tests. The tests are from
two sources, the transition fault test set T , and the single-cycle stuck-
at test set W 1 that was transformed into the broadside test set W 2.
Each one of the test sets was compacted separately, but the two test
sets were not compacted together. Therefore, application of a static
test compaction procedure can reduce the size of Tsv .
Initially, Tcomp = Tsv . The test set Tcomp is compacted by a static

test compaction procedure that is based on the approach from [17].
The procedure has two subprocedures that are applied iteratively.
Both subprocedures use fault simulation with fault dropping to
associate a set of detected faults D(t) with every test t ∈ Tcomp.
The first subprocedure reorders the tests in Tcomp such that the

tests appear by decreasing number of detected faults. Reordering
and fault simulation with fault dropping are repeated until no further
changes in the order of the tests is obtained. If |D(t)| = 0 is obtained
for a test t, the test is removed from Tcomp.
The second subprocedure applies a basic step where a pair of tests

tmod ∈ Tcomp and trem ∈ Tcomp is considered. The procedure
attempts to modify tmod ∈ Tcomp so as to detect all the faults
in D(tmod) ∪ D(trem). If the modification is successful, trem is
removed from Tcomp.

4

TABLE II
EXPERIMENTAL RESULTS

observed tests f.c.
circuit sv iter po sv %sv tot T W 2 W 1 n1 tr sa ntime
systemcaes 670 0 0 0 0.000 207 202 5 0 0 88.751 99.995 1.00
systemcaes 670 1 0 0 0.000 202 199 3 0 0 88.751 99.995 418.44
systemcaes 670 6 0 0 0.000 188 186 2 0 0 88.751 99.995 1582.07
systemcdes 190 0 0 0 0.000 92 91 1 0 0 96.165 100.000 1.00
systemcdes 190 1 0 0 0.000 91 91 0 0 0 96.165 100.000 51.36
systemcdes 190 2 0 0 0.000 88 88 0 0 0 96.165 100.000 83.81
s35932 1728 0 0 0 0.000 40 30 8 2 1244 71.800 89.809 1.00
s35932 1728 0 0 1244 3.346 38 30 8 0 0 71.800 89.809 3.76
s35932 1728 4 0 1244 3.346 33 27 6 0 0 71.800 89.809 42.23
b14 247 0 0 0 0.000 417 207 203 7 32 72.050 95.083 1.00
b14 247 0 0 31 0.360 410 207 203 0 0 72.050 95.083 3.98
b14 247 3 0 31 0.360 382 190 192 0 0 72.387 95.123 445.39
b20 494 0 0 0 0.000 495 306 187 2 33 79.655 94.315 1.00
b20 494 0 0 33 0.171 493 306 187 0 0 79.655 94.315 4.00
b20 494 15 0 33 0.171 401 241 160 0 0 79.953 94.532 2740.42
aes core 530 0 0 0 0.000 312 311 0 1 1 96.187 100.000 1.00
aes core 530 0 0 1 0.002 311 311 0 0 0 96.187 100.000 4.16
aes core 530 3 0 1 0.002 307 307 0 0 0 96.187 100.000 79.22
spi 229 0 0 0 0.000 889 865 23 1 1 82.716 99.985 1.00
spi 229 0 0 1 0.017 889 865 24 0 0 82.716 99.985 4.00
spi 229 1 0 1 0.017 865 844 21 0 0 82.716 99.985 424.56
spi 229 22 0 1 0.017 756 743 13 0 0 82.923 99.985 19768.15
tv80 359 0 0 0 0.000 918 658 221 39 60 82.076 99.451 1.00
tv80 359 0 0 33 0.228 896 658 238 0 0 82.076 99.451 3.69
tv80 359 9 0 33 0.228 709 585 124 0 0 82.609 99.477 2242.18
s5378 179 0 0 0 0.000 288 180 19 89 262 77.863 99.152 1.00
s5378 179 0 1 0 0.000 245 180 55 10 11 77.863 99.152 1.63
s5378 179 0 1 3 0.056 237 180 57 0 0 77.863 99.152 2.24
s5378 179 8 1 3 0.056 180 155 25 0 0 77.863 99.152 579.73
s5378 179 9 1 3 0.056 177 154 23 0 0 77.863 99.152 639.15
s9234 228 0 0 0 0.000 426 355 32 39 73 76.594 93.626 1.00
s9234 228 0 1 0 0.000 425 355 32 38 72 76.594 93.626 1.99
s9234 228 0 1 7 0.075 400 355 45 0 0 76.594 93.626 2.94
s9234 228 2 1 7 0.075 355 334 21 0 0 76.594 93.626 239.85
s9234 228 4 1 7 0.075 340 323 17 0 0 76.594 93.626 414.18
s13207 669 0 0 0 0.000 420 349 56 15 42 80.317 98.542 1.00
s13207 669 0 1 0 0.000 411 349 60 2 2 80.317 98.542 1.93
s13207 669 0 1 2 0.015 409 349 60 0 0 80.317 98.542 2.86
s13207 669 2 1 2 0.015 349 332 17 0 0 80.317 98.542 727.77
s13207 669 7 1 2 0.015 317 312 5 0 0 80.325 98.542 2452.55
s38417 1636 0 0 0 0.000 664 648 11 5 6 97.164 99.503 1.00
s38417 1636 0 1 0 0.000 663 648 11 4 4 97.164 99.503 2.00
s38417 1636 0 1 4 0.010 660 648 12 0 0 97.164 99.503 2.99
s38417 1636 1 1 4 0.010 647 636 11 0 0 97.164 99.503 153.07
s38417 1636 9 1 4 0.010 459 457 2 0 0 97.188 99.503 12246.25
s38584 1452 0 0 0 0.000 629 536 58 35 80 71.239 95.819 1.00
s38584 1452 0 1 0 0.000 622 536 56 30 51 71.239 95.819 1.98
s38584 1452 0 1 32 0.083 591 536 55 0 0 71.239 95.857 2.94
s38584 1452 1 1 32 0.083 536 501 35 0 0 71.265 95.857 237.77
s38584 1452 12 1 32 0.083 437 423 14 0 0 71.291 95.857 2242.62
b15 447 0 0 0 0.000 603 488 102 13 115 81.118 98.640 1.00
b15 447 0 1 0 0.000 600 488 103 9 111 81.118 98.640 2.08
b15 447 0 1 110 0.618 590 488 102 0 0 81.118 98.640 3.27
b15 447 8 1 110 0.618 493 437 56 0 0 81.929 98.679 1503.12
wb dma 523 0 0 0 0.000 230 175 48 7 10 75.634 100.000 1.00
wb dma 523 0 1 0 0.000 228 175 47 6 9 75.634 100.000 1.97
wb dma 523 0 1 8 0.095 223 175 48 0 0 75.634 100.000 2.90
wb dma 523 1 1 8 0.095 175 138 37 0 0 75.687 100.000 535.09
wb dma 523 8 1 8 0.095 147 116 31 0 0 75.699 100.000 2363.35

