Broadside Tests for Transition and Stuck-at Faults

Irith Pomeranz

Abstract— A recent work showed that it is possible to transform a
single-cycle test for stuck-at faults into a skewed-load test that detects
the same stuck-at faults without performing logic or fault simulation. By
using this transformation, it is possible to generate a compact skewed-
load test set for stuck-at and transition faults. The advantage for test
compaction is related to the fact that the test set contains a single test
type. For cases where broadside tests are preferred over skewed-load tests,
this paper studies the possibility of transforming a single-cycle test into a
broadside test, and generating a compact broadside test set for stuck-at
and transition faults. The paper addresses several challenges in order to
achieve this goal without resorting to sequential test generation or state
justification that have a high computational complexity. Experimental
results for benchmark circuits demonstrate the levels of test compaction
that can be achieved using small numbers of observation points.

Index Terms— broadside tests, stuck-at faults, test compaction, transi-
tion faults.

I. INTRODUCTION

Stuck-at and transition faults are commonly considered as neces-
sary to detect. Additional fault models may be targeted to further
improve the quality of a test set [1]-[6]. The discussion in this paper
is applicable to any combination of fault models where some require
single-cycle tests, and others, two-cycle tests.

In general, stuck-at faults are detected by single-cycle tests, while
transition faults require two-cycle tests. In a standard scan circuit,
broadside (launch-on-capture, or LOC) tests [7], or skewed-load
(launch-on-shift, or LOS) tests [8] may be used for transition faults.
Accordingly, test generation procedures typically produce single-
cycle tests for stuck-at faults, and two-cycle tests for transition faults.
The two-cycle tests detect both types of faults, while the single-cycle
tests detect only single stuck-at faults. Therefore, the two-cycle tests
are preferred for test compaction.

A recent work [9] showed that a single-cycle test for a stuck-at fault
f can be transformed into a skewed-load test that detects f without
performing logic or fault simulation. This is achieved by duplicating
the single-cycle test during the second clock cycle of a skewed-load
test. Consequently, instead of using a single-cycle test set for stuck-at
faults, and a skewed-load test set for transition faults, it is possible
to transform single-cycle tests into skewed-load tests, and produce
a skewed-load test set for both fault models. The advantage is in
the ability to compact the test set. While single-cycle tests do not
detect transition faults, skewed-load tests detect both stuck-at and
transition faults. Moreover, a skewed-load test that was transformed
from a single-cycle test may detect more stuck-at and transition faults
than a skewed-load test that was generated for transition faults. These
properties are used for producing a compact skewed-load test set for
both stuck-at and transition faults.

Skewed-load tests require the scan enable input to change at-
speed between the first and second cycle of the test [10]-[11].
Broadside tests avoid this requirement. Consequently, broadside tests
are sometimes preferred over skewed-load tests.

This paper studies the possibility of generating a broadside test set
for stuck-at and transition faults in order to support test compaction
when broadside tests are preferred over skewed-load tests. The paper
achieves this goal without performing sequential test generation for
stuck-at faults over the two clock cycles of a broadside test. This

Irith Pomeranz is with the School of Electrical and Computer Engineer-
ing, Purdue University, West Lafayette, IN 47907, U.S.A. (e-mail: pomer-
anz@ecn.purdue.edu).

This work was supported in part by NSF grant CCF-1714147

would have been required for generating broadside tests for stuck-
at faults directly. Instead, the paper relies on a transformation of
single-cycle tests for stuck-at faults into broadside tests that does not
require complex processing. To make this possible, the paper needs
to address several challenges as discussed next.

Transforming a single-cycle test for a stuck-at fault f into a
broadside test by duplicating the single-cycle test during the second
functional capture cycle of a broadside test requires a state justifica-
tion procedure that has a high computational complexity. In addition,
state justification is not always possible. Moreover, the broadside test
may not detect f even if the transformation is possible. To avoid these
complications, the paper suggests a transformation that duplicates
the single-cycle test during the first functional capture cycle of a
broadside test without any logic or fault simulation.

