Equivalent Faults under Launch-on-Shift (LOS) Tests with
Equal Primary Input Vectors

IRITH POMERANZ, Purdue University

A recent work showed that it is possible to transform a single-cycle test for stuck-at faults into a launch-
on-shift (LOS) test that is guaranteed to detect the same stuck-at faults without any logic or fault simulation.
The LOS test also detects transition faults. This was used for obtaining a compact LOS test set that detects
both types of faults. In the scenario where LOS tests are used for both stuck-at and transition faults, this
paper observes that, under certain conditions, the detection of a stuck-at fault guarantees the detection of a
corresponding transition fault. This implies that the two faults are equivalent under LOS tests. Equivalence can
be used for reducing the set of target faults for test generation and test compaction. The paper develops this
notion of equivalence under LOS tests with equal primary input vectors, and provides an efficient procedure
for identifying it. It presents experimental results to demonstrate that such equivalences exist in benchmark
circuits, and shows an unexpected effect on a test compaction procedure.

CCS Concepts: «+Hardware —Test-pattern generation and fault simulation;

Additional Key Words and Phrases: Equivalent faults, launch-on-shift tests, test compaction, test generation,
transition faults.

ACM Reference format:

Irith Pomeranz. 2020. Equivalent Faults under Launch-on-Shift (LOS) Tests with Equal Primary Input Vectors.
ACM Trans. Des. Autom. Electron. Syst. 11, 11, Article 11 (November 2020), ?? pages.

DOI: 0000001.0000001

1 INTRODUCTION

Test generation procedures produce different types of tests, and target different fault models. This
is needed since defects exhibit different behaviors, and may be modeled by different faults, and
detected by different types of tests [1]-[11]. For example, cell-aware faults consist of both static
and dynamic (or delay) faults [8]-[10]. Single-cycle tests may be generated for static faults, and
two-cycle launch-on-capture (LOC) or launch-on-shift (LOS) tests may be generated for dynamic
faults. LOS tests were defined in [12], and LOC tests were defined in [13]. Considering transition
faults, more faults are typically detectable by LOS than LOC tests, and fewer LOS tests are typically
required for achieving the same fault coverage [12]-[13]. In a compact test set that consists of both
test types, more LOS than LOC tests are typically included to achieve a higher fault coverage using
fewer tests [6]. The requirement of a LOS test for a scan enable input that changes at-speed was
addressed in [14]-[15].

Author’s address: Irith Pomeranz, School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN
47907, US.A. E-mail: pomeranz@ecn.purdue.edu.

This work was supported in part by NSF grant CCF-1714147.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 ACM. 1084-4309/2020/11-ART11 $15.00

DOI: 0000001.0000001

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 11, Article 11. Publication date:
November 2020.

11:2 Irith Pomeranz

A recent work showed that a single-cycle test for static faults can be transformed into a LOS
test that is guaranteed to detect the same static faults [16]. This is achieved without any logic or
fault simulation. The LOS test also detects delay faults, while the single-cycle test detects only
static faults. The importance of delay faults results from the frequent occurrence of delay defects
in state-of-the-art technologies. Delay defects are modeled by delay faults, and tested by tests for
delay faults [17]-[28].

The transformation of single-cycle tests into LOS tests was used in [16] for obtaining a compact
LOS test set that detects both static and dynamic faults (single stuck-at faults and transition faults
were considered in [16]). The test compaction procedure from [16] starts from a compact LOS test
set for transition faults, and a compact single-cycle test set for stuck-at faults that are not detected
by the transition fault test set. It is able to achieve additional test compaction by eliminating
single-cycle tests, and using only LOS tests to detect both types of faults. The advantage of using
the same tests to detect several types of faults was also noted in [1], [2], [3] and [11].

This paper considers the scenario where LOS tests are used for both stuck-at and transition faults
(or in general, for both static and delay faults) in order to support test compaction beyond that
possible if both single-cycle and LOS tests are used. Throughout the discussion, only LOS tests
with equal primary input vectors are considered. The paper observes that, under this scenario, and
if certain conditions are satisfied, the detection of a stuck-at fault guarantees the detection of a
corresponding transition fault. The fact that a LOS test that detects a transition fault also detects
a corresponding stuck-at fault is known. When the reverse is true, the two faults are equivalent
under LOS tests. Equivalence can be used for reducing the set of faults targeted for test generation
and test compaction. This is similar to fault collapsing [29], but with the difference that it considers
faults from different models, and under a specific test type (LOS tests). It should be noted in this
regard that fault collapsing for single stuck-at faults reduces the number of faults significantly, but
only limited fault collapsing is possible for transition faults. Specifically, for an n-input gate, the
number of single stuck-at faults after fault collapsing is n + 2 instead of 2(n + 1), but no similar
reduction is possible for transition faults.

The paper defines the notion of equivalence between corresponding stuck-at and transition
faults under LOS tests with equal primary input vectors, and describes an efficient procedure for
identifying it. It also presents two types of experimental results to demonstrate that equivalences
between corresponding stuck-at and transition faults under LOS tests exist in benchmark circuits.
The first experiment uses exhaustive test sets to achieve completeness in the sense that it identifies
all the pairs of equivalent faults. The circuits for this experiment are small finite-state machine
benchmarks. The second experiment considers larger benchmark circuits for which exhaustive
test sets are prohibitive. For these circuits, an efficient procedure is used for identifying a subset of
all the equivalences between corresponding stuck-at and transition faults. The paper also shows
an unexpected effect on the test compaction procedure from [16] when equivalences are used for
reducing the set of target faults.

Throughout the discussion, if two faults are determined to be equivalent, the determination is
accurate in the sense that the faults are guaranteed to be detected by the same tests considering
LOS tests with equal primary input vectors. Experimental results for benchmark circuits show that
the percentage of equivalences found varies with the circuit. The effect on the test compaction
procedure from [16] is visible when the percentage of equivalences is larger than 5%. Finally, the
resulting LOS test set can be complemented by LOC tests to increase the fault coverage.