TABLE III
TEST COMPACTION RESULTS

circuit Tbase T circuit Tbase T
systemcaes -9.18 -6.93 s5378 -38.54 -1.67
systemcdes -4.35 -3.30 s9234 -20.19 -4.23
s35932 -17.50 10.00 s13207 -24.52 -9.17
b14 -8.39 84.54 s38417 -30.87 -29.17
b20 -18.99 31.05 s38584 -30.52 -18.47
aes core -1.60 -1.29 b15 -18.24 1.02
spi -14.96 -12.60 wb dma -36.09 -16.00
tv80 -22.77 7.75

The procedure considers all the test pairs such that |Drem| = 1,
|Dmod| > 1, and tmod is not in the first quarter of the test set. These
conditions ensure that the tests detect moderate numbers of faults, and
makes it likely that they can be modified or removed. In addition, a
test that detects a single fault is not considered for modification in
order to ensure that it remains a candidate for removal.

IV. EXPERIMENTAL RESULTS

This section presents the results of the computation of the test sets
Tbase, Tpo, Tsv and Tcomp for benchmark circuits.

5

The results are shown in Table II. Table III shows a summary of
the test compaction levels reported in Table II. The circuits in Table
II are partitioned into three groups according to their requirements
for achieving a test set that consists only of broadside tests.