The transformation suggested in this paper does not guarantee that
the broadside test will detect the same stuck-at faults as the single-
cycle test. Therefore, stuck-at faults need to be simulated under the
two clock cycles of a broadside test in order to determine accurately
whether a fault is detected. Fault simulation may reveal that additional
stuck-at faults are detected accidentally by the broadside test. This
will contribute to test compaction. However, the main contribution to
test compaction comes from using tests for stuck-at faults to detect
transition faults.

To increase the possibility that stuck-at faults will be detected by a
broadside test whose first functional capture cycle duplicates a single-
cycle test, the paper observes that fault effects of stuck-at faults are
propagated to the primary outputs or next-state variables during the
first clock cycle of such a broadside test. Accordingly, the paper uses
two options. The first option is related to the observation of primary
output values. For transition faults, the primary output values are
observed only during the second clock cycle of a broadside test.
For stuck-at faults, it is sometimes important to observe the primary
output values during the first clock cycle of a broadside test. The
paper considers this option, and uses it when it increases the stuck-at
fault coverage achieved by broadside tests.

The second option is based on the insertion of observation points
on selected state variables that receive fault effects of stuck-at faults.
The insertion of observation points on state variables is used in [12]
for increasing the fault coverage of a built-in test generation scheme
that produces multicycle broadside tests. It is also used in [13] for
compacting a multicycle broadside test set. In [14]-[15] it is used for
observation of fault effects during scan shift cycles to support test
compaction. In this paper, this design-for-testability (D F'I") approach
makes it possible to obtain a test set for stuck-at and transition faults
that consists only of broadside tests without performing sequential
test generation for stuck-at faults. Experimental results for benchmark
circuits show that at most a small number of observation points is
needed. In addition, the same observation points can be used for
other purposes. It is also possible to insert observation points into
the combinational logic of the circuit [16]. However, when such
observation points are used for transition faults, they allow transitions
to be propagated through shorter paths, preventing small delay defects
from being detected. Considering only stuck-at faults, the effects of
observation points inside the combinational logic on the ability to
compact the test set are expected to be small. Thus, it is sufficient
to use observation points on state variables to allow broadside tests
to detect stuck-at faults, and avoid the routing of observation points
that are internal to the combinational logic.

After a broadside test set is obtained that detects all the detectable
stuck-at and transition faults, static test compaction is applied to
the broadside test set to reduce the number of tests. The ability to
compact the test set is illustrated by Figure 1. The left part of Figure 1
shows the conventional case where a two-cycle broadside test set for

transform obs po obs sv compact
2cyc 2cyc 5 5
cyc 2cye cyc
leye
leye
Fig. 1. Test compaction
TABLE 1
NOTATION
symbol | meaning symbol | meaning
sV state variables w} single-cycle test
po primary outputs Pi scan-in state of wil
f.c. fault coverage wj primary input vector of wil
tr transition faults w? two-cycle test based on w;
sa stuck-at faults
t; two-cycle test T broadside transition fault test set
S; scan-in state of t; wt single-cycle stuck-at test set
v; primary input vector of ¢; w2 broadside test set based on W1
symbol | meaning

test sets obtained during test compaction

Tvaser Tpos Tsvs Tecomp
L numbers of faults detected by single-cycle tests

1
Mpaser Mpo

transition faults is complemented with single-cycle tests for stuck-at
faults. In this paper, single-cycle tests are translated into broadside
tests to obtain a broadside test set with the same or lower number
of tests compared with the conventional case. This is achieved by
transforming single-cycle tests into two-cycle tests, and observing
primary outputs and state variables. The test set is then compacted
to reduce the number of tests below that of the conventional case.
Figure 1 illustrates these steps that yield a compact broadside test
set.

The paper is organized as follows. The transformation of a single-
cycle test into a broadside test is discussed in Section II. The
procedure for deriving a compact broadside test set for stuck-at and
transition faults is described in Section III. Experimental results are
presented in Section IV. Table I summarizes the notation used, and
provides the short forms in the header of Table II.

II. TRANSFORMING A SINGLE-CYCLE INTO A BROADSIDE TEST

A single-cycle test is denoted by w; = (pi, ui, 1), where p; is the
scan-in state, and u; is the primary input vector that is applied during
a functional capture cycle. The test ends with a scan-out operation.
The primary output values are observed during the functional capture
cycle of the test.

