Covering Test Holes of Functional Broadside Tests

IRITH POMERANZ, Purdue University

Functional broadside tests were developed to avoid overtesting of delay faults. The tests achieve this goal
by creating functional operation conditions during their functional capture cycles. To increase the achievable
fault coverage, close-to-functional scan-based tests are allowed to deviate from functional operation conditions.
This paper suggests that a more comprehensive functional broadside test set can be obtained by replacing
target faults that cannot be detected with faults that have similar (but not identical) detection conditions. A
more comprehensive functional broadside test set has the advantage that it still maintains functional operation
conditions. It covers the test holes created when target faults cannot be detected by detecting similar faults.
The paper considers the case where the target faults are transition faults. When a standard transition fault,
with an extra delay of a single clock cycle, cannot be detected, an unspecified transition fault is used instead.
An unspecified transition fault captures the behaviors of transition faults with different extra delays. When
this fault cannot be detected, a stuck-at fault is used instead. A stuck-at fault has some of the detection
conditions of a transition fault. Multicycle functional broadside tests are used to allow unspecified transition
faults to be detected. As a by-product, test compaction also occurs. The structure of the test generation
procedure accommodates the complexity of producing functional broadside tests by considering the target
as well as replacement faults together. Experimental results for benchmark circuits demonstrate the fault
coverage improvements achieved, and the effect on the number of tests.

CCS Concepts: +Hardware —Test-pattern generation and fault simulation;

Additional Key Words and Phrases: Functional broadside tests, multicycle tests, test compaction, test generation,
transition faults.

ACM Reference format:

Irith Pomeranz. 2020. Covering Test Holes of Functional Broadside Tests. ACM Trans. Des. Autom. Electron.
Syst. 11, 11, Article 11 (November 2020), 15 pages.

DOI: 0000001.0000001

1 INTRODUCTION

Delay defects are prevalent in state-of-the-art technologies and require tests for delay faults to be
applied to manufactured circuits [1]-[12]. Functional operation conditions during the application of
scan-based tests are important for avoiding overtesting of delay faults [13]-[15]. Overtesting occurs
when a scan-based test propagates transitions through a slow path that does not affect output
values during functional operation [13]. It also occurs when a scan-based test creates excessive
switching activity, resulting in voltage drops [14]-[15]. In both cases, the circuit appears to have a
delay fault that slows it down even though it would operate correctly during functional operation.

Author’s address: Irith Pomeranz, School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN
47907 USA. E-mail: pomeranz@ecn.purdue.edu.

The work was supported in part by the National Science Foundation (NSF) under Grant No. CCF-1714147.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 ACM. 1084-4309/2020/11-ART11 $15.00

DOI: 0000001.0000001

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 11, Article 11. Publication date:
November 2020.

11:2 Irith Pomeranz

Functional broadside tests address overtesting by maintaining functional operation conditions
during their functional capture cycles [16]-[20]. The delay fault coverage achievable by functional
broadside tests is lower than that achievable by scan-based tests that are not constrained to be
functional. Scan-based tests that maintain close-to-functional operation conditions address the
fault coverage gap by considering the tradeoff between the fault coverage and the deviation from
functional operation conditions [21]-[27].

Before resorting to close-to-functional broadside tests to increase the fault coverage, this paper
explores the possibility that a more comprehensive functional broadside test set can be obtained
by targeting additional faults with similar (but not identical) detection conditions instead of the
target faults that cannot be detected. A more comprehensive functional broadside test set has the
advantage that it still maintains functional operation conditions. This approach addresses the test
holes created when target faults cannot be detected. The test holes (or the presence of undetected
target faults) are covered by targeting additional faults from different fault models with similar
detection conditions. Such approaches for covering the test holes of a test set were suggested in
[28]-[30] for different contexts not involving functional broadside tests. The unique challenges
with functional broadside tests are the following.

(1) The fault coverage achievable by functional broadside tests is lower than with scan-based tests
that are not constrained to be functional. Thus, more target faults need to be replaced to ensure
that test holes are covered, and more replacement faults may also be undetectable.

(2) Test generation in [28]-[30] first considers the target faults, and then considers the test holes
created by target faults that cannot be detected. This structure of the test generation procedure is
inefficient for functional broadside tests for the following reason. A fault-oriented test generation
procedure for functional broadside tests is computationally intensive. Instead, fault-independent
simulation-based procedures provide a more cost-effective option. Instead of considering fault
models one at a time and repeating the process of producing functional broadside tests for every
fault model, a more efficient approach is to consider all the fault models together. This is the
approach suggested in this paper. Under this approach, all the target as well as replacement faults
are initially undetected. As long as a target fault is not detected, its replacements are considered to
cover the potential test hole. When a target fault is detected, the replacements become unnecessary,
and the test generation procedure eliminates them and their tests from consideration.

The paper considers the scenario where the target faults for functional broadside tests are
transition faults. When a standard transition fault, with an extra delay of a single clock cycle,
cannot be detected by a functional broadside test, an unspecified transition fault [31] is used instead.
An unspecified transition fault captures, in a single fault, transition faults with different extra
delays. Even if the standard transition fault cannot be detected, transition faults with different
extra delays may be detected. These faults are targeted to cover the test hole, created when a
standard transition fault cannot be detected, by targeting an unspecified transition fault. When the
unspecified transition fault cannot be detected, a stuck-at fault is used instead. A stuck-at fault is
suitable because it has some of the detection conditions of a transition fault.

The goal of covering test holes is not to detect all the unspecified transition faults and stuck-at
faults, since this would result in a significantly larger test set, and the extra tests would cover
similar faults. Instead, the goal is only to address the test holes left by standard transition faults
that cannot be detected. Faults with similar (but not identical) detection conditions are suitable
for this purpose since their tests are likely to detect the same defects. The use of two fault types
as replacement faults increases the likelihood that a detectable replacement will be found. The
structure of the test generation procedure ensures that the generation of functional broadside tests
does not have to be repeated.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 11, Article 11. Publication date:
November 2020.

Covering Test Holes 11:3

Considering the numbers of functional capture cycles in a test, stuck-at faults can be detected by
single-cycle tests, whereas transition faults require tests with two or more clock cycles. To maintain
a similarity to transition faults, tests with two or more clock cycles are also used for stuck-at faults.

A significant difference between the ability to detect a standard and an unspecified transition
fault exists only under multicycle tests with more than two functional capture cycles. Multicycle
tests are also effective for test compaction. Therefore, the test generation procedure considers
multicycle tests.