The paper is organized as follows. Section 2 reviews the transformation of a single-cycle test
into a LOS test. Section 3 provides the conditions under which a stuck-at fault and a corresponding
transition fault are equivalent. Section 4 presents experimental results to demonstrate the existence

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 11, Article 11. Publication date:
November 2020.

Equivalent Faults 11:3

Vi,o ¢Vi,1

Si0 .
— " pl shift = —% ! func |—»

¢ ¢

Fig. 1. LOS test

of equivalences between corresponding faults in benchmark circuits. Section 5 describes an efficient
procedure for identifying equivalences, and presents experimental results of this procedure. Section
6 discusses an unexpected effect of equivalences on the test compaction procedure from [16].

2 TEST TRANSFORMATION

This section reviews the transformation of a single-cycle test into a LOS test.

A single-cycle test (p;, u;) consists of a scan-in state p; and a primary input vector u;. After p; is
scanned in, the circuit is clocked in functional mode with u; applied to the primary inputs. The
primary output vector is observed, and the next-state is latched in the flip-flops. The state is then
scanned out.

An LOS test (s, vi,0; Si,1, Vi,1) is illustrated by Figure 1. The test has two clock cycles between a
scan-in and a scan-out operation. In the first clock cycle after the scan-in operation, the circuit
is in state s; o and the primary input vector v; ¢ is applied. The circuit is brought to state s; ¢ by
a scan-in operation, and the first clock cycle is applied in scan shift mode. In the second clock
cycle the circuit is in state s; ; and the primary input vector v; ; is applied. The circuit is clocked
in functional mode. The primary output vector is observed, and the next-state is latched in the
flip-flops. The state is then scanned out.

The state s; ; is obtained by a single shift of the state s; o. This requires a scan-in vector to be
specified for the first clock cycle of the test. The scan-in vector appears in s; 1, and it is not specified
separately. For example, considering a circuit with five state variables in a single scan chain that is
shifted to the right, the states s; o = 00111 and s; ; = 10011 imply that the scan-in vector 1 is used.

An important property of a LOS test for faults in the combinational logic is the following. Even
if a fault is activated in the first clock cycle of the test, and propagated to the next-state variables,
the first clock cycle does not latch the values coming from the combinational logic. Therefore, the
fault effects are not propagated to the second clock cycle. Consequently, the circuit is guaranteed
to be in state s; ; during the second clock cycle even in the presence of faults.

Based on this discussion, suppose that a single-cycle test (p;, u;) is embedded in the second cycle
of a LOS test to create a test of the form (s; o, vi 0; pi, 4i). In this test, s; ¢ is selected such that p; is
obtained after a single shift of the scan chains. For consistency with current practices, let v; o = u;.
In this case, the LOS test is guaranteed to detect every single stuck-at fault that the single-cycle test
detects. In addition, the LOS test detects transition faults that are not detected by the single-cycle
test.

For example, considering the same circuit as before, let the single-cycle test be (10011, 000). The
corresponding LOS test is either (00111, 000; 10011, 000) or (00110, 000; 10011, 000). The first option
is illustrated by Figure 2.

For ease of discussion, all the circuits considered in this paper are assumed to have a single scan
chain that is shifted to the right as in the example above.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 11, Article 11. Publication date:
November 2020.

11:4 Irith Pomeranz

000 000
' '

00111 10011

——» shift —» —» func |—=

¢ ¢

Fig. 2. Transformed LOS test

3 EQUIVALENCE UNDER LOS TESTS

This section defines equivalence between stuck-at and transition faults under LOS tests. Although
equivalence can exist between any two faults, the paper focuses on equivalence between corre-
sponding stuck-at and transition faults as discussed next. This limits the number of fault pairs that
need to be considered, and simplifies the procedure for identifying equivalences.

The stuck-at fault where line g is stuck-at the value a is denoted by g/a. The transition fault that
delays the a — a’ transition on line g is denoted by g/a — a’. The faults g/a and g/a — a’ are
referred to as corresponding since a test that detects g/a — a’ is guaranteed to detect the fault g/a.
This is a known relationship, and it can be explained as follows.

Let (si,0, vi,0; $i,1, Vi,1) be a two-cycle test that detects the transition fault g/a — a’. This implies
that the test assigns g = a in the first clock cycle and g = a’ in the second clock cycle. This creates
the fault effect g = a’/a in the second clock cycle. The fault effect is propagated to an observable
output in the second clock cycle for the fault to be detected.

With g = a in the first clock cycle, the test does not activate the stuck-at fault g/a. It activates
the fault in the second clock cycle by assigning g = a’. In the presence of the stuck-at fault this
creates the fault effect g = a’/a. As in the case of the transition fault, the fault effect is propagated
to an observable output in the second clock cycle, and the fault is detected.

The goal of this paper is to identify cases where every LOS test that detects the stuck-at fault
g/a also detects the corresponding transition fault g/a — a’. When this occurs, the two faults are
said to be equivalent. Equivalence in this case has the following implications.

(1) It only applies to LOS tests with equal primary input vectors. The faults are not equivalent if
single-cycle tests are used for stuck-at faults, if LOC tests are considered, or if the primary input
vectors of a LOS test are allowed to be different. The latter assumption can be removed by allowing
v;,0 # U; to be selected during the transformation of a single-cycle test into a LOS test.

(2) Although the output values that the faults produce are not considered explicitly, the output
values in the second clock cycle of a LOS test are equal when the faults are equivalent.

The conditions under which every LOS test that detects the stuck-at fault g/a also detects the
corresponding transition fault g/a — a’ are discussed next.