A broadside test is denoted by t; = (s;,v;,2), where s; is the
scan-in state, and v; is a primary input vector that is applied during
two consecutive functional capture cycles. Broadside tests with equal
primary input vectors are commonly used to avoid the need to change
the primary input vector at-speed during a test. The test ends with
a scan-out operation. The primary output values are observed during
the second functional capture cycle of the test.

A broadside test is shown in Figure 2. At the end of the first
functional capture cycle the fault-free circuit is in a state that is
denoted by s; 1. At the end of the second functional capture cycle
the fault-free circuit is in a state that is denoted by s; 2.

The stuck-at fault where line g is stuck-at the value a is denoted by
g/a. The transition fault that delays the a — a’ transition on line g
is denoted by g : a — a’. Figure 2 shows the conditions required for
detecting the transition fault g : a — a’. The value g = a is required

Vi Vi
Si Sil Si2
g=a g=dla
Fig. 2. Broadside test
Uu; u;
Pi Pii Pi2
gla gla
Fig. 3. Transforming a single-cycle into a broadside test

during the first functional capture cycle. The fault g/a needs to be
detected during the second functional capture cycle.

Let w; = (p;,ui, 1) be a single-cycle test that detects the fault
g/a. Referring to Figure 2, a transformation of w; into a broadside
test t; = (si, v;,2) can be performed by requiring that s;1 = p;
and v; = wu;. In this case, the second functional capture cycle of the
broadside test duplicates the single-cycle test, and the expectation
is that f will be detected during this clock cycle of the broadside
test. However, this transformation suffers from three issues. (1) To
obtain s;,1 = p; under a broadside test it is necessary to compute a
scan-in state s; such that p; is the next-state obtained for s; and wu;.
This computation requires a state justification procedure, with a high
computational complexity. (2) Given p; and u;, a scan-in state s; for
a broadside test may not exist. (3) Even if s; exists, the stuck-at fault
g/a may be activated during the first functional capture cycle of the
test, causing the faulty circuit to reach a state other than s; 1 = p;
in the second cycle. In this case, f may not be detected.

Instead of using a transformation that requires a state justification
procedure, the transformation suggested in this paper uses the single-
cycle test w; = (p;,u;, 1) to define the broadside test w; =
(pi,ui,2). This test is shown in Figure 3. This transformation
duplicates the single-cycle test during the first functional capture
cycle of the broadside test.

If a stuck-at fault g/a is detected by the single-cycle test w;,
the broadside test activates the fault in the first functional capture
cycle, and propagates fault effects to the primary outputs or next-
state variables. Thus, the state p; 1 may be obtained in the fault-free
but not the faulty circuit. Fault simulation for a stuck-at fault g/a is
carried out over the two functional capture cycles of the broadside
test to determine whether the fault is detected.

ITII. GENERATING A COMPACT BROADSIDE TEST SET

Several test sets are computed in this section in order to eventually
compute a compact test set that consists only of broadside tests, and
detects all the detectable stuck-at and transition faults.

The input to the procedures described in this section consists of
two test sets. A test set 1" consists of broadside tests for transition
faults. A test set W' consists of single-cycle tests for stuck-at faults.
Both test sets are compact. The set of target faults F' consists of
stuck-at and transition faults.

The test set W' is transformed into a broadside test set W2 by
transforming every single-cycle test w; = (p;,u;,1) € W' into the
broadside test w? = (p;, u;,2) € W2,

The test sets 7 and W can be generated under the constraints
of a test data compression method. The first steps of the procedure
(including the transformation of W* into W?2) do not change scan-
in states or primary input vectors. Therefore, the test sets remain

applicable under the same test data compression method. The last
step of test compaction can be applied under the constraints of the
same method.

A. Test Set Tyase

The test set Tpqse is constructed by performing fault simulation
with fault dropping of 7', W2 and W, in this order.

Initially, Tpese = 0, and F' contains all the target faults. For every
test t; € T', fault simulation with fault dropping is carried out for F'
under ¢;. If any fault from F is detected, ¢; is added to Tpqse. After
T is considered, all the detectable transition faults, and some of the
stuck-at faults, are detected (accurate fault simulation is carried out
to account for the fact that a stuck-at fault may be activated in the
first or second clock cycle of a broadside test).