The procedure is implemented by extracting functional broadside tests from functional test
sequences [17]. Two versions of the test generation procedure are described. The first procedure
will allow a detailed comparison of a two-cycle functional broadside test set for standard transition
faults with a multicycle test set that covers test holes. After extracting an initial two-cycle functional
broadside test set for standard transition faults, the procedure extracts two-cycle, three-cycle, four-
cycle, ... tests to cover test holes.

To take better advantage of the ability of multicycle tests to provide test compaction, and avoid
generating functional broadside tests sequentially for different fault models, the second procedure
prefers to use multicycle tests with larger numbers of clock cycles, and considers all the fault types
together.

The use of multicycle tests has at most a small effect on the fault coverage achievable for standard
transition faults, whereas the fault coverage of unspecified transition faults increases significantly
when multicycle tests are used. This observation was used in [32] to guide the selection of multicycle
test sets that provide both test compaction and an increased defect coverage. The defect coverage
in [32] is represented by unspecified transition faults. Accordingly, the differences between this
work and [32] are the following.

(1) In [32] all the unspecified transition faults are considered as part of a test compaction procedure,
whereas here, only unspecified transition faults that correspond to undetected standard transition
faults are important to detect. The goal, which is not addressed in [32], is to cover the test holes of
a functional broadside test set.

(2) The tests in [32] are not constrained to be functional broadside tests, requiring substantially
different underlying test generation and test compaction processes.

(3) Stuck-at faults are not considered in [32].

The paper is organized as follows. Background related to functional broadside tests and transition
faults is provided in Section 2. The test generation procedures for functional broadside tests are
described in Section 3. Experimental results for benchmark circuits are given in Section 4.

2 BACKGROUND

This section provides background for the test generation procedure described in this paper.

2.1 Functional Broadside Tests

The procedure used in this paper for generating functional broadside tests extracts the tests from
functional test sequences. Let V; = v; gv;1...v;, -1 be a functional test sequence of length L. Logic
simulation of the sequence is carried out starting from the initial state used for functional operation
of the circuit. This results in a state s; ,, for every clock cycle 0 < u < L. Four clock cycles of the
sequence, u, 4 + 1, u + 2 and u + 3, are shown in Figure 1.

A two-cycle functional broadside test can be extracted from V; by considering any two consecutive
clock cycles. Considering clock cycles u and u + 1 in Figure 1, a functional broadside test can be
obtained that has a scan-in state s; ,,, and primary input vectors v; ,, and v; y+;. After scanning in

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 11, Article 11. Publication date:
November 2020.

11:4 Irith Pomeranz

Vi,u vi,u+1 vi,u+2 vi,u+3
Siu Siu+l Siuv2 Siu+3 Siu+a
— U u+l u+2 U+3 ——»

Fig. 1. Functional test sequence

si,u, the test applies v; , and v; 41 in two consecutive functional capture cycles. The final state is
scanned out. The test is denoted by t; 4,2 = (Si,u> Vi,u» Vi u+1)-

Assuming that V; can occur during functional operation, the test t; ,, » takes the circuit through
two state-transitions that can occur during functional operation. Therefore, it is a functional
broadside test.

A two-cycle functional broadside test can be extracted from V; for every 0 < u < L—2. An l-cycle
functional broadside test t; ;, 1 = (Si,u> Vi,u> Vi,u+1> -+ Vi,u+l-1) can be obtained from V; for every
I >2and 0 < u < L -1 The test t; ,; starts by scanning in s; ,,. The primary input vectors v; ,,
Vi u+1, ---» Vi u+l-1 are applied in [consecutive functional capture cycles. The final state is scanned
out. Referring to Figure 1 tius = <si,us Ui,us Vi,u+1, Ui,u+2>a tiug = <si,ua Ui, us Vi,u+1s Vi,u+2» vi,u+3>>
and so on.

2.2 Transition Faults

A two-cycle scan-based test for the transition fault f = g : @ — a’ satisfies the following conditions.
(1) It assigns g = a under the first cycle. (2) It assigns g = a’ under the second cycle. (3) In the
presence of the fault, g = a is obtained under the second cycle. The test propagates the fault effect
a’/a from g to an observable output under the second cycle. This implies that the second cycle is a
test for the fault g stuck-at a.

Under a multicycle scan-based test, or under a functional test sequence, a transition fault may
have a different effect on the circuit depending on the duration of the extra delay. In [33], the
duration of the extra delay is measured in numbers of clock cycles, and transition faults are
associated with different durations. Each duration defines a different transition fault, and each fault
is simulated separately.

A standard transition fault is associated with a duration of a single clock cycle. Only standard
transition faults are typically targeted by test generation procedures to avoid the increase in the
number of faults when different durations are considered.

Transition faults with different durations than a standard transition fault are suitable for covering
the test hole created when a standard transition fault cannot be detected. However, the number of
target faults would increase significantly if faults of different durations are considered individually.

An unspecified transition fault captures all the durations of a transition fault in a single fault.
Consequently, the number of unspecified transition faults is the same as the number of standard
transition faults, but the faults capture a broader range of durations. This makes unspecified
transition faults suitable for covering test holes created when standard transition faults cannot be
detected.

This property of unspecified transition faults is achieved by introducing unspecified (x) values
into the faulty circuit when fault effects may occur. The first activation of the fault requires a
transition as in the case of a standard transition fault. The difference is that fault activation assigns
an unspecified value to the fault site. The fault effect is then propagated using unspecified values.
This is done to accommodate the fact that the duration of the fault is not specified. The fault may be

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 11, Article 11. Publication date:
November 2020.

Covering Test Holes 11:5

a dla
81
[a, x] [, x)/x
8 —
a,da dla
2 [a,a’]

Fig. 2. Activation conditions

activated again using unspecified values as described later. An unspecified value propagated to an
observable output is taken as an indication that the fault is detected. To increase the confidence that
the fault is indeed detected, it is possible to require that unspecified values would be propagated to
several observable outputs at one or more clock cycles.

Fault simulation of unspecified transition faults is carried out at the gate-level as for standard
transition faults. The only difference is that, even under fully-specified tests, fault simulation of
unspecified transition faults uses three values, {0, 1, x}. The activation conditions of the faults are
illustrated by Figure 2 and considered in more detail next. For simplicity of discussion the tests are
assumed to be fully-specified. Figure 2 shows two consecutive clock cycles of a test.