Let (p;, u;) be an arbitrary single-cycle test that detects the fault g/a. When the test is transformed
into a LOS test, one of two tests are obtained, <3?,0’ u;; pi, Ui), where the last bit of the scan-in state
is 0, or (sl1 0 Uis Di» u;), where the last bit of the scan-in state is 1. Suppose that in both cases, g = a
is obtained in the first cycle of the test. Moreover, suppose that this applies to every single-cycle
test (p;, u;) that detects g/a. In this case, every LOS test for g/a also detects g/a — da’, establishing
the equivalence between the faults.

A direct application of this condition is considered in Section 4. An efficient procedure for
identifying equivalences is described in Section 5.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 11, Article 11. Publication date:
November 2020.

Equivalent Faults 11:5

Table 1. Equivalences based on an Exhaustive Test Set

circuit pi sv | pairs | equiv %equiv
lion 2 2| 44 0 0.00
dk15 3 2| 185 2 1.08
train4 2 2 47 1 2.13
tav 4 2 58 2 3.45
lion9 2 3] 76 3 3.95
modulo12 | 1 4 | 98 4 4.08
train11 2 4] 127 6 4.72
bbtas 2 3] 83 4 4.82
mc 3 2 103 9 8.74
bbara 4 4| 160 15 9.38
beecount | 3 3 | 126 12 9.52
ex3 2 4| 228 25 10.96
dk17 2 3 188 22 11.70
s8 3 3| 76 9 11.84
shiftreg 1 3] 41 5 12.20
dk14 3 3| 267 34 12.73
ex2 2 5| 476 70 14.71
ex6 5 3| 343 52 15.16
donfile 2 5| 420 68 16.19
ex7 2 4| 218 36 16.51
ex5 2 3| 217 37 17.05
opus 5 4] 279 49 17.56
dk512 1 4 185 35 18.92
bbsse 7 4| 319 62 19.44
sse 7 4] 319 62 19.44
sla 8 5 | 881 177 20.09
dk16 2 5| 856 182 21.26
dk27 1 3] 9% 20 21.28
firstex 2 4] 9 21 23.33
keyb 7 5| 631 149 23.61
ex4 5 4| 271 68 25.09
mark1 4 4 | 277 77 27.80
cse 7 4 | 537 154 28.68
dvram 8 6| 754 | 236 31.30
fetch 9 5| 567 179 31.57
rie 9 5 | 968 335 34.61
log 9 5| 500 188 37.60
nucpwr 13 5| 745 | 295 39.60

4 EXISTENCE OF EQUIVALENCES

This section describes a complete experiment that is meant to demonstrate the existence of equiv-
alences in benchmark circuits for which exhaustive test sets can be derived. Completeness here
implies that all the equivalences are found. A similar experiment finds potentially-equivalent faults

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 11, Article 11. Publication date:
November 2020.

11:6

Table 2. Potential-Equivalences based on a Fault Detection Test Set

circuit pi sv | pairs | p.equiv %p.equiv
5208 11 8 324 87 26.85
5298 3 14 450 136 30.22
s344 9 15 608 134 22.04
$382 3 21 605 105 17.36
5420 19 16 669 169 25.26
§526 3 21 838 207 24.70
5641 35 19 939 102 10.86
$820 18 5 926 299 32.29
$953 16 29 1261 480 38.07
51196 14 18 553 23 4.16
51423 17 74 | 2366 253 10.69
s5378 35 179 | 8429 1211 14.37
59234 19 228 | 14868 2247 15.11
$13207 31 669 | 23465 | 4039 17.21
$15850 14 597 | 28157 3159 11.22
$35932 35 1728 | 52814 | 1474 2.79
$38417 28 1636 | 74251 | 4314 5.81
$38584 12 1452 | 60908 | 8356 13.72
b03 5 30 682 94 13.78
b04 12 66 | 1843 91 4.94
b05 2 34 | 2774 291 10.49
b07 2 51 1778 242 13.61
bo8 10 21 714 144 20.17
b09 2 28 614 45 7.33
b10 12 17 728 92 12.64
b1l 8 30 | 1708 298 17.45
b14 33 247 | 15126 1894 12.52
b15 36 447 | 33147 | 7177 21.65
b20 33 494 | 34372 | 4191 12.19
aes_core 258 530 | 89744 | 17061 19.01
des_area 239 128 | 7678 634 8.26
i2c 17 128 | 3457 467 13.51
pci_spoci_ctrl 23 60 | 2520 776 30.79
sasc 15 117 | 2861 334 11.67
simple_spi 15 131 | 3384 431 12.74
spi 45 229 | 10830 | 1595 14.73
steppermotordrive | 3 25 708 85 12.01
systemcaes 258 670 | 37914 | 3899 10.28
systemcdes 130 190 | 11626 | 1107 9.52
usb_phy 14 98 | 2234 263 11.77
tv80 13 359 | 27159 | 5673 20.89
wb_dma 215 523 | 13649 | 1973 14.46
average 1801 15.69

Irith Pomeranz

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 11, Article 11. Publication date:

November 2020.

Equivalent Faults 11:7

in larger circuits for which exhaustive test sets are prohibitive. Potentially-equivalent faults are
used only for comparison with the accurate results in Section 5.

4.1 Equivalent Faults

For the first experiment in this section, Tgx g is the exhaustive set of all the LOS tests. With S states
and V primary input vectors, the number of LOS tests in Tgxp is 2-S - V.

The experiment considers every pair of corresponding stuck-at and transition faults g/a and
g/a — a’. The faults are simulated under all the tests in Tgx . Fault simulation yields values of two
fault detection flags for every test t; € Tgxp, The flags are denoted by d;(g/a) and d;(g/a — a’).
We have that d;(g/a) = 1if t; detects g/a, and d;(g/a) = 0 otherwise. Similarly, d;(g/a — a’) = 1 if
t; detects g/a — a’, and d;(g/a — a’) = 0 otherwise. The procedure stops as soon as it finds a test
t; for which d;(g/a) # di(g/a — a’). If this does not occur for any test, the faults are detected by
the same tests. Therefore, they are equivalent.