Next, for every test w? € W72, fault simulation with fault dropping
is carried out for F' under w?. If any fault from F is detected, w?
is added to Thase. After W2 is considered, additional stuck-at faults
are detected.

Finally, for every test w; € W*, fault simulation with fault
dropping is carried out for F' under wj. If any fault from F is
detected, w; is added to Thase. After W' is considered, all the
detectable stuck-at faults are detected.

With this order, the procedure prefers to include in T}qs. broadside
tests for both stuck-at and transition faults. It adds single-cycle tests
for stuck-at faults that are not detected by 7" and W?2.

The number of faults detected by single-cycle tests in Tpqse 1S
denoted by ni,s.. If ni,.. = 0, the test sets Ty, and Ty, described
in the next subsections are not needed, and 1o = Tsv = Thase-

B. Test Set T,

For the test set T}, it is noted that a single-cycle test w; =
(pi,ui, 1) € W may detect a stuck-at fault f on a primary output. In
this case, the broadside test w? = (pi,ui,2) € W2 will propagate a
fault effect of f to a primary output during the first functional capture
cycle. The fault is not considered to be detected because the primary
outputs are not observed during the first functional capture cycle of
a broadside test. This decision is based on the fact that transition
faults are not detected during the first clock cycle after the scan-in
operation. However, stuck-at faults may be detected.

For the test set T},,, the primary outputs are observed during both
functional capture cycles of a broadside test. Similar to Tpqse, the
test set T}, is constructed by performing fault simulation with fault
dropping of T, W2 and W', in this order.

The number of faults that are detected by single-cycle tests in T},
is denoted by n,l,o. Observation of the primary outputs during both
functional capture cycles of a broadside test is important if nzl,o <
Npgse. Otherwise, if n;o = Np,ses Primary output values are not
observed during the first functional capture cycle, and Tyo = Thase-

If nzl,o = 0, the test set T, described in the next subsection is not
computed, and T, = Tpo.

C. Test Set Ts,

For the test set T%,, the goal is to ensure that single-cycle tests are
not needed for the detection of stuck-at faults. This can be achieved
by inserting observation points as discussed next.

Let X' be the subset of single-cycle tests from W' that are
included in Tp,. Let F* include every stuck-at fault f € F such
that f is detected by a test w} € X!,

Detections on the primary outputs are already considered for the
computation of Tj,. Therefore, a fault f € F' requires a single-
cycle test wil € W to be included in Tpo because its fault effects

a; b

w200

Fig. 4. Observation point on state variable

are propagated to the next-state variables under w}. As in Figure 3,
let the next-state of the fault-free circuit under p; and u; be p; 1. Let
the next-state of the faulty circuit in the presence of f be ¢;,1. If p;1
and g;,1 differ in the value of state variable j, an observation point
on state variable 7 will allow f to be detected.

Figure 4 shows a flip-flop with a next-state variable Y; and a
present-state variable y;. An observation point may be added on the
next-state variable as a fanout branch a;, or the present-state variable
as a fanout branch b;.

With the observation point a;, a stuck-at fault on Y; will not benefit
from a;. Therefore, in this paper, an observation point is placed on a
present-state variable. With the observation point b;, additional stuck-
at faults will be detected during the second functional capture cycle
of the test. Observation points are used only for the detection of
stuck-at faults.

Figure 4 also illustrates the possibility of using output compaction
logic to capture the values of the observation points. The output
compaction logic that captures primary output values and scan-out
states can also capture the values of the observation points.

The selection of present-state variables for observation point inser-
tion is described next.

The procedure associates with every fault f € F'! a set of possible
observation points J(). Initially, .J(f) = 0. For every test w; € X',
the procedure simulates every fault f € F'' under w;. If the fault is
detected on a next-state variable Yj, the index j is added to J(f).

The procedure uses a greedy set covering procedure to select a
subset J,ps such that, for every fault f € F', there is an index
J € Jops Of a state variable where f can be detected, or j € J(f).

After inserting observation points on the present-state variables in
Jobs, the test set Tk, is constructed by performing fault simulation
with fault dropping of T and W72, in this order (it is not necessary
to simulate W1).