A standard transition fault g : a — a’ is activated during two clock cycles of a test if g = a in the
first clock cycle, and g = a’ in the second clock cycle. This results in the value g = a in the faulty
circuit under the second cycle. A standard transition fault is illustrated by line g, in Figure 2.

Let x denote an unspecified value related to fault activation (if the test leaves unspecified values
in the fault-free circuit they are given a different symbol). An unspecified transition fault g : a — a’
is activated during two clock cycles of a test if g = a or x in the first clock cycle, and g = @’ or x in
the second clock cycle. This results in the value g = x in the faulty circuit under the second cycle.
An unspecified transition fault is illustrated by line g, in Figure 2.

The first time the fault is activated there are no unspecified values in the circuit that result from
fault activation. Therefore, the first activation of the unspecified transition fault occurs as for a
standard transition fault. During additional clock cycles, the fault may be activated again with
g = x in the first or second clock cycle. Similar to a standard transition fault, only two consecutive
clock cycles are considered to determine whether the fault is activated.

Based on this discussion, the difference between standard and unspecified transition faults
becomes more evident with more functional capture cycles between the scan operations of a test.
In general, multicycle tests with more functional capture cycles allow more unspecified transition
faults to be detected.

For completeness, the activation of the fault g stuck-at a is illustrated by line g5 in Figure 2. The
fault does not have any requirements for the first clock cycle, allowing either an a or an a’ to be
assigned in this clock cycle. In the second clock cycle, g = a” activates the fault. This results in the
value g = a in the faulty circuit under the second cycle.

2.3 Target Faults

To explain how fault detection information is updated when the set of faults contains replacements
to the target faults, let us consider a transition fault f = g : a — a’. The fault is associated with
three flags. The flag str(f) is related to the standard transition fault associated with f. The flag

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 11, Article 11. Publication date:
November 2020.

11:6 Irith Pomeranz

xtr(f) is related to the unspecified transition fault associated with f. The flag ssa(f) is related to
the single stuck-at fault associated with f, which is g stuck-at a.

Initially, str(f) = xtr(f) = ssa(f) = 0 indicates that the fault is not detected. If a test is found for
the standard transition fault, str(f) = xtr(f) = ssa(f) = 1 is assigned. Although the unspecified
transition fault and stuck-at fault may not be detected, they do not require additional tests. The
reason is that the tests are likely to be similar, and the goal is only to cover test holes.

If a test is found for the unspecified transition fault, xtr(f) = ssa(f) = 1 is assigned. In this case,
the stuck-at fault does not require an additional test. If the standard transition fault is detected
later, the assignment str(f) = xtr(f) = ssa(f) = 1 makes the test for the unspecified transition
fault unnecessary.

If a test is found for the stuck-at fault, ssa(f) = 1 is assigned. If the standard or unspecified
transition fault is detected later, the assignment str(f) = xtr(f) = ssa(f) = 1 or xtr(f) = ssa(f) =
1, respectively, makes the test for the stuck-at fault unnecessary.

3 TEST GENERATION PROCEDURES

The test generation procedure for functional broadside tests is described in this section. Two
versions of the procedure are described. The first version, given by Procedures 1 and 2, uses
multicycle tests only for eliminating test holes. These procedures will demonstrate the importance
of multicycle tests for covering test holes. The second version, given by Procedure 3, uses multicycle
tests for test compaction as well.

Procedure 3 is the one to be used for producing a compact comprehensive functional broadside test
set that covers test holes created by standard transition faults that cannot be detected. Procedures
1 and 2 are included to demonstrate more clearly the effects of covering test holes.

The set of target faults is denoted by F. It consists of a transition fault g : a — a’ for every line
g and value a € {0, 1}. A transition fault f € F is associated with three flags as defined earlier.
Initially, str(f) = xtr(f) = ssa(f) = 0.

3.1 [Initial Functional Broadside Test Set

In the first version of the procedure, a two-cycle functional broadside test set T, for standard
transition faults is first obtained by applying Procedure 1 given below. The superscript 1 of T,
indicates that only one type of faults is targeted. By targeting only standard transition faults, the
test set provides a baseline for comparison. A more comprehensive test set will be obtained by
targeting unspecified transition faults and stuck-at faults, and using multicycle tests, as described
in Section 3.2.

Procedure 1 uses N functional test sequences, Vy, Vi, ..., Vy—1. It considers every two-cycle
functional broadside test t; 2, for 0 < i < N—-1and 0 < u < L — 2. It simulates under t; ,
every standard transition fault f € F such that str(f) = 0. The procedure updates which faults are
detected, and adds the test to TZ1 if any faults are detected.

Procedure 1: Initial Functional Broadside Test Set

(1) Assign str(f) = xtr(f) = ssa(f) = 0 for every f € F.
(2) AssignT,) = 0.
(3) Fori=0,1,..,N—1:
(@) Foru=0,1,...,L—2:
(i) Simulate every fault f € F such that str(f) = 0 under t;,, as a standard
transition fault. If the fault is detected, assign str(f) = xtr(f) = ssa(f) = 1.
(i) If any fault is detected, add t; ,, » to T,.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 11, Article 11. Publication date:
November 2020.

Covering Test Holes 11:7

(b) Apply to T, forward-looking reverse order fault simulation to remove unnecessary
tests.
(4) Forevery testt; 2 € T21:
(a) Simulate every fault f € F such that xtr(f) = 0 under t; ,, » as an unspecified transition
fault. If the fault is detected, assign xtr(f) = ssa(f) = 1.
(b) Simulate every fault f € F such that ssa(f) = 0 under t; ,, » as a stuck-at fault. If the
fault is detected, assign ssa(f) = 1.

After every sequence is used for extracting functional broadside tests, the procedure applies
forward-looking reverse order fault simulation to remove tests that become unnecessary after other
tests are added to the test set.

At the end of Procedure 1, fault simulation is carried out for unspecified transition faults and
stuck-at faults to determine which faults are detected accidentally. Fault simulation of unspecified
transition faults is carried out for every fault f € F with str(f) = 0. If the unspecified transition
fault is detected, xtr(f) = ssa(f) = 1 is assigned. Fault simulation of stuck-at faults is carried out
for every fault f € F with xtr(f) = 0. If the stuck-at fault is detected, ssa(f) = 1 is assigned.

The computational effort of Procedure 1 is that of fault simulation with fault dropping of standard
transition faults under N(L — 1) two-cycle tests.