The results of this experiment for finite-state machine benchmarks are shown in Table 1. After
the circuit name, column pi shows the number of primary inputs. Column sv shows the number of
state variables. Column pairs shows the number of fault pairs where each pair contains a single
stuck-at fault and the corresponding transition fault. Fault collapsing is not used in order to ensure
that all the pairs of corresponding faults can be considered. Only pairs where both faults are
detectable are counted.

Column equiv shows the number of equivalent pairs found. Column %equiv shows the percentage
of equivalent pairs out of the total number of fault pairs.

From Table 1 it can be seen that the percentage of equivalent pairs of corresponding stuck-at and
transition faults varies significantly with the circuit. In many circuits the percentage of equivalent
fault pairs is high.

4.2 Potentially-Equivalent Faults

Suppose that Tgx g is replaced with a non-exhaustive fault detection LOS test set Tpgr for stuck-at
and transition faults. Such a test set is available from [16]. The test set Tpgr from [16] consists of a
compact single-cycle test set for single stuck-at faults, which is transformed into a LOS test set,
and a compact LOS test set for transition faults. Using Tpgr, the experiment from Section 4.1 is
repeated. In this case, the following results are obtained.

If di(g/a) # di(g/a — a’) is obtained for any test t; € Tpgr, the faults g/a and g/a — a’ are not
equivalent.

If di(g/a) = di(g/a — a’) is obtained for every test t; € Tpgr, it is possible that the faults g/a
and g/a — a’ are equivalent if no test ¢; exists outside of Tpgr for which dj(g/a) # dj(g/a — a’).
Since it is not known whether such a test exists, the faults are referred to as potentially-equivalent.
The number of potentially-equivalent fault pairs is an upper bound on the number of equivalent
fault pairs.

This experiment is applicable to larger benchmark circuits for which an exhaustive test set is
prohibitive. It is important since it yields an upper bound on the number of equivalent fault pairs
that may be found by accurate analysis. The results for larger benchmark circuits are shown in
Table 2.

Table 2 shows significant percentages of potentially-equivalent fault pairs, similar to the per-
centages of equivalent fault pairs in Table 1.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 11, Article 11. Publication date:
November 2020.

11:8 Irith Pomeranz

find a single-cycle test cube < p;, u; >
with input necessary assignments for g/a

transform < p;, u; > into a LOS
test cube < s; o, u;; p;, u; >

find the implications of the single-cycle
test cube < s, 9, u; >

if < s;0, u; > implies g = a,
the faults are equivalent

Fig. 3. Overall description of the procedure

5 EFFICIENT IDENTIFICATION PROCEDURE

This section describes an efficient procedure for identifying equivalences between stuck-at faults
and the corresponding transition faults under LOS tests with equal primary input vectors. The
overall flow of the procedure is described first followed by its details and experimental results.

5.1 Overall Description

The procedure considers a pair of corresponding stuck-at and transition faults, g/a and g/a — a’.
The steps of the procedure are illustrated by Figure 3.

The procedure first finds input necessary assignments for g/a. These are values that must be
assigned to present-state variables and primary inputs under a single-cycle test to ensure that g/a
is detected. The input necessary assignments are included in a single-cycle test cube (p;, u;).

The single-cycle test cube is transformed into a LOS test cube (s; ¢, u;; pi, u;), where p; is obtained
by a single shift of s; . This LOS test cube represents the input necessary assignments for the
detection of g/a by a LOS test with equal primary input vectors.

The first cycle of the LOS test cube yields a single-cycle test cube (s; ¢, u;). The implications of
the specified input values in this test cube are computed. Suppose that the implications include the
assignment g = a. In this case, a LOS test for g/a is guaranteed to assign g = a in the first clock
cycle. This is the only additional requirement for the detection of g/a — a’ on top of the detection
of g/a. Therefore, a LOS test for the stuck-at fault g/a is guaranteed to detect the transition fault
g/a — a’. Since the reverse is always true, the two faults are equivalent.

For illustration, the next example considers benchmark circuit b01. The circuit has five state
variables and three primary inputs. The faults for which equivalence is checked are the stuck-at
fault ¢25/0 and the corresponding transition fault g,5/0 — 1. The input necessary assignments
for g25/0 are included in the single-cycle test cube (x010x,xx1). The single-cycle test cube is
transformed into the LOS test cube (010xx, xx1; x010x, xx1). This is shown in Figure 4. Computing
the implications of the single-cycle test cube (010xx,xx1), it turns out that gos = 0 is one of

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 11, Article 11. Publication date:
November 2020.

Equivalent Faults 11:9

¢xx1 ¢xx1

010xx | shift x010x | func
g5 =0 g2 =1/0

¢ ¢

Fig. 4. Example of transformed LOS test cube

the implications. Therefore, a LOS test for g,5/0, which must be covered by the LOS test cube
(010xx, xx1; x010x, xx1), also detects the corresponding transition fault g,5/0 — 1.

5.2 Input Necessary Assignments

To compute input necessary assignments for a stuck-at fault g/a, the procedure described in
this section initializes a single-cycle test cube (p;,u;) to the all-x cube. For every input b of the
combinational logic (present-state variable or primary input), the procedure checks whether b = 0
or b = 1 prevents the fault g/a from being detected when it is added to {(p;, u;). In general, if b = 0
(b = 1) prevents the fault from being detected when it is added to (p;, u;), the assignment b = 1
(b = 0) is necessary, and it is added to (p;, ;). The details are discussed next.

For every possible input assignment b = f8, where f = 0 or 1, the procedure needs to check
whether the partially-specified single-cycle test cube (p;, u;) allows the fault g/a to be detected
after the assignment b = f§ is added to it. To perform the check, the procedure first performs the
implications of p; and u;, including b = f. If the implications result in g = a, the fault g/a cannot
be detected. Otherwise, the procedure performs the implications of g = a in the faulty circuit. It
then looks for a path through which fault effects can be propagated from g to an output of the
combinational logic. This requires the circuit to be traced from the outputs toward g using lines
with values other than 0/0 and 1/1. If no such path exists, the fault cannot be detected. Otherwise,
the fault can potentially be detected.