For every circuit, every one of the test sets Tbase, Tpo, Tsv and
Tcomp is shown on a separate row in Table II. A test set is omitted if
it is equal to the previous test set. In the case of Tcomp, intermediate
test sets are sometimes reported as discussed later.

For every test set, column sv shows the number of state variables.
For Tcomp, column iter shows the iteration of the test compaction
procedure. For the other test sets the iteration is zero by default.

Column observed subcolumn po shows whether or not primary
output values are observed during the first functional capture cycle
of a broadside test. Subcolumn sv shows the number of observation
points on present-state variables. Subcolumn %sv shows the number
of observation points as a percentage of the total number of lines.

Column tests subcolumn tot shows the total number of tests in
the test set. Subcolumns T , W 2 and W 1 show the numbers of tests
from the corresponding test sets. When the test compaction procedure
modifies a test, its source is preserved. Subcolumn n1 shows the
number of stuck-at faults that are detected by single-cycle tests (this
can be n1

base, n
1
po or n1

sv).
Column f.c. shows the transition and stuck-at fault coverages.

Column ntime shows the cumulative run time, normalized to the run
time required for producing Tbase. The run time for Tbase consists
of fault simulation with fault dropping of T , W 2 and W 1.

The following points can be observed from Table II. There are
several circuits for which the tests in T and W 2 are sufficient for
detecting all the stuck-at faults. For other circuits, the additional ob-
servation of primary output values, and/or the insertion of observation
points, eliminate single-cycle tests from the test set.

Even when the number of broadside tests is increased to allow
single-cycle tests to be omitted, the overall number of tests in Tpo

and Tsv is reduced relative to Tbase. This is related to the fact that
broadside tests can detect more stuck-at faults than single-cycle tests.
The importance of observing primary output values is related to the
fact that the primary outputs capture the results of the computations
that the circuit performs, and are, therefore, sensitive to faults.

The static test compaction procedure reduces the number of tests
further. The effectiveness of the procedure can be seen in two ways.
(1) The number of tests in Tcomp is reduced significantly relative to
Tbase, Tpo and Tsv . (2) Since T is a compact test set for transition
faults, and Tcomp detects both transition and stuck-at faults, it is
expected that |Tcomp| ≥ |T | will be obtained. Nevertheless, there
are many cases where |Tcomp| ≤ |T | is obtained. This is possible
because more iterations of test compaction are applied to Tcomp.

Table III further illustrates the reduction in the number of tests
by showing the percentage reduction of Tcomp relative to Tbase, and
relative to T . A negative number implies that the number of tests in
Tcomp is lower than in Tbase or T .

The reduction in the number of tests has a computational cost. It
is possible to terminate the static test compaction procedure earlier,
with a larger test set. To illustrate this point, for circuits where
|Tcomp| < |T | at termination, Table II includes the results of the
static test compaction procedure when |Tcomp| = |T |.

The percentage of observation points varies with the circuit. The
higher percentages are obtained for circuits where the additional
observation of primary output values is not useful for detecting
stuck-at faults. When this approach is effective, the percentage of
observation points is lower than 1% for all the circuits in the third
part of Table II, and lower than 0.1% for most of these circuits.

V. CONCLUDING REMARKS

This paper described a procedure for generating a compact broad-
side test set for stuck-at and transition faults. The procedure is based
on a transformation of a single-cycle test for stuck-at faults into a
broadside test by duplicating the single-cycle test during the first
functional capture cycle of the broadside test. This transformation
does not require logic or fault simulation, and it avoids the need for
sequential test generation or state justification. To compensate for
the fact that stuck-at faults may not be detected by the transformed
tests, the paper used three options: (1) accurate simulation of stuck-
at faults under broadside tests, (2) observation of the primary output
values during the first functional capture cycle of a broadside test,
and (3) the insertion of observation points on selected present-state
variables. Experimental results were presented for benchmark circuits
to demonstrate the levels of test compaction that can be achieved, and
numbers of observation points needed.