3.2 Comprehensive Functional Broadside Test Set

To cover the test holes of Tzl, and obtain a more comprehensive functional broadside test set, the
procedure considers unspecified transition faults and stuck-at faults under I-cycle tests, for [= 2, 3,
..os IMax, where Iy ax is a constant. The use of [= 2 is not expected to increase the fault coverage
significantly. It is included to demonstrate that the difference between standard and unspecified
transition faults is important for larger values of I.

The [-cycle test set is denoted by TIS. The superscript 3 indicates that three types of faults are
targeted. Initially for [= 2, T} = T,. For [> 2, Tl3 = TI3_ | initially. Procedure 2 extends Tl3 into a
more comprehensive test set by considering N new functional test sequences. The sequences are
VN, VN+1s ooy Van—1 for I = 2, Vonr, Vons1, -.., Van—1 for [= 3, and so on.

Procedure 2: Comprehensive I-Cycle Functional Broadside Test Set

(1) IfI = 2, assign T; = T,. Otherwise, assign Tl3 = T13—1'
(2) Fori=(I-1)N,(I-1)N+1,..,IN-1:
(@) Foru=0,1,...,L-1
(i) Simulate every fault f € F such that str(f) = 0 under t;,; as a standard
transition fault. If the fault is detected, assign str(f) = xtr(f) = ssa(f) = 1.
(ii) Simulate every fault f € F such that xtr(f) = 0 under t; ,, ; as an unspecified
transition fault. If the fault is detected, assign xtr(f) = ssa(f) = 1.
(iii) Simulate every fault f € F such that ssa(f) = 0 under t; ,, ; as a stuck-at fault. If
the fault is detected, assign ssa(f) = 1.
(iv) If any fault is detected, add t; ,, ; to Tl3.
(b) Apply to Tl3 forward-looking reverse order fault simulation to remove unnecessary
tests.

As discussed earlier, Procedure 2 uses an unspecified transition fault only when the standard
transition fault is not detected. It uses a stuck-at fault only when the unspecified transition fault is
not detected. Consequently, it is possible to obtain xtr(f) = 1 when the standard transition fault is
detected without considering the unspecified transition fault. In addition, it is possible to obtain
ssa(f) = 1 when the standard or unspecified transition fault is detected without considering the

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 11, Article 11. Publication date:
November 2020.

11:8 Irith Pomeranz

stuck-at fault. This is consistent with the goal of using unspecified transition faults and single
stuck-at faults only to cover test holes.

To avoid having to consider the same test more than once, Procedure 2 considers all the three
types of faults under every test. As a result, it is possible that the procedure will first assign
ssa(f) = 1 with str(f) = xtr(f) = 0. If the unspecified transition fault is detected by a test
considered later, the procedure will result in xtr(f) = ssa(f) = 1 with str(f) = 0. If the standard
transition fault is detected later, the procedure will result in str(f) = xtr(f) = ssa(f) = 1. The
last test to detect the fault is considered by the forward-looking reverse order fault simulation
procedure, and the procedure requires the same assignment to str(f), xtr(f) and ssa(f) by the test
used for detecting the fault. This ensures that the forward-looking reverse order fault simulation
procedure will remove a test that becomes unnecessary after an unspecified or standard transition
fault is detected.

3.3 Compact Comprehensive Functional Broadside Test Set

With Procedures 1 and 2, multicycle tests are used only for covering test holes. Procedure 3 given
below uses multicycle tests for test compaction as well. In addition, it does not attempt to first
exhibit the test holes, but considers all three fault types together. This is important for avoiding the
generation of functional broadside tests repeatedly for different fault models.

The procedure extracts [-cycle tests, cycling through I = Iyax, Imax — 1, ..., 2 as it considers
additional functional test sequences. By starting with [= [yax it gives a higher priority to
multicycle tests with a higher number of clock cycles. This results in a reduced number of tests.
The number of sequences for Procedure 3 is denoted by M.

Procedure 3: Compact Comprehensive Functional Broadside Test Set

(1) Assign str(f) = xtr(f) = ssa(f) = 0 for every f € F.
(2) AssignT = 0. Assign [= Iyax.
(3) Fori=0,1,... M- 1:
(@) Foru=0,1,..,L-1
(i) Simulate every fault f € F such that str(f) = 0 under t;,; as a standard
transition fault. If the fault is detected, assign str(f) = xtr(f) = ssa(f) = 1.
(ii) Simulate every fault f € F such that xtr(f) = 0 under t; ,, ; as an unspecified
transition fault. If the fault is detected, assign xtr(f) = ssa(f) = 1.
(iii) Simulate every fault f € F such that ssa(f) = 0 under t; ,, ; as a stuck-at fault. If
the fault is detected, assign ssa(f) = 1.
(iv) If any fault is detected, add t; ,, ; to T.
(b) Apply to T forward-looking reverse order fault simulation to remove unnecessary
tests.
(c) Assignl=1-1.1f] < 2, assign | = Iyjax.

An example of Procedure 3 is shown in Table 1. The example is based on seven of the faults
of benchmark circuit s27, fy, fi, ..., fs, under nine functional broadside tests, ty, t1, ..., t5. The
first column of Table 1 shows the indices of the tests. The second column shows their numbers of
functional capture cycles. Next, there is a column for every one of the faults. When a test ¢; detects
one of the faults associated with f}, the table shows the flags str(f;)xtr(f;)ssa(f;).

In the case of fj, the standard transition fault is detected by #,. In the case of fi, the unspecified
transition fault is detected by ty, and the standard transition fault is detected by t5. The test holes
correspond to f; and f;. In the case of f;, the unspecified transition fault is detected to cover the
test hole. In the case of f5, the stuck-at fault is detected to cover the test hole.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 11, Article 11. Publication date:
November 2020.

Covering Test Holes 11:9

Table 1. Example of Procedure 3

0 1 2 3 4 5 6
000 000 000 000 000 000 000
- 011 001 - 001 - 001

0T W RO
(SO \CRET N OGN N NN
1

4 EXPERIMENTAL RESULTS

The results of Procedures 1, 2 and 3 for benchmark circuits are presented in this section.

4.1 Procedures 1 and 2

Procedures 1 and 2 are applied to several circuits with N = 32 functional test sequences for every
value of I. The length of a functional test sequence is L = 1024. The sequences are generated by the
procedure described in [20]. These parameters are sufficient for achieving the highest or close to
the highest standard transition fault coverage achievable using functional broadside tests.