D. Test Set Tcomp

The test set T, contains only broadside tests. The tests are from
two sources, the transition fault test set 7', and the single-cycle stuck-
at test set W' that was transformed into the broadside test set TW?2.
Each one of the test sets was compacted separately, but the two test
sets were not compacted together. Therefore, application of a static
test compaction procedure can reduce the size of T,,.

Initially, Teomp = Tsv. The test set Teomp is compacted by a static
test compaction procedure that is based on the approach from [17].
The procedure has two subprocedures that are applied iteratively.
Both subprocedures use fault simulation with fault dropping to
associate a set of detected faults D(¢) with every test ¢ € Teomp-

The first subprocedure reorders the tests in Tcomp such that the
tests appear by decreasing number of detected faults. Reordering
and fault simulation with fault dropping are repeated until no further
changes in the order of the tests is obtained. If |D(¢)| = 0 is obtained
for a test ¢, the test is removed from Teomp.

The second subprocedure applies a basic step where a pair of tests
tmod € Teomp and trem € Teomp is considered. The procedure
attempts to modify ¢;04 € Tcomp SO as to detect all the faults
in D(tmod) U D(trem). If the modification is successful, trem is
removed from Teomp.

TABLE I
EXPERIMENTAL RESULTS
observed tests f.c.
circuit sV iter | po SV Josv tot T w? w! nl tr sa ntime
systemcaes 670 0 0 0 0.000 | 207 202 5 0 0 88.751 99.995 1.00
systemcaes 670 1 0 0 0.000 | 202 199 3 0 0 88.751 99.995 418.44
systemcaes 670 6 0 0 0.000 | 188 186 2 0 0 88.751 99.995 1582.07
systemcdes 190 0 0 0 0.000 92 91 1 0 0 96.165 100.000 1.00
systemcdes 190 1 0 0 0.000 91 91 0 0 0 96.165 100.000 51.36
systemcdes 190 2 0 0 0.000 88 88 0 0 0 96.165 100.000 83.81
$35932 1728 0 0 0 0.000 | 40 30 8 2 1244 | 71.800 89.809 1.00
835932 1728 0 0 1244 3.346 38 30 8 0 0 71.800 89.809 3.76
$35932 1728 4 0 1244 3.346 33 27 6 0 0 71.800 89.809 42.23
bl4 247 0 0 0 0.000 | 417 207 203 7 32 72.050 95.083 1.00
bl4 247 0 0 31 0.360 | 410 207 203 0 0 72.050 95.083 3.98
bl4 247 3 0 31 0360 | 382 190 192 0 0 72.387 95.123 445.39
b20 494 0 0 0 0.000 [495 306 187 2 33 79.655 94.315 1.00
b20 494 0 0 33 0.171 | 493 306 187 0 0 79.655 94.315 4.00
b20 494 15 0 33 0.171 | 401 241 160 0 0 79.953 94.532 2740.42
aes_core 530 0 0 0 0.000 | 312 311 0 1 1 96.187 100.000 1.00
aes_core 530 0 0 1 0.002 | 311 311 0 0 0 96.187 100.000 4.16
aes_core 530 3 0 1 0.002 | 307 307 0 0 0 96.187 100.000 79.22
spi 229 0 0 0 0.000 | 889 865 23 1 1 82.716 99.985 1.00
spi 229 0 0 1 0.017 | 889 865 24 0 0 82.716 99.985 4.00
spi 229 1 0 1 0.017 | 865 844 21 0 0 82.716 99.985 424.56
spi 229 22 0 1 0.017 | 756 743 13 0 0 82.923 99.985 19768.15
tv80 359 0 0 0 0.000 | 918 658 221 39 60 82.076 99.451 1.00
tv80 359 0 0 33 0.228 | 896 658 238 0 0 82.076 99.451 3.69
tv80 359 9 0 33 0.228 | 709 585 124 0 0 82.609 99.477 2242.18