For an input b of the combinational logic, the procedure performs the following computations.

It adds the assignment b = 0 to (p;, u;) temporarily, and checks whether g/a can be detected. It
assigns dy = 1 if the fault can be detected, and dy = 0 otherwise.

Independently, the procedure adds the assignment b = 1 to (p;, u;) temporarily, and checks
whether g/a can be detected. It assigns d; = 1 if the fault can be detected, and d; = 0 otherwise.

Based on dj and dj, the procedure makes one of the following decisions.

(1) If dy = 0 and d; = 0, the fault g/a is undetectable. Such faults are not considered in this paper.

(2)Ifdy = 1 and d; = 0, the assignment b = 0 is necessary for the detection of g/a. The procedure
adds the assignment b = 0 to (p;, u;) permanently.

(3) Similarly, if dy = 0 and d; = 1, the assignment b = 1 is necessary for the detection of g/a. The
procedure adds the assignment b = 1 to (p;, u;) permanently.

(4)Ifdy = 1 and d; = 1, both assignments to b are possible, and no input necessary assignment
is added to (p;, u;).

The procedure considers all the inputs of the combinational logic repeatedly as long as it finds
additional input necessary assignments. This ensures that the results are independent of the order
of the inputs. Specifically, the first input necessary assignment is found with the all-x cube. This
assignment (and others that can be found with the all-x-cube) will be found independent of the
order. Once these assignments are found, there are additional assignments that can be found. This

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 11, Article 11. Publication date:
November 2020.

11:10 Irith Pomeranz

is also independent of the order. After a sufficient number of passes over the inputs, all the possible
assignments will be found.

To speed up this process, the procedure uses the following observations.

(1) Not all the inputs of the combinational logic affect the detection of a fault. To find the inputs
that do, the procedure finds the output cone of g by tracing the circuit from g to the outputs. It
then traces the circuit from all the outputs that are driven by g to the inputs. This yields the input
cone of g. Only inputs of the combinational logic that are in the input cone of g are considered
during the computation of input necessary assignments for g/a.

(2) The implications of (p;, u;) are kept up-to-date. When a new temporary assignment needs to
be checked, only new implications are computed, and then canceled. The implications are updated
when a new assignment becomes permanent.

Further improvements in efficiency can be obtained by keeping a list of changes that occur when
a new assignment is added temporarily, and using the list to cancel the assignment or make it
permanent. This would avoid the need to copy the values of all the circuit lines every time an
assignment is considered.

5.3 Computational Complexity

To analyze the worst-case computational complexity for a pair of faults g/a and g/a — a’, suppose
that the input cone of g/a has B inputs and L lines. To find input necessary assignments for g/a,
the procedure considers O(B) inputs in every one of O(B) iterations. The worst-case for the number
of iterations occurs if a single additional input necessary assignment is obtained in every iteration.
Overall, the procedure evaluates O(B?) input necessary assignments.

To evaluate an input necessary assignment b = f3, the procedure performs implications for b = .
In addition, it performs implications for g = a in the faulty circuit. Finally, it traces the circuit to
check whether g/a has a propagation path. In the worst case, this requires O(L) operations.

The total is O(B%L) operations. In effect, a small number of iterations is typically required
before no additional input necessary assignments can be found. In addition, fewer than L lines are
considered for implications and propagation paths.

5.4 Experimental Results

The results of the efficient procedure for identifying equivalent pairs of corresponding stuck-at and
transition faults are given in Table 3.

Table 3 is organized similar to Table 1. After the circuit name, column pi shows the number of
primary inputs. Column sv shows the number of state variables. Column pairs shows the number
of fault pairs where each pair contains a single stuck-at fault and the corresponding transition fault.
Column equiv shows the number of equivalent pairs found. Column %equiv shows the percentage
of equivalent pairs out of the total number of fault pairs.

Column cone shows the average number of inputs in the input cone for a pair of equivalent
faults (the input cone for the pair is defined based on the stuck-at fault). Column rtime shows the
average runtime for a pair of equivalent faults. The runtime is measured in seconds on a Linux
machine with a 3GHz processor. Dashes are entered in the last two columns when the circuit does
not have any pairs of equivalent faults.

The following points can be seen from Table 3. Not all the potentially-equivalent fault pairs from
Table 2 are proved to be equivalent. Considering the averages in Tables 2 and 3, an average of 1801
potentially-equivalent fault pairs are found in Table 2. This is an upper bound on the number of
truly equivalent fault pairs. An average of 588 equivalent fault pairs are found in Table 3. These

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 11, Article 11. Publication date:
November 2020.