Multicycle functional broadside tests with 2, 3, ..., Iyax = 8 clock cycles are extracted. This
value of [yrax is sufficient for demonstrating the effects of considering unspecified transition faults.
Larger values may increase the fault coverage further for some circuits.

Three coverage metrics are computed for every test set T;". The percentage of faults with
str(f) = 1is denoted by ¢s;,(T}"). The percentage of faults with xtr(f) = 1 is denoted by @, (T}").
The percentage of faults with ssa(f) = 1 is denoted by ¢ss4(T}"). Because of the way fault detection
information is updated, we have that ¢s;(T]") < ¢xsr(T]') < ¢ssa(T]").

The results are shown in Tables 2 and 3 for the following test sets: (1) T,); (2) T, if at least one
of the three coverage metrics is increased; and (3) Tfmax where l;,qx < Imax is the largest value
of [for which at least one of the three coverage metrics is increased. The circuits are ordered by
increasing coverage metric for standard transition faults ¢ ,,(Tfmux) achieved by the final test set

T;max. A low coverage metric for standard transition faults is obtained for circuits with high levels
of redundancy.

For every test set, after the circuit name, column sv shows the number of state variables, and
column pi shows the number of primary inputs. Column targ shows how many fault types are
targeted, where 1 stands for standard transition faults, and 3 stands for all three fault types. Column
tests shows the number of tests in the test set. Column func shows the maximum and average
number of functional capture cycles in a test. Column cov shows the coverage metrics with respect
to standard transition faults, unspecified transition faults, and stuck-at faults. Column ntime
shows the cumulative runtime, divided by the runtime for computing T, . This is referred to as the
normalized runtime.

The following points can be seen from Tables 2 and 3. Comparing T; with T}, all three coverage
metrics typically do not increase, or increase to a small extent, by extracting additional two-cycle
tests and considering all three fault types.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 11, Article 11. Publication date:
November 2020.

11:10 Irith Pomeranz

Table 2. Results of Procedures 1 and 2 (¢str(T13) < 75%)

func cov
circuit sv pi | targ tests | max ave str xtr ssa | ntime
steppermotordrive | 25 3 1 23 2 2.00 | 27.646 27.646 56.085 | 1.00
steppermotordrive | 25 3 3 24 2 2.00 | 27.646 27.646 56.217 | 3.62
steppermotordrive | 25 3 3 19 5 2,63 |27.646 31.085 56.217 | 19.00
b05 34 2 1 63 2 200 |41.129 41.129 62.433 | 1.00
b05 34 2 3 44 8 443 |41.129 51.848 62.433 | 47.64
b07 51 2 1 43 2 2.00 | 55062 55114 78.822 | 1.00
b07 51 2 3 44 2 2.00 | 55.062 55114 78977 | 3.35
b07 51 2 3 33 8 4.00 | 55.062 68.337 78.977 | 38.80
b03 30 5 1 34 2 2.00 | 58464 58464 74.870 | 1.00
b03 30 5 3 37 2 200 | 58464 58464 75911 | 3.58
b03 30 5 3 35 5 3.00 | 58.464 65365 75.911 | 18.37
usb_phy 98 14| 1 104 2 2.00 | 58354 58354 75.186 | 1.00
usb_phy 98 14| 3 106 2 2.00 | 58.685 58.685 75434 | 3.24
usb_phy 98 14| 3 103 8 3.17 | 58.933 63.896 75.517 | 37.44
$526 21 3 1 70 2 200 |62.072 62.072 85.551 | 1.00
$526 21 3 3 72 2 200 |62.072 62.072 86.027 | 3.22
$526 21 3 3 69 8 3.17 | 62357 76.426 86.122 | 34.54
simple_spi 131 15| 1 145 2 20067461 67.461 85.079 | 1.00
simple_spi 131 15| 3 152 2 200 | 67984 67.984 85.576 | 3.06
simple_spi 131 15| 3 144 8 3.08 | 69.005 74.398 85.916 | 32.63
$5378 179 35| 1 188 2 200 | 72.059 72.125 78.442| 1.00
$5378 179 35| 3 190 2 200 | 72257 72323 78451 | 3.28
$5378 179 35| 3 172 8 2.63 (72455 73.947 78.536 | 38.66
b14 247 33| 1 424 2 2.00 | 73.568 73.597 82.066 | 1.00
b14 247 33| 3 445 2 200 | 74127 74139 82456 | 3.31
b14 247 33| 3 434 8 2.79 | 74540 80.861 82.712 | 25.04

Comparing Tfmux with T}, the coverage metric for standard transition faults, and the coverage
metric for single stuck-at faults, typically do not increase, or increase to a small extent, by extracting
multicycle tests and considering all three fault types. A significant increase typically occurs in
the coverage metric for unspecified transition faults. Since the other coverage metrics increase at
most slightly, the implication is that faults, which are detected only as single stuck-at faults by
two-cycle tests, are detected as unspecified transition faults when multicycle tests are extracted.
This is preferred since unspecified transition faults are closer to standard transition faults in that
they represent delay defects with different durations.

Considering the final functional broadside test set, the coverage metric for unspecified transition
faults is typically significantly higher than that of standard transition faults. In addition, the
coverage metric for single stuck-at faults is typically significantly higher than that of unspecified
transition faults. Thus, every additional fault type helps cover test holes left by the previous fault
types. When Procedure 3 is applied, the coverage metrics will be used for demonstrating the
presence of test holes that can be covered by considering unspecified transition faults and stuck-at
faults.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 11, Article 11. Publication date:
November 2020.

Covering Test Holes 11:11

Table 3. Results of Procedures 1 and 2 (gﬁstr(TlS) > 75%)