s5378 179 0 0 0 0.000 | 288 180 19 89 262 77.863 99.152 1.00
$5378 179 0 1 0 0.000 | 245 180 55 10 11 77.863 99.152 1.63
$5378 179 0 1 3 0.056 | 237 180 57 0 0 77.863 99.152 2.24
$5378 179 8 1 3 0.056 | 180 155 25 0 0 77.863 99.152 579.73
$5378 179 9 1 3 0.056 | 177 154 23 0 0 77.863 99.152 639.15
$9234 228 0 0 0 0.000 | 426 355 32 39 73 76.594 93.626 1.00
$9234 228 0 1 0 0.000 | 425 355 32 38 72 76.594 93.626 1.99
$9234 228 0 1 7 0.075 | 400 355 45 0 0 76.594 93.626 2.94
$9234 228 2 1 7 0.075 | 355 334 21 0 0 76.594 93.626 239.85
$9234 228 4 1 7 0.075 | 340 323 17 0 0 76.594 93.626 414.18
$13207 669 0 0 0 0.000 | 420 349 56 15 42 80.317 98.542 1.00
$13207 669 0 1 0 0.000 | 411 349 60 2 2 80.317 98.542 1.93
$13207 669 0 1 2 0.015 | 409 349 60 0 0 80.317 98.542 2.86
$13207 669 2 1 2 0.015 | 349 332 17 0 0 80.317 98.542 72777
$13207 669 7 1 2 0.015 | 317 312 5 0 0 80.325 98.542 2452.55
$38417 1636 0 0 0 0.000 [664 648 11 5 6 97.164 99.503 1.00
838417 1636 0 1 0 0.000 | 663 648 11 4 4 97.164 99.503 2.00
$38417 1636 0 1 4 0.010 | 660 648 12 0 0 97.164 99.503 2.99
$38417 1636 1 1 4 0.010 | 647 636 11 0 0 97.164 99.503 153.07
$38417 1636 9 1 4 0.010 | 459 457 2 0 0 97.188 99.503 12246.25
$38584 1452 0 0 0 0.000 | 629 536 58 35 80 71.239 95.819 1.00
$38584 1452 0 1 0 0.000 | 622 536 56 30 51 71.239 95.819 1.98
838584 1452 0 1 32 0.083 | 591 536 55 0 0 71.239 95.857 2.94
$38584 1452 1 1 32 0.083 | 536 501 35 0 0 71.265 95.857 237.77
$38584 1452 12 1 32 0.083 | 437 423 14 0 0 71.291 95.857 2242.62
bl5 447 0 0 0 0.000 | 603 488 102 13 115 81.118 98.640 1.00
bl5 447 0 1 0 0.000 | 600 488 103 9 111 81.118 98.640 2.08
bl5 447 0 1 110 0.618 | 590 488 102 0 0 81.118 98.640 3.27
bl5 447 8 1 110 0618 | 493 437 56 0 0 81.929 98.679 1503.12
wb_dma 523 0 0 0 0.000 | 230 175 48 7 10 75.634 100.000 1.00
wb.dma 523 0 1 0 0.000 | 228 175 47 6 9 75.634 100.000 1.97
wb_dma 523 0 1 8 0.095 | 223 175 48 0 0 75.634 100.000 2.90
wb_dma 523 1 1 8 0.095 | 175 138 37 0 0 75.687 100.000 535.09
wb_dma 523 8 1 8 0.095 | 147 116 31 0 0 75.699 100.000 2363.35
TABLE III

The procedure considers all the test pairs such that |Dyen | = 1,

TEST COMPACTION RESULTS . .
|Dimod| > 1, and tm,04 is not in the first quarter of the test set. These

circuit Thase T circuit Thase T conditions ensure that the tests detect moderate numbers of faults, and
systemcaes | -9.18 -0.93 $5378 3854 -1.67 makes it likely that they can be modified or removed. In addition, a
systemcdes -4.35 -3.30 59234 -20.19 -4.23
35932 1750 10.00 S3207 5150 917 test that detects a single fault is not considered for modification in
bl4 -8.39 84.54 38417 -30.87 -29.17 order to ensure that it remains a candidate for removal.

b20 -18.99 31.05 $38584 -30.52 -18.47

aes_core -1.60 -1.29 bl5 -18.24 1.02

spi -14.96 -12.60 wb_dma -36.09 -16.00

tv80 2277 775 IV. EXPERIMENTAL RESULTS

This section presents the results of the computation of the test sets
Tvases Tpo, Tsy and Teomyp for benchmark circuits.