Equivalent Faults 11:11

Table 3. Efficient Identification of Equivalences

circuit pi SV | pairs | equiv %equiv | cone rtime
5208 11 8 324 66 20.37 | 12.65 0.000
s298 3 14 450 116 25.78 7.68 0.000
s344 9 15 608 54 8.88 9.85 0.000
$382 3 21 605 76 12.56 9.07 0.000
5420 19 16 669 138 20.63 | 21.53 0.000
§526 3 21 838 185 22.08 | 10.21 0.000
5641 35 19 939 30 3.19 19.73 0.000
s820 18 5 926 287 30.99 | 13.45 0.000
$953 16 29 1261 427 33.86 15.76 0.000
s1196 14 18 553 2 0.36 26.50 0.005
51423 17 74 | 2366 | 115 4.86 49.98 0.002
$5378 35 179 | 8429 | 977 11.59 | 34.84 0.006
§9234 19 228 | 14868 | 1341 9.02 63.43 0.028
s13207 31 669 | 23465 | 3018 12.86 | 114.32 0.153
$15850 14 597 | 28157 | 2230 7.92 151.32 0.385
$35932 35 1728 | 52814 0 0.00 - -
s38417 28 1636 | 74251 | 1680 2.26 2545 0.111
$38584 12 1452 | 60908 | 6291 10.33 | 35.82 0.176
b03 5 30 682 19 2.79 17.89 0.000
b04 12 66 | 1843 4 0.22 22.50 0.000
b05 2 34 | 2774 12 0.43 23.67 0.002
b07 2 51 1778 28 1.57 26.04 0.002
b08 10 21 714 46 6.44 16.37 0.001
b09 2 28 614 6 0.98 22.00 0.000
b10 12 17 728 20 2.75 13.45 0.000
b1l 8 30 | 1708 16 0.94 14.00 0.001
b14 33 247 | 15126 | 12 0.08 | 150.67 0.244
b15 36 447 | 33147 | 16 0.05 | 367.88 2.118
b20 33 494 | 34372 13 0.04 258.31 1.001
aes_core 258 530 | 89744 | 300 0.33 35,51 0.153
des_area 239 128 | 7678 0 0.00 - -
i2c 17 128 | 3457 195 5.64 21.29 0.003
pci_spoci_ctrl 23 60 | 2520 | 540 21.43 | 38.30 0.004
sasc 15 117 | 2861 27 0.94 6.85 0.001
simple_spi 15 131 | 3384 | 198 5.85 17.93 0.002
spi 45 229 | 10830 | 120 1.11 89.81 0.051
steppermotordrive | 3 25 708 39 5.51 19.46 0.001
systemcaes 258 670 | 37914 | 2170 5.72 156.96 0.268
systemcdes 130 190 | 11626 | 11 0.09 | 109.82 0.070
tv80 13 359 | 27159 | 2985 10.99 | 155.65 0.205
usb_phy 14 98 | 2234 | 116 5.19 9.24 0.001
wb_dma 215 523 | 13649 | 760 5.57 38.39 0.028
average 588 7.67

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 11, Article 11. Publication date:
November 2020.

11:12 Irith Pomeranz

pairs are truly equivalent. Overall, the procedure finds significant numbers of equivalent pairs
consisting of stuck-at and corresponding transition faults.

The average number of cone inputs that the procedure needs to consider is significantly lower
than the number of inputs to the combinational logic. This limits its runtime.

5.5 Fault Collapsing

The procedure for identifying equivalences was described for pairs of corresponding stuck-at and
transition faults assuming no fault collapsing for single stuck-at faults. However, it can also be
applied if fault collapsing is used for stuck-at faults. Stuck-at fault collapsing can also be used for
speeding up the procedure as discussed next.

For a transition fault g/a — a’, the corresponding stuck-at fault is g/a. Suppose that g/a does
not exist in the set of target faults because it was removed by fault collapsing. In this case, the set
of target faults contains a stuck-at fault that is equivalent to g/a. Let the fault §/a be the stuck-at
fault in the set of target faults that is equivalent to g/a. The fault §/d can be found during or after
fault collapsing, and associated with g/a — a’.

The procedure for finding equivalences is applied only to the stuck-at faults in the set of target
faults. When a fault h/c is considered, the procedure finds a single-cycle test cube followed by a LOS
test cube of input necessary assignments, {s; o, 4;; p;, t;). The procedure performs logic simulation
of the single-cycle test cube (s; o, u;). For every fault g/a — a’ whose associated stuck-at fault is
g/a = hjc, the procedure checks whether g = a is an implication of (s; o, #;). If this is the case,
g/a — a’ and h/c are equivalent.

6 TEST COMPACTION

This section discusses the effects of the equivalences between corresponding stuck-at and transition
faults on a test compaction procedure. The test compaction procedure is the one from [16]. This is
the only available test compaction procedure that generates LOS tests for stuck-at and transition
faults. The procedure accepts a compact single-cycle test set for stuck-at faults, and a compact LOS
test set for transition faults. It transforms single-cycle tests into LOS tests, combines the two test
sets, and then achieves further test compaction by reordering the test set, modifying tests, and
removing tests that become unnecessary. The procedure requires extensive fault simulation to
compact a test set made up of two subsets that are already compact.

The test compaction procedure from [16] uses a collapsed set of single stuck-at faults, and the
set of all the transition faults (only limited fault collapsing is possible for transition faults, and its
effects are negligible). The baseline for comparison is the procedure when it is run with these sets
of target faults. To check the effects of the equivalences suggested in this paper, the procedure
from Section 5.5 is used for associating transition faults with stuck-at faults, and finding equivalent
faults. A transition fault found to have an equivalent stuck-at fault is removed from the set of target
faults.

The expected effect of removing equivalent transition faults from the set of target faults is to
speed up the fault simulations that the test compaction procedure performs. An unexpected effect
that occurs is that removing equivalent transition faults changes the flow of the test compaction
procedure, causing it to produce smaller test sets. This can be explained as follows.

One of the subprocedures of the test compaction procedure from [16] performs fault simulation
of the test set with fault dropping to compute the number of faults detected by each test. It then
reorders the test set such that the tests appear by decreasing number of detected faults. In this
order it performs fault simulation with fault dropping again. If tests at the end of the test set do
not detect any faults, they are removed from the test set.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 11, Article 11. Publication date:
November 2020.