func cov
circuit sv. pi |targ tests | max ave str xtr ssa ntime
s382 213 1 40 2 200 | 76.047 76.047 95550 | 1.00
5382 21 3 3 41 2 2.00 | 76.047 76.047 95.942 2.90
5382 21 3 3 35 6 280 | 76.047 83.770 95942 | 17.87
b11 30 8 1 85 2 200 76339 76.339 89.617 | 1.00
b11 30 8 3 88 2 200 76339 76.339 89.781 | 3.15
b11 30 8 3 86 8 350 | 76.448 86.995 89.781 | 34.87
b09 28 2 1 36 2 200 76.106 76.106 91.888 | 1.00
b09 28 2 3 42 2 2.00| 76.844 76.844 92920 | 3.14
b09 28 2 3 36 8 292 | 76.844 85.103 92.920 | 32.24
b08 2110 1 60 2 200 | 81.872 82346 99.526 | 1.00
b08 21 10 3 61 2 200 | 81.872 82346 99.882 | 2.68
b08 21 10 3 60 8 3.82 | 81.872 97.512 100.000 | 21.53
51423 74 17 1 109 2 2.00| 80991 81413 93.359 | 1.00
s1423 74 17 3 119 2 2.00| 82818 83.169 94.940 | 2.86
s1423 74 17 3 120 8 346 | 83591 92375 95538 | 23.28
b04 66 12 1 92 2 2.00 | 84501 84501 92.557 | 1.00
b04 66 12 3 98 2 2.00 | 84501 84.764 92907 | 3.41
b04 66 12 3 93 7 2.67 | 84545 91.156 92907 | 29.69
sasc 117 15 1 116 2 2.00 | 84.465 84.465 98.858 | 1.00
sasc 117 15 3 120 2 200 | 85183 85183 99.151 | 2.48
sasc 117 15 3 144 8 329 | 86.488 93.799 99.347 | 19.01
i2c 128 17 1 177 2 2.00 | 81.748 81.748 94.033 1.00
i2c 128 17 3 192 2 2.00| 83986 83986 95291 | 2.51
i2c 128 17 3 179 8 375 86.597 90.769 96.573 | 18.96
spi 229 45 1 902 2 2.00 | 86.823 88.402 98.546 1.00
spi 229 45 3 996 2 2.00 | 89.154 90.809 99.056 | 2.97
spi 229 45 3 924 8 327 93.633 96.758 99.624 | 13.25
§953 29 16 1 138 2 2.00 | 93966 93.966 99.318 | 1.00
$953 29 16 3 136 2 2.00 | 94.281 94.281 99.370 2.16
s953 29 16 3 129 7 237 | 94334 99.370 99.370 | 11.06
systemcdes | 190 130 | 1 212 2200 | 99.660 99.660 99.975 | 1.00
systemcdes | 190 130 3 201 5 2.08 | 99.660 99.901 99.975 5.19
des_area 128 239 | 1 310 2 2.00 | 100.000 100.000 100.000 | 1.00

In many cases, the use of multicycle tests allows the number of tests to be lower for a more
comprehensive test set. It should be noted in this regard that not all the unspecified transition faults
and single stuck-at faults are detected, since this would have required additional tests, and the tests
would have been similar to the ones that detect standard transition faults. The goal for computing
the more comprehensive test set is only to cover the test holes created when standard transition
faults are not detected. Covering these test holes typically does not require a larger number of tests
when multicycle tests are used.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 11, Article 11. Publication date:
November 2020.

11:12 Irith Pomeranz

Table 4. Results of Procedure 3

func cov
circuit sV pi | seq tests | max ave str xtr ssa ntime
steppermotordrive | 25 3 2 12 8 7.92 | 27.646 31.085 56.217 1.82
b05 34 2 5 32 8 734 | 41.129 51.848 62433 | 3.51
b07 51 2 5 19 8 7.79 | 55.062 68.337 78.977 3.43
b03 30 5 3 20 8 790 | 58464 65365 75911 | 2.57
usb_phy 98 14 | 100 87 8 6.61| 58.850 63.896 75517 | 46.43
$526 21 3 120 50 8 580 | 62.072 76331 86.027 | 38.98
simple_spi 131 15 | 125 105 8 6,55 | 68482 73482 85.785 | 49.10
$5378 179 35 | 122 123 8 6.20 | 72.370 73.834 78.508 | 53.35
b14 247 33 | 125 342 8 573 | 74412 80.710 82.672 | 48.25
s382 21 3 |43 24 8 575 76.047 83.770 95942 | 15.12
b1l 30 8 | 120 64 8 648 | 76393 86.995 89.781 | 43.32
b09 28 2 | 61 37 8 6.68 | 76.844 85103 92.920 | 25.91
b08 21 10 | 23 48 8 744 | 81.872 97.512 100.000 | 7.04
s1423 74 17 (122 97 8 6.04 | 83.345 92.129 95.221 | 36.76
b04 66 12 | 72 51 8 7.24| 84545 91.156 92.907 | 30.89
i2c 128 17 | 127 153 8 585 85641 90.163 96.340 | 29.66
sasc 117 15 | 128 105 8 647 | 86.358 93.734 99.347 | 25.88
spi 229 45 | 128 708 8 518 | 91.695 95856 99.457 | 33.14
$953 29 16 | 72 74 8 6.39 | 94334 99370 99.370 4.17
systemcdes 190 130 | 3 57 8 7.82 | 99.660 99.901 99.975 | 1.55
des_area 128 239 | 2 68 8 7.99 | 100.000 100.000 100.000 | 1.25
$9234 228 19 | 121 73 8 6.14 | 15378 17.598 34.541 | 54.30
tv80 359 13 | 105 713 8 5.67 | 45.744 57.885 74.763 | 90.38
wb_dma 523 215|111 135 8 530 | 63.880 64.847 79.198 | 37.97
$38584 1452 12 | 45 755 8 551 65137 69.735 76.674 | 36.65
b15 447 36 | 128 791 8 552 | 69.814 82310 92.557 | 64.02
b22 709 33 | 16 722 8 521 | 74479 81.198 85276 | 8.82
systemcaes 670 258 | 106 242 8 6.51 | 79.977 88.358 96.072 | 13.95
b20 494 33 | 128 694 8 534 80.023 86.915 89.029 | 59.04
$35932 1728 35 | 5 45 8§ 7.80| 87.211 89.468 89.781 | 3.61
aes_core 530 258 | 4 238 8 734 99939 99.992 99.999 | 1.81

The normalized runtime is similar for circuits of different sizes, and does not increase with the
size of the circuit. This indicates that the procedure scales similar to the fault simulation procedure
that produces T,. With the parameters used, this procedure simulates 32,736 two-cycle tests.

4.2 Procedure 3

Procedure 3 is applied with M = 128 sequences of length L = 1024. It extracts multicycle tests with
I <lyax = 8.

The results of Procedure 3 are given in Table 4. The format is similar to Tables 2 and 3 with the
following differences. Column targ in Tables 2 and 3 is replaced with column seq in Table 4. This
column shows the number of functional test sequences used for extracting functional broadside

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 11, Article 11. Publication date:
November 2020.