The results are shown in Table II. Table III shows a summary of
the test compaction levels reported in Table II. The circuits in Table
Il are partitioned into three groups according to their requirements
for achieving a test set that consists only of broadside tests.

For every circuit, every one of the test sets Thase, Lpo, Tsv and
Tcomp 18 shown on a separate row in Table II. A test set is omitted if
it is equal to the previous test set. In the case of Tcomyp, intermediate
test sets are sometimes reported as discussed later.

For every test set, column sv shows the number of state variables.
For Ttomp, column iter shows the iteration of the test compaction
procedure. For the other test sets the iteration is zero by default.

Column observed subcolumn po shows whether or not primary
output values are observed during the first functional capture cycle
of a broadside test. Subcolumn sv shows the number of observation
points on present-state variables. Subcolumn %sv shows the number
of observation points as a percentage of the total number of lines.

Column tests subcolumn tot shows the total number of tests in
the test set. Subcolumns T', W2 and W' show the numbers of tests
from the corresponding test sets. When the test compaction procedure
modifies a test, its source is preserved. Subcolumn nl shows the
number of stuck-at faults that are detected by single-cycle tests (this
can be nj .., nzl,o or ni,).

Column f.c. shows the transition and stuck-at fault coverages.
Column ntime shows the cumulative run time, normalized to the run
time required for producing Thqse. The run time for Tyqse consists
of fault simulation with fault dropping of 7', W? and W*.

The following points can be observed from Table II. There are
several circuits for which the tests in 7 and W? are sufficient for
detecting all the stuck-at faults. For other circuits, the additional ob-
servation of primary output values, and/or the insertion of observation
points, eliminate single-cycle tests from the test set.

Even when the number of broadside tests is increased to allow
single-cycle tests to be omitted, the overall number of tests in T},
and T, is reduced relative to Tpqse. This is related to the fact that
broadside tests can detect more stuck-at faults than single-cycle tests.
The importance of observing primary output values is related to the
fact that the primary outputs capture the results of the computations
that the circuit performs, and are, therefore, sensitive to faults.

The static test compaction procedure reduces the number of tests
further. The effectiveness of the procedure can be seen in two ways.
(1) The number of tests in T.omp is reduced significantly relative to
Thase, Tpo and Ts,. (2) Since T' is a compact test set for transition
faults, and Tcomp detects both transition and stuck-at faults, it is
expected that |Tcomp| > |T'| will be obtained. Nevertheless, there
are many cases where |Teomp| < |T| is obtained. This is possible
because more iterations of test compaction are applied to Teomp.-

Table III further illustrates the reduction in the number of tests
by showing the percentage reduction of Tcomp relative to Tpqse, and
relative to 7T'. A negative number implies that the number of tests in
Teomp is lower than in Tpeee or T'.

The reduction in the number of tests has a computational cost. It
is possible to terminate the static test compaction procedure earlier,
with a larger test set. To illustrate this point, for circuits where
|Teomp| < |T'| at termination, Table II includes the results of the
static test compaction procedure when |Teomp| = |7

The percentage of observation points varies with the circuit. The
higher percentages are obtained for circuits where the additional
observation of primary output values is not useful for detecting
stuck-at faults. When this approach is effective, the percentage of
observation points is lower than 1% for all the circuits in the third
part of Table II, and lower than 0.1% for most of these circuits.

V. CONCLUDING REMARKS

This paper described a procedure for generating a compact broad-
side test set for stuck-at and transition faults. The procedure is based
on a transformation of a single-cycle test for stuck-at faults into a
broadside test by duplicating the single-cycle test during the first
functional capture cycle of the broadside test. This transformation
does not require logic or fault simulation, and it avoids the need for
sequential test generation or state justification. To compensate for
the fact that stuck-at faults may not be detected by the transformed
tests, the paper used three options: (1) accurate simulation of stuck-
at faults under broadside tests, (2) observation of the primary output
values during the first functional capture cycle of a broadside test,
and (3) the insertion of observation points on selected present-state
variables. Experimental results were presented for benchmark circuits
to demonstrate the levels of test compaction that can be achieved, and
numbers of observation points needed.