Equivalent Faults 11:13

Table 4. Test Compaction

with without

circuit %equiv | tests frac ntime | tests frac ntime

s953 33.86 | 103 0912 13233 | 102 0.903 135.33
tv80 10.99 | 652 0.894 5584.05 | 642 0.881 4647.88
wb_dma 5.57 147 0.821 6016.42 | 146 0.816 5215.73
s820 30.99 | 112 0903 4533 | 114 0919 34.83

§5378 11.59 | 183 0.750 1899.81 | 186 0.762 1202.98
$9234 9.02 252 0.768 343.65 | 260 0.793 400.42
s13207 12.86 298 0.730 6496.22 | 353 0.865 2234.89
$15850 7.92 227 0.703 1000.30 | 236 0.731 643.92
$38584 1033 | 309 0.771 1279.08 | 320 0.798 1106.93
i2c 5.64 86 0.827 408.72 | 90 0.865 155.22
pci_spoci_ctrl | 21.43 | 172 0.815 1025.06 | 180 0.853 472.33
systemcaes 5.72 153 0968 1579.94 | 154 0975 562.76
average 224 0.822 232 0.847

Another subprocedure from [16] has a basic step where it considers a test ¢; that detects more
than one fault, and a test ¢; that detects only one fault. It attempts to modify ¢; so as to detect the
fault detected by t;. When this is successful, ¢; is removed from the test set. This subprocedure is
influenced by the order of the tests since this order determines how many faults are detected by
each test (fault simulation in [16] is always carried out with fault dropping).

When equivalences are used for removing transition faults from the set of target faults, the
numbers of detected faults become more accurate in capturing the numbers of truly different faults
that are detected by every test. As a result, reordering becomes more effective. In addition, a
test ¢; that detects a stuck-at fault and an equivalent transition fault detects only one fault when
equivalences are used. In this case, it is considered for removal.

The effects of equivalences on the flow of the test compaction procedure can be eliminated by
keeping the equivalent faults in the set of target faults, but avoiding their simulation. When a
stuck-at fault is detected, if an associated transition fault is known to be equivalent, the transition
fault can be counted as detected without being simulated. In this case, numbers of detected faults
will remain the same, and the flow of the procedure will not change. The runtime is expected to
decrease because fewer faults are simulated. In this paper, the effect of equivalences on the flow of
the procedure, and its ability to achieve test compaction, are investigated by removing equivalent
faults from the set of target faults. It should be noted that the runtime may increase when the flow
changes.

The results of the test compaction procedure from [16] with and without identifying equivalences
are shown in Table 4 as follows. The circuits are ones where the numbers of tests in the compact
transition and stuck-at test sets are large enough to allow additional test compaction to be achieved.
In addition, the percentage of equivalences is at least 5% to ensure that the effects of identifying
them is noticeable.

Table 4 is organized as follows. Column %equiv repeats the percentage of equivalences found by
the efficient procedure. Column with (without) shows the results with (without) identification of
equivalences. Subcolumn tests shows the number of tests in the final compact test set. Subcolumn
frac shows the fraction of tests that remain in the final test set relative to the initial test set.
Subcolumn ntime shows the normalized runtime, where the total runtime is divided by the runtime

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 11, Article 11. Publication date:
November 2020.

11:14 Irith Pomeranz

for fault simulation with fault dropping of the initial test set. The runtime for finding equivalences
is included in the total runtime when they are used.

For the circuits in the top part of Table 4, the use of equivalences results in a larger number of
tests in the final test set. For the circuits in the bottom part of Table 4, the use of equivalences
results in a smaller number of tests.

From Table 4 it can be seen that the use of equivalences allows the test compaction procedure
to produce smaller final test sets for most of the circuits considered. In addition, the differences
in numbers of tests are higher for the circuits in the bottom part of Table 4. The averages given
in the last row of Table 4 further demonstrate the advantages of using equivalences. Overall, test
compaction is based on heuristics that influence the flow of the procedure and its final results in
complex ways, which may prevent a particular method (such as the use of equivalences) from
producing universally better results. Nevertheless, on the average, the use of equivalences improves
the ability of the procedure from [16] to achieve test compaction.

7 CONCLUDING REMARKS

This paper considered the scenario where LOS tests with equal primary input vectors are used for
both stuck-at and transition faults. This scenario may be used for enhancing the ability to achieve
test compaction for the two fault models together. A known observation is that a LOS test that
detects a transition fault also detects a corresponding stuck-at fault. The paper showed that, under
certain conditions, a LOS test that detects a stuck-at fault also detects a corresponding transition
fault. When this occurs, the two faults are equivalent under LOS tests. Equivalence can be used
for reducing the set of target faults for test generation and test compaction. The paper developed
this notion of equivalence, provided an efficient procedure for identifying equivalences, and
demonstrated the existence of equivalences in benchmark circuits using two types of experiments.
It also studied the effects of equivalences on a test compaction procedure.

REFERENCES

[1] L.N.Reddy, L. Pomeranz and S. M. Reddy, "COMPACTEST-II: A Method to Generate Compact Two-pattern Test Sets for
Combinational Logic Circuits”, in Proc. Intl. Conf. on Computer-Aided Design, 1992, pp. 568-574.

[2] R. Desineni, K. N. Dwarkanath and R. D. Blanton, "Universal Test Generation using Fault Tuples”, in Proc. Intl. Test
Conf., 2000, pp. 812-819.

[3] S. M. Reddy, G. Chen, J. Rajski, I. Pomeranz, P. Engelke and B. Becker, “A Unified Fault Model and Test Generation
Procedure for Interconnect Opens and Bridges”, in Proc. Europ. Test Symp., 2005, pp. 22-27.

[4] S. Goel and R. A. Parekhji, "Choosing the Right Mix of At-Speed Structural Test Patterns: Comparisons in Pattern
Volume Reduction and Fault Detection Efficiency”, in Proc. Asian Test Symp., 2005, pp. 330-336.

[5] D.Kim, M. E. Amyeen, S. Venkataraman, I. Pomeranz, S. Basumallick and B. Landau, "Testing for Systematic Defects
Based on DFM Guidelines”, in Proc. Intl. Test Conf., Oct. 2007, pp. 1-10.

[6] 1. Pomeranz, "Static Test Compaction for Delay Fault Test Sets Consisting of Broadside and Skewed-Load Tests”, in
Proc. VLSI Test Symp., 2011, pp. 84-89.