Covering Test Holes 11:13

Table 5. c-Cycle Transition Faults

circuit 1 2 3 4 5 6 7 8

steppermotordrive | 27.646 29.894 29.894 31.085 31.085 31.085 31.085 31.085
b05 41.129 44.926 47.581 49.328 50.168 50.571 51.075 51.075
b07 55.062 58.471 63.895 64.979 67.355 67.924 68.079 68.079
b03 58.464 62.630 63.802 64.974 65.234 65.365 65.365 65.365
usb_phy 58.850 60.091 61.208 63.234 63.606 63.606 63.896 63.896
$526 62.072 72.053 73.099 73.954 74.240 75.190 76.331 76.331
simple_spi 68.482 70.628 71.597 72.749 73.063 73.325 73.455 73.455
s5378 72.370 72.805 73.003 73.390 73.437 73.768 73.768 73.768
b14 74.412 79.651 79.942 80.454 80.541 80.652 80.710 80.710
$382 76.047 80.890 81.283 82.723 83.115 83.246 83.770 83.770
b11 76.393 79.563 82.896 84.317 86.066 86.831 86.995 86.995
b09 76.844 80.826 81.563 82.743 83.481 84.218 85.103 85.103
b08 81.872 86.611 90.877 92.773 94.550 95.735 97.275 97.275
s1423 83.345 86.894 88.370 90.232 90.864 91.286 91.673 91.673
b04 84.545 85.858 88.310 89.405 90.061 90.630 90.893 90.893
i2c 85.641 87.599 88.042 88.741 89.091 89.627 90.140 90.140
sasc 86.358 89.785 91.384 92.722 93.179 93.505 93.734 93.734
spi 91.695 93.123 94.042 94.243 94.686 94.820 95.003 95.003
s953 94.334 97.587 98.269 98.636 98.793 99.161 99.370 99.370
systemcdes 99.660 99.801 99.867 99.901 99901 99.901 99.901 99.901
$9234 15.378 15.670 15925 15984 17.029 17.067 17.089 17.089
wb_dma 63.880 64.230 64.629 64.738 64.756 64.828 64.847 64.847
b15 69.814 73.695 76.042 77.274 78.610 81.109 82.138 82.138
systemcaes 79.977 82.694 83.824 84.924 87.651 87.938 88.355 88.355
b20 80.023 84.735 85.268 86.387 86.497 86.751 86.806 86.806
$35932 87.211 88.416 88.829 89.058 89.443 89.455 89.468 89.468
aes_core 99.939 99.962 99.970 99.990 99.991 99.991 99.992 99.992

tests. Only the final results are shown for every circuit. The circuits are arranged to match Tables 2
and 3.

For the circuits that appear in both tables, the number of tests in Table 4 is lower because of the
more extensive use of multicycle tests.

As in Tables 2 and 3, the coverage metric for unspecified transition faults is typically significantly
higher than that of standard transition faults, and the coverage metric for single stuck-at faults is
typically significantly higher than that of unspecified transition faults. Thus, every additional fault
type helps cover additional test holes.

The normalized runtime is similar for circuits of different sizes, and depends more strongly on
the number of sequences used for extracting functional broadside tests.

As discussed earlier, an unspecified transition fault is used instead of several transition faults
with different extra delays. These faults are referred to as c-cycle transition faults with ¢ > 1. It is
interesting to consider the fault coverages obtained when c-cycle transition faults are simulated
under the test sets produced by Procedure 3. The results of fault simulation are given in Table 5 for
several of the circuits from Table 4 using 1 < ¢ < 8. Table 5 demonstrates that the c-cycle transition

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 11, Article 11. Publication date:
November 2020.

11:14 Irith Pomeranz

fault coverage increases with c, and reaches a fault coverage that is close to the coverage metric of
unspecified transition faults from Table 4.

5 CONCLUDING REMARKS

This paper described a procedure for obtaining a functional broadside test set for transition faults
that is more comprehensive than a two-cycle test set for standard transition faults. To achieve
this goal, the procedure targets unspecified transition faults and single stuck-at faults that have
similar (but not identical) detection conditions to standard transition faults. These additional faults
are considered only when the standard transition faults cannot be detected. The goal is to address
the test holes created by undetected standard transition faults. The procedure extracts functional
broadside tests from functional test sequences. It uses multicycle tests to cover unspecified transition
faults and achieve test compaction. It considers the three fault models together to accommodate the
complexity of producing functional broadside tests. Experimental results for benchmark circuits
demonstrated the fault coverage improvements achieved by this approach. In many cases, the use
of multicycle tests allows test holes to be covered without increasing the number of tests.

REFERENCES

[1] A. Sreedhar, A. Sanyal and S. Kundu, "On Modeling and Testing of Lithography Related Open Faults in Nano-CMOS
Circuits”, in Proc. Design, Autom. and Test in Europe Conf., 2008, pp. 616-621.

[2] M.O. Simsir, A. Bhoj and N. K. Jha, "Fault Modeling for FinFET Circuits”, in Proc. Intl. Symp. on Nanoscale Architectures,
2010, pp. 41-46.

[3] J.Zha, X. Cui and C. L. Lee, "Modeling and Testing of Interference Faults in the Nano NAND Flash Memory”, in Proc.
Design, Automation & Test in Europe Conf., 2012, pp. 527-531.

[4] D.Xiang, Z. Chen and L.-T. Wang, "Scan Flip-Flop Grouping to Compress Test Data and Compact Test Responses for
Launch-on-Capture Delay Testing”, ACM Trans. on Design Automation, Vol. 17, No. 2, April 2012, Article No. 18.

[5] S.-Y.Huang, Y.-H. Lin, K.-H. Tsai, W.-T. Cheng, S. Sunter, Y.-F Chou and D.-M. Kwai, "Small Delay Testing for TSVs in
3-D ICs”, in Proc. Design Automation Conf., 2012, pp. 1031-1036.

[6] A. Mondal, P. P. Chakrabarti and P. Dasgupta, "Symbolic-Event-Propagation-Based Minimal Test Set Generation for
Robust Path Delay Faults”, ACM Trans. on Design Automation, Vol. 17 No. 4, Oct. 2012, Article No. 47.

[7] M. Sauer, A. Czutro, I. Polian and B. Becker, "Small-delay-fault ATPG with Waveform Accuracy”, in Proc. Intl. Conf. on
Computer-Aided Design, 2012, pp. 30-36.

[8] W. Zhao,]. Ma, M. Tehranipoor and S. Chakravarty, "Power-safe Application of TDF Patterns to Flip-chip Designs
during Wafer Test”, ACM Trans. on Design Automation, Vol. 18, No. 3, July 2013, Article No. 43.