REFERENCES

[1] L. N. Reddy, I. Pomeranz and S. M. Reddy, "COMPACTEST-II: A
Method to Generate Compact Two-pattern Test Sets for Combinational
Logic Circuits”, in Proc. Intl. Conf. on Computer-Aided Design, 1992,
pp. 568-574.

[2] R. Desineni, K. N. Dwarkanath and R. D. Blanton, "Universal Test

Generation using Fault Tuples”, in Proc. Intl. Test Conf., 2000, pp. 812-

819.

S. M. Reddy, G. Chen, J. Rajski, I. Pomeranz, P. Engelke and B. Becker,

”A Unified Fault Model and Test Generation Procedure for Interconnect

Opens and Bridges”, in Proc. Europ. Test Symp., 2005, pp. 22-27.

[4] S. Goel and R. A. Parekhji, "Choosing the Right Mix of At-Speed
Structural Test Patterns: Comparisons in Pattern Volume Reduction and
Fault Detection Efficiency”, in Proc. Asian Test Symp., 2005, pp. 330-
336.

[5] S. Alampally, R. T. Venkatesh, P. Shanmugasundaram, R. A. Parekhji
and V. D. Agrawal, ”An Efficient Test Data Reduction Technique through
Dynamic Pattern Mixing Across Multiple Fault Models”, in Proc. VLSI
Test Symp., 2011, pp. 285-290.

[6] C.-H. Wu and K.-J. Lee, "Transformation of Multiple Fault Models to
a Unified Model for ATPG Efficiency Enhancement”, in Proc. Int. Test
Conf., 2016, pp. 1-10.

[7] J. Savir and S. Patil, "Broad-Side Delay Test”, IEEE Trans. on Computer-
Aided Design, Aug. 1994, pp. 1057-1064.

[8] J. Savir and S. Patil, ”Scan-Based Transition Test”, IEEE Trans. on
Computer-Aided Design, Aug. 1993, pp. 1232-1241.

[9] I. Pomeranz, ’Skewed-Load Tests for Transition and Stuck-at Faults”,
IEEE Trans. on Computer-Aided Design, 2019.

[10] N. Ahmed, M. Tehranipoor, C. P. Ravikumar and K. M. Butler, "Local
At-Speed Scan Enable Generation for Transition Fault Testing Using Low-
Cost Testers”, IEEE Trans. on Computer-Aided Design, May 2007, pp.
896-905.

[11] G. Xu and A. D. Singh, ”Scan Cell Design for Launch-on-Shift Delay
Tests with Slow Scan Enable”, IET Computers & Digital Techniques,
May 2007, pp. 213-219.

[12] Y. Sato, H. Yamaguchi, M. Matsuzono and S. Kajihara, "Multi-Cycle
Test with Partial Observation on Scan-Based BIST Structure”, in Proc.
Asian Test Symp., 2011, pp. 54-59.

[13] I Pomeranz, Observation Points on State Variables for the Compaction
of Multicycle Tests”, IEEE Trans. on VLSI Systems, 2018.

[14] F. Zhang, D. Hwong, Y. Sun, A. Garcia, S. Alhelaly, G. Shofner, L.
Winemberg and J. Dworak, “Putting Wasted Clock Cycles to Use: En-
hancing Fortuitous Cell-aware Fault Detection with Scan Shift Capture”,
in Proc. Intl. Test Conf., 2016 pp. 1-10.

[15] G. Mrugalski, J. Rajski, J. Solecki, J. Tyszer and C. Wang, “Trimodal
Scan-Based Test Paradigm”, IEEE Trans. on VLSI Systems, March 2017,
Vol. 25, No. 3, pp. 1112-1125.

[16] C. Acero, D. Feltham, Y. Liu, E. Moghaddam, N. Mukherjee, M. Patyra,
J. Rajski, S. M. Reddy, J. Tyszer and J. Zawada, "Embedded Deterministic
Test Points”, IEEE Trans. on VLSI Systems, 2017, vol. 25, no. 10, pp.
2949-2961.

[17] 1. Pomeranz, “Static Test Compaction for Scan Circuits by Using
Restoration to Modify and Remove Tests”, IEEE Trans. on Computer-
Aided Design, Dec. 2014, pp. 1955-1964.

3

=