REFERENCES

[1] L. N. Reddy, I. Pomeranz and S. M. Reddy, ”COMPACTEST-II: A
Method to Generate Compact Two-pattern Test Sets for Combinational
Logic Circuits”, in Proc. Intl. Conf. on Computer-Aided Design, 1992,
pp. 568-574.

[2] R. Desineni, K. N. Dwarkanath and R. D. Blanton, ”Universal Test
Generation using Fault Tuples”, in Proc. Intl. Test Conf., 2000, pp. 812-
819.

[3] S. M. Reddy, G. Chen, J. Rajski, I. Pomeranz, P. Engelke and B. Becker,
”A Unified Fault Model and Test Generation Procedure for Interconnect
Opens and Bridges”, in Proc. Europ. Test Symp., 2005, pp. 22-27.

[4] S. Goel and R. A. Parekhji, ”Choosing the Right Mix of At-Speed
Structural Test Patterns: Comparisons in Pattern Volume Reduction and
Fault Detection Efficiency”, in Proc. Asian Test Symp., 2005, pp. 330-
336.

[5] S. Alampally, R. T. Venkatesh, P. Shanmugasundaram, R. A. Parekhji
and V. D. Agrawal, ”An Efficient Test Data Reduction Technique through
Dynamic Pattern Mixing Across Multiple Fault Models”, in Proc. VLSI
Test Symp., 2011, pp. 285-290.

[6] C.-H. Wu and K.-J. Lee, ”Transformation of Multiple Fault Models to
a Unified Model for ATPG Efficiency Enhancement”, in Proc. Int. Test
Conf., 2016, pp. 1-10.

[7] J. Savir and S. Patil, ”Broad-Side Delay Test”, IEEE Trans. on Computer-
Aided Design, Aug. 1994, pp. 1057-1064.

[8] J. Savir and S. Patil, ”Scan-Based Transition Test”, IEEE Trans. on
Computer-Aided Design, Aug. 1993, pp. 1232-1241.

[9] I. Pomeranz, ”Skewed-Load Tests for Transition and Stuck-at Faults”,
IEEE Trans. on Computer-Aided Design, 2019.

[10] N. Ahmed, M. Tehranipoor, C. P. Ravikumar and K. M. Butler, ”Local
At-Speed Scan Enable Generation for Transition Fault Testing Using Low-
Cost Testers”, IEEE Trans. on Computer-Aided Design, May 2007, pp.
896-905.

[11] G. Xu and A. D. Singh, ”Scan Cell Design for Launch-on-Shift Delay
Tests with Slow Scan Enable”, IET Computers & Digital Techniques,
May 2007, pp. 213-219.

[12] Y. Sato, H. Yamaguchi, M. Matsuzono and S. Kajihara, ”Multi-Cycle
Test with Partial Observation on Scan-Based BIST Structure”, in Proc.
Asian Test Symp., 2011, pp. 54-59.

[13] I. Pomeranz, ”Observation Points on State Variables for the Compaction
of Multicycle Tests”, IEEE Trans. on VLSI Systems, 2018.

[14] F. Zhang, D. Hwong, Y. Sun, A. Garcia, S. Alhelaly, G. Shofner, L.
Winemberg and J. Dworak, ”Putting Wasted Clock Cycles to Use: En-
hancing Fortuitous Cell-aware Fault Detection with Scan Shift Capture”,
in Proc. Intl. Test Conf., 2016 pp. 1-10.

[15] G. Mrugalski, J. Rajski, J. Solecki, J. Tyszer and C. Wang, ”Trimodal
Scan-Based Test Paradigm”, IEEE Trans. on VLSI Systems, March 2017,
Vol. 25, No. 3, pp. 1112-1125.

[16] C. Acero, D. Feltham, Y. Liu, E. Moghaddam, N. Mukherjee, M. Patyra,
J. Rajski, S. M. Reddy, J. Tyszer and J. Zawada, ”Embedded Deterministic
Test Points”, IEEE Trans. on VLSI Systems, 2017, vol. 25, no. 10, pp.
2949-2961.

[17] I. Pomeranz, ”Static Test Compaction for Scan Circuits by Using
Restoration to Modify and Remove Tests”, IEEE Trans. on Computer-
Aided Design, Dec. 2014, pp. 1955-1964.