[9] S.Di Carlo, G. Gambardella, P. Prinetto, D. Rolfo and P. Trotta, "SATTA: A Self-Adaptive Temperature-Based TDF
Awareness Methodology for Dynamically Reconfigurable FPGAs”, ACM Trans. on Reconfigurable Technology and
Systems, Vol. 8, No. 1, Feb. 2015, Article No. 1.

[10] Y. Zhang, Z. Peng,]. Jiang, H. Li and M. Fujita, "Temperature-aware Software-based Self-testing for Delay Faults”, in
Proc. Design, Automation & Test in Europe Conf., 2015, pp. 423-428.

[11] H. G. Mohammadi, P.-E. Gaillardon and G. De Micheli, "Fault Modeling in Controllable Polarity Silicon Nanowire
Circuits”, in Proc. Design, Automation & Test in Europe Conf., 2015, pp. 453-458.

[12] A.S. Trinadh, S. Potluri, S. B. Ch., V. Kamakoti and S. G. Singh, “Optimal Don’t Care Filling for Minimizing Peak
Toggles During At-Speed Stuck-At Testing”, ACM Trans. on Design Automation, Vol. 23, No. 1, Oct. 2017, Article No. 5.

[13] J. Rearick, "Too Much Delay Fault Coverage is a Bad Thing”, in Proc. Intl. Test Conf., 2001, pp. 624-633.

[14] J. Saxena, K. M. Butler, V. B. Jayaram, S. Kundu, N. V. Arvind, P. Sreeprakash and M. Hachinger, A Case Study of
IR-Drop in Structured At-Speed Testing”, in Proc. Intl. Test Conf., 2003, pp. 1098-1104.

[15] S.Sde-Paz and E. Salomon, “Frequency and Power Correlation between At-Speed Scan and Functional Tests”, in Proc.
Intl. Test Conf., 2008, Paper 13.3, pp. 1-9.

[16] I Pomeranz, "On the Generation of Scan-Based Test Sets with Reachable States for Testing under Functional Operation
Conditions”, in Proc. Design Autom. Conf., 2004, pp. 928-933.

[17] I Pomeranz and S. M. Reddy, "Generation of Functional Broadside Tests for Transition Faults”, IEEE Trans. on
Computer-Aided Design, Oct. 2006, pp. 2207-2218.

[18] M. Valka, A. Bosio, L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel, E. Sanchez, M. De Carvalho and M. Sonza
Reorda "A Functional Power Evaluation Flow for Defining Test Power Limits during At-Speed Delay Testing”, in Proc.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 11, Article 11. Publication date:
November 2020.

Covering Test Holes 11:15

IEEE European Test Symp., 2011, pp. 153-158.

[19] A. Touati, A. Bosio, L. Dilillo, P. Girard, A. Virazel, P. Bernardi and M. Sonza Reorda “Exploring the Impact of
Functional Test Programs Re-used for Power-aware Testing”, in Proc. Design, Automation & Test in Europe Conf., 2015,
pp. 1277-1280.

[20] I Pomeranz, "A Static Test Compaction Procedure for Large Pools of Multicycle Functional Broadside Tests”, IET
Computers & Digital Techniques, 2018.

[21] Y.-C.Lin, F. Lu, K. Yang and K.-T. Cheng, "Constraint Extraction for Pseudo-Functional Scan-Based Delay Testing”, in
Proc. Asia and South Pacific Design Autom. Conf., 2005, pp. 166-171.

[22] Z.Zhang, S. M. Reddy and I. Pomeranz, "On Generating Pseudo-Functional Delay Fault Tests for Scan Designs”, in
Proc. Intl. Symp. on Defect and Fault Tolerance in VLSI Systems, 2005, pp. 398-405.

[23] L Polian and F. Fujiwara, "Functional Constraints vs. Test Compression in Scan-Based Delay Testing”, in Proc. Design,
Autom. and Test in Europe Conf., 2006, pp. 1-6.

[24] I Pomeranz and S. M. Reddy, "Definition and Generation of Partially-Functional Broadside Tests”, IET Computers &
Digital Techniques, Jan. 2009, pp. 1-13.

[25] E.K.Moghaddam, J. Rajski, S. M. Reddy and M. Kassab, "At-Speed Scan Test with Low Switching Activity”, in Proc.
VLSI Test Symp., 2010, pp. 177-182.

[26] T.Zhang and D. M. H. Walker, "Power Supply Noise Control in Pseudo Functional Test”, in Proc. VLSI Test Symp.,
2013, pp. 1-6.

[27] I Pomeranz, "Piecewise-Functional Broadside Tests Based on Reachable States”, IEEE Trans. on Computers, Aug. 2015,
pp. 2415-2420.

[28] I Pomeranz, "A Bridging Fault Model for Line Coverage in the Presence of Undetected Transition Faults”, in Proc.
Design Autom. & Test in Europe Conf., 2017.

[29] I Pomeranz, "Covering Undetected Transition Fault Sites with Optimistic Unspecified Transition Faults under Multi-
cycle Tests”, in Proc. European Test Symp., 2018, pp. 1-2.

[30] I Pomeranz, “Iterative Test Generation for Gate-Exhaustive Faults to Cover the Sites of Undetectable Target Faults”, in
Proc. Intl. Test Conf., 2019, Paper 1.3, pp. 1-7.

[31] I Pomeranz and S. M. Reddy, “Unspecified Transition Faults: A Transition Fault Model for At-Speed Fault Simulation
and Test Generation”, IEEE Trans. on Computer-Aided Design, Jan. 2008, pp. 137-146.

[32] I Pomeranz, "Target Faults for Test Compaction based on Multicycle Tests”, ACM Trans. on Design Automation, 2020.

[33] K.-T. Cheng, "Transition Fault Testing for Sequential Circuits”, IEEE Trans. on Computer-Aided Design, Dec. 1993, pp.
1971-1983.

Received August 2020

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 11, Article 11. Publication date:
November 2020.

	Abstract
	1 Introduction
	2 Background
	2.1 Functional Broadside Tests
	2.2 Transition Faults
	2.3 Target Faults

	3 Test Generation Procedures
	3.1 Initial Functional Broadside Test Set
	3.2 Comprehensive Functional Broadside Test Set
	3.3 Compact Comprehensive Functional Broadside Test Set

	4 Experimental Results
	4.1 Procedures 1 and 2
	4.2 Procedure 3

	5 Concluding Remarks
	References