[7] S. Alampally, R. T. Venkatesh, P. Shanmugasundaram, R. A. Parekhji and V. D. Agrawal, "An Efficient Test Data Reduction
Technique through Dynamic Pattern Mixing Across Multiple Fault Models”, in Proc. VLSI Test Symp., 2011, pp. 285-290.

[8] F.Hapke and J. Schloeffel, “Introduction to the Defect-oriented Cell-aware Test Methodology for Significant Reduction
of DPPM Rates”, in Proc. European Test Symp., 2012, pp. 1-6.

[9] F.Yang, S. Chakravarty, A. Gunda, N. Wu and J. Ning, "Silicon Evaluation of Cell-Aware ATPG Tests and Small Delay
Tests”, in Proc. Asian Test Symp., 2014, pp. 101-106.

[10] A.D. Singh, "Cell Aware and Stuck-open Tests”, in Proc. European Test Symp., 2016, pp. 1-6.

[11] C.-H.WuandK.-J. Lee, "Transformation of Multiple Fault Models to a Unified Model for ATPG Efficiency Enhancement”,
in Proc. Intl. Test Conf., 2016, pp. 1-10.

[12] J. Savir and S. Patil, "Scan-Based Transition Test”, IEEE Trans. on Computer-Aided Design, Aug. 1993, pp. 1232-1241.

[13] J. Savir and S. Patil, "Broad-Side Delay Test”, IEEE Trans. on Computer-Aided Design, Aug. 1994, pp. 1057-1064.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 11, Article 11. Publication date:
November 2020.

Equivalent Faults 11:15

[14] N. Ahmed, M. Tehranipoor, C. P. Ravikumar and K. M. Butler, "Local At-Speed Scan Enable Generation for Transition
Fault Testing Using Low-Cost Testers”, IEEE Trans. on Computer-Aided Design, May 2007, pp. 896-905.

[15] G.Xu and A. D. Singh, "Scan Cell Design for Launch-on-Shift Delay Tests with Slow Scan Enable”, IET Computers &
Digital Techniques, May 2007, pp. 213-219.

[16] I Pomeranz, "Skewed-Load Tests for Transition and Stuck-at Faults”, IEEE Trans. on Computer-Aided Design, Vol 38,
No. 10, Oct. 2019, pp. 1969-1973.

[17] A. Sreedhar, A. Sanyal and S. Kundu, "On Modeling and Testing of Lithography Related Open Faults in Nano-CMOS
Circuits”, in Proc. Design, Autom. and Test in Europe Conf., 2008, pp. 616-621.

[18] M. O. Simsir, A. Bhoj and N. K. Jha, "Fault Modeling for FInFET Circuits”, in Proc. Intl. Symp. on Nanoscale Architectures,
2010, pp. 41-46.

[19] J. Zha, X. Cui and C. L. Lee, "Modeling and Testing of Interference Faults in the Nano NAND Flash Memory”, in Proc.
Design, Automation & Test in Europe Conf., 2012, pp. 527-531.

[20] D. Xiang, Z. Chen and L.-T. Wang, "Scan Flip-Flop Grouping to Compress Test Data and Compact Test Responses for
Launch-on-Capture Delay Testing”, ACM Trans. on Design Automation, Vol. 17, No. 2, April 2012, Article No. 18.
[21] S.-Y. Huang, Y.-H. Lin, K.-H. Tsai, W.-T. Cheng, S. Sunter, Y.-F Chou and D.-M. Kwai, "Small Delay Testing for TSVs in

3-D ICs”, in Proc. Design Automation Conf., 2012, pp. 1031-1036.

[22] A.Mondal, P. P. Chakrabarti and P. Dasgupta, "Symbolic-Event-Propagation-Based Minimal Test Set Generation for
Robust Path Delay Faults”, ACM Trans. on Design Automation, Vol. 17 No. 4, Oct. 2012, Article No. 47.

[23] M. Sauer, A. Czutro, L. Polian and B. Becker, “Small-delay-fault ATPG with Waveform Accuracy”, in Proc. Intl. Conf.
on Computer-Aided Design, 2012, pp. 30-36.

[24] W. Zhao, J. Ma, M. Tehranipoor and S. Chakravarty, "Power-safe Application of TDF Patterns to Flip-chip Designs
during Wafer Test”, ACM Trans. on Design Automation, Vol. 18, No. 3, July 2013, Article No. 43.

[25] S.Di Carlo, G. Gambardella, P. Prinetto, D. Rolfo and P. Trotta, "SSATTA: A Self-Adaptive Temperature-Based TDF
Awareness Methodology for Dynamically Reconfigurable FPGAs”, ACM Trans. on Reconfigurable Technology and
Systems, Vol. 8, No. 1, Feb. 2015, Article No. 1.

[26] Y. Zhang, Z. Peng,]. Jiang, H. Li and M. Fujita, "Temperature-aware Software-based Self-testing for Delay Faults”, in
Proc. Design, Automation & Test in Europe Conf., 2015, pp. 423-428.

[27] H. G. Mohammadi, P.-E. Gaillardon and G. De Micheli, "Fault Modeling in Controllable Polarity Silicon Nanowire
Circuits”, in Proc. Design, Automation & Test in Europe Conf., 2015, pp. 453-458.

[28] A.S. Trinadh, S. Potluri, S. B. Ch., V. Kamakoti and S. G. Singh, "Optimal Don’t Care Filling for Minimizing Peak
Toggles During At-Speed Stuck-At Testing”, ACM Trans. on Design Automation, Vol. 23, No. 1, Oct. 2017, Article No. 5.

[29] M. Abramovici, M. A. Breuer and A. D. Friedman, Digital Systems Testing and Testable Design, IEEE Press,
1995.

ACM Transactions on Design Automation of Electronic Systems, Vol. 11, No. 11, Article 11. Publication date:
November 2020.

